换热器的概念、特点、分类及应用

合集下载

换热器培训课件完整版

换热器培训课件完整版

板式换热器 结构紧凑、传热效率高、压力损失小
管壳式换热器 结构简单、制造成本低、清洗方便
螺旋板式换热器
传热效率高、结构紧凑、自清洗能力 强
热管式换热器
传热效率高、温差适应性强、结构灵 活
CHAPTER 04
换热器设计方法与优化策略
设计流程概述
进行初步设计
选择合适的换热器类型
根据设计需求,选择适合的换热 器类型,如板式换热器、管壳式 换热器等。
建立完善的运行维护档案, 记录换热器运行状况、维 修记录等信息,便于追溯 和管理。
定期更换换热器密封件、 垫片等易损件,确保密封 性能良好。
CHAPTER 07
换热器故障排除与维修保养 技巧
常见故障类型及原因分析
换热效率下降
可能由于结垢、堵塞或内部泄漏导致,影响 换热效果。
泄漏
包括法兰泄漏、管板泄漏等,可能由密封件 老化、紧固螺栓松动等原因引起。
发现泄漏时,及时更换密封件和紧固螺栓, 确保密封性能。
检查控制系统和热媒流量
发现温度异常时,检查控制系统和热媒流量 是否正常,及时进行调整和修复。
维修保养周期建议及操作指南
01
02
03
04
05
定期清洗和除垢
定期检查密封件和 定期检查流体流动 定期检查控制系统 注意
紧固螺栓
状态
和热媒…
根据换热器使用情况和结垢 程度,建议每半年或一年进 行一次清洗和除垢。
选择高性能材料,提高换热器的耐腐蚀性、 耐高温性等。
制造工艺优化
控制策略优化
改进制造工艺,提高生产效率和产品质量。
优化控制策略,实现换热器的智能控制和节 能运行。
CHAPTER 05

换热器的种类

换热器的种类

换热器的种类一.换热器的概念换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。

换热器是化工,石油,动力,食品及其它许多工业部门的通用设备,在生产中占有重要地位.在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。

换热设备因其用途不同,类型繁多,性能不一,但均可归结为管壳式结构和板式结构两大类。

二.换热器的工作原理换热器是将热流体的部分热量传递给冷流体的设备,即在一个大的密闭容器内装上水或其他介质,而在容器内有管道穿过。

让热水从管道内流过。

由于管道内热水和容器内冷热水的温度差,会形成热交换,也就是初中物理的热平衡,高温物体的热量总是向低温物体传递,这样就把管道里水的热量交换给了容器内的冷水,换热器又称热交换器。

三.机械结构形式换热器的分类良多,可以按传热原理、结构和用途等进行分类,按其结构分类主要有管壳式和板式两种。

根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。

1、间壁式换热器的类型a.夹套式换热器这种换热器是在容器外壁安装夹套制成,结构简单;但其加热面受容器壁面限制,传热系数也不高.为提高传热系数且使釜内液体受热均匀,可在釜内安装搅拌器.当夹套中通入冷却水或无相变的加热剂时,亦可在夹套中设置螺旋隔板或其它增加湍动的措施,以提高夹套一侧的给热系数.为补充传热面的不足,也可在釜内部安装蛇管.夹套式换热器广泛用于反应过程的加热和冷却。

b.沉浸式蛇管换热器这种换热器是将金属管弯绕成各种与容器相适应的形状,并沉浸在容器内的液体中.蛇管换热器的优点是结构简单,能承受高压,可用耐腐蚀材料制造;其缺点是容器内液体湍动程度低,管外给热系数小.为提高传热系数,容器内可安装搅拌器。

c.喷淋式换热器这种换热器是将换热管成排地固定在钢架上,热流体在管内流动,冷却水从上方喷淋装置均匀淋下,故也称喷淋式冷却器.喷淋式换热器的管外是一层湍动程度较高的液膜,管外给热系数较沉浸式增大很多.另外,这种换热器大多放置在空气流通之处,冷却水的蒸发亦带走一部分热量,可起到降低冷却水温度,增大传热推动力的作用.因此,和沉浸式相比,喷淋式换热器的传热效果大有改善。

