统计计算课件 第二章 正态分布

合集下载

多元统计分析:第二章 多元正态分布及

多元统计分析:第二章   多元正态分布及
17
1 2 exp( it ) exp( s j ) 2 j 1
) E(e
isqU q
)
第二章 多元正态分布及参数的估计
§2.2
记Σ=AA′,则有以下定义。 定义2.2.2 若p维随机向量X的特征函数 t ' t 为:
X (t ) exp[ it '
,d为s×1常向量,令Z=BX+d,则
Z~Ns(Bμ+d , BΣB ).
该性质指出正态随机向量的任 意线性组合仍为正态分布.
19
第二章 多元正态分布及参数的估计
§2.2 多元正态分布的性质2
证明 因Σ ≥0, Σ可分解为Σ=AA ,其中A 为p×q 矩阵.已知X~Np(μ,Σ),由定义 2.2.1可知 X = AU+μ
是对称非负定阵. 即 =´ , ´ ≥0 (为任给的p维常量).
7
第二章 多元正态分布及参数的估计
§2.1 随机向量—
(4) Σ=L2 ,其中L为非负定阵.
由于Σ≥0(非负定),利用线性代数中实对称阵的对角化定理,存 在正交阵Γ,使
1 0 LL

1 0 ' 0 p
并设:
i 0(i 1,, q), q1 0,, p 0.
10
第二章 多元正态分布及参数的估计
§2.2
在一元统计中,若U~N(0,1),则U的任意 线性变换X=σU+μ~N(μ,σ2)。利用这一性质, 可以从标准正态分布来定义一般正态分布:
若U~N(0,1),则称X =σU+μ的分布为 一般正态分布,记为X ~N(μ, σ2 )。
如例2.1.1,证明了X1,X2均为一元正态 分布,但由(X1,X2) 联合密度函数的形式易见 它不是二元正态.

正态分布ppt课件统计学

正态分布ppt课件统计学
详细描述
人类的身高和体重分布情况符合正态分布的特征。这是因为个体的生长发育受到多种因 素的影响,导致身高和体重的差异。根据正态分布规律,大部分人的身高和体重值会集 中在平均值附近,而偏离平均值越远的人数逐渐减少。这种分布形态有助于评估个体的
生长发育状况,并识别出异常身高和体重的个体。
股票价格波动
总结词
卡方检验
总结词
卡方检验是一种非参数检验方法,用于比较实际观测频数与 期望频数是否有显著性差异。
详细描述
卡方检验通过计算卡方值和对应的P值来判断实际观测频数与 期望频数是否有显著性差异。卡方值越大,P值越小,说明差 异越显著。
05
正态分布的实例分析
考试分数分布
总结词
考试分数分布通常呈现正态分布的特点,即大部分考生成绩集中在平均分附近,高分和低分均呈下降趋势。
03
正态分布的性质
钟形曲线
钟形曲线
正态分布的图形呈现钟形 ,中间高,两侧逐渐降低 ,对称轴为均值所在直线 。
概率密度函数
描述正态分布中取任意值 的概率大小,函数曲线下 的面积代表概率。
曲线下面积
正态分布曲线下的面积为1 ,表示随机变量取值在一 定范围内的概率。
平均数与标准差
平均数
正态分布的均值,表示数据的中 心位置,所有数据值加起来除以 数据个数得到。
概率密度函数
正态分布的概率密度函数公式为: $f(x) = frac{1}{sqrt{2pisigma^2}} e^{-frac{(x-mu)^2}{2sigma^2}}$
其中,$mu$表示平均值,$sigma$ 表示标准差,该公式描述了正态分布 曲线的形状和高度。
02
正态分布的应用
自然现象

正态分布知识点总结ppt

正态分布知识点总结ppt

正态分布知识点总结ppt一、概念1. 正态分布,又称高斯分布,是一种连续概率分布2. 具有单峰对称的特点3. 由于其形状近似于钟形,因此也被称为钟形曲线二、特征1. 均值μ:描述分布的中心位置2. 标准差σ:描述数据点相对于均值的离散程度3. 标准差越大,曲线扁平度越高4. 标准差越小,曲线陡峭度越高5. 正态分布的均值、众数和中位数都相等三、标准正态分布1. 当均值μ=0,标准差σ=1时的正态分布2. 应用范围更广,便于做概率计算3. 可通过Z变换,将任意正态分布转化为标准正态分布四、性质1. 概率密度函数:f(x) = (1/σ√(2π)) * e^(-(x-μ)²/(2σ²))2. 总体均值、中位数、众数相等3. 68-95-99.7法则:在正态分布下,大约68%的数据落在均值±1个标准差内,大约95%的数据落在均值±2个标准差内,大约99.7%的数据落在均值±3个标准差内五、应用1. 统计学:用于研究样本数据的分布规律2. 自然科学:许多自然现象的分布都符合正态分布,如身高、体重等3. 工程学:用于分析质量控制、可靠性分析等六、假设检验1. 基于正态分布的概率性质,可对样本数据进行假设检验2. 通过计算样本均值和标准差,判断总体参数是否满足要求七、实际案例1. 身高分布:研究人群的身高分布规律,制定人体工程学标准2. 质量控制:监控产品的质量符合正态分布,及时发现异常情况3. 信用评分:应用正态分布评估个人信用等级八、常见问题1. 如何判断一组数据是否符合正态分布?- 绘制直方图或概率图查看数据分布形状- 进行正态性检验,如Shapiro-Wilk检验、K-S检验等2. 如果数据不符合正态分布,影响有哪些?- 在统计分析中应当选择非参数检验方法- 在数据建模和预测中需要考虑非线性因素的影响九、总结正态分布是统计学中的基础概率分布,具有广泛的应用价值。

