高二数学必修五知识点总结5篇

合集下载

高中数学必修五知识点总结

高中数学必修五知识点总结

高中数学必修五知识点总结一、代数部分:1.多项式的基本概念与运算:包括多项式的定义、次数、系数、单项式、多项式的加减乘除等。

2.因式分解与提取公因式:掌握对多项式进行因式分解与提取公因式的方法,包括一元二次、三项完全平方差、简单三项和复杂多项式的因式分解。

3.方程与不等式:掌握一元二次方程与一元二次不等式的解法,包括配方法、公式法、图像法和根与系数关系等。

4.等差数列与等比数列:了解等差数列和等比数列的概念、公式及其应用,包括求和公式、通项公式、项数和值与项数关系等。

二、函数部分:1.函数的基本概念与性质:掌握函数的定义、函数图像、值域、定义域、奇偶性等基本性质。

2.一次函数与二次函数:了解一次函数和二次函数的定义、图像、性质和特征等,包括函数的增减性、最值、交点、轴对称点等内容。

3.三角函数:熟练掌握正弦函数、余弦函数和正切函数的定义、图像、性质和应用,包括变化规律、周期、幅值、对称性和反函数等。

4.指数函数与对数函数:了解指数函数和对数函数的定义、性质和应用,包括指数函数的增减性和指数函数与对数函数的互逆关系等。

三、几何部分:1.平面向量与坐标表示:了解平面向量的定义、平移、线性运算和坐标表示方法,包括平面向量的加减、数量积和向量共线的判定等。

2.绝对值与不等式:熟练掌握绝对值的性质和变形,以及利用绝对值解决各种绝对值不等式的方法。

3.平面几何应用:包括相似三角形的判定与性质、三角形的三边、两边一角和正弦定理、余弦定理及其应用等内容。

四、概率与统计部分:1.事件与概率:了解事件和概率的基本概念和性质,包括样本空间、事件的发生、概率公理及其应用等。

2.随机变量与概率分布:掌握离散型和连续型随机变量及其概率分布的定义、性质和应用,包括离散型随机变量的期望和方差的计算等。

3.抽样与统计推断:了解统计样本、样本估计和假设检验的基本原理和方法,包括样本均值、样本比例的估计和显著性检验等。

五、数学建模部分:1.数学建模的基本步骤:掌握数学建模中的问题分析和模型假设、模型建立、模型求解和模型评价等基本步骤。

高二年级必修五数学知识点

高二年级必修五数学知识点

高二数学必修五教学知识点篇一考点一:求导公式。

例1.f(_)是f(_)13_2_1的导函数,则f(1)的值是3考点二:导数的几何意义。

例2.已知函数yf(_)的图象在点M(1,f(1))处的切线方程是y1_2,则f(1)f(1)2,3)处的切线方程是例3.曲线y_32_24_2在点(1点评:以上两小题均是对导数的几何意义的考查。

考点三:导数的几何意义的应用。

例4.已知曲线C:y_33_22_,直线l:yk_,且直线l与曲线C相切于点_0,y0_00,求直线l的方程及切点坐标。

点评:本小题考查导数几何意义的应用。

解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。

函数在特定点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。

考点四:函数的单调性。

例5.已知f_a_3__1在R上是减函数,求a的取值范围。

32点评:本题考查导数在函数单调性中的应用。

对于高次函数单调性问题,要有求导意识。

考点五:函数的极值。

例6.设函数f(_)2_33a_23b_8c在_1及_2时取得极值。

(1)求a、b的值;(2)若对于任意的_[0,3],都有f(_)c2成立,求c的取值范围。

点评:本题考查利用导数求函数的极值。

求可导函数f_的极值步骤:①求导数f'_;②求f'_0的根;③将f'_0的根在数轴上标出,得出单调区间,由f'_在各区间上取值的正负可确定并求出函数f_的极值。

考点六:函数的最值。

例7.已知a为实数,f__24_a。

求导数f'_;(2)若f'10,求f_在区间2,2上的值和最小值。

点评:本题考查可导函数最值的求法。

求可导函数f_在区间a,b上的最值,要先求出函数f_在区间a,b上的极值,然后与fa和fb进行比较,从而得出函数的最小值。

考点七:导数的综合性问题。

例8.设函数f(_)a_3b_c(a0)为奇函数,其图象在点(1,f(1))处的切线与直线_6y70垂直,导函数(1)求a,b,c的值;f'(_)的最小值为12。