换热器结构原理课程设计

换热器结构原理课程设计

换热器结构原理课程设计一、课程目标知识目标:1. 让学生掌握换热器的基本结构及其工作原理,理解不同类型换热器的特点与应用场景。

2. 使学生了解换热过程中的热量传递机制,包括传导、对流和辐射。

3. 帮助学生理解换热器在设计过程中涉及的参数计算,如传热系数、温差、流体流量等。

技能目标:1. 培养学生运用所学知识分析实际换热器案例,提出优化方案的能力。

2. 让学生掌握换热器设计的基本方法和步骤,具备一定的换热器选型、设计和计算能力。

3. 培养学生运用专业软件或工具进行换热器性能模拟和优化的技能。

情感态度价值观目标:1. 激发学生对换热器及热交换技术的兴趣,培养其探索精神和创新意识。

2. 培养学生关注能源利用和环境保护,认识到换热器在节能减排中的重要作用。

3. 培养学生的团队协作意识和沟通能力,使其在换热器设计过程中能够与他人有效合作。

本课程针对高年级学生,结合换热器结构原理的学科特点,强调理论与实践相结合,注重培养学生的实际操作能力和解决实际问题的能力。

课程目标旨在让学生掌握换热器相关知识,提升其专业技能,同时培养其情感态度价值观,为今后的学习和工作打下坚实基础。

二、教学内容1. 换热器基本概念:介绍换热器的定义、分类及用途,分析各类换热器的工作原理和结构特点。

教材章节:第一章 换热器概述2. 热量传递机制:讲解传导、对流和辐射三种热量传递方式在换热过程中的作用和计算方法。

教材章节:第二章 热量传递基础3. 换热器设计参数:阐述换热器设计中所涉及的主要参数,如传热系数、温差、流体流量等,并进行相关计算。

教材章节:第三章 换热器设计参数及计算4. 换热器选型与设计:介绍换热器选型原则、设计方法和步骤,结合实际案例进行分析。

教材章节:第四章 换热器选型与设计5. 换热器性能模拟与优化:教授学生运用专业软件或工具对换热器性能进行模拟和优化,提高换热效率。

教材章节:第五章 换热器性能模拟与优化6. 换热器在实际工程中的应用:分析换热器在能源、化工、环保等领域的应用案例,探讨换热技术的现状与发展趋势。

换热器技能培训教案

换热器技能培训教案

换热器技能培训教案一、课程目标1. 了解换热器的基本概念、类型和应用领域。

2. 掌握换热器的工作原理和操作方法。

3. 学习换热器的运行维护和故障处理技巧。

4. 提高学员的换热器操作技能和实际应用能力。

二、教学内容1. 换热器概述1.1 换热器的定义和作用1.2 换热器的分类和特点1.3 换热器在工业中的应用2. 换热器工作原理2.1 表面式换热器2.2 蓄热式换热器2.3 混合式换热器3. 换热器操作方法3.1 换热器的启动与停止3.2 换热器运行参数的调节3.3 换热器效率的评估与优化4. 换热器运行维护4.1 换热器的日常检查与维护4.2 换热器清洗与保养4.3 换热器故障分析与处理三、教学方法1. 理论讲解:通过PPT、教材等资料,对换热器的基本概念、工作原理和操作方法进行讲解。

