三角函数的图像和变换以及经典习题和答案
三角函数的图象与性质经典例题含答案
1、(1)(2008浙江卷5)在同一平面直角坐标系中,函数 的图象和直线 的交点个数是(D)
(A)0(B)1(C)2(D)4
(2)、函数 单调增区间是(A)
A[2kπ- ,2kπ+ ](k∈Z)B.[2kπ+ ,2kπ+ ](k∈Z)
C.[2kπ-π,2kπ](k∈Z)D.[2kπ,2kπ+π](k∈Z)
2.(1)已知f(x)的定义域为[0,1],则f(cosx)的定义域是[2kπ- ,2kπ+ ]
(2)函数y=|sin(2x+ )|的最小正周期是
三.典例解析
例1、求函数)y= sin( - )的单调递增区间:
例2、(2008北京卷).已知函数 ( )的最小正周期为 .
(Ⅰ)求 的值;(Ⅱ)求函数 在区间 上的取值范围.
8、(2008湖南卷)函数 在区间 上的最大值是(C)
A.1B. C. D.1+
9、函数y= 的最大值是(B)
A. -1B. +1C.1- D.-1-
10、(2001上海春)关于x的函数f(x)=sin(x+ )有以下命题:
①对任意的 ,f(x)都是非奇非偶函数;
②不存在 ,使f(x)既是奇函数,又是偶函数;
①图象 关于直线 对称;②图象 关于点 对称;
③函数 在区间 内是增函数;
④由 的图角向右平移 个单位长度可以得到图象 .
6.函数 的图象向右平移 ( )个单位,得到的图象关于直线 对称,则 的最小值全国卷II)函数y=sin2xcos2x的最小正周期是(D)
(A)2π(B)4π(C)(D)
化简完是
三角函数的图象与性质
一.要点精讲
1.正弦函数、余弦函数、正切函数的图像
三角函数图像及性质,图像变换习题
考点测试20 三角函数的图象和性质一、根底小题1.f(x)=sin ⎝⎛⎭⎫x +π2,g(x)=cos ⎝⎛⎭⎫x -π2,那么f(x)的图象( ) A .与g(x)的图象相同 B .与g(x)的图象关于y 轴对称 C .向左平移π2个单位,得到g(x)的图象 D .向右平移π2个单位,得到g(x)的图象解析 因为g(x)=cos ⎝⎛⎭⎫x -π2=cos ⎝⎛⎭⎫π2-x =sinx ,所以f(x)向右平移π2个单位,可得到g(x)的图象,应选D. 2.函数y =+sinx -1的值域为( )A .[-1,1]B .⎣⎡⎦⎤-54,-1C .⎣⎡⎦⎤-54,1 D .⎣⎡⎦⎤-1,54 答案 C 解析 (数形结合法)y =+sinx -1,令sinx =t ,那么有y =t2+t -1,t ∈[-1,1],画出函数图象如下图,从图象可以看出,当t =-12及t =1时,函数取最值,代入y =t2+t -1可得y ∈⎣⎡⎦⎤-54,1. 3.函数y =2sin ⎝⎛⎭⎫π6-2x (x ∈[-π,0])的单调递增区间是( ) A .⎣⎡⎦⎤-π,-5π6 B .⎣⎡⎦⎤-π3,0 C .⎣⎡⎦⎤-2π3,-π6 D .⎣⎡⎦⎤-π3,-π6 答案 C 解析 因为y =2sin ⎝⎛⎭⎫π6-2x =-2sin ⎝⎛⎭⎫2x -π6,所以函数y =2sin ⎝⎛⎭⎫π6-2x 的单调递增区间就是函数y =sin ⎝⎛⎭⎫2x -π6的单调递减区间.由π2+2kπ≤2x -π6≤3π2+2kπ(k ∈Z),解得π3+kπ≤x≤5π6+kπ(k ∈Z),即函数y =2sin ⎝⎛⎭⎫π6-2x 的单调递增区间为⎣⎡ π3+kπ,⎦⎤5π6+kπ(k ∈Z),又x ∈[-π,0],所以k =-1,故函数y =2sin ⎝⎛⎭⎫π6-2x (x ∈[-π,0])的单调递增区间为⎣⎡⎦⎤-2π3,-π6. 4.使函数f(x)=sin(2x +φ)为R 上的奇函数的φ的值可以是( ) A .π4 B .π2C .πD .3π2答案 C 解析 假设f(x)是R 上的奇函数,那么必须满足f(0)=0,即sinφ=0.∴φ=kπ(k ∈Z),应选C. 5.函数f(x)=sin ⎝⎛⎭⎫x +π6,其中x ∈⎣⎡⎦⎤-π3,a ,假设f(x)的值域是⎣⎡⎦⎤-12,1,那么a 的取值范围是( ) A .⎝⎛⎦⎤0,π3 B .⎣⎡⎦⎤π3,π2 C .⎣⎡⎦⎤π2,2π3 D .⎣⎡⎦⎤π3,π 解析 假设-π3≤x≤a ,那么-π6≤x +π6≤a +π6.因为当x +π6=-π6或x +π6=7π6时,sin ⎝⎛⎭⎫x +π6=-12,当x +π6=π2时,sin ⎝⎛⎭⎫x +π6=1,所以要使f(x)的值域是⎣⎡⎦⎤-12,1,那么有π2≤a +π6≤7π6,即π3≤a≤π,即a 的取值范围是⎣⎡⎦⎤π3,π.应选D.二、高考小题6.[2021·全国卷Ⅰ]函数f(x)=cos(ωx +φ)的局部图象如下图,那么f(x)的单调递减区间为( ) A .⎝⎛⎭⎫kπ-14,kπ+34,k ∈Z B.⎝⎛⎭⎫2kπ-14,2kπ+34,k ∈ZC .⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z D 解析 由题图可知T 2=54-14=1,所以T =2.结合题图可知,在⎣⎡⎦⎤-34,54(f(x)的一个周期)内,函数f(x)的单调递减区间为⎝⎛⎭⎫-14,34.由f(x)是以2为周期的周期函数可知,f(x)的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z ,应选D. 7.[2021·四川高考]以下函数中,最小正周期为π且图象关于原点对称的函数是( ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin2x +cos2x D .y =sinx +cosx答案 A 解析 选项A ,y =cos ⎝⎛⎭⎫2x +π2=-sin2x ,符合题意,应选A. 三、模拟小题8.[2021·广州调研]函数f(x)=sinx +x 在区间[0,+∞)内( ) A .没有零点B .有且仅有1个零点C .有且仅有2个零点D .有且仅有3个零点答案 B 解析 在同一坐标系中画出函数y =sinx 与y =-x 的图象,由图象知这两个函数图象有1个交点,∴函数f(x)=sinx +x 在区间[0,+∞)内有且仅有1个零点.9.[2021·河北邢台调研]定义在R 上的函数f(x)满足:当sinx≤cosx 时,f(x)=cosx ,当sinx>cosx 时,f(x)=sinx.给出以下结论:①f(x)是周期函数;②f(x)的最小值为-1;③当且仅当x =2kπ(k ∈Z)时,f(x)取得最小值; ④当且仅当2kπ-π2<x<(2k +1)π(k ∈Z)时,f(x)>0;⑤f(x)的图象上相邻两个最低点的距离是2π.其中正确的结论序号是________.答案 ①④⑤解析 易知函数f(x)是周期为2π的周期函数.函数f(x)在一个周期内的图象如下图. 由图象可得,f(x)的最小值为-22,当且仅当x =2kπ+5π4(k ∈Z)时,f(x)取得最小值;当且仅当2kπ-π2<x<(2k +1)π(k ∈①④⑤.四、模拟大题10.[2021·江西上饶模拟]设函数f(x)=sin(2x +φ)(-π<φ<0),y =f(x)图象的一条对称轴是直线x =π8.(1)求φ的值;(2)求函数y =f(x)的单调递增区间.解 (1)由f ⎝⎛⎭⎫π8=±1得sin ⎝⎛⎭⎫π4+φ=±1,∵-π<φ<0,∴-3π4<φ+π4<π4,∴φ+π4=-π2,φ=-3π4. (2)由(1)得f(x)=sin ⎝⎛⎭⎫2x -3π4,令-π2+2kπ≤2x -3π4≤π2+2kπ,k ∈Z , 可解得π8+kπ≤x≤5π8+kπ,k ∈Z.因此y =f(x)的单调增区间为⎣⎡⎦⎤π8+kπ,5π8+kπ,k ∈Z.函数y =Asin(ωx +φ)的图象和性质一、根底小题1.将函数y =sinx 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得各点向右平行移动π10个单位长度,所得图象的函数解析式是( )A .y =sin ⎝⎛⎭⎫2x -π10B .y =sin ⎝⎛⎭⎫12x -π20C .y =sin ⎝⎛⎭⎫2x -π5 D .y =sin ⎝⎛⎭⎫12x -π10 答案 B 解析 将函数y =sinx 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到y =sin 12x ,再把所得各点向右平行移动π10个单位长度,所得图象的函数解析式是y =sin ⎣⎡⎦⎤12⎝⎛⎭⎫x -π10=sin ⎝⎛⎭⎫12x -π20.应选B. 2.要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin4x 的图象( ) A .向左平移π12个单位 B .向右平移π12个单位 C .向左平移π3个单位 D .向右平移π3个单位答案 B 解析 y =sin ⎝⎛⎭⎫4x -π3=sin ⎣⎡⎦⎤4⎝⎛⎭⎫x -π12,故要将函数y =sin4x 的图象向右平移π12个单位.应选B. 3.以下函数中,最小正周期为π且图象关于原点对称的函数是( )A .y =cos ⎝⎛⎭⎫2x +π2B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin2x +cos2xD .y =sinx +cosx答案 A 解析 采用验证法.由y =cos ⎝⎛⎭⎫2x +π2=-sin2x ,可知该函数的最小正周期为π且为奇函数,应选A.4.函数f(x)=sin(ωx +φ)⎝⎛⎭⎫x ∈R ,ω>0,|φ|<π2的局部图象如下图,那么函数f(x)的解析式为( ) A .f(x)=sin ⎝⎛⎭⎫2x +π4B .f(x)=sin ⎝⎛⎭⎫2x -π4C .f(x)=sin ⎝⎛⎭⎫4x +π4D .f(x)=sin ⎝⎛⎭⎫4x -π4 答案 A 解析 由题图可知,函数y =f(x)的最小正周期为T =2πω=⎝⎛⎭⎫3π8-π8×4=π,所以ω=2,又函数f(x)的图象经过点⎝⎛⎭⎫π8,1,所以sin ⎝⎛⎭⎫π4+φ=1,那么π4+φ=2kπ+π2(k ∈Z),解得φ=2kπ+π4,又|φ|<π2,所以φ=π4,即函数f(x)=sin ⎝⎛⎭⎫2x +π4,应选A.5.函数y =2sin ⎝⎛⎭⎫π6x -π3(0≤x≤9)的最大值与最小值之和为( )答案 A 解析 ∵0≤x≤9,∴-π3≤π6x -π3≤7π6,∴-32≤sin ⎝⎛⎭⎫π6x -π3≤1,∴-3≤2sin ⎝⎛⎭⎫π6x -π3≤2, ∴函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x≤9)的最大值与最小值之和为2- 3.6.ω>0,0<φ<π,直线x =π4和x =5π4是函数f(x)=sin(ωx +φ)图象的两条相邻的对称轴,那么φ=( )A .π4B .π3C .π2D .3π4答案 A 解析 由题意可知函数f(x)的周期T =2×⎝⎛⎭⎫5π4-π4=2π,故ω=1,∴f(x)=sin(x +φ),令x +φ=kπ+π2(k ∈Z),将x =π4代入可得φ=kπ+π4(k ∈Z),∵0<φ<π,∴φ=π4.7.函数f(x)=sin ⎝⎛⎭⎫ωx +π6(ω>0)的最小正周期为4π,那么( ) A .函数f(x)的图象关于点⎝⎛⎭⎫π3,0对称 B .函数f(x)的图象关于直线x =π3对称 C .函数f(x)的图象向右平移π3个单位后,图象关于原点对称 D .函数f(x)在区间(0,π)内单调递增答案 C 解析 因为函数的周期T =2πω=4π,所以ω=12,所以f(x)=sin ⎝⎛⎭⎫12x +π6.当x =π3时,f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫12×π3+π6=sin π3=32,所以A 、B 错误.将函数f(x)的图象向右平移π3个单位后得到g(x)=sin ⎣⎡⎦⎤12⎝⎛⎭⎫x -π3+π6=sin x2的图象,关于原点对称,所以C 正确.由-π2+2kπ≤12x +π6≤π2+2kπ(k ∈Z),得-4π3+4kπ≤x≤2π3+4kπ(k ∈Z),所以f(x)=sin ⎝⎛⎭⎫12x +π6的单调递增区间为⎣⎡ -4π3+4kπ,⎦⎤2π3+4kπ,k ∈Z ,当k =0时,增区间为⎣⎡⎦⎤-4π3,2π3,所以D 错误.应选C.8.函数f(x)=2sin(ωx +φ)对任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,那么f ⎝⎛⎭⎫π6=________. 答案 ±2解析 函数f(x)=2sin(ωx +φ)对任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,那么其对称轴为x =π6,所以f ⎝⎛⎭⎫π6=±2.二、高考小题9.[2021·全国卷Ⅱ]假设将函数y =2sin2x 的图象向左平移π12个单位长度,那么平移后图象的对称轴为( )A .x =kπ2-π6(k ∈Z)B .x =kπ2+π6(k ∈Z)C .x =kπ2-π12(k ∈Z)D .x =kπ2+π12(k ∈Z)答案 B 解析 将函数y =2sin2x 的图象向左平移π12个单位长度得到函数y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12=2sin ⎝⎛⎭⎫2x +π6的图象,由2x +π6=kπ+π2(k ∈Z),可得x =kπ2+π6(k ∈Z).那么平移后图象的对称轴为x =kπ2+π6(k ∈Z),应选B.10.[2021·北京高考]将函数y =sin ⎝⎛⎭⎫2x -π3图象上的点P ⎝⎛⎭⎫π4,t 向左平移s(s>0)个单位长度得到点P′.假设P′位于函数y =sin2x 的图象上,那么( )A .t =12,s 的最小值为π6B .t =32,s 的最小值为π6C .t =12,s 的最小值为π3D .t =32,s 的最小值为π3答案 A 解析 点P ⎝⎛⎭⎫π4,t 在函数y =sin ⎝⎛⎭⎫2x -π3的图象上,∴t =sin ⎝⎛⎭⎫2×π4-π3=12. 函数y =sin ⎝⎛⎭⎫2x -π3的图象向左平移π6个单位长度即可得到函数y =sin2x 的图象,故s 的最小值为π6.11.[2021·福州一中模拟]函数f(x)=Asin(ωx +φ)⎝⎛⎭⎫A>0,ω>0,|φ|<π2的局部图象如下图,为了得到函数g(x)=Asi nωx 的图象,只需要将y =f(x)的图象( )A .向左平移π3个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向右平移π6个单位长度答案 D 解析 根据函数f(x)=Asin(ωx +φ)( A>0,ω>0,|φ|<π2 )的局部图象,可得A =2,T 4=2πω·14=π3-π12,求得ω=2.再根据五点法作图可得2·π12+φ=π2,求得φ=π3,∴f(x)=2sin ⎝⎛⎭⎫2x +π3,g(x)=2sin2x ,故把f(x)=2sin ⎝⎛⎭⎫2x +π3的图象向右平移π6个单位长度,可得g(x)=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+π3=2sin2x 的图象,应选D. 三、高考大题12.[2021·湖北高考]某同学用“五点法〞画函数f(x)=Asin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了局部数据,如下表:ωx +φ 0 π2 π 3π2 2π x π3 5π6 Asin(ωx +φ)5-5(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;(2)将y =f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g(x)的图象.假设y =g(x)图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值.解 (1)根据表中数据,解得A =5,ω=2,φ=-π6.数据补全如下表:ωx +φ 0 π2 π 3π2 2π xπ12π37π125π61312π且函数表达式为f(x)=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f(x)=5sin ⎝⎛⎭⎫2x -π6,那么g(x)=5sin ⎝⎛⎭⎫2x +2θ-π6.因为函数y =sinx 的对称中心为(kπ,0),k ∈Z. 令2x +2θ-π6=kπ,k ∈Z ,解得x =kπ2+π12-θ,k ∈Z.由于函数y =g(x)的图象关于点⎝⎛⎭⎫5π12,0成中心对称, 所以令kπ2+π12-θ=5π12,k ∈Z ,解得θ=kπ2-π3,k ∈Z.由θ>0可知,当k =1时,θ取得最小值π6.。
三角函数图像及性质习题含答案
三角函数一、三角函数的基本概念和同角三角函数关系(一)知识内容1. 角的概念的推广⑴角:一条射线绕着端点从一个位置旋转到另一个位置所成的图形.其中顶点,始边,终边称为角的三要素.角可以是任意大小的.⑵角按其旋转方向可分为:正角,零角,负角.①正角:习惯上规定,按照逆时针方向旋转而成的角叫做正角; ②负角:按照顺时针方向旋转而成的角叫做负角;③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角. ⑶在直角坐标系中讨论角:①角的顶点在原点,始边在x 轴的非负半轴上,角的终边在第几象限,就说这个角是第几象限角. ②若角的终边在坐标轴上,就说这个角不属于任何象限,它叫轴线角.2.终边相同的角的集合:设α表示任意角,所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为{}360,Z S k k ββα==+⋅︒∈.集合S 的每一个元素都与α的终边相同,当0k =时,对应元素为α.3.弧度制和弧度制与角度制的换算⑴角度制:把圆周360等分,其中1份所对的圆心角是1度,用度作单位来度量角的制度叫做角度制.<教师备案>一些特殊角的度数与弧度数的对应表:板块一:任意角的概念与弧度制⑵1弧度的角:长度等于半径长的圆弧所对的圆心角叫做1弧度的角.规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.任一已知角α的弧度数的绝对值lrα=,这种以“弧度”作为单位来度量角的制度叫做弧度制.⑶弧度与角度的换算:180πrad=,1801rad57.305718π︒⎛⎫'=≈︒=︒⎪⎝⎭板块二:任意角的三角函数(一)知识内容1.三角函数定义在直角坐标系中,设α是一个任意角,α终边上任意一点P(除了原点)的坐标为(,)x y,它与原点的距离为(0)r r>,那么⑴比值yr叫做α的正弦,记作sinα,即sinyrα=;⑵比值xr叫做α的余弦,记作cosα,即cosxrα=;⑶比值yx叫做α的正切,记作tanα,即tanyxα=;⑷比值xy叫做α的余切,记作cotα,即cotxyα=;⑷比值rx叫做α的正割,记作secα,即secrxα=;⑸比值ry叫做α的余割,记作cscα,即cscryα=.2.三角函数的定义域、值域3.由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知: ⑴正弦值yr对于第一、二象限为正(0,0y r >>),对于第三、四象限为负(0,0y r <>); ⑵余弦值xr对于第一、四象限为正(0,0x r >>),对于第二、三象限为负(0,0x r <>); ⑶正切值yx对于第一、三象限为正(,x y 同号),对于第二、四象限为负(,x y 异号). 可以用下图表示:说明:若终边落在轴线上,则可用定义求出三角函数值.4.同角三角函数的基本关系式:平方关系:22sin cos 1x x +=,22sec tan 1x x -=,22csc cot 1x x -= 商数关系:sin tan cos x x x =,cos cot sin xx x= 倒数关系:111sec ,csc ,tan cos cos cot x x x x x x=== 6.诱导公式:⑴角α与2π()k k α+⋅∈Z 的三角函数间的关系;sin(2π)sin k αα+=,cos(2π)cos k αα+=,tan(2π)=tan k αα+;⑵角α与α-的三角函数间的关系;sin()sin αα-=-,cos()cos αα-=,tan()tan αα-=-;⑶角α与(21)π()k k α++∈Z 的三角函数间的关系;[]sin (21)πsin k αα++=-,[]cos (21)πcos k αα++=-,[]tan (21)πtan k αα++=;⑷角α与πα+的三角函数间的关系.πsin cos 2αα⎛⎫+= ⎪⎝⎭,πcos sin 2αα⎛⎫+=- ⎪⎝⎭,πtan cot 2αα⎛⎫+=- ⎪⎝⎭.4.三角函数式的化简与三角恒等式的证明是个难点,需要学生熟悉并灵活运用所学的公式与知识,一般情况下,化简的基本思路是:减少角的种数,减少三角函数的种数,适当配凑和拆分,统一切割化弦等等.二、三角函数的图象与性质(一)知识内容⑴单位圆:半径等于单位长的圆叫做单位圆.设单位圆的圆心与坐标原点重合,则单位圆与x 轴交点分别为(1,0)A ,(1,0)A '-,而与y 轴的交点分别为(0,1)B ,(0,1)B '-.由三角函数的定义可知,点P 的坐标为(cos ,sin )αα,即(cos ,sin )P αα.其中cos OM α=,sin ON α=.α)这就是说,角α的余弦和正弦分别等于角α终边与单位圆交点的横坐标和纵坐标.过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T (或T '),则tan AT α=(或AT '). ⑵有向线段:坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向.具有方向的线段叫做有向线段.规定:与坐标轴方向一致时为正,与坐标方向相反时为负. ⑶三角函数线的定义:板块一:任意角的概念与弧度制设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交于点P (,)x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T .我们就分别称有向线段MP ,OM ,AT 为正弦线、余弦线、正切线.(一) 知识内容1.2.函数()()sin 0,0,y A x A x ωϕω=+>>∈R 的图象的作法――五点法①确定函数的最小正周期2πT ω=;②令x ωϕ+=0、π2、π、3π2、2π,得x ϕω=-、1π()2ϕω-、1(π)ϕω-、13π()2ϕω-、1(2π)ϕω-,于是得到五个关键点(,0)ϕω-、1π((),1)2ϕω-、1((π),0)ϕω-、13π((),1)2ϕω--、1((2π),0)ϕω-;③描点作图,先作出函数在一个周期内的图象,然后根据函数的周期性,把函数在一个周期内的图象向左、右扩展,得到函数()()sin 0,0,y A x A x ωϕω=+>>∈R 的图象.3.