高二数学必修五复习知识点整理

高二数学必修五复习知识点整理

高二数学必修五复习知识点整理(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高二数学必修五复习知识点整理本店铺为各位同学整理了《高二数学必修五复习知识点整理》,希望对你的学习有所帮助!1.高二数学必修五复习知识点整理篇一不等式的基本性质①对称性:a>bb>a②传递性:a>b,b>ca>c③可加性:a>ba+c>b+c④可积性:a>b,c>0ac>bc⑤加法法则:a>b,c>da+c>b+d⑥乘法法则:a>b>0,c>d>0ac>bd⑦乘方法则:a>b>0,an>bn(n∈N)⑧开方法则:a>b>02.高二数学必修五复习知识点整理篇二圆锥曲线1、内容要目:直角坐标系中,曲线C是方程F(x,y)=0的曲线及方程F(x,y)=0是曲线C的方程,圆的标准方程及圆的一般方程。

高二数学必修五知识点总结精选5篇

高二数学必修五知识点总结精选5篇

高二数学必修五学问点总结精选5篇学习高二数学学问点的时候须要讲究方法和技巧,更要学会对高二数学学问点进展归纳整理。

下面就是我给大家带来的高二数学必修五学问点总结,盼望能帮助到大家!高二数学必修五学问点总结1等腰直角三角形面积公式:S=a2/2,S=ch/2=c2/4(其中a为直角边,c 为斜边,h为斜边上的高)。

面积公式假设假设等腰直角三角形两腰分别为a,b,底为c,那么可得其面积:S=ab/2。

且由等腰直角三角形性质可知:底边c上的高h=c/2,那么三角面积可表示为:S=ch/2=c2/4。

等腰直角三角形是一种特殊的三角形,具有全部三角形的性质:稳定性,两直角边相等直角边夹始终角锐角45°,斜边上中线角平分线垂线三线合一。

高二数学必修五学问点总结2(1)势必事务:在条件S下,必需会发生的事务,叫相对于条件S的势必事务;(2)不行能事务:在条件S下,必需不会发生的事务,叫相对于条件S 的不行能事务;(3)确定事务:势必事务和不行能事务统称为相对于条件S的确定事务;(4)随机事务:在条件S下可能发生也可能不发生的事务,叫相对于条件S的随机事务;(5)频数与频率:在一样的条件S下重复n次试验,视察某一事务A是否出现,称n次试验中事务A出现的次数nA为事务A出现的频数;称事务A出现的比例fn(A)=nnA为事务A出现的概率:对于给定的随机事务A,假如随着试验次数的增加,事务A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事务A的概率。

(6)频率与概率的区分与联系:随机事务的频率,指此事务发生的次数nA与试验总次数n的比值nnA,它具有必需的稳定性,总在某个常数旁边摇摆,且随着试验次数的不断增多,这种摇摆幅度越来越小。

我们把这个常数叫做随机事务的概率,概率从数量上反映了随机事务发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事务的概率。

高二数学必修五学问点总结3(1)依次构造:依次构造是最简洁的算法构造,语句与语句之间,框与框之间是按从上到下的依次进展的,它是由假设干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种根本算法构造。

高二数学必修五知识点归纳大全5篇

高二数学必修五知识点归纳大全5篇

高二数学必修五知识点归纳大全5篇以下是五篇关于高二数学必修五知识点归纳的文章:1. 矩阵运算与行列式矩阵运算是数学中非常重要的一部分,也是高中数学必修五中的重要内容。