正态分布 课件

正态分布   课件
在气象中,某地每年七月份的平均气温、平均湿度 以及降雨量等,水文中的水位;
总之,正态分布广泛存在于自然界、生产及科学技术的许多领域中。
正态分布在概率和统计中占有重要地位。
4、正态曲线的性质
(1)曲线在x轴的上方,与x轴不相交.
(μ-σ,μ+σ]
0.6826
(μ-2σ,μ+2σ]
0.9544
(μ-3σ,μ+3σ]
0.9974
(2)曲线是单峰的,它关于直线x=μ对称.
(4)曲线与x轴之间的面积为1.
(3)曲线在x=μ处达到峰值(最高点)
(5)若 固定, 随 值的变化而沿x轴平移, 故 称为位置参数
(6)当μ一定时,曲线的形状由σ确定 .σ越大,曲线越“矮胖”,表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.
5、特殊区间的概率:
m-a
m+a
x=μ
若X~N ,则对于任何实数a>0,概率 为如图中的阴影部分的面积,对于固定的 和 而言,该面积随着 的减少而变大。这说明 越小, 落在区间 的概率越大,即X集中在 周围概率越大。
4
0.04
[0.5,1)
8
0.08
[1,1.5)
15
0.15
[1.5,2)
22
0.22
[2,2.5)
25
0.25
[2.5,3)
14
0.14
[3,3.5)
6
0.06
[3.5,4)
4
0.04
[4,4.5)
2
0.02
11
高尔顿钉板实验的 频率分布直方图
这条曲线具有 “中间高,两头低” 的特征,像这种类型的曲线, 就是(或近似地是)以下函数的图像:

正态分布详解(很详细)PPT课件

正态分布详解(很详细)PPT课件

能不能根据密度函数的表达式, 得出正态分布的图形特点呢?
f(x) 1 e , (x2 2)2 x
2
容易看到,f(x)≥0 即整个概率密度曲线都在x轴的上方;
f(x) 1 e , (x2 2)2 x
2
令x=μ+c, x=μ-c (c>0), 分别代入f (x), 可 得
f (μ+c)=f (μ-c)
1
t2
e 2 dt
n np(1p)
将上述结论推广到一般的正态分布,
Y~N(,2)时,
P(Y | |)0.6826
P(Y | |2)0.9544
P(Y | |3)0.9974
可以认为,Y 的取值几乎全部集中在
[3,3]区间内.
这在统计学上称作“3 准则”
(三倍标准差原则).
上一讲我们已经看到,当n很大,p接 近0或1时,二项分布近似泊松分布; 如果 n很大,而p不接近于0或1,那么可以证明, 二项分布近似于正态分布.
2
X的分布函数P(X≤x)是怎样的呢?
设X~ N(,2) , X的分布函数是
F(x) 1 xe(t2 2)2d,tx
2
正态分布由它的两个参数μ和σ唯 一确定, 当μ和σ不同时,是不同的正 态分布。
下面我们介绍一种最重要的正态分布 标准正态分布
三、标准正态分布
0,1的正态分布称为标准正态分布.
且 f (μ+c) ≤f (μ), f (μ-c)≤f (μ)
故f(x)以μ为对称轴,并在x=μ处达到最大
值:
f () 1
2
f(x) 1 e , (x2 2)2 x
2
当x→ ∞时,f(x) → 0,
这说明曲线 f(x)向左右伸展时,越来越 贴近x轴。即f (x)以x轴为渐近线。

正态分布完整ppt课件

正态分布完整ppt课件
正态性检验
使用如Shapiro-Wilk检验、Kolmogorov-Smirnov检验等方法,对 误差项进行正态性检验,以验证其是否符合正态分布。
方差分析中F分布应用
01 02
F分布的定义
F分布是一种连续型概率分布,常用于方差分析中的假设检验。在方差 分析中,通过比较不同组间的方差与组内方差,判断各因素对结果的影 响是否显著。
筛选方法
包括单变量分析和多变量分析等,结合临床 意义和统计学显著性进行生物标志物的筛选 。
社会科学调查数据分析
社会科学调查数据特点
大量、复杂、多维度的数据,往往需要进行统计分析和数据挖掘。
正态分布在社会科学调查数据分析中的应用
通过对调查数据进行正态性检验,选择合适的数据处理和分析方法,如参数检验、回归分析等。
有对称性和单峰性。
性质
对称性:正态分布曲线关于均值对称 。
单峰性:正态分布曲线只有一个峰值 ,位于均值处。
均值、中位数和众数相等。
概率密度函数在均值两侧呈指数下降 。
正态曲线特点
01
02
03
04
形状
钟形曲线,中间高,两边低。
对称性
关于均值对称,即左右两侧形 状相同。
峰值
位于均值处,且峰值高度由标 准差决定。
05
正态分布在金融学领域应用
风险评估及资产组合优化
风险评估
正态分布用于描述金融资产的收益和风险分布,通过计算均值和标准差来评估投资组合 的风险水平。
资产组合优化
基于正态分布假设,利用马科维茨投资组合理论等方法,构建最优资产组合以降低风险 并提高收益。
VaR(Value at Risk)计算
正态分布用于计算投资组合在一定置信水平下的最大可能损失(VaR),以衡量潜在风 险。