2. 案例分析:分析实际运行中的换热器故障案例,引导学员学会分析问题、解决问题。

3. 操作演练:安排实际操作演练环节,让学员动手操作,提高实际操作能力。

4. 互动问答:鼓励学员提问,解答学员在学习和实践中遇到的问题。

四、教学资源1. 教材:换热器相关教材、PPT等资料。

2. 设备:实际运行的换热器设备,供学员观察和操作。

3. 工具:用于换热器操作和维护的工具。

五、教学评价1. 课堂参与度:评估学员在课堂上的发言和提问情况。

2. 操作演练:评估学员在实际操作中的表现。

3. 课后作业:布置相关作业,评估学员对知识的掌握程度。

4. 综合评价:结合学员的课堂表现、操作能力和作业完成情况进行综合评价。

六、教学安排1. 课时:共计40课时,其中包括20节理论课和20节实践操作课。

2. 上课方式:每周五次课程,每次2小时,分为上午和下午两个时间段。

3. 课程安排:第1-10节课为理论课,第11-20节课为实践操作课。

七、教学实践1. 实践内容:7.1 观察不同类型的换热器设备,了解其结构和工作原理。

7.2 学习换热器的操作流程,包括启动、运行、停止等环节。

试述换热器的概念

试述换热器的概念

试述换热器的概念换热器是一种用来将热量从一个流体传递到另一个流体的装置。

它通常被用于工业生产过程、建筑空调系统、供暖系统和其他热交换应用中。

换热器可以在不同的形式和尺寸中找到,以满足不同的应用需求。

换热器的主要工作原理是利用热传导的方式将热量从一个流体传递到另一个流体。

在换热器中,两种流体通常是通过一系列金属管道或管壳中流动的。

其中一个流体可以是热源,例如蒸汽、热水或电加热器产生的热流体。

另一个流体可以是想要加热或冷却的物质,例如水、空气或化学制品。

通过这种方式,换热器使两种流体之间的热量交换成为可能。

在现代的换热器中,有三种主要类型:散热器、冷凝器和蒸发器。

散热器主要用于冷却流体,例如汽车发动机中的散热器,它将汽车发动机冷却液中的热量散发到周围空气中。

冷凝器用于将蒸气或气体冷却成液体,例如在冷冻设备中使用的冷凝器,它将氨气冷却成液态氨。

蒸发器则相反地将液体转化成气体,例如在空调系统中使用的蒸发器,它将冷凝的制冷剂转化成冷气。

另外,换热器还可以根据其结构和工作原理来分类。

最常见的换热器类型包括壳管式换热器和板式换热器。

壳管式换热器由一个外壳和一组管子组成,热源流体流过管子,被加热或冷却,而需要加热或冷却的流体则流过外壳。

这种类型的换热器通常用于高流量和高温差的应用中。

板式换热器则由一系列金属板组成,流体在相邻的板之间流动,热量通过板的表面传递。

板式换热器通常体积小、重量轻,适用于空间有限的应用场合。

换热器的设计和选择取决于许多因素,如流体性质、流量、温度和压力。

在选择换热器时,需要考虑流体的化学性质、腐蚀性和蒸发和结垢的倾向。

此外,还需要考虑换热器的运行成本、维护成本和使用寿命等因素。

正确的换热器选择和设计可以有效地提高系统的能效和节约能源。

在工业生产过程中,换热器扮演着至关重要的角色。

例如,在化工工业中,换热器被广泛应用于生产过程中的加热、冷却和过程控制中。

在食品和饮料行业,换热器用于加热和冷却液体食品。

换热器的概念、特点、分类及应用

换热器的概念、特点、分类及应用