它的基本概念包括矩阵与向量、矩阵的加、减、乘等等。

形式化的定义是,在同一个数域内,按照矩阵乘法法则,定义的一种矩形数组。

关于矩阵的运算,最重要的莫过于它的乘法。

矩阵乘法是运用于解决非常多的问题的,比如图像处理,分析算法等等。

而让我们更加提高计算效率的还有行列式,通过行列式的计算我们可以得出矩阵的秩,而当矩阵与向量进行行列式的运算时,我们还可以求出相应的线性方程组的解。

因此,行列式与矩阵乘法使得我们能够更加方便快捷地解决很多的数学问题,它们是数学中一对重要的工具。

例子:计算矩阵A =【1,3,5】【2,4,6】的行列式。

2. 三角函数三角函数是高中数学必修五中非常重要的一部分,也是每年数学高考的重要内容。

它包括正弦函数、余弦函数、正切函数、反正弦函数、反余弦函数和反正切函数等。

三角函数常常出现在几何图形、三角形、三角恒等式、极限、积分等等方面。

由于三角函数被广泛应用在多种数学领域中,我们也可以将它的应用范围扩展到物理、工程、计算机图形学等领域。

在这些领域中,三角函数可以帮助我们计算出不同角度下的某些物理量,如电压、电流、光线等等。

因此,理解三角函数的概念、性质和应用非常重要,是数学学习中必不可少的一部分。

例子:计算sin30,tan45,cosπ。

3. 向量代数向量代数是高中数学必修五的另一部分。

向量代数包括向量的基本概念、向量的加减、数乘、点积、叉积,向量的模长和方向角等等。

在力学、物理、计算机图形学、工程等领域中,向量代数扮演着非常重要的角色,并成为了这些领域中必须要掌握的数学工具。

通过向量的模长和方向角,我们可以求出向量的分解,从而方便地研究向量在三维空间中的运动轨迹。

此外,在求出两个向量之间的夹角时,向量的点积和叉积也非常重要。

高二数学必修五知识点总结归纳五篇

高二数学必修五知识点总结归纳五篇

高二数学必修五知识点总结归纳五篇高二数学必修五知识点总结1等差数列等比数列一、定义二、公式1.2.1.2.三、性质1.,称为与的等差中项2.若(、、、),则3.,,成等差数列1.,称为与的等比中项2.若(、、、),则3.,,成等比数列(三)不等式1、;;.2、不等式的性质:①;②;③;④,;⑤;⑥;⑦;⑧.小结:代数式的大小比较或证明通常用作差比较法:作差、化积(商)、判断、结论。

在字母比较的选择或填空题中,常采用特值法验证。

高二数学必修五知识点总结2排列、组合的概念和公式典型例题分析例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.高二数学必修五知识点总结3【一元二次不等式及其解法】★知识梳理★一.解不等式的有关理论(1)若两个不等式的解集相同,则称它们是同解不等式;(2)一个不等式变形为另一个不等式时,若两个不等式是同解不等式,这种变形称为不等式的同解变形;(3)解不等式时应进行同解变形;(4)解不等式的结果,原则上要用集合表示。