正态分布ppt课件

正态分布ppt课件

1.已知某地区中学生的身高 X 近似服从正态分布 N 164, 2 ,若 P X 170 0.3 ,
则 P158 X 1706
D.0.8
解析: P158 X 170 2P164 X 170 2 0.5 P X 170 0.4 .
2. 已 知 随 机 变 量 X 服 从 正 态 分 布 N 1, 2 , 若 P(X 0) P(X 3) 11 , 则 10 P(2 X 3) ( )
A.0.1
B.0.2
C.0.3
D.0.4
解析:因为随机变量 X 服从正态分布 N 1, 2 ,
所以随机变量 X 的均值 1 ,
所以随机变量 X 的密度曲线关于 x 1 对称, 所以 P(X 0) P(X 2) , 又 P(X 0) P(X 3) 11 ,
10
所以 P(X 2) P X 2 P(2 X 3) 11 ,
为“可用产品”,则在这批产品中任取 1 件,抽到“可用产品”的概率约为 _____________.
参考数据:若 X N , 2 ,则 P X 0.6827 ,
P 2 X 2 0.9545, P 3 X 3 0.9973
解析:由题意知,该产品服从 X N(25,0.16) ,则 25, 0.4 ,
10
因为 P(X 2) P X 2 1,所以 P(2 X 3) 0.1
3.已知随机变量 X ~ N , 2 ,Y ~ B6, p ,且 P X 3 1 , E X E Y ,则 2
p ( )
1
1
1
1
A. 6
B. 4
C. 3
D. 2
解析:由于 X 服从正态分布 N , 2 ,且 P X 3 1 ,故其均值 E X 3 . 2

第二章正态分布

第二章正态分布

3
1
15
2
均数相等、方差不等的正态分布图示

2 1
3
16
正态曲线下的面积规律

X轴与正态曲线所夹面积恒等于1 。 对称区域面积相等。
S(-,-X)
S(X,)=S(-,-X)

17
正态曲线下的面积规律
141.2 148.9 154.0 147.7 152.3 146.6 132.1 145.9 146.7 144.0
135.5 144.4 143.4 137.4 143.6 150.0 143.3 146.5 149.0 142.1 140.2 145.4 142.4 148.9 146.7 139.2 139.6 142.4 138.7 139.9
z
X
则z服从标准正态分布 Nhomakorabea28正态分布转换为标准正态分布

实际应用中,经z变换后,就可把求解任意 一个正态分布曲线下面积的问题,转化成标准 正态分布曲线下相应的面积问题。
29

标准正态分布的特征
标准正态分布特征同正态分布,它是正态分布的特例。 每一条正态分布曲线经z变换都可转换为标准正态分布。 正态分布取值与标准正态分布取值具有一一对应的关系;
曲线下的面积也具有一一对应的关系。
30

附表1
标准正态曲线下的面积分布表
z取不同值时z值左侧的标准正态曲线下面积,记做 (z ) 列出了标准正态曲线下-∞到z(z≤0)的左侧累计面积 因为z分布是对称的,所以只列出了一半的面积
( z ) 1 ( z )
8

某市2007年12岁男童120人的身高(cm)资料如下
142.3 156.6 142.7 145.7 138.2 141.6 142.5 130.5 134.5 148.8 134.4 148.8 137.9 151.3 140.8 149.8 145.2 141.8 146.8 135.1 150.3 133.1 142.7 143.9 151.1 144.0 145.4 146.2 143.3 156.3 141.9 140.7 141.2 141.5 148.8 140.1 150.6 139.5 146.4 143.8 143.5 139.2 144.7 139.3 141.9 147.8 140.5 138.9 134.7 147.3

正态分布PPT课件

正态分布PPT课件

设随机变量 ~ N(0,1).由概率密度曲线的定义知道,任给
区间(-∞,a), P( a) 的值为下图中阴影部分的面积.
设随机变量 ~ N(0,1).由概率密度曲线的定义知道,任给
区间(-∞,a), P( a) 的值为下图中阴影部分的面积. P(a b) 的值为下图中阴影部分的面积.因此,
函数.
如图, 在区间(a,b)内取值的概率 P(a b)恰好为 图中阴影部分的面积. 在区间(-∞,a)取值的概率 P( a)
恰好是位于曲线与x轴之间,直线x=a左侧部分图形的面积.
一般地,如果随机变量 的概率密度函数是
f (x)
1
e
(
x )2 2 2
, (
x
)

其中 , 是常数,且 >0,那么称 服从参数为, 2 的正
下面根据这些数据绘制频率分布直方图.
(2)计算出各小组的频数、频率,列出频率分布表:
分组
个数累计
[145.5,148.5) 一
[148.5,151.5) [151.5,154.5) 正 ̄一
[154.5,157.5) 正
[157.5,160.5) 正正正 [160.5,163.5) 正正一 ̄
[163.5,166.5) 正正
P(a b) P( b) P( a).
设随机变量 ~ N(0,1).由概率密度曲线的定义知道,任给
区间(-∞,a), P( a) 的值为下图中阴影部分的面积. P(a b) 的值为下图中阴影部分的面积.因此,
P(a b) P( b) P( a).
P( x0 )可以通过教材附录中“标准正态分布表”求出.表中 与 x0相对应的值 (x0 ) 就是随机变量小于x0的概率.即