()()sin 0,0,y A x A x ωϕω=+>>∈R 的图象函数()()sin 0,0,y A x A x R ωϕω=+>>∈的图象可以用下面的方法得到:先把sin y x =的图象上所有点向左(0)ϕ>或向右(0)ϕ<平行移动||ϕ个单位;再把所得各点的横坐标缩短(1)ω>或伸长(01)ω<<到原来的1ω倍(纵坐标不变);再把所得的各点的纵坐标伸长(1)A >或缩短板块一:三角函数的图象(01)A <<到原来的A 倍(横坐标不变),从而得到sin()y A x ωϕ=+的图象.当函数sin()y A x ωϕ=+表示一个振动量时:A 叫做振幅;T 叫做周期;1T叫做频率;x ωϕ+叫做相位,ϕ叫做初相.上面是一种函数的平移缩放的过程,可以用这种方法来把一种三角函数转换成另外一种三角函数.下面把这个过程分解一下: (1)相位变换要得到函数sin()(0)y x ϕϕ=+≠的图象,可以令x x ϕ=+,也就是原来的x 变成了现在的x ϕ+,相当于x 减小了(0)ϕϕ<,即可以看做是把sin y x =的图象上的各点向左(0)ϕ>或向右(0)ϕ<平行移动||ϕ个单位而得到的.这种由sin y x =的图象变换为sin()y x ϕ=+的图象的变换,使相位由x 变为x ϕ+,我们称它为相位变换.它实质上是一种左右平移变换. (2)周期变换要得到函数sin (0,1)y x ωωω=>≠的图象,令x x ω=,即现在的x 缩小到了原来的ω倍,就可以看做是把sin y x =的图象上的各点的横坐标缩短(1)ω>或伸长(01)ω<<到原来的1ω倍(纵坐标不变)得到,由sin y x =的图象变换为sin y x ω=的图象,其周期由2π变为2πω,这种变换叫周期变换.周期变换是一种横向的伸缩. (3)振幅变换要得到sin (0,1)y A x A A =>≠且的图象,令yy A=,即相当于y 变为原来的A 倍,也就是把sin y x =的图象上的各点的纵坐标伸长(1)A >或缩短(01)A <<到原来的A 倍(横坐标不变)而得到的.这种变换叫做振幅变换.振幅变换是一种纵向的伸缩.(一)知识内容<教师备案>1.函数图象平移基本结论小结如下:(0)()()a a y f x y f x a >=−−−−−−→=+左移个单位板块二:三角函数图象变换(0)()()a a y f x y f x a >=−−−−−−→=-右移个单位(0)()()a a y f x y a f x >=−−−−−−→-=上移个单位(0)()()a a y f x y a f x >=−−−−−−→+=下移个单位1()()y f x y f x ωω=−−−−−−−−→=各点横坐标变成原来的倍()()y f x Ay f x =−−−−−−−−→=1各点纵坐标变成原来的倍A()()x y f x y f x =−−−−→-=绕轴翻折这些新的解析式可以由图象上任意一点变换后的对应关系得出,以左移a 个单位的解析式变化为例:设00(,)P x y 为()y f x =左移a 个单位后所得图象上的任意一点,则将P右移a 个单位得到的00'(,)P x a y +必在()y f x =的图象上,故00()y f x a =+,又00(,)P x y 点任意,故()y f x =的图象左移a 个单位得到的新的函数的解析式为:()y f x a =+.函数变换可以用下图表示:()()y f x y f x =−−−−→=-绕y 轴翻折板块三:三角函数的性质1.三角函数的性质][(22π,[2π,(21)π]()k k k k +∈Z 在2.sin y x =与sin y x =的性质(数学4必修)第一章 三角函数(上) [基础训练A 组]一、选择题1.设α角属于第二象限,且2cos2cosαα-=,则2α角属于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.给出下列各函数值:①)1000sin(0-;②)2200cos(0-;③)10tan(-;④917tancos 107sinπππ.其中符号为负的有( )A .①B .②C .③D .④ 3.02120sin 等于( )A .23±B .23C .23-D .21 4.已知4sin 5α=,并且α是第二象限的角,那么 tan α的值等于( )A .43-B .34- C .43 D .345.若α是第四象限的角,则πα-是( )A .第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角6.4tan 3cos 2sin 的值( )A .小于0B .大于0C .等于0D .不存在二、填空题1.设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限.2.设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式: ①0<<OM MP ;②0OM MP <<; ③0<<MP OM ;④OM MP <<0,其中正确的是_____________________________。
三角函数的图像和变换以和经典习题和答案
3.4函数sin()y A x ωϕ=+的图象与变换【知识网络】1.函数sin()y A x ωϕ=+的实际意义;2.函数sin()y A x ωϕ=+图象的变换(平移平换与伸缩变换) 【典型例题】 [例1](1)函数3sin()226x y π=+的振幅是 ;周期是 ;频率是 ;相位是 ;初相是 .(1)32; 14π;26x π+;6π (2)函数2sin(2)3y x π=-的对称中心是 ;对称轴方程是;单调增区间是 . (2)(,0),26k k Z ππ+∈;5,212k x k Z ππ=+∈; ()5,1212k k k z ππππ⎡⎤-++∈⎢⎥⎣⎦(3) 将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移.平移后的图象如图所示.则平移后的图象所对应函数的解析式是( )A .sin()6y x π=+ B .sin()6y x π=- C .sin(2)3y x π=+D .sin(2)3y x π=- (3)C 提示:将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移.平移后的图象所对应的解析式为sin ()6y x πω=+.由图象知.73()1262πππω+=.所以2ω=. (4) 为了得到函数R x x y ∈+=),63sin(2π的图像.只需把函数R x x y ∈=,sin 2的图像上所有的点 ( )(A )向左平移6π个单位长度.再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B )向右平移6π个单位长度.再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(C )向左平移6π个单位长度.再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(D )向右平移6π个单位长度.再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (4)C 先将R x x y ∈=,sin 2的图象向左平移6π个单位长度.得到函数2sin(),6y x x R π=+∈的图象.再把所得图象上各点的横坐标伸长到原来的3倍(纵坐标不变)得到函数R x x y ∈+=),63sin(2π的图像(5)将函数x x f y sin )(= 的图象向右平移4π个单位后再作关于x 轴对称的曲线.得到函数x y 2sin 21-=的图象.则)(x f 的表达式是 ( )(A )x cos (B )x cos 2 (C )x sin (D )x sin 2 (5)B 提示: 212sin cos 2y x x =-=的图象关于x 轴对称的曲线是cos 2y x =-,向左平移4π得cos 2()sin 24y x x π=-+=2sin cos x x =[例2]已知函数2()2cos 2,(01)f x x x ωωω=<<其中.若直线3x π=为其一条对称轴。
高三数学三角函数图象变换试题答案及解析
高三数学三角函数图象变换试题答案及解析1.为了得到函数的图象,只需把函数的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度【答案】A【解析】,所以只需把的图象上所有的点向左平移个单位.选A.【考点】三角函数图象的变换.2.将函数图象所有的点向右移动个单位长度,再将所得各点的横坐标缩短到原来的倍(纵坐标不变),所得图象的函数解析式为()A.B.C.D.【答案】C【解析】将函数图象所有的点向右移动个单位长度后所得图象的函数解析式为,再将所得各点的横坐标缩短到原来的倍(纵坐标不变),所得图象的函数解析式为.故C正确.【考点】三角函数的伸缩平移变换.3.为了得到函数的图像,只需把函数的图像()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【答案】B【解析】函数的图像向右平移(>0)个单位得到函数y=sin(2x-2+)令-2+=-,则=4.函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象如图所示.为了得到g(x)=-Acos ωx(A>0,ω>0)的图象,可以将f(x)的图象()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【答案】B【解析】由图象知,f(x)=sin,g(x)=-cos 2x,代入B选项得sin=sin =-sin=-cos 2x.5.如图是函数y=Asin(x+)(x∈R)在区间[-,]上的图象,为了得到这个函数图象,只要将y=sinx(x∈R)的图象上所有点( )A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【答案】A【解析】由图像可得: -+=0且+=="2," =∵函数的最大值为1,∴y=sin(2x+)6.设>0,函数y=sin(x+)+2的图像向右平移个单位后与原图像重合,则的最小值是()A.B.C.D.3【答案】C【解析】由题意可得最小正周期T=,所以===.故选C7.函数的部分图象如图所示,则的值分别是A.2,B.2,C.4,D.4,【答案】A【解析】由题意得:又而,所以【考点】求三角函数解析式8.已知函数的图像过点,且b>0,又的最大值为.(1)将写成含的形式;(2)由函数y =图像经过平移是否能得到一个奇函数y =的图像?若能,请写出平移的过程;若不能,请说明理由.【答案】(1);(2)能,过程见解析.【解析】(1)利用三角函数的恒等变换化简函数的解析式,再利用已知条件可得,解得的值,即可得到满足条件的解析式;(2)根据的图象变换规律,可得结论.试题解析:(1),由题意,可得,解得,所以,.(2)将的图像向上平移1个单位得到函数的图像,再向右平移单位得到的图像,而函数为奇函数,故将的图像先向上平移1个单位,再向右平移单位就可以得到奇函数y=的图像.【考点】1、函数的图象变换;2、三角函数中的恒等变换应用.9.将函数的图象向右平移个单位,再向上平移1个单位,所得函数图象对应的解析式为 ( )A.B.C.D.【答案】C【解析】将函数的图象向右平移个单位,得到,再向上平移1个单位,得到,故选C.【考点】三角函数图象变换10.设,若将函数的图像向左平移个单位后所得图像与原图像重合,则的值不可能为()A.4B.6C.8D.12【答案】B【解析】由定积分的性质得,将函数的图像向左平移个单位后得,因此,即;所以的值不可能为6.【考点】三角函数的平移、定积分的计算.11.函数的部分图象如图所示,为了得到的图象,只需将的图象( )A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位【答案】B【解析】观察图象可知,,,∴,.将代入上式得,由已知得,故.由知,为了得到的图象,只需将的图象向右平移个单位.故选.【考点】正弦型函数,函数图象像的平移.12.已知函数向左平移个单位后,得到函数,下列关于的说法正确的是( )A.图象关于点中心对称B.图象关于轴对称C.在区间单调递增D.在单调递减【答案】C【解析】函数向左平移个单位后,得到函数即令,得,不正确;令,得,不正确;由,得即函数的增区间为减区间为故选.【考点】三角函数图象的平移,三角函数的图象和性质.13.将函数()的图像分别向左平移()个单位,向右平移()个单位,所得到的两个图像都与函数的图像重合,则的最小值为()A.B.C.D.【答案】C【解析】利用图象变换的结论,函数()的图像分别向左平移()个单位,得函数的图象,向右平移()个单位,得函数的图象,它们都与与函数的图像重合,则最小的应该为,,从而.选C.【考点】图象的平移与诱导公式.14.函数(其中A>0,)的图象如图所示,为得到的图象,则只要将的图象( )A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【答案】B【解析】根据图象得:.取得:所以,.,所以应该向右平移个单位长度.【考点】三角函数的图象及其变换.15.将函数的图像向左平移个单位,再将所得图像上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图像,已知函数是周期为的偶函数,则,的值分别为()A.4,B.4,C.2,D.2,【答案】B.【解析】函数,,又因是偶函数,所以,则.【考点】三角函数的平移变换.16.下列函数中,图像的一部分如右图所示的是()A.B.C.D.【答案】C.【解析】由函数图像知函数的周期为,则,排除A、D,当时,函数值为1,则C正确.【考点】三角函数的图像及其性质.17.若函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,则f(0)=________.【答案】【解析】由图可知,则,,,将点代入解析式得,所以,故,则.【考点】的图像.18.要得到函数的图象,只需将函数的图象 ( )A.向左平移个单位;B.向左平移个单位;C.向右平移个单位;D.向右平移个单位【答案】C【解析】只需将函数的图像向右平移个单位,即得函数的图象,故选C.【考点】三角函数图像变换.19.将函数的图像上各点的横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心是 ( )A.B.C.D.【答案】A【解析】将函数的图像上各点的横坐标伸长到原来的3倍,得函数的图象;再向右平移个单位,得到的函数为.由得:.结合选项知,它的一个对称中心是,选 A.【考点】1、三角函数图象的变换;2、三角函数的对称中心.20.函数的图象如图所示,则函数的表达式为()A.B.C.D.【答案】D【解析】由函数图象可知其周期,所以,由最高点和最低点坐标知,根据“五点作图法”知当时,,即,解得,所以,选D.【考点】函数的图象与性质.21.已知函数的部分图像如图所示,则的图像可由函数的图像(纵坐标不变)()A.先把各点的横坐标缩短到原来的倍,再向右平移个单位B.先把各点的横坐标伸长到原来的倍,再向右平移个单位C.先向右平移个单位,再把各点的横坐标伸长到原来的倍D.先向右平移个单位,再把各点的横坐标缩短到原来的倍【答案】D【解析】由图像可知,,周期,即;当时,函数取得最大值,则,则,又,即.则,则将函数的图像先向右平移个单位,再把各点的横坐标缩短到原来的倍即可得到的图像.【考点】1.根据图像求正弦型函数解析式;2.三角函数的周期、相位变换.22.把函数图像上所有点的横坐标缩短到原来的倍(纵坐标不变),再把图像上所有的点向左平行移动个单位长度,得到的图像所表示的函数是()A.B.C.D.【答案】C【解析】把函数图像上所有点的横坐标缩短到原来的倍(纵坐标不变),得;再把图像上所有的点向左平行移动个单位长度,得,故选C.【考点】三角函数的图像平移与变换.23.定义运算:,将函数的图像向左平移()个单位,所得图像对应的函数为偶函数,则的最小值是()A.B.C.D.【答案】C【解析】,将函数化为再向左平移()个单位即为: 又为偶函数,由三角函数图象的性质可得,即时函数值为最大或最小值,即或,所以 ,即,又,所以的最小值是.【考点】对定义的理解能力,三角函数恒等变性, 三角函数图象及性质.24.函数()的图象的相邻两条对称轴间的距离是.若将函数图象向右平移个单位,得到函数的解析式为A.B.C.D.【答案】D【解析】根据题意,由于函数()的图象的相邻两条对称轴间的距离是.则说明周期为,w=2,排除A,B,对于C,D由于将函数图象向右平移个单位,变为,故可知答案为D.【考点】三角函数的图象变换点评:主要是考查了三角函数图象的平移变换的运用,属于基础题。
三角函数的图象和性质练习题及答案
1y三角函数图像与性质练习题(一)一.选择题 〔每题5分,共100分〕1.将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=-⎪⎝⎭平移,平移后的图象如下图,那么平移后的图象所对应函数的解析式是( ) A.sin()6y x π=+B.sin()6y x π=-C.sin(2)3y x π=+D.sin(2)3y x π=- 2. 为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点( )A.向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕B.向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕C.向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕 D.向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕3. 函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,那么ω的最小值等于( )A.23B.32C.2D.3 4.函数y =sin(2x +3π)的图象可由函数y =sin2x 的图象经过平移而得到,这一平移过程可以是( ) A.向左平移6πB.向右平移6πC.向左平移12π D.向右平移12π 5. 要得到函数y =sin (2x -)6π的图像,只需将函数y =cos 2x 的图像( )A.向右平移6π个单位 B.向右平移3π个单位 C. 向左平移6π个单位 D. 向左平移3π个单位 6. 为了得到函数y =sin (2x-4π)+1的图象,只需将函数y =sin 2x 的图象〔〕平移得到A.按向量a=(-8π,1)B. 按向量a=(8π,1)C.按向量a=(-4π,1)D. 按向量a=(4π,1) 7.假设函数()sin ()f x x ωϕ=+的图象如图,那么ωϕ和的取值是( )A.1ω=,3πϕ= B.1ω=,3πϕ=-C.12ω=,6πϕ= D.12ω=,6πϕ=- 8. 函数πsin 23y x ⎛⎫=-⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )9. 函数sin(2)cos(2)63y x x ππ=+++的最小正周期和最大值分别为( ) A.,1π B.,2π C.2,1π D. 2,2π 10. 函数()sin()(0)3f x x πϖϖ=+>的最小正周期为π,那么该函数的图象( )A.关于点(,0)3π对称 B.关于直线4x π=对称 C.关于点(,0)4π对称 D.关于直线3x π=对称11.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的局部图象如图,那么( ) A.4,2πϕπω==B.6,3πϕπω==C.4,4πϕπω== D.45,4πϕπω==12. 要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( ) yx11-2π- 3π- O6ππyx11- 2π- 3π- O 6ππ yx1 1-2π-3πO 6π-πy xπ2π- 6π-1O 1-3π A.B. C. D.A.向右平移π6个单位 B.向右平移π3个单位 C.向左平移π3个单位 D.向左平移π6个单位 13. 设函数()x f ()φω+=x sin ⎪⎭⎫ ⎝⎛<<>20,0πφω.假设将()x f 的图象沿x 轴向右平移61个单位长度,得到的图象经过坐标原点;假设将()x f 的图象上所有的点的横坐标缩短到原来的21倍〔纵坐标不变〕, 得到的图象经过点⎪⎭⎫⎝⎛1,61. 那么( ) A.6,πφπω== B.3,2πφπω== C.8,43πφπω== D. 适合条件的φω,不存在 14. 设函数)()0(1)6sin()(x f x x f '>-+=的导数ωπω的最大值为3,那么f (x )的图象的一条对称轴的方程是( ) A.9π=x B.6π=x C.3π=x D.2π=x三角函数图像与性质练习题答案三角函数的图象和性质练习题(二)一、选择题1.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,那么ϕ的值是〔 〕A.0B.4πC.2πD.π2. 将函数x y 4sin =的图象向左平移12π个单位,得到)4sin(ϕ+=x y 的图象,那么ϕ等于A .12π-B .3π-C .3πD .12π 3.假设,24παπ<<那么〔 〕 (45<a<90)A .αααtan cos sin >>B .αααsin tan cos >>C .αααcos tan sin >>D .αααcos sin tan >>1 2 3 4 5 6 7 8 9 10 C C B A B B C A A A 11 12 13 14 CAAA4.函数23cos()56y x π=-的最小正周期是〔 〕A .52πB .25π C .π2 D .π5 5.在函数x y sin =、x y sin =、2sin(2)3y x π=+、2cos(2)3y x π=+中, 最小正周期为π的函数的个数为〔〕. A .1个B .2个 C .3个 D .4个6.x x x f 32cos 32sin)(+=的图象中相邻的两条对称轴间距离为 〔 〕 A .3π B .π34 C .π23 D .π677. 函数)252sin(π+=x y 的一条对称轴方程〔 〕A .2π-=xB .4π-=xC .8π=xD .=x π458. 使x y ωsin =〔ω>0〕在区间[0,1]至少出现2次最大值,那么ω的最小值为〔 〕 A .π25B .