高中数学必修5知识点总结归纳8篇

高中数学必修5知识点总结归纳8篇

高中数学必修5知识点总结归纳8篇篇1一、引言高中数学必修5是整个数学学科体系中重要的一部分,它涵盖了代数、几何、三角学等多个领域的知识点。

本文将对该课程的核心知识点进行系统的总结归纳,以便学生更好地掌握数学基础知识,提高数学应用能力。

二、代数部分1. 集合与函数:集合的运算、集合的表示方法、函数的定义、函数的性质、函数的图像等。

2. 不等式:不等式的性质、一元二次不等式的解法、绝对值不等式的解法等。

3. 数列与极限:数列的定义、等差数列与等比数列、数列的极限等。

三、几何部分1. 平面解析几何:直线的方程、圆的方程、二次曲线的方程及其性质等。

2. 立体几何:空间向量、空间角、距离公式、几何体的表面积与体积等。

四、三角学部分1. 三角函数:三角函数的定义、性质、图像,三角函数的和差公式、倍角公式等。

2. 解三角形:正弦定理、余弦定理、三角形的面积公式等。

五、知识点详解1. 代数式的化简与求值:掌握代数式的运算规则,能够对方程进行化简和求值。

2. 不等式的解法:掌握一元二次不等式和绝对值不等式的解法,能够解决实际问题中的不等式问题。

3. 数列的性质与应用:了解数列的定义、性质,掌握等差数列与等比数列的通项公式和求和公式,能够应用数列知识解决实际问题。

4. 平面解析几何:掌握直线与二次曲线的方程,能够求解与几何图形相关的问题。

5. 立体几何的体积与表面积:熟悉几何体的体积与表面积公式,能够计算不规则几何体的体积与表面积。

6. 三角函数的性质与应用:掌握三角函数的性质,如周期性、奇偶性,熟悉三角函数的和差公式和倍角公式,能够应用三角函数解决实际问题。

7. 解三角形的方法:掌握正弦定理和余弦定理,能够解决与三角形相关的问题,如三角形的角度、边长等。

六、学习方法与建议1. 掌握基础知识:牢固掌握必修5中的基本概念和性质,这是解题的基础。

2. 多做练习:通过大量的练习来巩固知识点,提高解题能力。

3. 归纳总结:对学过的知识点进行总结归纳,形成知识体系和框架。

高二数学必修五知识点总结(最新6篇)

高二数学必修五知识点总结(最新6篇)

高二数学必修五知识点总结(最新6篇)高二数学必修五知识点总结篇一【不等关系及不等式】一、不等关系及不等式知识点1、不等式的定义在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号、连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式。

2、比较两个实数的大小两个实数的大小是用实数的运算性质来定义的,有a-baa-b=0a-ba0,则有a/baa/b=1a/ba3、不等式的性质(1)对称性:ab(2)传递性:ab,ba(3)可加性:aa+cb+c,ab,ca+c(4)可乘性:ab,cacb0,c0bd;(5)可乘方:a0bn(nN,n(6)可开方:a0(nN,n2)。

注意:一个技巧作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方。

一种方法待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围。

高二年级数学必修五知识点总结篇二空间直线与直线之间的位置关系(1)异面直线定义:不同在任何一个平面内的两条直线(2)异面直线性质:既不平行,又不相交。

(3)异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。

两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

(4)求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。

B、证明作出的角即为所求角C、利用三角形来求角(5)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。

(6)空间直线与平面之间的位置关系直线在平面内——有无数个公共点。

三种位置关系的符号表示:aαa∩α=Aaα(7)平面与平面之间的位置关系:平行——没有公共点;αβ相交——有一条公共直线。

高二数学必修五知识点总结笔记

高二数学必修五知识点总结笔记

高二数学必修五知识点总结笔记(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高二数学必修五知识点总结笔记本店铺为各位同学整理了《高二数学必修五知识点总结笔记》,希望对你的学习有所帮助!1.高二数学必修五知识点总结笔记篇一等腰直角三角形面积公式:S=a2/2,S=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。