《正态分布》ppt课件

《正态分布》ppt课件
《正态分布》ppt课件
目录
CONTENTS
• 正态分布基本概念 • 正态分布在统计学中应用 • 正态分布在自然科学领域应用 • 正态分布在社会科学领域应用 • 正态分布计算方法及工具介绍 • 正态分布在实际问题中案例分析
01 正态分布基本概念
CHAPTER
定义与性质
定义
对称性
正态分布是一种连续型概率分布,描述了许 多自然现象的概率分布情况。在统计学中, 正态分布又被称为高斯分布。
系统误差与随机误差
正态分布可以帮助区分系统误差和随机误差。系统误差是由于实验装置或方法本身的缺陷引 起的,而随机误差则是由于各种不可控因素引起的。通过正态分布分析,可以对这两类误差 进行识别和纠正。
化学中浓度分布规律研究
01
溶液浓度的正态分布
在化学实验中,溶液的浓度分布往往符合正态分布。通过测量不同位置
利用SPSS的图形功能,可以绘制多种统计图表,包括频率分布直 方图、正态分布曲线图等。
SPSS提供了丰富的统计分析方法,如参数估计、假设检验、方差 分析等,可以根据研究需求选择合适的方法进行分析。
06 正态分布在实际问题中案例分析
CHAPTER
质量控制过程中产品合格率评估
质量控制图
利用正态分布原理,通过绘制质 量控制图,可以直观地展示产品 质量的波动情况,从而及时发现 并处理异常波动,确保产品合格
数据输入与整理
在Excel中输入数据,并进行必要的整理,如删除重复值、处理缺失 值等。
使用内置函数计算均值和标准差
Excel提供了丰富的内置函数,可以直接计算数据集的均值 (AVERAGE函数)和标准差(STDEV函数)。
绘制图表
利用Excel的图表功能,可以根据数据快速生成频率分布直方图和正 态分布曲线图。

正态分布 课件

正态分布  课件


• 特别地有:P(μ-σ<X≤μ+σ)= 0.6862 ;
• P(μ-2σ<X≤μ+2σ)= 0.9544 ;
• P(μ-3σ<X≤μ+3σ)= 0.9974 .
[答案] B
[解析] 仔细对照正态分布密度函数:f(x)= 21πσe-
(x-μ)2
2σ2 (x∈R),注意指数 σ 和系数的分母上的 σ 要一致,以及
正态分布
• 1.当样本容量无限增大时,它的频率分 布直方图 无限接近于 一条总体密度曲 线,在总体所在系统相对稳定的情况下, 总体密度曲线就是或近似地是以下函数的 图象:
• 其中μ和σ(σ>0)为参数.我们称φμ,σ(x)的图 象为 正态分布密度曲线,简称 正态曲线 .
• (4)曲线与x轴之间的面积为 1 ;
• (5) 当 σ 一 定 时 , 曲 线 随 μ 的 变 化而沿 x 轴 平移;
• (6)当μ一定时,曲线的形状由σ确定:σ越小,
曲线越“
瘦高”,表示总体的分布越
集中 ;σ越大,曲线越“
矮胖 ”,表示
总体的分布越 分散 .
• 4.若X~N(μ,σ2),则对任何实数a>0,概
率P(μ-a<X≤μ+a)=
称 性 得 P(3<X≤4) = P(6<X≤7) , 所 以
P(6<X≤7)=
=0.1359.
• [点评] 解此类题首先由题意求出μ及σ的
值,然后根据三个特殊区间上的概率值及
正态曲线的特点(如对称性,与x轴围成的 面积是1等)进行求解.
• [例5] 某年级的一次信息技术测验成绩近 似服从正态分布N(70,102),如果规定低于 60分为不及格,求:

医学统计学(第2章)正态分布

医学统计学(第2章)正态分布

dx
(2-18) )
F(X)
p(a〈x〈b)
0 12.00 14.50 17.00 19.50 22.00 24.50 27.00 29.50 32.00
正态分布曲线下面积的含义
1.表示变量值(x)在a-b区间变量值所占 1.表示变量值 表示变量值( 全部(总体)变量值的比例或概率 比例或概率(p)。 全部(总体)变量值的比例或概率(p)。 2变量值在整个曲线下的面积为100%,或 变量值在整个曲线下的面积为100%,或 出现的概率为1 出现的概率为1。
第五节 医学参考值范围的制定
一、概念 医学参考值是指包括绝大多数“ 医学参考值是指包括绝大多数“正 常人” 的各种生理及生化指标常数, 常人 ” 的各种生理及生化指标常数 , 也 称正常值。 称正常值。 正常值是指在一定范围内波动的值, 正常值是指在一定范围内波动的值, 医学上常用95% 医学上常用95%的范围作为判定正常或 异常的参考标准。 异常的参考标准。
二、 标准正态分布
1.标准正态分布及标准化变量值(u) 标准正态分布及标准化变量值( ) 标准正态分布及标准化变量值 任何正态分布的X值通过 值转换后,称为标 任何正态分布的 值通过u值转换后 称为标 准化的正态分布, 准化的正态分布,即u ~N( µ=0 , σ2=1) ( ) 概率密度函数为: 。概率密度函数为: 2
Φ(−u) 表示从-∞到- u值对应曲线范围 表示从- 值分布比例。 内X值分布比例。
例1: :
Φ(u = −1) = 0.1587 Φ(µ =1) =1− Φ(u = −1)
=1− 0.1587 = 0.8413
例2:标准正态变量值u=(-1,1)和u= 标准正态变量值u=( 1.96,1.96)区间内面积各为多少? ( -1.96,1.96)区间内面积各为多少?