换热器的概念、特点、分类及应用换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。

在石油、化工、轻工、制药、能源等工业生产中,常常需要把低温流体加热或者把高温流体冷却,把液体汽化成蒸汽或者把蒸汽冷凝成液体。

这些过程均和热量传递有着密切联系,因而均可以通过换热器来完成。

随着经济的发展,各种不同型式和种类的换热器发展很快,新结构、新材料的换热器不断涌现。

为了适应发展的需要,我国对某些种类的换热器已经建立了标准,形成了系列。

完善的换热器在设计或选型时应满足以下基本要求:(1)合理地实现所规定的工艺条件;(2)结构安全可靠;(3)便于制造、安装、操作和维修;(4)经济上合理。

浮头式换热器的一端管板与壳体固定,而另一端的管板可在壳体内自由浮动,壳体和管束对膨胀是自由的,故当两张介质的温差较大时,管束和壳体之间不产生温差应力。

浮头端设计成可拆结构,使管束能容易的插入或抽出壳体。

(也可设计成不可拆的)。

这样为检修、清洗提供了方便。

但该换热器结构较复杂,而且浮动端小盖在操作时无法知道泄露情况。

因此在安装时要特别注意其密封。

浮头换热器的浮头部分结构,按不同的要求可设计成各种形式,除必须考虑管束能在设备内自由移动外,还必须考虑到浮头部分的检修、安装和清洗的方便。

在设计时必须考虑浮头管板的外径Do。

该外径应小于壳体内径Di,一般推荐浮头管板与壳体内壁的间隙b1=3~5mm。

这样,当浮头出的钩圈拆除后,即可将管束从壳体内抽出。

以便于进行检修、清洗。

浮头盖在管束装入后才能进行装配,所以在设计中应考虑保证浮头盖在装配时的必要空间。

钩圈对保证浮头端的密封、防止介质间的串漏起着重要作用。

随着幞头式换热器的设计、制造技术的发展,以及长期以来使用经验的积累,钩圈的结构形式也得到了不段的改进和完善。

钩圈一般都为对开式结构,要求密封可靠,结构简单、紧凑、便于制造和拆装方便。

浮头式换热器以其高度的可靠性和广泛的适应性,在长期使用过程中积累了丰富的经验。

1化工原理课程设计(换热器)解析

1化工原理课程设计(换热器)解析

一、设计题目:设计一台换热器二、操作条件:1、煤油:入口温度140℃,出口温度40℃。

2、冷却介质:循环水,入口温度35℃。

3、允许压强降:不大于1×105Pa。

4、每年按330天计,每天24小时连续运行。

三、设备型式:管壳式换热器四、处理能力:114000吨/年煤油五、设计要求:1、选定管壳式换热器的种类和工艺流程。

2、管壳式换热器的工艺计算和主要的工艺尺寸设计。

3、设计结果概要或设计结果一览表。

4、设备简图(要求按比例画出主要结构及尺寸)。

5、对本设计的评述及有关问题的讨论。

第1章设计概述1、1热量传递的概念与意义[1](205)1、1、1 传热的概念所谓的传热(又称热传递)就是间壁两侧两种流体之间的热量传递问题。

由热力学第二定律可知,凡是有温差存在时,就必然发生热量从高温处传递到低温处,因此传热是自然界和工程技领域中极普遍的一种传递现象。

1、1、2 传热的意义化工生产中的很多过程和单元操作,都需要进行加热和冷却,如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量,又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。