(完整版)高中数学必修五知识点总结【经典】

(完整版)高中数学必修五知识点总结【经典】

《必修五知识点总结》第一章:解三角形知识重点一、正弦定理和余弦定理1C中,a b c、、C的对边,,则有a b c2R、正弦定理:在、、分别为角sin sin sin C ( R为 C 的外接圆的半径)正弦定理的变形公式:① a2Rsin, b2R sin , c2Rsin C ;② sin a, sin b, sin Cc;2 R2R 2 R③a : b : c sin :sin :sin C ;2、余弦定理:在 C 中,有a2b2c22bc cos,推论:cos Ab2a2c22ac cos B ,推论:cos Bc2a2b22ab cosC ,推论: cosC3、三角形面积公式:S C 1bc sin1ab sin C1ac sin222b2c2a22bca 2c2b22aca2b2c22ab.二、解三角形办理三角形问题,一定联合三角形全等的判断定理理解斜三角形的四类基本可解型,特别要多角度(几何作图,三角函数定义,正、余弦定理,勾股定理等角度)去理解“边边角”型问题可能有两解、一解、无解的三种状况,依据已知条件判断解的状况,并能正确求解1、三角形中的边角关系(1)三角形内角和等于 180°;(2)三角形中随意两边之和大于第三边,随意两边之差小于第三边;(3)三角形中大边对大角,小边对小角;- 1 -( 4)正弦定理中, a=2 R·sinA,b=2R·sinB,c=2R·sinC,此中 R 是△ ABC 外接圆半径 .(5)在余弦定理中 :2bccosA= b 2 c2 a2 .( 6)三角形的面积公式有 :S= 1ah,S=1absinC=1bcsinA=1acsinB ,S= P( P a) (P b)( P c)其2222中, h 是 BC 边上高, P 是半周长 .2、利用正、余弦定理及三角形面积公式等解随意三角形( 1)已知两角及一边,求其余边角,常采纳正弦定理 .( 2)已知两边及此中一边的对角,求另一边的对角,常采纳正弦定理.( 3)已知三边,求三个角,常采纳余弦定理.( 4)已知两边和它们的夹角,求第三边和其余两个角,常采纳( 5)已知两边和此中一边的对角,求第三边和其余两个角,常采纳余弦定理.正弦定理.3、利用正、余弦定理判断三角形的形状常用方法是:①化边为角;②化角为边.4、三角形中的三角变换( 1)角的变换由于在△ABC 中,A+B+C=π,因此sin(A+B)=sinC ;cos(A+B)= -cosC;tan(A+B)= -tanC。

高二数学必修五知识点难点精选【五篇】

高二数学必修五知识点难点精选【五篇】

高二数学必修五知识点难点精选【五篇】数学这个科目一直是同学们又爱又恨的科目,学的好的同学靠它来与其它同学拉开分数,学的差的同学则在数学上失分很多;在平时的学习和考试中同学们要善于总结知识点,这样有助于帮助同学们学好数学。

下面就是我给大家带来的高二数学必修五知识点,希望能帮助到大家!高二数学必修五知识点11.等差数列通项公式an=a1+(n-1)dn=1时a1=S1n≥2时an=Sn-Sn-1an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b2.等差中项由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。

这时,A叫做a与b的等差中项(arithmeticmean)。

有关系:A=(a+b)÷23.前n项和倒序相加法推导前n项和公式:Sn=a1+a2+a3+·····+an=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①Sn=an+an-1+an-2+······+a1=an+(an-d)+(an-2d)+······+[an-(n-1)d]②由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an) ∴Sn=n(a1+an)÷2等差数列的前n项和等于首末两项的和与项数乘积的一半:Sn=n(a1+an)÷2=na1+n(n-1)d÷2Sn=dn2÷2+n(a1-d÷2)亦可得a1=2sn÷n-an=[sn-n(n-1)d÷2]÷nan=2sn÷n-a1有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+14.等差数列性质一、任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式。

高二数学必修五知识点总结归纳5篇

高二数学必修五知识点总结归纳5篇

高二数学必修五知识点总结归纳5篇【第一篇】高二数学必修五知识点总结归纳——初戈定理、讨论二次函数和圆的相关性质1. 初戈定理初戈定理是指在二次函数 $y = ax^2 + bx + c(a \neq 0)$ 中,当$a>0$ 时,其图像开口朝上,而当 $a<0$ 时,其图像开口朝下。