正态分布课件课件ppt(共50张PPT)

正态分布课件课件ppt(共50张PPT)

m和标准差s
(1)
(x)
1
x2
e2,x( ,)
2
m0 , s 1
(2) (x)21 2e(x 8 1)2,x ( , ) m1 , s 2
说明:当m0 , s 1时,X 服从标准正态分布
记为X~N (0 , 1)
变式训练1
若一个正态分布的密度函数是一个偶函数且该函数与y
轴交于点 (0 , 1 ) ,求该函数的解析式。
ms ms P(70X110) P ( 2 X 2 ) 0 .9 5 4 4 .
ms ms P(80X100) P ( X ) 0 .6 8 2 6 .
即考试成绩在(80,100)间的概率为0.6826.
考试成绩在(80,100)间的考生大约有
2 0 0 0 0 .6 8 2 6 1 3 6 5 .
(2)曲线对应的正态总体概率密度函数是偶函数;
(3)曲线在x= 处处于最高点,由这一点向左右两侧延伸时,
曲线逐渐降低;
(4)曲线的对称位置由μ确定,曲线的形状由σ确定,σ越大 ,曲线越“矮胖”,反之,曲线越“瘦高”.
上述叙述中,正确的有 (1) (3) (4) .
主页
课堂练习 正态分布(选修2-3)
3σ)之间的值,并简称之为 3σ原则.
主页
正态分布(选修2-3)
例4.在某次数学考试中,考生的成绩X服从正态分布 X~N(90,100).(1)求考试成绩X位于区间(70,110) 上的概率是多少?(2)若此次考试共有2000名考生, 试估计考试成绩在(80,100)间的考生大约有多少人 ?
解:依题意,X~N(90,100), m90,s10.
图2.46
68.26%
μ

正态分布ppt课件

正态分布ppt课件
收集数据
从实际问题中收集相关数据,如某产品的质量指 标数据。
数据拟合
使用正态分布函数对数据进行拟合,判断数据是 否符合正态分布特征。
参数估计
采用最大似然估计等方法,估计出正态分布的均 值和标准差等参数值。
案例分析:某产品质量指标服从正态分布检验
案例背景介绍
介绍某产品的质量指标数据及其背景信息。
正态性检验
选举结果预测 在政治学中,选举结果的预测也往往基于正态分布模型, 通过分析选民的支持率和投票行为来预测选举结果。
经济金融数据中正态分布检验
在金融市场中,股票价格的波动往往呈现出正态分布 的特点,即大部分价格波动都集中在平均值附近,而
极端波动出现的概率很小。
输入 收益标率题分布
在投资组合理论和风险管理中,收益率的分布也往往 假设为正态分布,以便进行风险度量和资产配置。
连续型随机变量及其性质
均匀分布
均匀分布是描述在某一区间内取值的随机变量,其取值具有等可能性。
指数分布
指数分布是描述无记忆性的随机变量的概率分布,常用于可靠性分析 和排队论中。
正态分布
正态分布是描述连续型随机变量的最重要的一种分布,具有对称性和 集中性等特点,广泛应用于自然科学和社会科学领域。
其他连续型随机变量
概率分布的概念
概率分布用于描述随机变量取不同值 的概率规律,包括离散型概率分布和 连续型概率分布。
离散型随机变量的概率分布
离散型随机变量取值为有限个或可数 个,其概率分布通常用分布列表示。
连续型随机变量的概率分布
连续型随机变量取值充满某个区间, 其概率分布用概率密度函数表示。
期望与方差
期望的概念
方差的概念
利用正态分布性质,识别 并处理回归模型中的异常 值。

75正态分布课件

75正态分布课件
回归分析
用于研究变量之间的相关关系,通过建立回归方程来描述自变量和因变量之间的数量关 系,并进行预测和控制。
正态分布在方差分析和回归分析中的应用
在方差分析中,正态分布假设是前提之一,用于判断实验结果的可靠性;在回归分析中, 正态分布假设用于建立回归模型并进行参数估计和假设检验。
04 正态分布在概率论中作用
检验统计量与拒绝域 根据样本数据计算检验统计量,并根据显著性水 平和检验统计量的分布确定拒绝域。
3
P值与决策 根据检验统计量的值和拒绝域计算P值,并根据P 值与显著性水平的比较做出决策。
方差分析与回归分析应用
方差分析
用于研究不同因素对实验结果的影响程度,通过比较不同组间的方差和组内方差来判断 因素对实验结果是否有显著影响。
定理意义
中心极限定理揭示了大量独立随机变量的和近似服从正态分布的规律,为统计学中 的许多推断方法提供了理论基础。
正态分布与其他分布关系
正态分布与t分布关系
当总体服从正态分布且样本量n较大时,t分布近似于标准正态分布。因此,在实际应用中, 当样本量足够大时,可以使用正态分布的方法对t分布进行近似处理。
关键知识点总结回顾
正态分布的定义和性质
01
正态分布是一种连续型概率分布,具有钟形曲线特点,其概率
密度函数由均值和标准差决定。
正态分布的参数估计
02
通过样本数据可以估计正态分布的均值和标准差,常用方法有
最大似然估计和矩估计。
正态分布的应用
03
正态分布在实际问题中广泛应用,如质量控制、假设检验、回
归分析等。
75正态分布课件
目 录
பைடு நூலகம்
• 正态分布基本概念 • 正态分布性质与定理 • 正态分布在统计学中应用 • 正态分布在概率论中作用 • 正态分布在实际问题中运用 • 正态分布课件总结回顾与拓展延伸