π45C .πD .π23二、填空题1.关于x 的函数()cos()f x x α=+有以下命题: ①对任意α,()f x 都是非奇非偶函数; ②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都不是奇函数.其中一个假命题的序号是,因为当α=时,该命题的结论不成立.2.函数xxy cos 2cos 2-+=的最大值为________.3.假设函数()2sin(2)3f x kx π=+的最小正周期T 满足12T <<,那么自然数k 的值为______. 4.满足23sin =x 的x 的集合为_________________________________. 5.假设)10(sin 2)(<<=ϖϖx x f 在区间[0,]3π上的最大值是2,那么ϖ=________.三、解答题1.比拟大小〔1〕00150sin ,110sin ;〔2〕00200tan ,220tan 2. (1) 求函数1sin 1log 2-=xy 的定义域. 〔2〕设()sin(cos ),(0)f x x x π=≤≤,求()f x 的最大值与最小值. 3.)33sin(32)(πω+=x x f 〔ω>0〕〔1〕假设f (x +θ)是周期为2π的偶函数,求ω及θ值; ω= 1/3 ,θ= . 〔2〕f (x )在〔0,3π〕上是增函数,求ω最大值 "三角函数的图象和性质练习题二"参考答案一、选择题 1.C [解析]:当2πϕ=时,sin(2)cos 22y x x π=+=,而cos 2y x =是偶函数2.C [解析]:函数x y 4sin =的图象向左平移12π个单位,得到)12(4sin π+=x y 的图象,故3πϕ=3.D [解析]:tan 1,cos sin 1,ααα><<αααcos sin tan >>4.D [解析]:2525T ππ== 5.C [解析]:由x y sin =的图象知,它是非周期函数6.C [解析]: ∵x x x f 32cos 32sin)(+==)432sin(2π+x∴图象的对称轴为πππk x +=+2432,即)(2383Z k k x ∈+=ππ故相邻的两条对称轴间距离为π237.A [解析]:当2π-=x 时 )252sin(π+=x y 取得最小值-1,应选A8.A [解析]:要使x y ωsin =〔ω>0〕在区间[0,1]至少出现2次最大值 只需要最小正周期⋅45ωπ2≤1,故πω25≥ 二、填空题1、①0[解析]:此时()cos f x x =为偶函数2、3[解析]:2cos 4cos 2412cos 2cos 2cos x x y x x x++-===----3、2,3或[解析]:,12,,2,32T k k N k kkππππ=<<<<∈⇒=而或4、|2,2,33x x k k k Z ππππ⎧⎫=++∈⎨⎬⎩⎭或 5、34[解析]:[0,],0,0,3333x x x ππωππω∈≤≤≤≤< 三、解答题1.解:〔1〕0sin110sin 70,sin150sin 30,sin 70sin 30,sin110sin150==>∴>而 〔2〕0tan 220tan 40,tan 200tan 20,tan 40tan 20,tan 220tan 200==>∴>而 2.解:〔1〕221111log 10,log 1,2,0sin sin sin sin 2x x x x -≥≥≥<≤ 22,6k x k πππ<≤+或522,6k x k k Z ππππ+≤<+∈5(2,2][2,2),()66k k k k k Z ππππππ++∈为所求.〔2〕0,1cos 1x x π≤≤-≤≤当时,而[11]-,是()sin f t t =的递增区间 当cos 1x =-时,min ()sin(1)sin1f x =-=-; 当cos 1x =时,max ()sin1f x =. 4.解:(1) 因为f (x +θ)=)333sin(32πθω++x又f (x +θ)是周期为2π的偶函数, 故∈+==k k 6,31ππθω Z(2) 因为f (x )在〔0,3π〕上是增函数,故ω最大值为61三角函数的图象专项练习一.选择题1.为了得到函数)62sin(π-=x y 的图象,可以将函数y=cos2x 的图象 ( )A .向右平移6π个单位长度B. 向右平移3π个单位长度 C. 向左平移6π个单位长度 D. 向左平移3π个单位长度2.以下函数中振幅为2,周期为π,初相为6π的函数为 ()A .y=2sin(2x+3π) B. y=2sin(2x+6π) C .y=2sin(21x+3π) D. y=2sin(21x+6π) 3.三角方程2sin(2π-x)=1的解集为 ( ) A .{x│x=2kπ+3π,k∈Z}B .{x│x=2kπ+35π,k∈Z}.C .{x│x=2kπ±3π,k∈Z}D .{x│x=kπ+(-1)K ,k∈Z}.4.假设函数f(x)=sin(ωx+ϕ)的图象〔局部〕如下图,那么ω,ϕ的取值是 ( )A .3,1πϕω==B.3,1πϕω-==C .6,21πϕω==D.6,21πϕω-==5.函数y=tan(2x+φ)的图象过点(0,12π),那么φ的值可以是 ( ) A. -6π B. 6π C.12π- D.12π6.设函数y=2sin(2x+Φ)的图象为C ,那么以下判断不正确的选项是〔 〕A .过点(,2)3π的C 唯一 B.过点(,0)6π-的C 不唯一C .C 在长度为2π的闭区间上至多有2个最高点D .C 在长度为π的闭区间上一定有一个最高点,一个最低点 7.方程)4cos(lg π-=x x 的解的个数为〔 〕A .0B .无数个C .不超过3D .大于38.假设函数y=f(x)的图像上每点的纵坐标保持不变,横坐标伸长到原2倍,然后再将整个图像沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数1sin 2y x =的图像,那么y=f(x)是 ( )A .1sin(2)122y x π=++B.1sin(2)122y x π=-+ C .1sin(2)124y x π=-+ D.11sin()1224y x π=++9.()sin()2f x x π=+,()cos()2g x x π=-,那么f(x)的图像 ( )A .与g(x)的图像一样 B.与g(x)的图像关于y 轴对称C .向左平移2π个单位,得g(x)的图像 D.向右平移2π个单位,得g(x)的图像 10.函数f(x)=sin(2x+2π)图像中一条对称轴方程不可能为( )A.x=4πB. x=2πC. x=πD. x=23π11.函数y=2与y=2sinx ,x ∈3[,]22ππ-所围成的图形的面积为 ( ) A .πB.2πC.3πD.4π12.设y=f(t)是某港口水的深度y 〔米〕关于时间t 〔时〕的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数y=f(t)的图象可以近似地看成函数y=k+Asina(ωt+ϕ)的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( )A.]24,0[,6sin312∈+=t t y πB.]24,0[),6sin(312∈++=t t y ππC.]24,0[,12sin 312∈+=t t y πD.]24,0[),212sin(312t t y ππ++=二.填空题 13.函数y=5sin(3x −2π)的频率是______________。
三角函数的图像和性质知识点讲解+例题讲解(含解析)
三角函数的图像与性质一、知识梳理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )π3.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期. (2)正切曲线相邻两对称中心之间的距离是半个周期.(3).对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)余弦函数y =cos x 的对称轴是y 轴.( ) (2)正切函数y =tan x 在定义域内是增函数.( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (4)y =sin|x |是偶函数.( )解析 (1)余弦函数y =cos x 的对称轴有无穷多条,y 轴只是其中的一条. (2)正切函数y =tan x 在每一个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数.(3)当k >0时,y max =k +1;当k <0时,y max =-k +1. 答案 (1)× (2)× (3)× (4)√2.若函数y =2sin 2x -1的最小正周期为T ,最大值为A ,则( ) A.T =π,A =1 B.T =2π,A =1 C.T =π,A =2D.T =2π,A =2解析 最小正周期T =2π2=π,最大值A =2-1=1.故选A. 答案 A3.函数y =-tan ⎝ ⎛⎭⎪⎫2x -3π4的单调递减区间为________.解析 由-π2+k π<2x -3π4<π2+k π(k ∈Z ), 得π8+k π2<x <5π8+k π2(k ∈Z ),所以y =-tan ⎝ ⎛⎭⎪⎫2x -3π4的单调递减区间为⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z ). 答案 ⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z )4.(2017·全国Ⅱ卷)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为( )A.4πB.2πC.πD.π2解析 由题意T =2π2=π. 答案 C5.(2017·全国Ⅲ卷)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65B.1C.35D.15解析 cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3,则f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝ ⎛⎭⎪⎫x +π3,函数的最大值为65. 答案 A6.(2018·江苏卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2 的图象关于直线x =π3对称,则φ的值是________.解析 由函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,得sin ⎝ ⎛⎭⎪⎫2π3+φ=±1.所以2π3+φ=π2+k π(k ∈Z ),所以φ=-π6+k π(k ∈Z ),又-π2<φ<π2,所以φ=-π6. 答案 -π6考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π6的定义域是( ) A.⎩⎨⎧⎭⎬⎫x |x ≠π6 B.⎩⎨⎧⎭⎬⎫x |x ≠-π12 C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z ) D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 解析 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cos x ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎨⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56 π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8. 答案 (1)D (2)⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z (3)⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8【训练1】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =lg(sin x )+cos x -12的定义域为______.解析 (1)要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]上,满足sin x =cos x 的x 为π4,5π4再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z .(2)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ),所以2k π<x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .答案(1)⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z (2)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)(2017·全国Ⅱ卷)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________. (3)函数y =sin x -cos x +sin x cos x 的值域为________.解析 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3. (2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,sin x cos x =1-t22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2 .所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1. 答案 (1)⎣⎢⎡⎦⎥⎤-32,3 (2)1 (3)⎣⎢⎡⎦⎥⎤-12-2,1【训练2】 (1)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( )A.4B.5C.6D.7(2)(2019·临沂模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是________. 解析 (1)由f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],所以当sin x =1时函数的最大值为5.(2)由x ∈⎣⎢⎡⎦⎥⎤-π3,a ,知x +π6∈⎣⎢⎡⎦⎥⎤-π6,a +π6.因为x +π6∈⎣⎢⎡⎦⎥⎤-π6,π2时,f (x )的值域为⎣⎢⎡⎦⎥⎤-12,1,所以由函数的图象知π2≤a +π6≤7π6,所以π3≤a ≤π. 答案 (1)B(2)⎣⎢⎡⎦⎥⎤π3,π考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z )C.⎝ ⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎝ ⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________. 解析 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝ ⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z . 答案 (1)B (2)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c解析 令2k π≤x +π6≤2k π+π,k ∈Z ,解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6, ∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 答案 A角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π解析 f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝ ⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.答案 A【训练3】 (1)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤-π2,π,则以下结论正确的是( )A.函数f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递减B.函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增 C.函数f (x )在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减 D.函数f (x )在⎣⎢⎡⎦⎥⎤5π6,π上单调递增(2)cos 23°,sin 68°,cos 97°的大小关系是________.(3)若函数f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.解析 (1)由x ∈⎣⎢⎡⎦⎥⎤-π2,0,得2x -π3∈⎣⎢⎡⎦⎥⎤-4π3,-π3,此时函数f (x )先减后增;由x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,此时函数f (x )先增后减;由x ∈⎣⎢⎡⎦⎥⎤π2,5π6,得2x -π3∈⎣⎢⎡⎦⎥⎤2π3,4π3,此时函数f (x )单调递减;由x ∈⎣⎢⎡⎦⎥⎤5π6,π,得2x -π3∈⎣⎢⎡⎦⎥⎤4π3,5π3,此时函数f (x )先减后增.(2)sin 68°=cos 22°,又y =cos x 在[0°,180°]上是减函数,∴sin 68°>cos 23°>cos 97°.(3)法一 由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.法二 由题意,得f (x )max =f ⎝ ⎛⎭⎪⎫π3=sin π3ω=1.由已知并结合正弦函数图象可知,π3ω=π2+2k π(k ∈Z ),解得ω=32+6k (k ∈Z ),所以当k =0时,ω=32.答案 (1)C (2)sin 68°>cos 23°>cos 97° (3)32考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)(2018·全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)(2019·杭州调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( ) A.-π6 B.π6 C.-π3 D.π3解析 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4.(2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3, 由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ). ∵|θ|<π2,∴k =-1时,θ=-π6. 答案 (1)B (2)A角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( )A.关于点⎝ ⎛⎭⎪⎫π3,0对称B.关于点⎝ ⎛⎭⎪⎫2π3,0对称 C.关于直线x =π3对称 D.关于直线x =π6对称解析 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33,所以g (x )=sin x +33cos x =233sin ⎝ ⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称. 规律方法 1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可.【训练4】 (1)(2018·全国Ⅲ卷)函数f (x )=tan x1+tan 2x的最小正周期为( )A.π4B.π2C.πD.2π(2)设函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π3,则下列结论错误的是( )A.f (x )的一个周期为-2πB.y =f (x )的图象关于直线x =8π3对称 C.f (x +π)的一个零点为x =π6 D.f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减解析 (1)f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .f (x )=sin x cos x 1+⎝ ⎛⎭⎪⎫sin x cos x 2=sin x ·cos x =12sin 2x ,∴f (x )的最小正周期T =2π2=π.(2)A 项,因为f (x )的周期为2k π(k ∈Z 且k ≠0),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )图象的对称轴为直线x =k π-π3(k ∈Z ),当k =3时,直线x =8π3是其对称轴,B 项正确.C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3,将x =π6代入得到f ⎝ ⎛⎭⎪⎫7π6=cos 3π2=0,所以x =π6是f (x+π)的一个零点,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3 (k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3 (k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误.答案 (1)C (2)D三、课后练习1.若对于任意x ∈R 都有f (x )+2f (-x )=3cos x -sin x ,则函数f (2x )图象的对称中心为( )A.⎝ ⎛⎭⎪⎫k π-π4,0(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π-π8,0(k ∈Z ) C.