初戈定理可以通过求二次函数的导函数 $y' = 2ax + b$ 的零点来得到。

2. 讨论二次函数在进行二次函数的讨论时,需要先求出其一、二阶导数和零点。

具体分析如下:(1)当 $a>0$ 时,当 $x<x_1$ 或 $x>x_2$ 时,$y<0$;当$x_1<x<x_2$ 时,$y>0$,此时该二次函数的最小值为$f(x_1)=c-\frac{b^2}{4a}$;(2)当 $a<0$ 时,当 $x<x_1$ 或 $x>x_2$ 时,$y>0$;当$x_1<x<x_2$ 时,$y<0$,此时该二次函数的最大值为$f(x_1)=c-\frac{b^2}{4a}$。

3. 圆的相关性质圆是指平面内一组距离给定点 $O$ 相等的点的集合,$O$ 称为圆心。

圆的相关性质包括:(1)直径垂直于弦,且中点在圆周上;(2)弦垂线定理:若过圆的一条弦的两个端点分别连接圆心,则垂足、中点和圆心三点共线;(3)切线定理:切点为 $P$ 的切线垂直于以切点为圆心的半径;(4)弧长公式:在 $R$ 为半径的圆内,弧长 $l$ 和圆心角$\theta$ 满足 $l=R \theta$。

【第二篇】高二数学必修五知识点总结归纳——向量的数量积、向量的叉乘和空间直线的方程1. 向量的数量积设 $\vec{a} = (x_1,y_1,z_1)$,$\vec{b}=(x_2,y_2,z_2)$ 为两个向量,则它们的数量积为 $\vec{a} \cdot\vec{b}=x_1x_2+y_1y_2+z_1z_2$。

高二年级数学必修五知识点归纳

高二年级数学必修五知识点归纳

高二年级数学必修五知识点归纳(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高二年级数学必修五知识点归纳本店铺整理的《高二年级数学必修五知识点归纳》,希望对大家有所帮助!1.高二年级数学必修五知识点归纳篇一已知函数有零点(方程有根)求参数取值常用的方法1、直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学必修五知识点总结5篇高二数学必修五知识点总结5篇了解社交媒体和在线工具对于知识管理和交流的作用和优势。

寻求和借鉴他人的成功经验和最佳实践。

下面就让小编给大家带来高二数学必修五知识点总结,希望大家喜欢!高二数学必修五知识点总结篇1一、集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。

2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗4.简单命题与复合命题有什么区别四种命题之间的相互关系是什么如何判断充分与必要条件5.你知道“否命题”与“命题的否定形式”的区别。

6.求解与函数有关的问题易忽略定义域优先的原则。

7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。

8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。

9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。

例如:。

10.你熟练地掌握了函数单调性的证明方法吗定义法(取值,作差,判正负)和导数法11. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。

12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗14.解对数函数问题时,你注意到真数与底数的限制条件了吗(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次)的关系及应用掌握了吗如何利用二次函数求最值16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。

若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形二、不等式1.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”。

2.绝对值不等式的解法及其几何意义是什么3.解分式不等式应注意什么问题用“根轴法”解整式(分式)不等式的注意事项是什么4.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.5. 在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

6. 两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a b 0,a三、数列1.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗2.在“已知,求”的问题中,你在利用公式时注意到了吗(时,应有)需要验证,有些题目通项是分段函数。

3.你知道存在的条件吗(你理解数列、有穷数列、无穷数列的概念吗你知道无穷数列的前项和与所有项的和的不同吗什么样的无穷等比数列的所有项的和必定存在4.数列单调性问题能否等同于对应函数的单调性问题(数列是特殊函数,但其定义域中的值不是连续的。