所以传热是最常见的重要单元操作之一。

无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。

此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。

归纳起来化工生产中对传热过程的要求经常有以下两种情况:①强化传热过程,如各种换热设备中的传热。

②削弱传热过程,如设备和管道的保温,以减少热损失。

1、2 换热器的概念与意义[2]1、2、1 换热器的概念在不同温度的流体间传递热能的装置称为热交设备,简称为换热器。

在换热器中至少要有两种不同的流体,一种流体温度较高,放出热量:另一种流体则温度较低,吸收热量。

石化行业换热器的种类及用途原理阐述

石化行业换热器的种类及用途原理阐述

石化行业换热器的种类及用途原理阐述随着近代低碳工业的不断发展,在工业领域相继出现了越来越多的新型高效的换热器。

而在当今社会的石油化工行业中,换热器的应用更是十分广泛。

在此大的环境背景下,深入地研究在石油化工方面换热器的工作原理及种类是十分必要的,避免因为换热器的损坏从而造成严重的经济损失。

1.热换器的概念及其发展现状换热器是在石油化工、电力冶金、能源制备等行业中应用十分广泛的单元设备之一,但在石油化工方面应用最为广泛。

换热器是将温度进行交换,从而达到热量交换的目的。

也就是可以将低温的媒介对高温的介质进行降温或者预冷,将高温的介质对低温的介质进行加热,使流体温度达到工艺流程规定的指标的热量交换设备,又称热交换器。

世界上最早出现的是板式换热器,随机又出现了螺旋板式换热器和板翅式换热器。

由于科技的发展,换热器的需求急剧上升,进入二十一世纪以后,世界上的换热器产业的技术水平得到迅速提升。

我国的换热器发展起步较晚,1963年制造出了中国第一台管壳式换热器,随后又研制了第一台板式换热器,第一台螺旋板式换热器。

二十世纪80年代后,以折流杆换热器、双壳程换热器、板壳式换热器为代表的高效换热器的出现,是源于在国内掀起了自主开发传热技术的热潮,极大地促进了我国热换器的发展进步。

目前换热器从大的分类角度上可以分为混合式、蓄热式和间壁式三类。

2.换热器的种类及用途原理2.1板式换热器板式換热器是使用时间最早,也是最为典型的间壁换热器,可以分为焊接式和可拆式两种类型,在换热器应用领域中占据主要地位。

板式换热器形成的原理是按照固定的间隔把一系列的波纹状薄板通过垫片紧压而形成,应对较高的压力以及较高的温度的一种换热器是高效板式换热器。

具体来说,焊接式板式换热器具备较强的便捷性、不易泄漏、耐高温高压、传热性能良好、价格便宜的优点,不易清洗是最主要的缺点,因此只适用于不结垢介质的换热环境。

可拆式换热器的工作原理是利用橡胶垫对换热片进行密封,同时在不同的换热场合都能够对换热片的数量进行比较灵活的增减。

《换热器教学》课件

《换热器教学》课件

检查漏水
检查换热器是否存在漏水问 题,及时修复,避免温度、压力和 流量等参数,及时发现异常 情况。
换热器的前沿研究和发展趋势
新材料应用
研究新型材料在换热器中的应用,提高换热器的传热效率和耐久性。
智能控制技术
结合传感器和自动控制技术,实现换热器的智能化运行和优化控制。
《换热器教学》PPT课件
换热器是热力学和传热学中极为重要的设备之一。通过本课件,我们将深入 了解换热器的基本概念、分类、工作原理以及设计计算方法,展示换热器在 各个领域的应用和实例,并探讨换热器的维护和故障排除方法,以及前沿研 究和发展趋势。
换热器的基本概念
定义清晰
换热器是用于传输热量的设备,通过在不同流体之间传递热量来达到冷却或加热的目的。
节能与环保
研究节能和环保换热器技术,降低能源消耗和环境影响。
总结和展望
通过本课件的学习,我们深入了解了换热器的基本概念、分类、工作原理、设计计算、应用实例、维护 故障排除以及前沿研究和发展趋势。希望这些知识能够帮助您更好地理解和应用换热器技术。
管道式换热器
通过多个管道的连接和散热片 的设计,提高换热效率。
换热器的设计和计算
1 传热面积计算
根据需要传热的热量大小和流体特性计算换热器的传热面积。
2 流体流量计算
通过流体的质量和流速等参数计算流体流量。
3 换热器尺寸设计
根据换热器的传热面积、流体流量和其他参数,设计换热器的尺寸。
换热器的应用和实例
工作原理
换热器利用热量传导原理,在两个或更多流体之间建立热量交换,实现热量平衡。
关键组成
换热器由管束、壳体、传热表面和流体流道等组成。
换热器的分类和工作原理