⎝ ⎛⎭⎪⎫k π2-π4,0(k ∈Z ) D.⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ) 解析 因为f (x )+2f (-x )=3cos x -sin x ,所以f (-x )+2f (x )=3cos x +sin x .解得f (x )=cos x +sin x =2sin ⎝ ⎛⎭⎪⎫x +π4,所以f (2x )=2sin ⎝ ⎛⎭⎪⎫2x +π4. 令2x +π4=k π(k ∈Z ),得x =k π2-π8(k ∈Z ).所以f (2x )图象的对称中心为⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ). 答案 D2.(2017·天津卷)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( ) A.ω=23,φ=π12 B.ω=23,φ=-11π12C.ω=13,φ=-11π24D.ω=13,φ=7π24解析 ∵f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝ ⎛⎭⎪⎫11π8-5π8=3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ. ∴2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12(k ∈Z ), 又|φ|<π,∴取k =0,得φ=π12.答案 A3.已知x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,则f (x )的单调递减区间是________.解析 因为x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,所以sin ⎝ ⎛⎭⎪⎫2×π3+φ=1,解得φ=2k π-π6(k ∈Z ). 不妨取φ=-π6,此时f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6, 令2k π+π2≤2x -π6≤2k π+3π2(k ∈Z ),得f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ). 答案 ⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z )4.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.解 (1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π3. 当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),∴当x ∈(0,π)时,对称轴为x =512π.又方程f (x )=23在(0,π)上的解为x 1,x 2.∴x 1+x 2=56π,则x 1=56π-x 2,∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝ ⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝ ⎛⎭⎪⎫2x 2-π3=23, 故cos(x 1-x 2)=23.5.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6,若对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,则实数m 的最小值是________.解析 因为α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,所以α-π6∈⎣⎢⎡⎦⎥⎤-π,-2π3,则f (α)=sin ⎝ ⎛⎭⎪⎫α-π6∈⎣⎢⎡⎦⎥⎤-32,0,因为对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,所以f (β)在[0,m ]上单调,且f (β)∈⎣⎢⎡⎦⎥⎤0,32,则sin ⎝ ⎛⎭⎪⎫β-π6∈⎣⎢⎡⎦⎥⎤0,32,则β-π6∈⎣⎢⎡⎦⎥⎤0,π3,所以β∈⎣⎢⎡⎦⎥⎤π6,π2,即实数m 的最小值是π2. 答案 π26.(2017·山东卷)函数y =3sin 2x +cos 2x 的最小正周期为( )A.π2B.2π3C.πD.2π解析 ∵y =2⎝ ⎛⎭⎪⎫32sin 2x +12cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6, ∴T =2π2=π.答案 C7.(2019·石家庄检测)若⎝ ⎛⎭⎪⎫π8,0是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是( )A.2B.4C.6D.8解析 因为f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,由题意,知f ⎝ ⎛⎭⎪⎫π8=2sin ⎝ ⎛⎭⎪⎫ωπ8+π4=0,所以ωπ8+π4=k π(k ∈Z ),即ω=8k -2(k ∈Z ),当k =1时,ω=6.答案 C8.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23 B.32 C.2 D.3解析 ∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32.答案 B9.(2019·湖南十四校联考)已知函数f (x )=2sin ωx -cos ωx (ω>0),若f (x )的两个零点x 1,x 2满足|x 1-x 2|min =2,则f (1)的值为( ) A.102 B.-102 C.2 D.-2解析 依题意可得函数的最小正周期为2πω=2|x 1-x 2|min =2×2=4,即ω=π2,所以f (1)=2sin π2-cos π2=2.答案 C10.(2018·北京卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.解析 由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ).又ω>0,∴ωmin =23. 答案 2311.(2019·北京通州区质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π.(1)求函数y =f (x )图象的对称轴方程;(2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性. 解 (1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π, ∴ω=2,于是f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4. 令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ).即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ). 注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8; 同理,其单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.。
高三数学三角函数图象变换试题答案及解析
高三数学三角函数图象变换试题答案及解析1.要得到函数y=3sin(2x+)的图象,只需要将函数y=3cos2x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【答案】A【解析】把函数y=3cos2x的图象向右平移个单位得到的图象相应的函数解析式是y=3cos2(x-)=3cos(2x-)=3sin(2x+),因此选A.2.将函数图象所有的点向右移动个单位长度,再将所得各点的横坐标缩短到原来的倍(纵坐标不变),所得图象的函数解析式为()A.B.C.D.【答案】C【解析】将函数图象所有的点向右移动个单位长度后所得图象的函数解析式为,再将所得各点的横坐标缩短到原来的倍(纵坐标不变),所得图象的函数解析式为.故C正确.【考点】三角函数的伸缩平移变换.3.为了得到函数y=sin(2x﹣)的图象,可以将函数y=sin2x的图象()A.向右平移个单位长度B.向左平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】A【解析】∵函数y=sin(2x﹣)=sin[2(x﹣)],∴为了得到函数y=sin(2x﹣)的图象,可以将函数y=sin2x的图象向右平移个单位长度故选A.4.如果若干个函数的图象经过平移后能够重合,则称这些函数为“互为生成函数”给出下列函数;;;其中“互为生成函数”的是()A.①②B.①③C.③④【答案】B【解析】,向左平移个单位得到函数的图象,向上平移2个单位得到的图象,与中的振幅不同,所以选B.5.把函数y=cos2x+1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是【答案】B【解析】把函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:,向左平移1个单位长度得:,再向下平移1个单位长度得:.令x=0,得:;x=,得:;观察即得答案.6.设命题:函数的图象向左平移个单位长度得到的曲线关于轴对称;命题:函数在上是增函数.则下列判断错误的是()A.为假B.为真C.为假D.为真【答案】D【解析】命题p,函数的图像向左平移个单位长度得到的函数解析式为,因为不是偶函数,所以不关于y轴对称,即命题p 为假命题.命题q,如图作出的函数图像可以发现该函数在区间上是单调递减的,在区间是单调递增的,所以命题q也是假命题,根据真值表可得为假命题,所以D是错误的,故选D【考点】命题真假三角函数指数函数域图像变化真值表7.将函数的图象向右平移个单位,再向上平移1个单位后得到的函数对应的表达式为,则函数的表达式可以是A.B.C.D.【解析】由题意,选D.【考点】图象变换.8.已知向量(为常数且),函数在上的最大值为.(1)求实数的值;(2)把函数的图象向右平移个单位,可得函数的图象,若在上为增函数,求取最大值时的单调增区间.【答案】(1);(2).【解析】(1)把向量,(为常数且),代入函数整理,利用两角和的正弦函数化为,根据最值求实数的值;(2)由题意把函数的图象向右平移个单位,可得函数的图象,利用在上为增函数,就是周期,求得的最大值,从而求出单调增区间.试题解析:(1).因为函数在上的最大值为,所以故.(2)由(1)知:,把函数的图象向右平移个单位,可得函数.又在上为增函数的周期即,所以的最大值为,此时单调增区间为.【考点】1.平面向量数量积的运算;2.三角恒等变换;3.三角函数的最值;4.三角函数的单调性;4、函数的图象变换.9.已知函数,则要得到的图象,只需将函数的图象上所有的点()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】A【解析】,根据左加右减的平移原理,所以应该向左平移个单位长度,故选A.【考点】的图像变换10.已知的图像与的图像的两个相邻交点间的距离为,要得到的图像,只须把的图像 ( )A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【解析】由于函数的最大值为1,又函数的图像与的图像的两个相邻交点间的距离为,所以函数的周期为.所以.所以函数的解析式为.所以要得到函数只需要将向左平移各单位即可.故选A.【考点】1.三角函数的图像.2.三角函数图像的平移.3.三函数的诱导公式.11.已知函数f(x)=sin ωx·cos ωx+cos 2ωx-(ω>0),其最小正周期为.(1)求f(x)的解析式.(2)将函数f(x)的图象向右平移个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,若关于x的方程g(x)+k=0,在区间上有且只有一个实数解,求实数k的取值范围.【答案】(1)sin(2)-<k≤或k=-1.【解析】(1)f(x)=sin ωx·cos ωx+cos 2ωx-=sin 2ωx+-=sin ,由题意知f(x)的最小正周期T=,T==.∴ω=2,∴f(x)=sin.(2)将f(x)的图象向右平移个单位后,得到y=sin 的图象,再将所得图象所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=sin 的图象.∴g(x)=sin ,∵0≤x≤,∴-≤2x-≤,g(x)+k=0在区间上有且只有一个实数解,即函数y=g(x)与y=-k在区间上有且只有一个交点,由正弦函数的图象可知-≤-k<或-k=1.∴-<k≤或k=-1.12.函数f(x)=A sin(ωx+φ)的部分图象如图所示,为了得到g(x)=cos2x的图象,则只要将f(x)的图象().A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】A【解析】由图象可知A=1,,所以T=π,又T==π,所以ω=2,即f(x)=sin (2x+φ),又f=sin =sin =-1,所以+φ=+2kπ,k∈Z.即φ=+2kπ,k∈Z,又|φ|<,所以φ=,即f(x)=sin .因为g(x)=cos 2x=sin=sin ,所以直线将f(x)向左平移个单位长度即可得到g(x)的图象.13.已知函数(,c是实数常数)的图像上的一个最高点,与该最高点最近的一个最低点是,(1)求函数的解析式及其单调增区间;(2)在△ABC中,角A、B、C所对的边分别为,且,角A的取值范围是区间M,当时,试求函数的取值范围.【答案】(1),单调递增区间是;(2).【解析】(1)三角函数问题一般都要化为的一个三角函数的形式,然后才可利用正弦函数的性质解题,这个函数图象上相邻有最高点与最低点的横坐标之差的绝对值为半个周期,而周期,再加上最高(低)点在函数图象上,我们就可出这个函数的解析式了();(2)由,根据向量数量积定义我们可求出,那么三角形的另一内角的范围应该是,即函数中的范围是,然后我们把一个整体,得出,而正弦函数在时取值范围是,因此可求出的值域.试题解析:(1)∵,∴.∵和分别是函数图像上相邻的最高点和最低点,∴解得∴.由,解得.∴函数的单调递增区间是.(2)∵在中,,∴.∴,即.∴.当时,,考察正弦函数的图像,可知,.∴,即函数的取值范围是.【考点】(1)五点法与函数的图象;(2)三角函数在给定区间的值域.14.为了得到函数的图像,只需把函数的图像上所有的点()A.向右平移个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)C.向右平移个单位长度,再把所得各点的横坐标缩短到原来的倍(纵坐标不变)D.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍(纵坐标不变)【答案】B【解析】这题考查函数图象的两个变换,平移变换,周期变换,当把函数图象上各点横坐标变为原来的,纵坐标不变,则得函数的图象,故本题选B.【考点】三角函数的图象变换.15.要得到函数y= sinx的图象,只需将函数的图象( )A.向右平移个单位B.向右平移个单位;C.向左平移个单位D.向左平移个单位;【答案】B【解析】首先函数化为.即由函数的图像向右平移可得函数的图像.所以选B.本校题要注意函数是要得到的函数.否则易做反了.【考点】1.正余弦函数的平移.2.关注诱导公式的变形.16.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为( )A.B.C.0D.【答案】B【解析】令,则,∵为偶函数,∴,∴,∴当时,,故的一个可能的值为.故选B.【考点】三角函数图像变化.17.要得到函数的图象,只需将函数的图象( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】A.【解析】,故只需将函数的图象向左平移个单位长度,即可得到函数的图象,故选A.【考点】三角函数的图像变换.18.把函数的图象按向量=(-,0)平移,所得曲线的一部分如图所示,则,的值分别是()A.1,B.2,-C.2,D.1,-【答案】B【解析】把函数的图象按向量=(-,0)平移,得.由图得函数的周期.又.选B.【考点】三角函数图象的变换.19.函数的最小正周期是,若其图象向右平移个单位后得到的函数为奇函数,则函数的图象( )A.关于点对称B.关于直线对称C.关于点对称D.关于直线对称【答案】D【解析】由函数的最小正周期是可知,,所以有,向右平移个单位后有是奇函数,所以,因为,所以.所以,关于点对称,关于直线对称.【考点】1.求三角函数的解析式;2.三角函数的图像与性质20.已知向量,设函数的图象关于直线对称,其中常数(Ⅰ)求的最小正周期;(Ⅱ)将函数的图像向左平移个单位,得到函数的图像,用五点法作出函数在区间的图像.【答案】(Ⅰ);(Ⅱ)详见解析.【解析】(Ⅰ)由向量的数量积的坐标表示将表示出来,并利用正弦和余弦的二倍角公式将其表示为的形式,再由对称轴为,所以在处函数值取到最大值或最小值,从而得,代入并结合求的值,再利用和的关系,求;(Ⅱ)用代换得,先由,确定,从中取特殊点,,,,,再计算相应的自变量和函数值,列表,描点连线,即得在给定区间的图象.试题解析:(Ⅰ),;(Ⅱ)0-2020【考点】1、向量数量积的坐标表示;2、正弦和余弦的二倍角公式;3、五点作图法.21.如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”给出下列函数:①;②;③;④.其中“同簇函数”的是()A.①②B.①④C.②③D.③④【答案】D【解析】三角函数的图象在平移的过程中,振幅不变,①的函数的解析式化简为,④中的函数的解析式化简为,将③中的函数的图象向左平移个单位长度便可得到④中的函数图象,故选D.【考点】1.新定义;2.三角函数图象变换22.将函数y=f(x)·sinx的图象向右平移个单位后,再作关于x轴的对称变换,得到函数y=1-2sin2x的图象,则f(x)可以是 ().A.sinx B.cosx C.2sinx D.2cosx【答案】D【解析】将函数y=f(x)·sin x的图象向右平移个单位得,再作关于x轴的对称变换得,,即,令则,所以,,故f(x)可以是2cos x,选D.【考点】三角函数图象平移变换、二倍角公式.23.为了得到函数的图象,只需把函数的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【答案】B【解析】∵,∴只需把函数的图象向右平移个单位,选B.【考点】三角函数的图象.24.将函数()的图象向左平移个单位,得到函数的图象,若在上为增函数,则的最大值为【答案】2【解析】,根据函数的图象可知,当函数在上为增函数的最大满足,所函数在上为增函数的最大.【考点】的图象与性质.25.将函数的图像向右平移个单位,那么所得的图像所对应的函数解析式是()A.B.C.D.【答案】D.【解析】由已知得平移后的图像所对应的函数解析式是,故选【考点】三角函数图像变换.26.函数的图像向右平移个单位后,与函数的图像重合,则=___________.【答案】【解析】因为原函数解析式为,所以图象平移后的解析式为=,所以,解得.【考点】本小题主要考查诱导公式、三角函数的图象变换等基础知识,这两部分知识都是高考的热点内容之一,几乎年年必考,熟练其基础知识是解答好本类题目的关键.27.函数()的图象的相邻两条对称轴间的距离是.若将函数图象向右平移个单位,得到函数的解析式为A.B.C.D.【答案】D【解析】根据题意,由于函数()的图象的相邻两条对称轴间的距离是.则说明周期为,w=2,排除A,B,对于C,D由于将函数图象向右平移个单位,变为,故可知答案为D.【考点】三角函数的图象变换点评:主要是考查了三角函数图象的平移变换的运用,属于基础题。
三角函数图像和性质练习题(附答案)
三角函数的图像与性质一、选择题1.已知函数f(x)=2sin ϖx(ϖ>0)在区间[3π-,4π]上的最小值是-2,则ϖ的最小值等于( )A.32B.23C.2D.32.若函数cos(3y x πω=+(0)ω>的图象相邻两条对称轴间距离为2π,则ω等于.A .12B .12C .2D .43.将函数sin()6y x x R π=+∈的图象上所有的点向左平行移动4π个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为A .5sin(2)()12y x x R π=+∈ B .5sin()()212x y x R π=+∈C .sin()212x y x R π=-∈ D .5sin()224x y x R π=+∈4.函数262cos(-+=πx y 的图像F 按向量a 平移到F /,F /的解析式y=f(x),当y=f(x)为奇函数时,向量a 可以等于A.)2,6(-πB.)2,6(πC.)2,6(--πD.)2,6(π-5.将函数sin yx =的图象向左平移(02)ϕϕπ≤≤个单位后,得到函数sin(6y x π=-的图象,则ϕ等于()A .6πB .76πC .116πD .56π 6.函数x x y 2cos 32sin -= 66(ππ≤≤-x 的值域为A. []2,2-B. []0,2-C. []2,0 D. ]0,3[-7.将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是 ( )A .B . C. D.8.函数f(θ ) = 的最大值和最小值分别是( )sin θ -1cos θ -2 (A) 最大值 和最小值0(B) 最大值不存在和最小值 4334(C) 最大值 -和最小值0 (D) 最大值不存在和最小值-43349.ααcos sin +=t 且αα33cos sin+<0,则t 的取值范围是( )A. [)0,2-B. []2,2-C. ()(]2,10,1 -D. ()()+∞-,30,3 10.把函数)(x f y =的图象沿着直线0=+y x 的方向向右下方平移22个单位,得到函数x y 3sin =的图象,则A 、2)23sin(--=x yB 、2)63sin(--=x yC 、2)23sin(++=x yD 、2)63sin(++=x y 二、填空题11.设函数).0)(3cos()(πϕϕ<<+=x x f 若)()(x f x f '+是奇函数,则ϕ=.12.方程2cos()14x π-=在区间(0,)π内的解是.13.函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间14.已知x R ∈,则函数()max sin ,cos f x x x ⎧=⎨⎩的最大值与最小值的和等于 。