正态分布课件课件

正态分布课件课件

医学研究
正态分布经常被用来描述人体的生理指标,例 如血压、体重、心率和血糖等。
工程技术
正态分布在工程技术中也有着很重要的应用, 例如在质量控制和可靠性分析中。
正态分布在数据分析中的应用
偏度和峰度
使用偏度和峰度帮助了解正态 分布的形状和分布。偏度描述 了平均值分布在曲线的何处, 而峰度则描述了曲线的陡峭程 度。
正态分布在适用性和排除异常值方面存在一 些限制。如果样本不符合正态分布,此时用 正态分布进行分析可能会导致错误的结论。
Hale Waihona Puke 正态分布的常用假设及检验假设检验
假设检验是指在一定的显著水平下,对总体参数提 出假设,并根据样本数据的分布,用统计学方法判 断原假设是否成立。
P值
P值是在假设检验中使用的一个统计量,通常一起出 现的是显著性水平。 p值是落在拒绝域的概率,越小 说明差异越显著。
正态分布优缺点
1 优点
2 缺点
正态分布具有左右对称性,易于使用和理解, 广泛适用于各行各业的数据分析。
中心极限定理
中心极限定理告诉我们,样本 均值的分布逼近于正态分布, 无论样本分布如何。这意味着 我们可以在特定条件下使用正 态分布来预测总体分布。
置信区间
使用正态分布来计算置信区间。 在数据分析中,置信区间是指 根据样本数据计算出的一个区 间,以此来推测总体参数的范 围。
正态分布的概率计算方法
1
累积分布函数
正态性检验方法
正态Q-Q图
Q-Q图是通过将样本数据分布和正态分布进行比较来检验正态性的。如果点的分布趋近于一 条直线,则样本数据符合正态分布。
Shapiro-Wilk检验
Shapiro-Wilk检验是一种经典的正态性检验方法。该检验基于样本数据的偏度、峰度、样本 大小和简单随机抽样的原则,可以判断样本数据是否符合正态分布。

(课件)概率论与数理统计:正态分布

(课件)概率论与数理统计:正态分布
CONTENTS
01 概念导入 02 性质剖析 03 应用举例 04 应用拓展
1
概念导入
高尔顿板
y 频率 组距
球槽
编号
O 1 2 3 4 5 6 7 8 9 1011121314
x
y 频率 组距
总体密度曲线
O
x 球槽的编号
正态概率密度函数的几何特征
正态曲线
ห้องสมุดไป่ตู้
(1) 曲线关于 x μ 对称;
F ( x) P{ X x前} 者在 x 处的函数值
从而有
P{ X 后者在
x
x
与}
处的函(数u)值u
相等
x
( x ) 标

P{ x1 X x2 } F ( x2 ) F ( x1 )

( x2 ) ( x1 )
3
应用举例
例1已知X~N (1, 4),求P (5<X≤7.2),P (0<X≤1.6)
解:
由X~N (1, 4)可推得:
X 1 ~
N 0,1
2
P(5
X
7.2)
P
5
2
1
X 1 2
7.2 1 2
标 准 正
7.2 2
1
5
2
1
态 分 布
(3.1) (2)

0.9990 0.9772 0.0218
已知X~N (1, 4),求P (5<X≤7.2), P (0<X≤1.6)
(x)
1
x2
e2,
2
( x) ,易见
x
标准正态量的分布函数通常被记成
Φ( x)
1
x t2
e 2 dt

正态分布课件

正态分布课件

矩估计
定义
矩估计法是利用样本矩估计总体矩的一种方法。
原理
基于概率论中的矩理论,通过样本矩来估计总体 矩。
方法
首先需要计算样本的一阶矩(均值)和二阶矩( 方差),然后用样本矩来估计总体矩。
贝叶斯估计
定义
01
贝叶斯估计法是通过贝叶斯定理来估计参数的方法。
原理
02
基于概率论中的贝叶斯定理,通过已知的先验概率和样本信息
应用
累积分布函数在统计学中 有广泛应用,如概率模拟 、置信区间的计算等。
正态分布的分位数函数
定义
正态分布的分位数函数是Φ(x) = (1/2) * [1 + erf(x / (√(2) * σ))] ,其中erf是误差函数。
解释
分位数函数描述了随机变量取值大于等于x的概率,即Φ(x) = P(X >= x)。
预测
正态分布还被用于时间 序列数据的预测,例如 在ARIMA模型中,差分 项通常假定服从正态分 布。
状态空间模型
在状态空间模型中,正 态分布被用于描述系统 扰动项的分布,以确保 模型的有效性和准确性 。
在金融风险管理中的应用
风险度量
正态分布被广泛用于金融风险度量,例如在计算VaR(风险价值 )时,通常假定回报率服从正态分布。
率密度函数为f(x)
=
(1/√(2πσ^2)) * exp(-(x-
μ)^2/(2σ^2)),其中μ为均值,σ
为标准差。
正态分布的特点
钟形曲线
正态分布的曲线呈钟形,左右对 称,最高点位于均值μ处,而标准 差σ则决定了曲线的宽度和扁平程
度。
连续性
正态分布是一种连续型概率分布, 其概率密度函数在全实数域上定义 。