换热器换热效率计算

换热器换热效率计算

换热器介绍及热效率的简单计算一、换热器的基本概念换热器的定义:凡是用来使热量从热流体传递到冷流体,以满足规定的工艺要求的装置通称换热器。

间壁式——冷热流体分别位于固体壁面两侧,而由壁面间接隔开来。

混合式——冷热流体通过直接接触、相互混合来实现换热。

回热式——冷热流体交替地通过同一换热表面而实现热量交换的设备称为蓄热式换热器。

2、换热器的分类螺旋板式换热器波纹管换热器列管式换热器板式换热器螺旋板换热器管壳式换热器容积式换热器浮头式换热器管式换热器热管换热器汽水换热器翅片管换热器管壳式换热器分为浮头式换热器和固定管板式换热器1、浮头式换热器特点2、浮头式换热器两端的管板,一端不与壳体相连,该端称浮头。

管子受热时,管束连同浮头可以沿轴向自由伸缩,完全消除了温差应力。

浮头式换热器的特点浮头式换热器的一端管板固定在壳体与管箱之间,另一端管板可以在壳体内自由移动,这个特点在现场能看出来。

这种换热器壳体和管束的热膨胀是自由的,管束可以抽出,便于清洗管间和管内。

其缺点是结构复杂,造价高(比固定管板高20%),在运行中浮头处发生泄漏,不易检查处理。

三种类型换热器简介螺旋板式板式交叉流换热器管壳式壳管式套管式)蓄热式混合式间壁式板翅式管翅式管束式浮头式换热器适用于壳体和管束温差较大或壳程介质易结垢的条件。

3、固定管板式换热器(,4E-401, 4E-200)固定管板式换热器主要有外壳、管板、管束、顶盖(又称封头)等部件构成。

在圆形外壳内,装入平行管束,管束两端用焊接或胀接的方法固定在管板上,两块管板与外管直接焊接,装有进口或出口管的顶盖用螺栓与外壳两端法兰相连。

它的特点是结构简单,没有壳侧密封连接,相同的壳体内径排管最多,在有折流板的流动中旁路最小,管程可以分成任何管程数,因两个管板由管子互相支撑,故在各种管壳式换热器中它的管板最薄,造价最低,因而得到广泛应用。

这种换热器的缺点是:壳程清洗困难,有温差应力存在。

当冷热两种流体的平均温差较大,或壳体和传热管材料膨胀系数相差较大,热应力超过材料的许用应力时,在壳体上需设膨胀节,由于膨胀节强度的限制,壳程压力不能太高。

换热器化工机械课程设计

换热器化工机械课程设计

换热器化工机械课程设计一、课程目标知识目标:1. 学生能掌握换热器的基本概念、分类及在化工生产中的应用;2. 学生了解换热器的工作原理,理解热交换过程中的能量守恒原理;3. 学生掌握换热器主要的设计参数,如传热面积、传热系数、流体流速等;4. 学生理解换热器材料选择、结构设计及运行维护的相关知识。

技能目标:1. 学生具备运用换热器设计软件进行简单换热器设计的能力;2. 学生能够分析换热器在实际工程应用中的问题,并提出合理的解决方案;3. 学生通过小组合作,完成换热器设计方案的撰写和汇报,提高沟通与协作能力。

情感态度价值观目标:1. 学生培养对化工机械设备的兴趣,激发学习热情,增强对专业的认同感;2. 学生认识到换热器在现代工业中的重要性,培养节能环保意识;3. 学生通过课程学习,培养严谨的科学态度,提高分析问题和解决问题的能力。

本课程针对高年级化工机械专业学生,结合课程性质、学生特点和教学要求,明确以上课程目标。

通过本课程的学习,使学生能够在掌握换热器基本知识的基础上,提高实际设计能力,为将来从事化工设备设计和运行维护工作打下坚实基础。

同时,注重培养学生的团队合作精神,提高沟通表达能力和职业道德素养。

二、教学内容1. 换热器概述:介绍换热器的定义、分类、应用领域,对应教材第一章;- 板式换热器、管壳式换热器、空气冷却器等典型换热器结构及特点;- 换热器在化工、能源、环保等行业的应用案例。