(完整版)三角函数的图象与性质练习题及答案
三角函数的图象与性质练习题一、选择题1.函数f (x )=sin x cos x 的最小值是( ) A .-1B .-12C.12D .12.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为 ( ) A.π6B.π4C.π3D.π23.已知函数y =sin πx3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是 ( ) A .6B .7C .8D .94.已知在函数f (x )=3sin πxR 图象上,相邻的一个最大值点与一个最小值点恰好在x 2+y 2=R 2上,则f (x )的最小正周期为 ( ) A .1B .2C .3D .45.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是 `( D )6.给出下列命题:①函数y =cos ⎝⎛⎭⎫23x +π2是奇函数; ②存在实数α,使得sin α+cos α=32; ③若α、β是第一象限角且α<β,则tan α<tan β; ④x =π8是函数y =sin ⎝⎛⎭⎫2x +5π4的一条对称轴方程; ⑤函数y =sin ⎝⎛⎭⎫2x +π3的图象关于点⎝⎛⎭⎫π12,0成中心对称图形. 其中正确的序号为( )A .①③B .②④C .①④D .④⑤7.将函数y =sin 2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是 ( )A .y=2cos 2xB .y =2sin 2xC .y =1+sin(2x +π4) D .y =cos 2x8.将函数y =sin ⎝⎛⎭⎫2x +π4的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,再向右平移π4个单位,所得到的图象解析式是 ( )A .f (x )=sin xB .f (x )=cos xC .f (x )=sin 4xD .f (x )=cos 4x9.若函数y =A sin(ωx +φ)+m 的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则它的解析式是 ( ) A .y =4sin ⎝⎛⎭⎫4x +π6B .y =2sin ⎝⎛⎭⎫2x +π3+2 C .y =2sin ⎝⎛⎭⎫4x +π3+2D .y =2sin ⎝⎛⎭⎫4x +π6+2 10.若将函数y =tan ⎝⎛⎭⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan ⎝⎛⎭⎫ωx +π6的图象重合,则ω的最小值为 ( ) A.16B.14C.13D.1211.电流强度I (安)随时间t (秒)变化的函数 I =A sin(ωt +φ)(A >0,ω>0,0<φ<2π)的图象如右图所示, 则当t =1001秒时,电流强度是( )A .-5安B .5安C .53安D .10安12.已知函数f (x )=sin(ωx +π4)(x ∈R ,ω>0)的最小正周期为π,为了得到函数g (x )=cos ωx 的图象,只要将y =f (x )的图象( )A .向左平移π8个单位长度B .向右平移π8个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度二、填空题(每小题6分,共18分)13.函数y =12sin ⎝⎛⎭⎫π4-23x 的单调递增区间为______________. 14.已知f (x )=sin ⎝⎛⎭⎫ωx +π3 (ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=________. 15.关于函数f (x )=4sin ⎝⎛⎭⎫2x +π3(x ∈R ),有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2必是π的整数倍; ②y =f (x )的表达式可改写为y =4cos ⎝⎛⎭⎫2x -π6; ③y =f (x )的图象关于点⎝⎛⎭⎫-π6,0对称; ④y =f (x )的图象关于直线x =-π6对称.其中正确的命题的序号是________.(把你认为正确的命题序号都填上)16.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M 、N 两点,则|MN |的最大值为________. 三、解答题(共40分)17.设函数f (x )=sin ()2x +φ (-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ; (2)求函数y =f (x )的单调增区间.18.已知函数f (x )=2cos 2ωx +2sin ωx cos ωx +1 (x ∈R ,ω>0)的最小正周期是π2.(1)求ω的值; (2)求函数f (x )的最大值,并且求使f (x )取得最大值的x 的集合.19.设函数f (x )=cos ωx (3sin ωx +cos ωx ),其中0<ω<2. (1)若f (x )的周期为π,求当-π6≤x ≤π3时f (x )的值域;(2)若函数f (x )的图象的一条对称轴为x =π3,求ω的值.20.已知函数f (x )=A sin(ωx +φ)+ b (ω>0,|φ|<2π)的图象的一部分如图所示: (1)求f (x )的表达式; (2)试写出f (x )的对称轴方程.21.函数y =A sin(ωx +φ) (A >0,ω>0,|φ|<π2)的一段图象如图所示.(1)求函数y =f (x )的解析式;(2)将函数y =f (x )的图象向右平移π4个单位,得到y =g (x )的图象,求直线y =6与函数y =f (x )+g (x )的图象在(0,π)内所有交点的坐标.22.已知函数f (x )=A sin(ωx +φ) (A >0,ω>0,|φ|<π2,x ∈R )的图象的一部分如图所示.(1)求函数f (x )的解析式;(2)当x ∈⎣⎡⎦⎤-6,-23时,求函数y =f (x )+f (x +2)的最大值与最小值及相应的x 的值.三角函数的图象与性质练习题及答案一、选择题1.函数f (x )=sin x cos x 的最小值是( B ) A .-1B .-12C.12D .12.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为 ( A ) A.π6B.π4C.π3D.π23.已知函数y =sin πx3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是 ( C ) A .6B .7C .8D .94.已知在函数f (x )=3sin πxR 图象上,相邻的一个最大值点与一个最小值点恰好在x 2+y 2=R 2上,则f (x )的最小正周期为 ( D ) A .1B .2C .3D .45.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是 `( D )6.给出下列命题:①函数y =cos ⎝⎛⎭⎫23x +π2是奇函数; ②存在实数α,使得sin α+cos α=32; ③若α、β是第一象限角且α<β,则tan α<tan β; ④x =π8是函数y =sin ⎝⎛⎭⎫2x +5π4的一条对称轴方程; ⑤函数y =sin ⎝⎛⎭⎫2x +π3的图象关于点⎝⎛⎭⎫π12,0成中心对称图形. 其中正确的序号为( C )A .①③B .②④C .①④D .④⑤7.将函数y =sin 2x 的图象向左平移π4个单位,再向上平移1个单位,所得图象的函数解析式是 ( A )A .y =2cos 2xB .y =2sin 2xC .y =1+sin(2x +π4) D .y =cos 2x8.将函数y =sin ⎝⎛⎭⎫2x +π4的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,再向右平移π4个单位,所得到的图象解析式是 ( A )A .f (x )=sin xB .f (x )=cos xC .f (x )=sin 4xD .f (x )=cos 4x9.若函数y =A sin(ωx +φ)+m 的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则它的解析式是 ( D ) A .y =4sin ⎝⎛⎭⎫4x +π6B .y =2sin ⎝⎛⎭⎫2x +π3+2 C .y =2sin ⎝⎛⎭⎫4x +π3+2D .y =2sin ⎝⎛⎭⎫4x +π6+2 10.若将函数y =tan ⎝⎛⎭⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan ⎝⎛⎭⎫ωx +π6的图象重合,则ω的最小值为 ( D ) A.16B.14C.13D.1211.电流强度I (安)随时间t (秒)变化的函数 I =A sin(ωt +φ)(A >0,ω>0,0<φ<2π)的图象如右图所示, 则当t =1001秒时,电流强度是( A )A .-5安B .5安C .53安D .10安12.已知函数f (x )=sin(ωx +π4)(x ∈R ,ω>0)的最小正周期为π,为了得到函数g (x )=cos ωx 的图象,只要将y =f (x )的图象( A )A .向左平移π8个单位长度B .向右平移π8个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度二、填空题(每小题6分,共18分)13.函数y =12sin ⎝⎛⎭⎫π4-23x 的单调递增区间为______________.⎣⎡⎦⎤98π+3k π,21π8+3k π (k ∈Z ) 14.已知f (x )=sin ⎝⎛⎭⎫ωx +π3 (ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=________. 31415.关于函数f (x )=4sin ⎝⎛⎭⎫2x +π3(x ∈R ),有下列命题: ①由f (x 1)=f (x 2)=0可得x 1-x 2必是π的整数倍; ②y =f (x )的表达式可改写为y =4cos ⎝⎛⎭⎫2x -π6; ③y =f (x )的图象关于点⎝⎛⎭⎫-π6,0对称; ④y =f (x )的图象关于直线x =-π6对称.其中正确的命题的序号是________.(把你认为正确的命题序号都填上) ②③16.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M 、N 两点,则|MN |的最大值为________. 2 三、解答题(共40分)17.设函数f (x )=sin ()2x +φ (-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8.(1)求φ; (2)求函数y =f (x )的单调增区间. 解 (1)令2×π8+φ=k π+π2,k ∈Z ,∴φ=k π+π4,又-π<φ<0,则-54<k <-14,∴k =-1, 则φ=-3π4.(2)由(1)得:f (x )=sin ⎝⎛⎭⎫2x -3π4, 令-π2+2k π≤2x -3π4≤π2+2k π, 可解得π8+k π≤x ≤5π8+k π,k ∈Z ,因此y =f (x )的单调增区间为⎣⎡⎦⎤π8+k π,5π8+k π,k ∈Z . 18.已知函数f (x )=2cos 2ωx +2sin ωx cos ωx +1 (x ∈R ,ω>0)的最小正周期是π2.(1)求ω的值; (2)求函数f (x )的最大值,并且求使f (x )取得最大值的x 的集合. 解 (1)f (x )=21+cos 2ωx2+sin 2ωx +1=sin 2ωx +cos 2ωx +2=2⎝⎛⎭⎫sin 2ωx cos π4+cos 2ωx sin π4+2 =2sin ⎝⎛⎭⎫2ωx +π4+2. 由题设,函数f (x )的最小正周期是π2,可得2π2ω=π2, 所以ω=2.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫4x +π4+2. 当4x +π4=π2+2k π,即x =π16+k π2(k ∈Z )时,sin ⎝⎛⎭⎫4x +π4取得最大值1,所以函数f (x )的最大值是2+2, 此时x 的集合为⎩⎨⎧⎭⎬⎫x |x =π16+k π2,k ∈Z .19.设函数f (x )=cos ωx (3sin ωx +cos ωx ),其中0<ω<2. (1)若f (x )的周期为π,求当-π6≤x ≤π3时f (x )的值域;(2)若函数f (x )的图象的一条对称轴为x =π3,求ω的值.解 f (x )=32sin 2ωx +12cos 2ωx +12=sin ⎝⎛⎭⎫2ωx +π6+12. (1)因为T =π,所以ω=1. ∴f (x )=sin ⎝⎛⎭⎫2x +π6+12, 当-π6≤x ≤π3时,2x +π6∈⎣⎡⎦⎤-π6,5π6, 所以f (x )的值域为⎣⎡⎦⎤0,32. (2)因为f (x )的图象的一条对称轴为x =π3,所以2ω⎝⎛⎭⎫π3+π6=k π+π2(k ∈Z ), ω=32k +12 (k ∈Z ), 又0<ω<2,所以-13<k <1,又k ∈Z ,所以k =0,ω=12.20.已知函数f (x )=A sin(ωx +φ)+ b (ω>0,|φ|<2π)的图象的一部分如图所示: (1)求f (x )的表达式; (2)试写出f (x )的对称轴方程. 解 (1)由图象可知,函数的最大值M =3,最小值m =-1, 则A =,1213,22)1(3=-==--b , 又π)6π32(2=-=πT ,∴2ππ2π2===T ω,∴f (x )=2sin(2x +φ)+1, 将x =6π,y =3代入上式,得1)3π(=+ϕ ∴π22π3πk +=+ϕ,k ∈Z , 即φ=6π+2k π,k ∈Z ,∴φ=6π, ∴f (x )=2sin )6π2(+x +1. (2)由2x +6π=2π+k π,得x =6π+21k π,k ∈Z , ∴f (x )=2sin )6π2(+x +1的对称轴方程为 216π+=x k π,k ∈Z. 21.函数y =A sin(ωx +φ) (A >0,ω>0,|φ|<π2)的一段图象如图所示.(1)求函数y =f (x )的解析式;(2)将函数y =f (x )的图象向右平移π4个单位,得到y =g (x )的图象,求直线y =6与函数y =f (x )+g (x )的图象在(0,π)内所有交点的坐标.解 (1)由题图知A =2,T =π,于是ω=2πT=2,将y =2sin 2x 的图象向左平移π12个单位长度,得y =2sin(2x +φ)的图象.于是φ=2×π12=π6, ∴f (x )=2sin ⎝⎛⎭⎫2x +π6. (2)依题意得g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π6=-2cos ⎝⎛⎭⎫2x +π6. 故y =f (x )+g (x )=2sin ⎝⎛⎭⎫2x +π6-2cos ⎝⎛⎭⎫2x +π6 =22sin ⎝⎛⎭⎫2x -π12. 由22sin ⎝⎛⎭⎫2x -π12=6,得sin ⎝⎛⎭⎫2x -π12=32. ∵0<x <π,∴-π12<2x -π12<2π-π12. ∴2x -π12=π3或2x -π12=2π3,∴x =524π或x =38π, ∴所求交点坐标为⎝⎛⎭⎫5π24,6或⎝⎛⎭⎫3π8,6. 22.已知函数f (x )=A sin(ωx +φ) (A >0,ω>0,|φ|<π2,x ∈R )的图象的一部分如图所示.(1)求函数f (x )的解析式;(2)当x ∈⎣⎡⎦⎤-6,-23时,求函数y =f (x )+f (x +2)的最大值与最小值及相应的x 的值. 解 (1)由图象知A =2,T =8, ∵T =2πω=8,∴ω=π4.又图象过点(-1,0),∴2sin ⎝⎛⎭⎫-π4+φ=0. ∵|φ|<π2,∴φ=π4. ∴f (x )=2sin ⎝⎛⎭⎫π4x +π4.(2)y =f (x )+f (x +2)=2sin ⎝⎛⎭⎫π4x +π4+2sin ⎝⎛⎭⎫π4x +π2+π4=22sin ⎝⎛⎭⎫π4x +π2=22cos π4x . ∵x ∈⎣⎡⎦⎤-6,-23,∴-3π2≤π4x ≤-π6. ∴当π4x =-π6,即x =-23时,y =f (x )+f (x +2)取得最大值6;π4x=-π,即x=-4时,y=f(x)+f(x+2)取得最小值-2 2.当。
三角函数的图象变换与计算(习题及答案)
6
6
3
ቤተ መጻሕፍቲ ባይዱ
14.
f
(x)
sin(2x
)
;(x)
1
tan(2x
)
3
2
3
15.(1)非奇非偶函数;(2)20 个或 21 个
6
邻零点为
π 6
,0
和
π 2
,0
,且该函数的最大值为
2,最小
值为-2,则该函数的解析式为( )
A.
y
2
sin
3x 2
π 4
B.
y
2
sin
x 2
π 4
C.
y
2
sin
3x 2
π 6
D.
y
2
sin
x 2
π 6
7.
直线
y=5
与直线
y=-1
在区间
0,4
上截曲线
f (x) m sin x n(m,n 0)所得的弦长相等且不为零,则 2
三角函数的图象变换与计算(习题)
巩固练习
1.
要得到函数
y
sin
4x
π 3
的图象,只需要将函数
y=sin4x
的
图象( )
A.向左平移 π 个单位 12
C.向左平移 π 个单位 3
B.向右平移 π 个单位 12
D.向右平移 π 个单位 3
2.
把函数
y
sin
2x
4π 5
的图象上各点向右平移
π 2
f (x) 2a sin(2x
π) 6
2a
b
,当
x
0,π2
时,-5≤f (x)≤1.
高三数学三角函数图象变换试题答案及解析
高三数学三角函数图象变换试题答案及解析1.将函数图象上各点的横坐标伸长到原来的2倍,再向左平移个单位,纵坐标不变,所得函数图象的一条对称轴的方程是A.B.C.D.【答案】A【解析】由已知,横坐标伸长到原来的2倍,则x变为2x,,向左平移个单位,x变为,,即,对称轴,化简得,当k取1时,故选:A.【考点】三角函数的图象变换.2.若把函数的图象向右平移m个单位(m>0)后,所得到的图象关于轴对称,则m的最小值是()A.B.C.D.【答案】D【解析】,图象向右平移m个单位(m>0)后,得到,其图象关于轴对称,即是偶函数,所以,解得m的最小值是,选D.【考点】三角函数辅助角公式,三角函数图象的变换.3.将函数图象所有的点向右移动个单位长度,再将所得各点的横坐标缩短到原来的倍(纵坐标不变),所得图象的函数解析式为()A.B.C.D.【答案】C【解析】将函数图象所有的点向右移动个单位长度后所得图象的函数解析式为,再将所得各点的横坐标缩短到原来的倍(纵坐标不变),所得图象的函数解析式为.故C正确.【考点】三角函数的伸缩平移变换.4.已知函数y=cos(ωx+φ)(ω>0,|φ|<π)的部分图象如图所示,则()A.ω=1,φ=B.ω=1,φ=-C.ω=2,φ=D.ω=2,φ=-【答案】D【解析】因为=-=,所以T=π,所以ω=2,又×2+φ=,所以φ=-.5.将函数的图像向右平移个单位,再将图像上每一点横坐标缩短到原来的倍,所得图像关于直线对称,则的最小正值为.【答案】【解析】由题意得:函数变为,因为所得图像关于直线对称,所以的最小正值为.【考点】三角函数图像变换6.函数的图像与轴的交点的横坐标构成一个公差为的等差数列,要得到函数的图像只需将的图像()A.向左平移B.向右平移C.向左平移D.向右平移【答案】A【解析】由题意知函数的周期为,即;将向右平移个单位,得到.【考点】三角函数的图像平移变换.7.要得到函数的图象,只需将函数的图象上所有的点()A.横坐标缩短到原来的倍(纵坐标不变),再向左平行移动个单位长度B.横坐标缩短到原来的倍(纵坐标不变),再向右平行移动个单位长度C.横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动个单位长度D.横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动个单位长度【答案】C【解析】将函数的图象上所有的点横坐标伸长到原来的2倍(纵坐标不变),得到,然后向左平移个单位得到函数,选C.8.把函数y=cos2x+1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是【答案】B【解析】把函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:,向左平移1个单位长度得:,再向下平移1个单位长度得:.令x=0,得:;x=,得:;观察即得答案.9.将函数的图象向右平移个单位,再向上平移1个单位后得到的函数对应的表达式为,则函数的表达式可以是A.B.C.D.【答案】D【解析】由题意,选D.【考点】图象变换.10.函数的图像经过下列平移,可以得到偶函数图像的是()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【答案】C【解析】由题意,假设向左平移个单位得到偶函数,即为偶函数,则,解得,由选项可知,当时,,即向右平移个单位,故选C.【考点】1.三角函数的平移;2.三角函数的奇偶性.11.将函数的图象向右平移个单位,再向上平移1个单位,所得函数图象对应的解析式为 ( )A.B.C.D.【答案】C【解析】将函数的图象向右平移个单位,得到,再向上平移1个单位,得到,故选C.【考点】三角函数图象变换12.已知函数的图象经过点.(1)求实数的值;(2)设,求函数的最小正周期与单调递增区间.【答案】(1);(2)最小正周期为,单调递增区间为.【解析】(1)将点代入函数的解析式即可求出实数的值;(2)根据(1)中的结果,先将函数的解析式进行化简,化简为或,再根据周期公式计算函数的最小正周期,再利用整体法对施加相应的限制条件,解出的取值范围,即可求出函数的单调递增区间.试题解析:(1)由于函数的图象经过点,因此,解得,所以;(2),因此函数的最小正周期,由,解得,故函数的单调递增区间为.【考点】1.二倍角公式;2.三角函数的周期性与单调性13.若ω>0,函数y=cosωx+的图像向右平移个单位长度后与原图像重合,则ω的最小值为()A.B.C.3D.4【答案】C【解析】由题意,得=k (k∈N*),所以ω=3k(k∈N*),所以ω的最小值为3.14.将函数y=cos x+sin x(x∈R) 的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是________.