)5.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。

四、三角函数1.正角、负角、零角、象限角的概念你清楚吗,若角的终边在坐标轴上,那它归哪个象限呢你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗2.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗3. 在解三角问题时,你注意到正切函数、余切函数的定义域了吗你注意到正弦函数、余弦函数的有界性了吗4. 你还记得三角化简的通性通法吗(切割化弦、降幂公式、用三角公式转化出现特殊角。

异角化同角,异名化同名,高次化低次)5. 反正弦、反余弦、反正切函数的取值范围分别是6.你还记得某些特殊角的三角函数值吗7.掌握正弦函数、余弦函数及正切函数的图象和性质。

你会写三角函数的单调区间吗会写简单的三角不等式的解集吗(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗五、平面向量1.数0有区别,的模为数0,它不是没有方向,而是方向不定。

可以看成与任意向量平行,但与任意向量都不垂直。

2数量积与两个实数乘积的区别:在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出。

已知实数,且,则a=c,但在向量的数量积中没有。

在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量。

3.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。

六、解析几何1.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况2.用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。

3.直线的倾斜角、到的角、与的夹角的取值范围依次是。

4. 定比分点的坐标公式是什么(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗5. 对不重合的两条直线(建议在解题时,讨论后利用斜率和截距)6. 直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。

7.解决线性规划问题的基本步骤是什么请你注意解题格式和完整的文字表达。

(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列平行线,找到并求出最优解⑦应用题一定要有答。

)8.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗9.圆、和椭圆的参数方程是怎样的常用参数方程的方法解决哪一些问题10.利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序如何利用第二定义推出圆锥曲线的焦半径公式如何应用焦半径公式11. 通径是抛物线的所有焦点弦中最短的弦。

(想一想在双曲线中的结论)12. 在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。

(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).13.解析几何问题的求解中,平面几何知识利用了吗题目中是否已经有坐标系了,是否需要建立直角坐标系七、立体几何1.你掌握了空间图形在平面上的直观画法吗(斜二测画法)。

2.线面平行和面面平行的定义、判定和性质定理你掌握了吗线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的每种平行之间转换的条件是什么3.三垂线定理及其逆定理你记住了吗你知道三垂线定理的关键是什么吗(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见4.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大。

5.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法。

6.异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。

7.你知道公式:和中每一字母的意思吗能够熟练地应用它们解题吗8. 两条异面直线所成的角的范围:0° α≤90° p=直线与平面所成的角的范围:0o≤α≤90°高二数学必修五知识点总结篇2第一部分集合(1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;(2)注意:讨论的时候不要遗忘了的情况。

第二部分函数与导数1、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

2、函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性;⑨导数法3、复合函数的有关问题(1)复合函数定义域求法:①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出。

②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:①首先将原函数分解为基本函数:内函数与外函数;②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

注意:外函数的定义域是内函数的值域。

4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5、函数的奇偶性(1)函数的定义域关于原点对称是函数具有奇偶性的必要条件;(2)是奇函数;(3)是偶函数;(4)奇函数在原点有定义,则;(5)在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;高二数学必修五知识点总结篇3三角函数注意归一公式、诱导公式的正确性数列题证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。

利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。

简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;证明不等式时,有时构造函数,利用函数单调性很简单立体几何题证明线面位置关系,一般不需要去建系,更简单;求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。

概率问题搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;搞清是什么概率模型,套用哪个公式;记准均值、方差、标准差公式;求概率时,正难则反(根据p1+p2+...+pn=1);注意计数时利用列举、树图等基本方法;注意放回抽样,不放回抽样。

高二数学必修五知识点总结篇4圆与圆的位置关系的判断方法一、设两个圆的半径为R和r,圆心距为d。

则有以下五种关系:1、d R+r两圆外离;两圆的圆心距离之和大于两圆的半径之和。

2、d=R+r两圆外切;两圆的圆心距离之和等于两圆的半径之和。

3、d=R—r两圆内切;两圆的圆心距离之和等于两圆的半径之差。

相关文档
最新文档