统计分布的正态分布

统计分布的正态分布

统计分布的正态分布正态分布(Normal Distribution)是统计学中最重要的概率分布之一。

它的特点是以均值为中心对称,呈钟形曲线。

正态分布在自然界和社会科学中广泛应用,它可以帮助我们理解和解释一系列现象。

本文将介绍正态分布的特点、应用、统计推断以及一些实例。

正态分布的特点正态分布的曲线呈钟形,左右对称,其形状由均值和标准差决定。

均值决定曲线的中心位置,标准差决定曲线的宽度。

一般而言,正态分布的均值为0,标准差为1,这样的分布称为标准正态分布。

正态分布的概率密度函数为:f(x) = (1/(σ√2π)) * e^(-(x-μ)^2 / (2σ^2))其中,f(x)表示某个特定值x的概率密度,μ表示均值,σ表示标准差,e表示自然对数的底数。

正态分布的曲线图通常被称为钟形曲线或高斯曲线。

正态分布的应用正态分布在现实生活中广泛应用,特别是在统计学和自然科学领域。

下面列举一些常见的应用场景:1. 身体特征:身高、体重等身体特征往往呈现正态分布。

大多数人的身高集中在平均身高附近,极端身高的人较少。

2. 考试成绩:在大规模考试中,考试分数往往呈现正态分布。

绝大多数学生的成绩集中在平均分附近,优秀和较差的学生属于少数。

3. 生产质量控制:正态分布可以指导生产质量控制。

通过收集产品的测量数据,可以分析产品的特征是否符合正态分布,进而评估生产过程的稳定性和准确性。

4. 自然现象:许多自然现象也可以用正态分布来描述,例如天气预测中的温度分布、地震中的震级分布等。

正态分布的统计推断正态分布在统计推断中扮演着重要角色。

根据中心极限定理,当我们从总体中抽取多个样本时,样本均值的分布将会逐渐接近正态分布。

这个特性使得正态分布成为统计推断中一些重要方法的基础。

1. 参数估计:对于一个未知总体的均值或标准差,我们可以通过采集样本数据来估计总体参数。

通过计算样本均值和样本标准差,可以利用正态分布的性质得到总体参数的估计值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 1 i i u y ci y d i y 1 , y 2 ln 2 i 0 i 1 其中c0 2.515517 , d1 1.432788 , 2
c1 0.802853 , d 2 0.189269 , c2 0.010328 , d 3 0.001308 . 以上公式的最大绝对误 差是4.4 10 。
利用分位数展开式的算法
取初值,
u p u0
n
Ck (u0 ) k ( p ( u )) 0 k k 1 k! ( u0 )
n

Ck (u0 ) k p (u0 ) u0 Z0 Z0 k! (u0 ) k 1
' (u0 ) ' 其中 C1 (u 0 ) 1, Ck 1 (u0 ) Ck (u0 ) kCk (u0 ) (u ) k 1,2, 0 上式右边可表示为:
数或分位数的计算公式进行计算。
n
正态分布分布函数和分位数计算
设X ~ N ( , 2 ),则X的分布函数为: F ( x) ( x ); ( x)是标准正态分

布分布函数。 X的p分位数为:x p u p , u p是 标准正态分布的 p分位数。 故仅讨论标准正态分布分布函数 ( x)和分位数u p的计算方法。
正态分布的分布函数 和分位数的计算
概述
正态分布是概率论中最重要的分布。一
方面,正态分布是自然界中最常见的一种分
布,例如测量的误差、炮弹弹落点的分布、 人的身高体重、农作物的收获量、工厂产品 的尺寸等都近似服从正态分布;一般来说, 若影响某一数量指标的随机因素很多,而每
个因素所起的作用不太大,则这个指标服从
(1)
其中a1 0.0705230784 , a2 0.0422820123 , a3 0.0092705272 ,a4 0.0001520143 , a5 0.0002765672 ,a6 0.0000430638 以上近似公式的最大绝 对误差是 1.3 10 。
7
n
用二阶展开的迭代求法
1 5.7262204 u0 sign( p ) y 2 . 0611786 2 y 11 . 640595 y ln4 p1 p
初始值取为 u0,用二阶展开的迭代求根公式计算 后,用 u1 u0 作为新的初值 u0 重复迭代, 直至达到所要求的精度。
n
二、利用误差函数的幂级数 近似式计算
误差函数erf ( x)的定义: 称函数erf ( x) 2