【答案】【解析】y=cos x+sin x=2sin ,向左平移m个单位长度后得到y=2sin ,由它关于y轴对称可得sin(+m)=±1,∴+m=kπ+,k∈Z,∴m=kπ+,k∈Z又m>0,∴m的最小值为.15.为了得到函数y=sin 的图象,只需把函数y=sin 的图象().A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】B【解析】注意到把y=sin 的图象向右平移个单位长度得到y=sin [2(x-)+]=sin 的图象,故选B.16.函数f(x)=A sin (ωx+φ)(其中A>0,|φ|<)的图象如图所示,为了得到g(x)=sin 3x的图象,只需将f(x)的图象().A.向右平移个单位长度B.向左平移个单位长度C.向右平移个单位长度D.向左平移个单位长度【答案】C【解析】由图象可知A=1,,即T==,所以ω=3,所以f(x)=sin (3x+φ),又f=sin =sin =-1,所以+φ=+2kπ,k∈Z,即φ=+2kπ,k∈Z,又|φ|<所以φ=,即f(x)=sin,又g(x)=sin 3x=sin=sin ,所以只需将f(x)的图象向右平移个单位长度,即可得到g(x)=sin 3x的图象.17.已知的图像与的图像的两个相邻交点间的距离为,要得到的图像,只须把的图像 ( )A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【答案】A【解析】由于函数的最大值为1,又函数的图像与的图像的两个相邻交点间的距离为,所以函数的周期为.所以.所以函数的解析式为.所以要得到函数只需要将向左平移各单位即可.故选A.【考点】1.三角函数的图像.2.三角函数图像的平移.3.三函数的诱导公式.18.定义=a1a4-a2a3,若函数f(x)=,则将f(x)的图象向右平移个单位所得曲线的一条对称轴的方程是().A.x=B.x=C.x=D.x=π【答案】A【解析】由定义可知,f(x)=sin 2x-cos 2x=2sin,将f(x)的图象向右平移个单位得到y=2sin =2sin,由2x-=+kπ,k∈Z.得对称轴为x=,k∈Z,当k=-1时,对称轴为x=.19.将函数的图像分别向左、右平移个单位,所得的图像关于y轴对称,则的最小值分别是()A.B.C.D.【答案】A【解析】因为将函数的图像向左平移个单位可得函数为.其图像关于y轴对称,则.所以所以最小的.同理可求出向右平移个单位的图像关于y轴对称的的最小值为.故选A.【考点】1.三角函数的左右平移.2.三角函数的奇偶性.3.待定系数方程的解法.20.要得到函数的图象,只要将函数的图象()A.向左平移2个单位B.向右平移2个单位C.向左平移个单位D.向右平移个单位【答案】D【解析】因为,所以,要得到函数的图象,只要将函数的图象向右平移个单位,选D.【考点】三角函数图象的平移21.为了得到函数的图象,可以将函数的图象( )A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【答案】B【解析】因为.又因为余弦函数是偶函数.所以.所以为了得到函数的图象可以由函数的图象右平移的单位.即选B.【考点】1.正弦函数与余弦函数的相互转化.2.三角函数的平移问题.22.函数的部分图像如图,其中,且,则f(x)在下列哪个区间中是单调的()A.B.C.D.【答案】B【解析】当图像过原点时,即时,,在上为减函数,上为增函数当图像的最高点在轴上时,,在上是减函数,上为增函数,所以在上是单调的.【考点】1.三角函数的单调区间;2.三角函数图像.23.函数(其中>0,<的图象如图所示,为了得到的图象,只需将的图象A.向右平移个单位长度B.向左平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】D【解析】A=1,,即T=,所以3,由得,所以=sin (3x+)=,所以把函数的图象向右平移个单位长度得到函数的图象,故选D.【考点】1.正弦型函数的性质和图像;2.函数图像的变换规律.24.如果函数的图像关于直线对称,则()A.B.C.D.【答案】D【解析】由的图像关于直线对称,则在处取得最值,所以,而,所以,故选D.【考点】1.三角函数的性质;2.函数的最值求解.25.要得到一个奇函数,只需将的图象()A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位【答案】C【解析】,因为是奇函数,所以将的图象向左平移个单位,得到的图象,故答案为:向左平移个单位.【考点】三角函数图像变化,两角和与差的正弦,三角函数的奇偶性.26.将函数y=f(x)·sinx的图象向右平移个单位后,再作关于x轴的对称变换,得到函数y=1-2sin2x的图象,则f(x)可以是 ().A.sinx B.cosx C.2sinx D.2cosx【答案】D【解析】将函数y=f(x)·sin x的图象向右平移个单位得,再作关于x轴的对称变换得,,即,令则,所以,,故f(x)可以是2cos x,选D.【考点】三角函数图象平移变换、二倍角公式.27.将函数的图象向右平移个单位长度得到图象,若的一个对称中心是,则的一个可能取值是( )A.B.C.D.【答案】【解析】将函数的图象向右平移个单位长度,所得到图象的解析式为:.因为的一个对称中心是,所以,即.取得.【考点】三角函数图象的变换.28.设,函数图像向右平移个单位与原图像重合,则最小值是()A.B.C.D.3【答案】C【解析】图像向右平移个单位,得到,与图像重合,∴,∴,∴.【考点】1.图像的平移变换;2.三角函数的图像.29.为了得到函数的图象,只需把函数的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【答案】B【解析】∵,∴只需把函数的图象向右平移个单位,选B.【考点】三角函数的图象.30.将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是()A.B.C.D.【答案】C【解析】,故选C.【考点】三角函数图象变换31.已知函数,且当时,的最小值为2.(1)求的值,并求的单调增区间;(2)将函数的图象上各点的纵坐标保持不变,横坐标缩短到原来的倍,再把所得图象向右平移个单位,得到函数,求方程在区间上的所有根之和.【答案】(1)0,;(2).【解析】(1)首先利用三角函数的和差倍半公式,将原三角函数式化简,根据三角函数的性质,确定得到最小值的表达式,求得;(2)遵循三角函数图象的变换规则,得到,利用特殊角的三角函数值,解出方程在区间上的所有根,求和.试题解析:(1) 2分因为,时,的最小值为2,所以,. 4分6分(2) 9分由,. 11分12分【考点】三角函数的和差倍半公式,三角函数图象的变换.32.函数的最小正周期为,为了得到函数的图象,只要将的图象().A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】A【解析】由T=,所以=2,因为,故选A.【考点】正弦型函数的性质和图象的平移.33.将函数的图像向右平移个单位,那么所得的图像所对应的函数解析式是()A.B.C.D.【答案】D.【解析】由已知得平移后的图像所对应的函数解析式是,故选【考点】三角函数图像变换.34.已知的图象与的图象的两相邻交点间的距离为,要得到的图象,只须把的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【答案】C【解析】,,由于函数的图象与的图象的两相邻交点的距离为,即函数的最小正周期为,,,故得到函数的图象,只需将函数的图象向左平移个单位.【考点】辅助角变换、三角函数周期、三角函数图象变换35.将函数的图像向左平移个单位,得到的图像,则的解析式为 () A.B.C.D.【答案】A【解析】将图像向左平移个单位,得到.【考点】三角函数图像的平移.36.函数的图像向右平移个单位后,与函数的图像重合,则=___________.【答案】【解析】因为原函数解析式为,所以图象平移后的解析式为=,所以,解得.【考点】本小题主要考查诱导公式、三角函数的图象变换等基础知识,这两部分知识都是高考的热点内容之一,几乎年年必考,熟练其基础知识是解答好本类题目的关键.37.将函数的图形按向量平移后得到函数的图形,满足,则向量的一个可能值是()A.B.C.D.【答案】B【解析】,则关于直线对称,则是奇函数,图像关于对称,,函数变形为,将其向右平移向上平移3个单位可得对称中心在原点,平移向量为【考点】三角函数平移变换点评:在三角函数中,x轴方向的平移与有关,伸缩与有关,Y轴方向的平移与有关,伸缩与有关38.设的最大值为16,则。
高考数学专题复习四-4.3三角函数的图象与性质-高考真题练习(附答案)
4.3三角函数的图象与性质考点一三角函数的图象及其变换1.(多选题)(2020新高考Ⅰ,10,5分)如图是函数y=sin(ωx+φ)的部分图象,则sin(ωx+φ)=()A.sin-2xC.cos2-2x答案BC由题图可知,2=2π3-π6=π2,∴T=π,由T=2π|U可知,2π|U=π,∴|ω|=2,不妨取ω=2,则f(x)=sin(2x+φ),又∵,0φ=0,又∵π6是f(x)的下降零点,∴π3+φ=π+2kπ,k∈Z,∴φ=2π3+2kπ,k∈Z,不妨取φ=2π3,则f(x)=sin22=cos22π--2x-2x,故选BC.2.(2016课标Ⅰ文,6,5分)将函数y=2sin2+的图象向右平移14个周期后,所得图象对应的函数为()A.y=2sin2B.y=2sin2C.y=2sin2tD.y=2sin2t答案D该函数的周期为π,将其图象向右平移π4个单位后,得到的图象对应的函数为y=2sin2t2t故选D.易错警示三角函数图象的平移变换中,“左加右减”是对x而言的,将x变为x-π4,而不是将2x变为2x-π4.评析本题主要考查三角函数图象的平移变换,注意“左加右减”仅针对x.3.(2016四川理,3,5分)为了得到函数y=sin2t,只需把函数y=sin2x的图象上所有的点()A.向左平行移动π3个单位长度B.向右平行移动π3个单位长度C.向左平行移动π6个单位长度D.向右平行移动π6个单位长度答案D将y=sin2x的图象向右平行移动π6个单位长度得到y=sin2=sin2t,故选D.评析将y=sin2t y=sin2t.4.(2016北京理,7,5分)将函数y=sin,t向左平移s(s>0)个单位长度得到点P'.若P'位于函数y=sin2x的图象上,则()A.t=12,s的最小值为π6的最小值为π6C.t=12,s的最小值为π3的最小值为π3答案A点,t在函数y=sin2t,∴t=sin2×π4=12.函数y=sin的图象向左平移π6个单位长度即可得到函数y=sin2x的图象,故s的最小值为π6.5.(2015陕西理,3,5分)如图,某港口一天6时到18时的水深变化曲线近似满足函数+φ+k,据此函数可知,这段时间水深(单位:m)的最大值为()A.5B.6C.8D.10答案C因为函数+φ+k的最小值为2,所以-3+k=2,得k=5,故这段时间水深的最大值为3+5=8(m),选C.评析在解答应用题时,正确理解函数模型中各变量的实际意义是解题的关键.在形如y=Asin(ωx+φ)+k 的函数模型中,往往是由函数图象的最高点和最低点的纵坐标来确定A,k的值.6.(2014课标Ⅰ理,6,5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示成x的函数f(x),则y=f(x)在[0,π]上的图象大致为()答案C由题图可知:当x=π2时,OP⊥OA,此时f(x)=0,排除A、D;当x∈π2,OM=cosx,设点M到直线OP 的距离为d,则O=sinx,即d=OMsinx=sinxcosx,∴f(x)=sinxcosx=12sin2x≤12,排除B,故选C.7.(2012课标文,9,5分)已知ω>0,0<φ<π,直线x=π4和x=5π4是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=()A.π4B.π3C.π2D.3π4答案A由题意得2π=254π4,∴ω=1,∴f(x)=sin(x+φ),∴π4+φ=kπ+π2(k∈Z),φ=kπ+π4(k∈Z),又0<φ<π,∴φ=π4,故选A.评析本题考查了三角函数的图象和性质,掌握相邻对称轴的距离为周期的一半是关键.8.(2016课标Ⅱ,7,5分)若将函数y=2sin2x的图象向左平移π12个单位长度,则平移后图象的对称轴为()A.x=χ2-π6(k∈Z)B.x=χ2+π6(k∈Z)C.x=χ2-π12(k∈Z)D.x=χ2+π12(k∈Z)答案B将函数y=2sin2x的图象向左平移π12个单位长度得到函数y=2sin2π122π6象,由2x+π6=kπ+π2(k∈Z),可得x=χ2+π6(k∈Z).则平移后图象的对称轴为x=χ2+π6(k∈Z),故选B.易错警示将y=2sin2x的图象向左平移π12个单位长度,应该得到y=2sin2π12,而不是y=2sin2π12.9.(2022浙江,6,4分)为了得到函数y=2sin3x的图象,只要把函数y=2sin3π5)A.向左平移π5个单位长度B.向右平移π5个单位长度C.向左平移π15个单位长度D.向右平移π15个单位长度答案D因为y=2sin3=2sin3y=2sin3π15个单位长度,可以得到y=2sin3x的图象,故选D.10.(2022全国甲文,5,5分)将函数f(x)=sin Bω>0)的图象向左平移π2个单位长度后得到曲线C,若C 关于y轴对称,则ω的最小值是() A.16 B.14 C.13 D.12答案C设平移后的曲线C对应的函数为y=g(x),则g(x)=sin=sin B+π2又曲线C关于y轴对称,∴π2+π3=π2+kπ(k∈Z),∴ω=2k+13(k∈Z).又ω>0,∴ωmin=13.故选C.11.(多选)(2020新高考Ⅰ,10,5分)如图是函数y=sin(ωx+φ)的部分图象,则sin(ωx+φ)=()A.sinB.sin2C.cos2D.cos−22π3−π6=π2,∴T=π,由Tπ,∴|ω|=2,不妨取ω=2,则f(x)=sin(2x+φ),答案BC由题图可知,0,∴=0,又∵π6是f(x)的下降零点,∴π3+φ=π+2kπ,k∈Z,∴φ=2π3+2kπ,k∈Z,不妨取φ=2π3,则f(x)=sin2=sin2=cos2f(x)=sin2=sinπ−2=2,故选BC.12.(2021全国甲文,15,5分)已知函数f(x)=2cos(ωx+φ)的部分图象如图所示,则=.2析式即可求出解析02在f(x)的图象上,∴34=13π12−π3=3π4,则T=π,所以|ω|=2π=2,不妨取ω=2,则函数f(x)=2cos(2x+φ2代入得,2×13π12+φ=2kπ,k∈Z,解得φ=-13π6+2kπ,k∈Z,∴=2cos2×π2−13π6+2χ=−3,k∈Z.13.(2016课标Ⅲ,14,5分)函数y=sinx-3cosx的图象可由函数y=sinx+3cosx的图象至少向右平移个单位长度得到.答案2π3解析设f(x)=sinx-3cosx=2sin+53π,g(x)=sinx+3cosx=2sin将g(x)的图象向右平移φ(φ>0)个单位长度后得到函数g(x-φ)=2sin t=2sin的图象,所以x-φ+π3=2kπ+x+5π3,k∈Z,此时φ=-2kπ-4π3,k∈Z,当k=-1时,φ有最小值,为2π3.14.(2015湖南文,15,5分)已知ω>0,在函数y=2sinωx与y=2cosωx的图象的交点中,距离最短的两个交点的距离为23,则ω=.答案π2解析由=2sinB,消去y,得sinωx-cosωx=0,即2sin B-解得x=χ+π4,k∈Z.取k=0,1,,2,-2,又两交点的距离为23,+(2+2)2=(23)2,解得ω=π2.15.(2014重庆文,13,5分)将函数f(x)=sin(ωx+φ)>0,-π2≤φ<的一半,纵坐标不变,再向右平移π6个单位长度得到y=sinx的图象,则=.答案解析y=sinx y=sin2析式即可求出解析02在f(x)的图象上,∴34=13π12−π3=3π4,则T=π,所以|ω|=2π=2,不妨取ω=2,则函数f(x)=2cos(2x+φ2代入得,2×13π12+φ=2kπ,k∈Z,解得φ=-13π6+2kπ,k∈Z,∴=2cos2×π2−13π6+2χ=−3,k∈Z.13.(2016课标Ⅲ,14,5分)函数y=sinx-3cosx的图象可由函数y=sinx+3cosx的图象至少向右平移个单位长度得到.答案2π3解析设f(x)=sinx-3cosx=2sin+53π,g(x)=sinx+3cosx=2sin将g(x)的图象向右平移φ(φ>0)个单位长度后得到函数g(x-φ)=2sin t=2sin的图象,所以x-φ+π3=2kπ+x+5π3,k∈Z,此时φ=-2kπ-4π3,k∈Z,当k=-1时,φ有最小值,为2π3.14.(2015湖南文,15,5分)已知ω>0,在函数y=2sinωx与y=2cosωx的图象的交点中,距离最短的两个交点的距离为23,则ω=.答案π2解析由=2sinB,消去y,得sinωx-cosωx=0,即2sin B-解得x=χ+π4,k∈Z.取k=0,1,,2,-2,又两交点的距离为23,+(2+2)2=(23)2,解得ω=π2.15.(2014重庆文,13,5分)将函数f(x)=sin(ωx+φ)>0,-π2≤φ<的一半,纵坐标不变,再向右平移π6个单位长度得到y=sinx的图象,则=.答案解析y=sinx y=sin即=sinπ4=16.(2013课标Ⅱ文,16,5分)函数y=cos(2x+φ)(-π≤φ<π)的图象向右平移π2个单位后,与函数y=sin2,则φ=.答案56π解析令y=f(x)=cos(2x+φ),将其图象向右平移π2个单位后得f=cos2t2+φ=cos(2x+φ-π)=sin(2x+φ-π)+π2=sin2x+φ-π2,因为与y=sin2+图象重合,所以φ-π2=π3+2kπ(k∈Z),所以φ=2kπ+56π(k∈Z),又-π≤φ<π,所以φ=56π.17.(2011浙江文,18,14分)已知函数+φ,x∈R,A>0,0<φ<π2.y=f(x)的部分图象如图所示,P、Q分别为该图象的最高点和最低点,点P的坐标为(1,A).(1)求f(x)的最小正周期及φ的值;(2)若点R的坐标为(1,0),∠PRQ=2π3,求A的值.解析(1)由题意得,T=2ππ3=6.因为P(1,A)在+φ的图象上,所以φ=1.又因为0<φ<π2,所以φ=π6.,-A).(2)设点Q的坐标为(x由题意可知π3x0+π6=3π2,得x0=4,所以Q(4,-A).连接PQ,在△PRQ中,∠PRQ=2π3,由余弦定理得cos∠PRQ=B2+R2-P22B·B=-12,解得A2=3.又A>0,所以A=3.评析本题主要考查三角函数的图象与性质、三角运算等基础知识.在(2)中,求出点Q 坐标,根据△PRQ 的边角关系,列出关于A 的方程是求解关键.考点二三角函数的性质及其应用1.(2018课标Ⅲ文,6,5分)函数f(x)=tan1+tan 2x的最小正周期为()A.π4B.π2C.πD.2π答案C 本题考查三角函数的周期.解法一:f(x)的定义域为Ux ≠kπ+2,k ∈Z .f(x)=sincos 1+sin cos2=sinx·cosx=12sin2x,∴f(x)的最小正周期T=2π2=π.解法二:f(x+π)=tan(rπ)1+tan 2(x+π)=tan 1+tan 2x =f(x),∴π是f(x)的周期.f π2=tan r π21+tan 2r π2,tan +π2=sin r π2cos r π2=cos -sin =-1tan ,∴f π2=-tan1+tan 2x ≠f(x),∴π2不是f(x)的周期,∴π4也不是f(x)的周期.故选C.方法总结函数周期的求法:(1)定义法:若f(x+T)=f(x),T≠0,则T 是f(x)的一个周期.(2)若T 是函数y=f(x)的周期,则kT(k∈Z 且k≠0)也是y=f(x)的周期.(3)若定义域内都有f(x+a)=-f(x)或f(x+a)=1op (f(x)≠0)或f(x+a)=-1op (a 是常数且a≠0,f(x)≠0),则f(x)是以2|a|为周期的周期函数.(4)若f(x)的图象关于直线x=a 和x=b 对称,则2|a-b|是f(x)的一个周期;若f(x)的图象关于点(a,0),(b,0)对称,则2|a-b|是f(x)的一个周期;若f(x)关于点(a,0)和直线x=b 对称,则4|a-b|是f(x)的一个周期.2.(2018课标Ⅰ文,8,5分)已知函数f(x)=2cos 2x-sin 2x+2,则()A.f(x)的最小正周期为π,最大值为3B.f(x)的最小正周期为π,最大值为4C.f(x)的最小正周期为2π,最大值为3D.f(x)的最小正周期为2π,最大值为4答案B本题主要考查三角恒等变换及三角函数的性质.f(x)=2cos2x-sin2x+2=2(1-sin2x)-sin2x+2=4-3sin2x=4-3×1−cos22=52+3cos22,∴f(x)的最小正周期T=π,当cos2x=1时,f(x)取最大值,为4.故选B.解题关键解题关键是通过三角恒等变换化简函数解析式3.(2017课标Ⅱ文,3,5分)函数f(x)=sin2+3()A.4πB.2πC.πD.π2答案C本题考查三角函数的性质.由题意得ω=2,所以函数f(x)=sin2T=2π=π.故选C.4.(2017天津,理7,文7,5分)设函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若且f(x)的最小正周期大于2π,则()A.ω=23,φ=π12B.ω=23,φ=-11π12C.ω=13,φ=-11π24D.ω=13,φ=7π24答案A的最小正周期大于2π,∴4=11π8-5π8=3π4,得T=3π,则ω=2π=23,又5π8+φφ=1.∴5π12+φ=2kπ+π2,k∈Z,∴φ=2kπ+π12,k∈Z.∵|φ|<π,∴φ=π12,故选A.易错警示根据f(x)的最小正周期T>2π,可知14T=11π8-5π8=3π4,得T=3π.若不注意已知条件,则容易出现34T=3π4,得T=π,从而造成错误.思路分析由三角函数的图象(图略)可知4=11π8-5π8=3π4,得T=3π,ω=23,,2代入y=f(x)中解出φ的值即可.5.(2017山东文,7,5分)函数y=3sin2x+cos2x的最小正周期为()A.π2B.2π3C.πD.2π答案C本题考查三角函数辅助角公式及三角函数的性质.y=3sin2x+cos2x=2sin2从而最小正周期T=2π2=π.6.(2017课标Ⅲ文,6,5分)函数f(x)=15sin+cos()A.65B.1C.35D.15答案A∵f(x)=15sin+cos tcos cosx+12sinx=35sinx+5=35×2sin=65sin∴f(x)的最大值为65.故选A.一题多解∵cos t-x-x x,∴f(x)=65sin max=65.故选A.7.