x
0
e dt( x 0)
t 2
为误差函数;erfc( x) 1 erf ( x) 2



x
e dt为余误差函数。
t 2
n
二、利用误差函数的幂级数 近似式计算
( x)与误差函数erf ( x)有以下关系: (1 erf ( 0.5 ( x) 0.5 (1 erf ( x ), x 0 2 x ), x 0 2
Z u p u0 Z0 C1 (u0 ) 0 2
Z0 C ( u ) C ( u ) 2 0 3 0 3
利用分位数展开式的算法
用递推算法,令
Z0 gn Cn (u0 ) n g k 1 Z 0 (Ck 1 (u0 ) g k )(k n, n 1,,1) k 1 u p u0 g1
4
n
标准正态分布分位数的计算
(1)用u p的近似计算公式 ②Toda近似公式( 1967 年) i u y bi y , y ln4 (1 ) i 0 其中b0 0.1570796288 10, b1 0.3706987906 101 ,
正态分布,这点可由概率论的极限定理证明。
概述
另一方面,正态分布具有许多良好 的性质,许多分布可用正态分布来近似,
另外一些分布又可以通过正态分布来导
出,因此在理论研究中,正态分布十分
重要 。
概述
由于正态分布在概率计算中的重要 性,利用计算机进行有关正态分布的计 算问题时,经常涉及到其分布函数或分 位数的计算。最好的办法是利用分布函
x2 2

n
一、连分式逼近法
截有限节连分式作为 ( x)的近似值: 1 ( x) x x 2 2 x 2 nx2 (0 x 3) 2 1 3 5 (2n 1) ( x) 1 ( x) x 1 2 n ( x 3) x xx x 12 以上近似值,当 n 28时,精度可达 10 。
x2 2
n
一、连分式逼近法
( x)的两个连分式展开式 为: 1 ( x) x x 2 2 x 2 kx 2 ( x) 2 1 3 5 ( 1) k (2k 1) ( 1) k 1 ( x) x 1 2 k ( x) 1 x xx x 其中: ( x) 1 e 2
由以上近似值可计算 erf ( x)的值。再 由( x)与erf ( x)的关系,计算 ( x)的 近似值。
n
三、利用误差函数的 近似公式计算
导出误差函数的近似计 算公式的方法很多, 下面介绍两个常用的计 算公式: erf ( x) 1 (1 ai x )
i 1 6 i 16
10 12
b2 0.8364353589 103 , b3 0.2250947176 103 ,
n
标准正态分布分位数的计算
(1)用u p的近似计算公式 ②Toda近似公式( 1967 年) b4 0.6841218299 105 , b5 0.5824238515 105 , b6 0.1045274970 105 , b7 0.8360937017 107 , b8 0.3231081277 108 , b9 0.3657763036 1010 , b8 0.6936233982 1012. 以上公式的最大绝对误 差是1.2 10 。
三、利用误差函数的 近似公式计算
4 x i 4 erf ( ) 1 (1 bi x ) (2) 2 i 1 其中b1 0.196854 , b2 0.115194 ,

b3 0.000344 , b4 0.019527 , 以上近似公式的最大绝 对误差是2.5 10 。 (1)与(2)是最简单且实用的近似 公式, 在精度要求不高时使用 起来比较方便。
4
n
标准正态分布分位数的计算
(1)用u p的近似计算公式 (2)用二阶展开的迭代求根 法 (3)利用分位数展开式的算 法
n
标准正态分布分位数的计算
(1)用u p的近似计算公式 由分位数的定义, u p 满足:(u p ) p.
令u u1 , u 称为上侧分位数。对给 定 的 (0,0.5), u 0, 且p分位数与上侧分
k

(2k 1)!! 1 [1 (1) ] 2 k (2 x ) x k 1
n
二、利用误差函数的幂级数 近似式计算
取以上展开式的前 n项,得: (2k 1)!! erf ( x) 1 [1 (1) ] 2 k (2 x ) x k 1 e
n k x2
位数有以下关系:
u , u p 0, u ,
当0 p 0.5, p 当p 0.5 当0.5 p 1, 1 p
以下仅给出 0 0.5时,u 的近似计算公式。
n
标准正态分布分位数的计算
(1)用u p的近似计算公式 ①Hastings 有理近似式( 1955 年)

则 可把 u p作为新的初始值,反复迭代, 直至达到精度要求。

n
标准正态分布分布函数的计算
因为 ( x)是对称函数,只需给 出 x 0时, ( x)的计算方法;当 x 0时, ( x) 1 ( x)计算。 ( x)有三种计算方法。
n
基本公式

利用分部积分法可以得到 ( x ) 的两 个级数展开式
x3 x5 1 x 2 k 1 ( x) ( x) x 2 3 3 5 (2k 1)!! 1 1 1 k ( 2k 1)!! ( x ) 1 ( x ) 3 5 ( 1) 2 k 1 x x x x 1 ( x) e 2
n
二、利用误差函数的幂级数 近似式计算
利用分部积分法可得出 误差函数erf ( x)的幂级数展开式: erf ( x) 2 2 ex
2 2

2 3 22 5 2k [x x x x 2 k 1 3 35 (2k 1)!!
ex e
x2
2k 2 k 1 x ! k 0 ( 2k 1)!
8
n
标准正态分布分位数的计算
(1)用u p的近似计算公式 ③山内的近似公式( 1965 年) u

5.7262204 y 2.0611786 y 11 . 640595 y ln(4 (1 ))
以上公式的相对误差小 于4.9 10 4。
相关文档
最新文档