(2016课标Ⅱ文,11,5分)函数-x的最大值为()A.4B.5C.6D.7答案B f(x)=1-2sin2x+6sinx=-2sint+112,当sinx=1时,f(x)取得最大值5,故选B.思路分析利用二倍角的余弦公式及诱导公式将-x转化为关于sinx的二次函数,通过配方来求最值,注意不要忘记sinx∈[-1,1].8.(2016山东理,7,5分)函数f(x)=(3sinx+cosx)(3cosx-sinx)的最小正周期是()A.π2B.πC.3π2D.2π答案B∵f(x)=(3sinx+cosx)(3cosx-sinx)=4sin2,∴T=2π2=π,故选B.评析本题主要考查辅助角公式及三角恒等变换,属中档题.9.(2016浙江,5,5分)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关答案B f(x)=sin2x+bsinx+c,若b=0,则f(x)=sin2x+c=12(1-cos2x)+c,此时f(x)的周期为π;若b≠0,则f(x)的周期为2π,所以选B.10.(2015安徽理,10,5分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=2π3时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(-2)<f(0)B.f(0)<f(2)<f(-2)C.f(-2)<f(0)<f(2)D.f(2)<f(0)<f(-2)答案A∵ω>0,∴T=2π=π,∴ω=2.又即φ=-1,得φ+4π3=2kπ+3π2,k∈Z,即φ=2kπ+π6,k∈Z,又∵φ>0,∴可取f(x)=Asin2,∴f(2)=Asin4-4+,f(0)=Asinπ6.∵π<4+π6<3π2,∴f(2)<0.∵-7π6<-4+π6<-π,且y=sinx在-7π6,-π上为减函数,∴sin-4+-=sinπ6,且sin-4+从而有0<f(-2)<f(0).故有f(2)<f(-2)<f(0).评析本题考查三角函数的周期性、单调性、最值和三角函数值的大小比较.准确判断4+π6与-4+π6的范围是解题的关键.11.(2015课标Ⅰ理,8,5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.χ-14B.2χ-14C.t14,kD.2t14,2k答案D由题图可知2=54-14=1,所以T=2.结合题图可知,在-34的一个周期)内,函数f(x)的单调递减区间为-14由f(x)是以2为周期的周期函数可知,f(x)的单调递减区间为2t14,2k故选D.12.(2014课标Ⅰ文,7,5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos2,④y=tan,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③答案A ①y=cos|2x|=cos2x,最小正周期为π;②由图象知y=|cosx|的最小正周期为π;③y=cos 2T=2π2=π;④y=tan 2t T=π2.因此选A.评析本题考查三角函数的周期性,含有绝对值的函数可先变形再判断,或运用图象判断其最小正周期.13.(2012课标理,9,5分)已知ω>0,函数f(x)=sin B ,π单调递减,则ω的取值范围是()2C. D.(0,2]答案A 由π2<x<π得χ2+π4<ωx+π4<ωπ+π4,又y=sinα32π上递减,π4≥π2,+π4≤32π,解得12≤ω≤54,故选A.评析本题考查了三角函数的单调性,考查了运用正弦函数的减区间求参数的问题.14.(2011课标理,11,5分)设函数f(x)=sin(ωx+φ)+cos(ωx+φ)>π,且f(-x)=f(x),则()A.f(x)在0,B.f(x)C.f(x)在0,D.f(x)答案A f(x)=sin(ωx+φ)+cos(ωx+φ)=2sin ωx+φ+π4,∵周期T=2π=π,∴ω=2.又f(-x)=f(x),即f(x)为偶函数,∴φ+π4=kπ+π2,φ=kπ+π4,k∈Z.又|φ|<π2,∴φ=π4,∴f(x)=2sin 2=2cos2x,易得f(x)在,故选A.评析本题考查三角公式和三角变换,考查三角函数y=Asin(ωx+φ)的单调性、奇偶性的判定,属中等难度试题.15.(2011课标文,11,5分)设函数f(x)=sin 2+cos 2+则()A.y=f(x)在,其图象关于直线x=π4对称B.y=f(x)在,其图象关于直线x=π2对称C.y=f(x)在,其图象关于直线x=π4对称D.y=f(x)在,其图象关于直线x=π2对称答案D f(x)=sin2+cos2=2·sin2=2cos2x,其部分图象如图.故选D.评析本题考查三角恒等变换、诱导公式及三角函数的图象等知识,考查学生综合应用三角知识分析和解决问题的能力,属中等难度试题.16.(2016课标Ⅰ,12,5分)已知函数f(x)=sin(ωx+φ)>0,|U,x=-π4为f(x)的零点,x=π4为y=f(x)图象的对称轴,且f(x),则ω的最大值为()A.11B.9C.7D.5答案B依题意,有·-+φ=mπ,·π4+φ=nπ+π2(m、n∈Z),∴=2(tp+1, =2(rp+14又|φ|≤π2,∴m+n=0或m+n=-1.当m+n=0时,ω=4n+1,φ=π4,由f(x),得π≥5π36-π18,∴ω≤12,取n=2,得ω=9,f(x)=sin9.当m+n=-1时,φ=-π4,ω=4n+3,取n=2,得ω=11,f(x)=sin此时,当536π时,11x-π4∈2318π,f(x)不单调,不合题意.故选B.17.(2021北京,7,4分)已知函数f(x)=cos x-cos2x,则该函数为()A.奇函数,最大值为2B.偶函数,最大值为2C.奇函数,最大值为98D.偶函数,最大值为98答案D f(x)的定义域为R,关于原点对称,且f(-x)=cos(-x)-cos(-2x)=cos x-cos2x=f(x),所以f(x)为偶函数.f(x)=cos x-cos2x=cos x-(2cos2x-1)=-2cos2x+cos x+1=-2cos+98,当cos x=14时,f(x)max=98.故选D.解题指导:先判断函数的奇偶性,再借助二倍角的余弦公式将f(x)=cos x-cos2x转化为关于cos x的二次函数,进而在[-1,1]范围内求二次函数的最值.18.(2021全国乙文,4,5分)函数f(x)=sin3+cos3的最小正周期和最大值分别是() A.3π和2 B.3π和2 C.6π和2 D.6π和2答案C解题指导:先对函数f(x)进行三角恒等变换,再利用三角函数的周期公式、求值域的方法进行求解.解析由题意知:f(x)=sin3+cos3=3cos=2sin T=2π13=6π;当,即x=34π+6kπ,k∈Z时,f(x)取最大值2,故选C.易错警示对三角恒等变换公式不熟练,不能将函数化成y=A sin(ωx+φ)(A>0,ω>0)的形式,导致后面无法求解.19.(2021新高考Ⅰ,4,5分)下列区间中,函数f(x)=7sin()A.0,B.πC.π,D.2π答案A解题指导:由三角函数的单调递增区间表示出f(x)=7sin x 的取值范围,结合选项分析即可.解析f(x)=7sin令2kπ-π2≤−π6≤2kπ+π2,k∈Z,解得2kπ-π3≤x≤2kπ+2π3,k∈Z,令k=0,得-π3≤≤2π3.故选A.20.(2022北京,5,4分)已知函数f(x)=cos2x-sin2x,则()A.f(x)在−π2B.f(x)在−π4C.f(x)在D.f(x答案C f(x)=cos2x-sin2x=cos2x,令2kπ<2x<2kπ+π,k∈Z,解得kπ<x<kπ+π2,k∈Z,则f(x)的单调递减区间为χ,χ+k∈Z;令2kπ-π<2x<2kπ,k∈Z,解得kπ-π2<x<kπ,k∈Z,则f(x)的单调递增区间为χ−π2,χ,k∈Z.对于A,f(x)在−π2,−A错误;对于B,f(x)在−π0上单调递增,在B错误;对于C,f(x)在0,C正确;对于D,f(x D错误.故选C.21.(2022新高考Ⅰ,6,5分)记函数f(x)=sin B b(ω>0)的最小正周期为T.若2π3<T<π,且y=f(x)的图象2中心对称,则() A.1 B.32 C.52 D.3答案A∵2π3<T<π,ω>0,∴2π3<2π<π,∴2<ω<3①.又y=f(x2中心对称,∴=2,b3π2+π4=χ(∈Z),从而ω=2316(k∈Z)②,由①②知ω=52(取k=4),∴f(x),∴f=sin32π+2=1.22.(2021全国乙理,7,5分)把函数y=f(x)图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π个单位长度,得到函数y=sin f(x)=()B.+C.sin2D.2答案B将函数y=sinπ3个单位长度可得函数y=sin=sin+象,再将该函数图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,可得函数y=f(x)的图象,则f(x)B.易错警示(1)忽略图象的平移规律:“左加右减”,从而错选A;(2)对横坐标伸长到原来的2倍理解不清,误认为是x的系数乘2,从而错选D.23.(多选)(2022新高考Ⅱ,9,5分)已知函数f(x)=sin(2x+φ)(0<φ<0中心对称,则()A.f(x)在区间0,12B.f(x)在区间−π12C.直线x=7π6是曲线y=f(x)的对称轴D.直线y x是曲线y=f(x)的切线答案AD 因为f (x 0对称,所以=0,即4π3+φ=k π,k ∈Z,故φ=k π-4π3,k ∈Z .结合0<φ<π,得φ=2π3,所以f (x )=sin 2对于A ,令π2+2k π≤2x +2π3≤3π2+2k π,k ∈Z,解得-π12+k π≤x ≤5π12+k π,k ∈Z,故f (x )的单调递减区间为-π12+k π,5π12+k π,k ∈Z .显然0,⫋−π12+χ,5π12+χ,k ∈Z,故.对于B ,f '(x )=2cos 2令f '(x )=0,得2x +2π3=k π+π2,k ∈Z,即x =χ2−π12,k ∈Z .又因为x ∈−π12x =5π12,故f (x )在区间−π12k ∈Z,故B 错误.对于C ,令2x +2π3=π2+k π,k ∈Z,解得x =-π12+χ2,k ∈Z,故C 错误.对于D ,结合B ,令2cos 2,得2x +2π3=2π3+2k π,k ∈Z 或2x +2π3=4π3+2k π,k ∈Z,解得x =k π,k ∈Z 或x =π3+k π,k ∈Z,故其中一个切点为0,y =f (x )在该点处的切线方程为y x ,即y x ,故D 正确.故选AD .24.(2022全国甲理,11,5分)设函数f (x )=sin B 0,π)恰有三个极值点、两个零点,则ω的取值范围是()答案C 由x ∈(0,π)得ωx +π3∈χf (x )=sin B 0,π)内恰有三个极值点、两个零点,则ωx +π3的取值应包括π2,π,3π2,2π,5π2,所以5π2<ωπ+π3≤3π,解得136<≤83,即ω故选C .25.(2022北京,13,5分)若函数f (x )=A sin x -3cos x 的一个零点为π3,则A =;=.答案1;-2解析由题意知,即A sin π3−3cos π3=0,解得A =1,所以f (x )=sin x -3cos =2sin=2sin=−2sinπ4=−2=−2.26.(2022全国乙理,15,5分)记函数f (x )=cos (ωx +φ)(ω>0,0<φ<π)的最小正周期为T.若f (T )x =π9为f (x )的零点,则ω的最小值为.答案3解析∵T =2π,ω>0,f (T )∴cos×2π+=cosφ∵0<φ<π,∴φ=π6,∴f(x)=cos B又,∴,∴π9+π6=kπ+π2(k∈Z),∴9=+13(k∈Z),∴ω=9k+3(k∈Z).∵ω>0,∴k=0时,ω取得最小值3.27.(2021全国甲理,16,5分)已知函数f(x)=2cos(ωx+φ)的部分图象如图所示,则满足条件f(x)-f-7π4f(x)-f4π3>0的最小正整数x为.答案2解题指导:首先通过函数图象,确定ω和φ的取值,然后分别求出f−调性确定最小正整数x的值.解析设函数f(x)的最小正周期为T,则3413π12−π3=3π4,解得T=π,π,解得|ω|=2,不妨取ω=2,此时f(x)=2cos(2x+φ).0代入上式,得2π3+=π2+2kπ,k∈Z,∴φ=-π6+2kπ,k∈Z,取φ=-π6,∴f(x)=2cos26∴f−=−7π2=2cosπ3=1,==2cosπ2=0,∴不等式可化为(f(x)-1)f(x)>0,解得f(x)>1或f(x)<0.由f(x)>1,得2cos2,即cos2>12,①由f(x)<0,得cos2,②由①得-π3+2kπ<2x-π6<π3+2kπ,k∈Z,解得-π12+kπ<x<π4+kπ,k∈Z,欲使x为最小正整数,则k=1,此时,11π12<<5π4;由②得π2+2kπ<2x-π6<3π2+2kπ,k∈Z,解得π3+kπ<x<5π6+kπ,k∈Z,欲使x为最小正整数,则k=0,此时,π3<<5π6.综上,最小正整数x为2.方法点拨解本题的关键是能够正确求解f(x)的解析式,然后能结合三角函数的单调性求出x的取值范围.28.(2017课标Ⅱ文,13,5分)函数f(x)=2cosx+sinx的最大值为.答案5解析本题主要考查三角函数的最值.由题意可知f(x)=2cosx+sinx=5sin(x+φ)(tanφ=2),∴f(x)的最大值为5.29.(2015天津文,14,5分)已知函数f(x)=sinωx+cosωx(ω>0),x∈R.若函数f(x)在区间(-ω,ω)内单调递增,且函数y=f(x)的图象关于直线x=ω对称,则ω的值为.答案解析由已知得f(x)=2sin B令2kπ-π2≤ωx+π4≤2kπ+π2,k∈Z,由ω>0,得2χ-34π≤x≤2χ+π4, k∈Z,当k=0时,得f(x)的单调递增区间为-3π4所以(-ω,ω)⊆-3π4≤−ω,又y=f(x)的图象关于直线x=ω对称,所以ω2+π4=kπ+π2,k∈Z,解得ω2=kπ+π4,k∈Z,又所以30.(2013课标Ⅰ,理15,文16,5分)设当x=θ时,函数f(x)=sinx-2cosx取得最大值,则cosθ=.答案解析由辅助角公式得cos=5sin(x-φ),其中由x=θ时,f(x)取得最大值得:sin(θ-φ)=1,∴θ-φ=2kπ+π2,k∈Z,即θ=φ+π2+2kπ,∴cosθ=cos评析本题考查了辅助角公式的应用,准确掌握辅助角的含义是解题关键.31.(2018北京文,16,13分)已知函数f(x)=sin2x+3sinxcosx.(1)求f(x)的最小正周期;(2)若f(x)在区间-π3,m上的最大值为32,求m的最小值.解析(1)f(x)=12-12cos2x+=sin2t+12.所以f(x)的最小正周期为T=2π2=π.(2)由(1)知f(x)=sin2t+12.由题意知-π3≤x≤m.所以-5π6≤2x-π6≤2m-π6.要使得f(x)在-π3,m上的最大值为32,即sin2t6-π3,m上的最大值为1.所以2m-π6≥π2,即m≥π3.所以m的最小值为π3.32.(2016山东文,17,12分)设f(x)=23sin(π-x)sinx-(sinx-cosx)2.(1)求f(x)的单调递增区间;(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数y=g(x)的图象,求.解析(1)f(x)=23sin(π-x)sinx-(sinx-cosx)2=23sin2x-(1-2sinxcosx)=3(1-cos2x)+sin2x-1=sin2x-3cos2x+3-1=2sin+3-1.由2kπ-π2≤2x-π3≤2kπ+π2(k∈Z),得kπ-π12≤x≤kπ+5π12(k∈Z).所以f(x)的单调递增区间是χ-π12,kπ或kt12,k(k∈Z)(2)由(1)知f(x)=2sin+3-1.把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=2sin t+3-1的图象,再把得到的图象向左平移π3个单位,得到y=2sinx+3-1的图象,即g(x)=2sinx+3-1.所以=2sinπ6+3-1=3.方法总结研究三角函数的单调性,首先将函数化为y=Asin(ωx+φ)+h(或y=Acos(ωx+φ)+h)的形式,要视“ωx+φ”为一个整体,另外注意A的正负.评析本题主要考查三角恒等变换及三角函数的性质,考查三角函数图象变换.(1)将函数化为y=Asin(ωx+φ)+h的形式是解题的关键,要视“ωx+φ”为一个整体.(2)三角函数图象变换仅对“x”而言.33.(2016天津理,15,13分)已知函数f(x)=4tanxsinπ2-x·cos x-π3-3.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间-π4.解析(1)f(x)的定义域为Ux≠2+kπ,∈Z.f(x)=4tanxcosxcos-3=4sinxcos-3cos+sin-3=2sinxcosx+23sin2x-3=sin2x+3(1-cos2x)-3=sin2x-3cos2x=2sin2t所以,f(x)的最小正周期T=2π2=π.(2)令z=2x-π3,易知函数y=2sinz的单调递增区间是-π2+2kπ,π2+2kπ,k∈Z.由-π2+2kπ≤2x-π3≤π2+2kπ,得-π12+kπ≤x≤5π12+kπ,k∈Z.设A=-π4,B=U−12+kπ≤≤512∈Z,易知A∩B=-12所以,当x∈-π4,f(x)在区间-π12,在区间-π4.方法总结研究三角函数的各类性质时,首先要将所研究函数利用辅助角公式、降幂扩角公式及两角和差的正弦、余弦公式等价转化为f(x)=Asin(ωx+φ)+b的形式,然后类比y=sinx的性质进行研究.评析本题主要考查两角差的正弦公式和余弦公式、二倍角的正弦公式和余弦公式,三角函数的定义域、最小正周期性、单调性等基础知识.考查运算求解能力.34.(2016北京文,16,13分)已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.解析(1)因为f(x)=2sinωxcosωx+cos2ωx=sin2ωx+cos2ωx=2sin2B分)所以f(x)的最小正周期T=2π2=π.(4分)依题意,π=π,解得ω=1.(6分)(2)由(1)知f(x)=2sin24函数y=sinx的单调递增区间为2χ-π2,2kπ分)由2kπ-π2≤2x+π4≤2kπ+π2(k∈Z),得kπ-3π8≤x≤kπ+π8(k∈Z).(12分)所以f(x)的单调递增区间为χ-3π8,kπ分)易错警示本题函数解析式中含有参数ω,在用倍角公式时要注意转化成“2ωx”,在求单调区间时,也要注意x的系数.评析本题考查了倍角公式、辅助角公式和正弦型函数的单调区间等知识,属中档题.35.(2015天津理,15,13分)已知函数f(x)=sin2x-sin2t(1)求f(x)的最小正周期;(2)求f(x)在区间-π3.解析(1)由已知,有f(x)=1−cos22-sin2-12cos2x=sin2x-14cos2x=12sin2t所以,f(x)的最小正周期T=2π2=π.(2)因为f(x)在区间-π3,在区间-π6,f=-14,f-=-12,f所以,f(x)在区间-π3最小值为-12.36.(2015北京理,15,13分)已知函数f(x)=2sin2cos2-2sin22.(1)求f(x)的最小正周期;(2)求f(x)在区间[-π,0]上的最小值.解析(1)因为=sin所以f(x)的最小正周期为2π.(2)因为-π≤x≤0,所以-3π4≤x+π4≤π4.当x+π4=-π2,即x=-3π4时,f(x)取得最小值.所以f(x)在区间[-π,0]上的最小值为f-37.(2015安徽文,16,12分)已知函数f(x)=(sinx+cosx)2+cos2x.(1)求f(x)的最小正周期;(2)求f(x)在区间0,.解析(1)因为f(x)=sin2x+cos2x+2sinxcosx+cos2x=1+sin2x+cos2x=2sin2所以函数f(x)的最小正周期为T=2π2=π.(2)由(1)的计算结果知,f(x)=2sin2当x∈0,,2x+π4∈由正弦函数y=sinx,当2x+π4=π2,即x=π8时,f(x)取最大值2+1;当2x+π4=5π4,即x=π2时,f(x)取最小值0.综上,f(x)在上的最大值为2+1,最小值为0.评析本题考查三角恒等变换,三角函数的周期性及最值.38.(2015湖北理,17,11分)某同学用“五点法”画函数f(x)=Asin(ωx+φ)>的图象时,列表并填入了部分数据,如下表:ωx+φ02π322πx356Asin(ωx+φ)05-50(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对,0,求θ的最小值.解析(1)根据表中已知数据,解得A=5,ω=2,φ=-π6.数据补全如下表:ωx+φ02π322πx123712561312πAsin(ωx+φ)050-50且函数表达式为f(x)=5sin(2)由(1)知f(x)=5sin得g(x)=5sin2+因为y=sinx图象的对称中心为(kπ,0),k∈Z,令2x+2θ-π6=kπ,解得x=χ2+π12-θ,k∈Z.由于函数y=g(x),0中心对称,令χ2+π12-θ=5π12,解得θ=χ2-π3,k∈Z.由θ>0可知,当k=1时,θ取得最小值π6.39.(2014山东理,16,12分)已知向量a=(m,cos2x),b=(sin2x,n),函数f(x)=a·b,且y=f(x)的图象过点,3.(1)求m,n的值;(2)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)图象上各最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.解析(1)由题意知f(x)=a·b=msin2x+ncos2x.因为y=f(x),3,-2,所以3=msinπ6+ncosπ6,-2=Lin4π3ncos4π3,即312+-2=-3212n,解得m=3,n=1.(2)由(1)知f(x)=3sin2x+cos2x=2sin2由题意知g(x)=f(x+φ)=2sin2+2设y=g(x)的图象上符合题意的最高点为(x0,2),由题意知02+1=1,所以x0=0,即到点(0,3)的距离为1的最高点为(0,2).将其代入y=g(x)得sin2因为0<φ<π,所以φ=π6.因此g(x)=2sin2由2kπ-π≤2x≤2kπ,k∈Z,得kπ-π2≤x≤kπ,k∈Z,所以函数y=g(x)的单调递增区间为χ-π2,kπ,k∈Z.40.(2014重庆理,17,13分)已知函数f(x)=3sin(ωx+φ)>0,-π2≤φ<x=π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若α<求cos+.解析(1)因为f(x)的图象上相邻两个最高点的距离为π,所以f(x)的最小正周期T=π,从而ω=2π=2.又因为f(x)的图象关于直线x=π3对称,所以2·π3+φ=kπ+π2,k=0,±1,±2,….由-π2≤φ<π2得k=0,所以φ=π2-2π3=-π6.(2)由(1)得=3sin2·2所以sin=14.由π6<α<2π3得0<α-π6<π2,所以cos t6因此cos t=sin t cosπ6+cos sinπ6=14××12=41.(2014四川理,16,12分)已知函数f(x)=sin3(1)求f(x)的单调递增区间;(2)若α是第二象限角=45cos求cosα-sinα的值.解析(1)因为函数y=sinx的单调递增区间为-π2+2kπ,π2+2kπ,k∈Z.由-π2+2kπ≤3x+π4≤π2+2kπ,k∈Z,得-π4+2χ3≤x≤π12+2χ3,k∈Z.所以,函数f(x)的单调递增区间为-π42χ3,π12(2)由已知,有sin=45cos2α-sin2α),所以sinαcosπ4+cosαsinπ4π42α-sin2α).即sinα+cosα=45(cosα-sinα)2(sinα+cosα).当sinα+cosα=0时,由α是第二象限角,知α=3π4+2kπ,k∈Z.此时,cosα-sinα=-2.当sinα+cosα≠0时,有(cosα-sinα)2=54.由α是第二象限角,知cosα-sinα<0,此时综上所述,cosα-sinα=-2或评析本题主要考查正弦型函数的性质,二倍角与和差角公式,简单的三角恒等变换等基础知识,考查运算求解能力,考查分类与整合、化归与转化等数学思想.42.(2014天津理,15,13分)已知函数f(x)=cosx·sin-3cos2(1)求f(x)的最小正周期;(2)求f(x)在闭区间-π4.解析(1)由已知,有cos-3cos2=12sinx·cosx-2=14sin2x-=14sin2x-=12sin2t所以f(x)的最小正周期T=2π2=π.(2)因为f(x)在区间-π4,在区间-π12,f=-14,f-=-12,fπ4=14,所以函数f(x)在闭区间-π4上的最大值为14,最小值为-12.评析本题主要考查两角和与差的正弦公式,二倍角的正弦与余弦公式,三角函数的最小正周期、单调性等基础知识.考查基本运算能力.43.(2014江西理,16,12分)已知函数f(x)=sin(x+θ)+acos(x+2θ),其中a∈R,θ∈-π2 (1)当a=2,θ=π4时,求f(x)在区间[0,π]上的最大值与最小值;(2)若求a,θ的值.解析(1)当a=2,θ=π4时,f(x)=sin+2cos(sinx+cosx)-2sinx4-x由x∈[0,π],知π4-x∈-3π4故f(x)在[0,π]最小值为-1.(2)由=0,oπ)=1得2θ-sint=1,由θ∈-π2cosθ≠0,解得=−1,=−π6.44.(2013北京文,15,13分)已知函数f(x)=(2cos2x-1)sin2x+12cos4x.(1)求f(x)的最小正周期及最大值;(2)若,π,且求α的值.解析(1)因为f(x)=(2cos2x-1)sin2x+12cos4x=cos2xsin2x+12cos4x=12(sin4x+cos4x)sin4所以f(x)的最小正周期为π2,(2)因为所以sin4因为,π所以4α+π4∈所以4α+π4=5π2.故α=9π16.。
可打印必修4三角函数的图像与性质1.41.6(含的答案)完整版
第1页,总29页三角函数的图像与性质1.4-1.6一:知识点2:()k x A y ++=ϕωsin 图像的变化类型 ⑴:平移变换(1):左右平移 x y sin =-------------------------------------------------()ϕ+=x y sin (2):上下平移 x y sin =-------------------------------------------------k x y +=sin ⑵:伸缩变化(1):左右伸缩 x y sin =--------------------------------------------------x y ωsin = (2):上下伸缩 x y sin =--------------------------------------------------x A y sin = 3.()k x A y ++=ϕωsin 图像的一般变化顺序x y sin = 左右平移 )s i n (ϕ+=x y 左右伸缩 ()ϕω+=x y sin 上下伸缩 ()ϕω+=x A y s i n 上下平移 ()k x A y ++=ϕωsin二:例题讲解1.函数()sin(2)3πf x x =+的最小正周期为( )A .2πB .πC .2πD .4π 【答案】.B 【解析】试题分析:由三角函数sin()y A x ωϕ=+的最小正周期2||T πω=得22T ππ==.解决这类问题,须将函数化为sin()A x B ωϕ++形式,在代2||T πω=时,必须注意取ω的绝对值,因为是求最小正周期. 考点:三角函数的周期计算 2.函数sin 22y x π⎛⎫=-⎪⎝⎭,x R ∈是( )A.最小正周期为π的奇函数B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数【答案】C 【解析】试题分析:函数sin 22y x π⎛⎫=-⎪⎝⎭π=.故选C . 考点:1.三角函数的周期性;2.函数的奇偶性.3.要得到函数y =cos(2x +1)的图像,只要将函数y =cos 2x 的图像( ) A .向左平移1个单位 B .向右平移1个单位 C .向左平移12个单位 D .向右平移12个单位 【答案】C【解析】把函数y =cos 2x 的图像向左平移12个单位,得y =cos 212x ⎛⎫+ ⎪⎝⎭的图像,即y =cos(2x +1)的图像,因此选C.4. 将函数sin y x =的图像上所有的点向右平行移动π3个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变)得到函数f(x)的图象,则f(-π)等于( ) A.23 B.23- C.21 D.-21【答案】D【解析】试题分析:因为将函数sin y x =的图像上所有的点向右平行移动π3个单位长度,得到的函数解析式为sin()3y x π=-.再把函数s i n ()3y x π=-各点的横坐标伸长到原来的2倍(纵坐标不变)得到1()s i n ()23f x x π=-.所以151()sin(())sin()2362f ππππ-=--=-=-.考点:1.三角函数的左右平移.2.三角函数的伸缩变换. 5.要得到函数()cos 23f x x π⎛⎫=+⎪⎝⎭的图象,只需将函数()sin 23g x x π⎛⎫=+⎪⎝⎭的图象( ) A.向左平移2π个单位长度 B.向右平移2π个单位长度 C.向左平移4π个单位长度 D.向右平移4π个单位长度 【答案】C.【解析】试题分析:因为函数()cos 23f x x π⎛⎫=+⎪⎝⎭)]125(2sin[]2)32sin[(πππ+=++=x x ,第3页,总29页所以将函数()sin 23g x x π⎛⎫=+⎪⎝⎭的图象向左平移4π个单位长度, 即可得到函数)652sin(]3)4(2sin[πππ+=++=x x y 的图像.故应选C. 考点:函数)sin(φω+=x A y 的图像变换.6.如图所示是函数()sin()(0,||)f x x ϖϕϖϕπ=+><的部分图像,则()f x 的解析式为.【答案】()sin(2)3f x x π=+【解析】由图像得函数周期4()126T πππ=+= 又2T πϖ=,所以2ϖ=,即()sin(2)f x x ϕ=+由图像知()112f π=,所以2()62k k Z ππϕπ+=+∈,解得2()3k k Z πϕπ=+∈又||ϕπ<,所以3πϕ=故答案为()sin(2)3f x x π=+【考点】三角函数的性质;三角函数的解析式. 7.函数()sin()f x A x ωϕ=+(0,0,)2A πωϕ>><的部分图象如图所示,为了得到sin 2y x =的图象,只需将()f x 的图象( )A .向右平移3π个单位B .向右平移6π个单位 C .向左平移3π个单位 D .向左平移6π个单位【答案】B【解析】试题分析:观察图象可知,1A =,T π=,∴2ω=,()sin(2)f x x ϕ=+. 将(,0)6π-代入上式得sin()03πϕ-+=,由已知得3πϕ=,故()sin(2)3f x x π=+.由()sin 2()6f x x π=+知,为了得到sin 2y x =的图象,只需将()f x 的图象向右平移6π个单位. 故选B .考点:正弦型函数,函数图象像的平移.8.已知函数()sin()f x A x b ωϕ=++(0,0A ωϕπ><<、,b 为常数)一段图像如图所示. (1)求函数()f x 的解析式; (2)将函数()y f x =的图像向左平移12π个单位,再将所得图像上各点的横坐标扩大为原来的4倍,得到函数()y g x =的图像,求函数()g x 的单调递增区间. 【答案】(1)π()3sin(2)26f x x =++;(2)5ππ[4π4π]33k k -+,,k ∈Z 【解析】解析:(1)由已知,5(1)32A --==,5(1)22b +-==,因为5ππ()4π126T =-⨯=,所以2ω= 由“五点法”作图,ππ262ϕ⨯+=,解得π6ϕ=所以函数()f x 的解析式为π()3sin(2)26f x x =++ 6分(2)将函数()y f x =的图像向左平移π12个单位后得到的函数解析式为ππ3sin[2()]2126y x =+++,即π3sin(2)23y x =++,再将图像上各点的横坐标扩大为原来的4倍,得1π()3sin()223g x x =++由π1ππ2π2π+2232k x k -≤+≤,得5ππ4π4π33k x k -≤≤+ 故()g x 的单调递增区间为5ππ[4π4π]33k k -+,,k ∈Z 10分. 考点:1.三角函数的图像与性质;2.三角函数的图像变换.9.已知函数()sin cos (0)f x x x ωωω=>的图象与x 轴的两个相邻交点的距离等于2π,若将函数()y f x =的图象向左平移6π个单位得到函数()y g x =的图象,则()y g x =是减函数的区间为( ) A .(,0)3π- B .(,)44ππ- C .(0,)3π D .(,)43ππ【答案】D【解析】试题分析:因为()sin 2sin()3f x x x x πωωω==-,所以2.T πω=由题意得,22T π=所以 2.ω=因此()2sin(2())2sin 2,63g x x x ππ=+-=其减区间满足:3222,(),22k x k k Z ππππ+≤≤+∈即3,(),44k x k k Z ππππ+≤≤+∈只有3(,)[,]4344ππππ⊂,所以选D. 考点:三角函数图像变换10.若将函数y =2sin (x +4π)的图像上各点的横坐标缩短为原来的12倍(纵坐标不变),再向右平移4π个单位,则所得图像的一条对称轴的方程为:( )A .x =-8πB .x =-4πC .x =8πD .x =4π【答案】A 【解析】试题分析:函数2sin 4y x π⎛⎫=+ ⎪⎝⎭的图像上各点的横坐标缩短为原来的1倍(纵坐标不变),得到函数第5页,总29页2sin 24y x π⎛⎫=+ ⎪⎝⎭,所的函数再向右平移4π个单位,得到函数2sin 22sin 2444y x x πππ⎛⎫⎛⎫⎛⎫=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,8x π=-代入得2y =-,故8x π=-是所得函数图像的一条对称轴的方程.考点:三角函数图像与性质,三角函数图像变化. 11.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+. (1)求函数()f x 的最小正周期和图像的对称轴方程; (2)求函数()f x 在区间[,]122ππ-上的值域. 【答案】(1)2ππ2T ==,ππ()23k x k =+∈Z ;(2)[1] 【解析】试题分析:(1)先利用两角和与差的三角函数将式子展开合并,再利用二倍角公式、辅助角公式化简得到π()sin(2)6f x x =-,再结合正弦函数的性质,由2T πω=、2,62x k k Z πππ-=+∈可得函数()f x 的最小正周期与对称轴的方程;(2)将26x π-当成整体,由52122366x x πππππ-≤≤⇒-≤-≤,利用正弦函数的单调性可得sin(2)126x π-≤-≤,即()f x 的值域. 试题解析:(1)πππ()cos(2)2sin()sin()344f x x x x =-+-+1cos 22(sin cos )(sin cos )22x x x x x x =++-+221cos 22sin cos 22x x x x =++-1cos 22cos 22x x x =-πsin(2)6x =-所以函数()f x 的周期2ππ2T == 由ππ2π()62x k k -=+∈Z ,得ππ()23k x k =+∈Z 所以函数()f x 图像的对称轴方程为ππ()23k x k =+∈Z 6分 (2)因为ππ[]122x ∈-,,所以ππ5π2[]636x -∈-,因为π()sin(2)6f x x =-在区间ππ[]123-,上单调递增,在区间ππ[]32,上单调递减所以当π3x =时,()f x 取最大值1又因为ππ1()()1222f f -=<=,当12x π=-时,()f x 取最小值所以函数()f x 在区间ππ[]122-,上的值域为[1] 10分. 考点:1.三角函数的图像与性质;2.三角恒等变换. 12.设函数()R x ,x sin x f ∈⎪⎭⎫ ⎝⎛-=422π。
三角函数的图像和变换以及经典习题和答案
1【典型例题】 [例1](1)函数3sin()226x y π=+的振幅是 ;周期是 ;频率是 ;相位是 ;初相是 .(1)32; 14π;26x π+;6π (2)函数2sin(2)3y x π=-的对称中心是 ;对称轴方程是;单调增区间是 . (2)(,0),26k k Z ππ+∈;5,212k x k Z ππ=+∈; ()5,1212k k k z ππππ⎡⎤-++∈⎢⎥⎣⎦,06a π⎛⎫=- ⎪⎝⎭平移,(3) 将函数sin (0)y x ωω=>的图象按向量平移后的图象如图所示,则平移后的图象所对应函数的解析式是( )A .sin()6y x π=+ B .sin()6y x π=- C .sin(2)3y x π=+D .sin(2)3y x π=- ,06a π⎛⎫=- ⎪⎝⎭平移,(3)C 提示:将函数sin (0)y x ωω=>的图象按向量平移后的图象所对应的解析式为sin ()6y x πω=+,由图象知,73()1262πππω+=,所以2ω=. (4) 为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点( )(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(4)C 先将R x x y ∈=,sin 2的图象向左平移6π个单位长度,得到函数2sin(),6y x x R π=+∈的图象,再把所得图象上各点的横坐标伸长到原来的3倍(纵坐标不变)得到函数R x x y ∈+=),63sin(2π的图像[例2]已知函数2()2cos 2,(01)f x x x ωωω=+<<其中,若直线3x π=为其一条对称轴。
(完整版)三角函数系列第七节三角函数图像和变换测试题(含答案),推荐文档
B. 向右平移 个单位
C. 向左平移 个单位
D. 向右平移 个单位
31.将函数
y
sin 2x
的图象向左平移
个单位,再将图象上各点的横坐标变为原来的 2 倍,纵坐标不变,
4
则所得图象对应的函数解析式是( )
A. y cos 4x
B. y cos x
C. y sin(x ) 4
D. y sin x
8
B. 向右平移 个单位长度
8
C.向左平移 个单位长度
4
D. 向右平移 个单位长度
4
22.函数 y
sin 2x
按向量
4
,1
平移后得到的函数解析式为
()
A. y cos 2x 1
B. y cos 2x 1
C. y
sin
2x
4
1
D. y
sin
2x
4
1
23.将函数 y sin(x )(x R) 的图象上所有的点向左平移 个单位长度,再把图象上各点的横坐标扩
的解析式是 f(x)= .
39.将函数 f (x) sin(x ) 图像上所有点的横坐标缩短到原来的一半(纵 6
坐标不变),再将它的图像向左平移 个单位 ( 0) ,得到了一个偶函数
的图像,则 的最小值为
.
6 / 16
评卷人
得分
三、解答题
40.已知函数 f
(x)=sin(ωx+φ)
(ω>0,0<φ<π),其图像经过点
A.(0, ]
B.[ , ]
C.[ , ]
D.[ ,π]
6.为了得到函数 y sin(2x ) 的图像,可以将函数 y cos 2x 的图像( ) 6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
【典型例题】 [例1](1)函数3sin()226
x y π
=
+的振幅是 ;周期是 ;频率是 ;相位是 ;初相是 .
(1)
32; 14π;26x π+;6
π (2)函数2sin(2)3
y x π
=-
的对称中心是 ;对称轴方程是
;单调增区间是 . (2)(
,0),26k k Z ππ+∈;5,212k x k Z ππ=+∈; ()5,1212k k k z ππππ⎡⎤
-++∈⎢⎥⎣⎦
,06a π⎛⎫
=- ⎪⎝⎭
平移,
(3) 将函数sin (0)y x ωω=>的图象按向量平移后的图象如图所示,则平移后的图象所对应函数的解析
式是( )
A .sin()6y x π
=+ B .sin()6y x π
=- C .sin(2)3y x π=+
D .sin(2)3
y x π
=- ,06a π⎛⎫
=- ⎪⎝⎭
平移,
(3)C 提示:将函数sin (0)y x ωω=>的图象按向量平移后的图象所对应的解析式为sin ()6
y x π
ω=+
,由图象知,73(
)1262
πππ
ω+=
,所以2ω=. (4) 为了得到函数R x x y ∈+=),6
3sin(2π
的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点
( )
(A )向左平移
6π个单位长度,再把所得各点的横坐标缩短到原来的31
倍(纵坐标不变)
(B )向右平移
6π
个单位长度,再把所得各点的横坐标缩短到原来的3
1
倍(纵坐标不变)
(C )向左平移
6π
个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移
6
π
个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)
(4)C 先将R x x y ∈=,sin 2的图象向左平移
6
π
个单位长度,得到函数2sin(),6y x x R π=+∈的图象,
再把所得图象上各点的横坐标伸长到原来的3倍(纵坐标不变)得到函数R x x y ∈+=),63sin(2π
的图像
[例2]
已知函数2
()2cos 2,(01)f x x x ωωω=+<<其中,若直线3
x π=为其一条对称轴。
(1)试求ω
的值 (2)作出函数()f x 在区间[,]ππ-上的图象.
解:(1
)2
()2cos 21cos 22f x x x x x ωωωω==++
3
x π
=
是()y f x =的一条对称轴2sin(
)136
ωππ
∴+=±
2
[例4
]设函数2
()sin cos f x x x x a ωωω=++
(其中0,a R ω>∈)。
且()f x 的图像在y 轴右侧的第一个最高点的横坐标是
6
π
. (Ⅰ)求ω的值; (Ⅱ)如果()f x 在区间5[,
]36ππ
-
,求a 的值.
解:(I
)1()2sin 2sin(2)23f x x x x a πωωαω=
+=+ 依题意得 1
26
3
2
2
π
π
π
ωω⋅
+
=
⇒=. (II )由(I
)知,()sin()3f x x π
α=+
.又当5[,]36
x ππ
∈-时, 7[0,
]3
6x π
π+
∈,故1sin()123x π-≤+≤,从而()f x 在区间π5π36⎡⎤
-⎢⎥⎣⎦
,
122a =-
++
,故1
.2
a = 【课内练习】
1.若把一个函数的图象按a =(3
π-,-2)平移后得到函数x y cos =的图象,则原图象的函数解析式是
( )
(A )2)3
cos(-+=πx y (B )2)3
cos(--=πx y (C )2)3
cos(++=πx y (D )2)3
cos(+-=π
x y
1.D 提示:将函数x y cos =的图象按a -平移可得原图象的函数解析式
3.若函数f (x )=sin (ωx +ϕ)的图象(部分)如下图所示,则ω和ϕ的取值是 ( )
A.ω=1,ϕ=3π
B.ω=1,ϕ=-3π
C.ω=21,ϕ=6π
D.ω=21,ϕ=-6
π
3.C 提示:由图象知,T =4(3π2+3π)=4π=ωπ2,∴ω=2
1
.
又当x =3π2时,y =1,∴sin (21×3
π
2+ϕ)=1,
3π+ϕ=2k π+2π,k ∈Z ,当k =0时,ϕ=6π
. 4.函数sin 2y x =的图象向右平移ϕ(0ϕ>)个单位,得到的图象关于直线6
x π
=对称,则ϕ的最小值为
( )
()
A 512π ()
B 116π ()
C 1112
π
()D 以上都不对 4.A 提示:平移后解析式为sin(22)y x ϕ=-,图象关于6
x π
=对称,
∴226
2
k π
π
ϕπ⋅
-=+
(k Z ∈),∴2
12
k
π
ϕπ=--
(k Z ∈),
∴当1k =-时,ϕ的最小值为
512
π
.
3
8.若函数()2sin cos (sin cos )f x a x x x x a b =-+++的定义域为[0,]2
π
,值域为[5,1]-,求,a b 的
值.
解:令sin cos x x t +=,则21sin cos 2t x x -=,又[0,]2
x π
∈
,故t ∈
所以2
21
(22
y at b a t b a =+=-
+-,由题意知:0a ≠ 1.
当0,a t >∈
得:(1)51
b b ⎧+=-⎪
⎨
=⎪⎩
解之得1),1a b ==
2.
当0,a t <∈
得:(1)1
5
b b ⎧+=⎪⎨=-⎪⎩
解之得1),5a b =-=-(舍去)
综上知:1),1a b ==。