2. 换热器工作原理与热力学基础:阐述换热器工作原理,能量守恒在热交换过程中的应用,对应教材第二章;- 热传导、对流、辐射等基本传热方式;- 传热方程式、传热系数、对数平均温差等热力学基础概念。

3. 换热器设计参数与计算方法:学习换热器主要设计参数及计算方法,对应教材第三章;- 传热面积、流体流速、传热系数等参数的计算;- 典型换热器设计软件的应用介绍。

4. 换热器材料与结构设计:介绍换热器材料选择、结构设计原则,对应教材第四章;- 换热器常用材料性能及选用标准;- 换热器结构设计要点及案例分析。

换热器介绍

换热器介绍

3.3 填函式换热器 填函式换热器的浮头与壳体间采用填料函进行密封和热补偿。
填函式换热器 优点:结构简单,造价较浮头式低。检修、清洗容易,填函处的泄漏能及时发现。 缺点:壳程受到填料密封的限制,不能承受过高的压力和温度。且壳程内介质有外漏的可能,壳 程内不宜处理易挥发、易燃、易爆、有毒的介质。 为减少管束与壳体之间的环隙,可采用滑动式管板结构。
胀接长度取(1)两倍换热管外径;(2)50mm;(3)管板厚度减3mm三者中的最小值。
胀管前后的示意图
管板孔内开环形槽
2、焊接(Welding)
管子与管板间采用焊接连接
优点:连接结构简单、适用范围广;管板的加工 要求低、生产过程简单、生产效率高;管子与管 板选材要求简化、管端不须退火;在压力不高的 场合可使用较薄的管板。
3.1 固定管板式换热器
固定管板式换热器分为刚性结构的固定管板式和带膨胀节的固定管板式两种。换热器壳体和管束 通过两端的管板刚性地连在一起。
固定管板式换热器
带膨胀节的固定管板式换热器
优点:换热器结构简单、造价低,每根管子都能单独更换,管内便于清洗 缺点:管外清洗困难,管壳间有温差应力存在。当两种介质温差较大时,必须设置膨胀节。 固定管板式换热器适用于壳程介质清洁、不易结垢、温差不大和壳程压力不高的场合。
3.2 浮头式换热器 浮头式换热器中只有一块管板与壳体刚性固定在一起,另一端的管板可在壳体内自由移动。管束 和壳体在不同温度下膨胀自由,互不牵连。
浮头式换热器 优点:这种换热器消除了温差应力的影响,可用于温差较大的两种介质的换热。管程和壳程均能 承受较高的介质压力。管束可从壳程一端抽出,壳程与管程的清洗均很方便。 缺点:由于换热器管束与壳程之间存在较大的环隙,设备的紧凑性差,传热效率较低。结构复杂, 浮头部分由活动管板、浮头盖和勾圈组成,浮头处发生内漏不便检查。金属消耗量大,造价也较 高。

换热器课程设计书

换热器课程设计书

换热器课程设计书一、教学目标本课程的教学目标是让学生掌握换热器的基本原理、类型、设计方法和应用。

具体包括:1.知识目标:(1)理解换热器的基本概念和作用;(2)掌握换热器的分类和特点;(3)熟悉换热器的设计方法和计算公式;(4)了解换热器在工程中的应用。

2.技能目标:(1)能够分析换热器的工作原理和性能;(2)具备换热器选型和设计的基本能力;(3)学会使用相关软件进行换热器的设计和模拟;(4)能够撰写换热器设计报告。

3.情感态度价值观目标:(1)培养学生的创新意识和团队合作精神;(2)增强学生对工程实践的兴趣和责任感;(3)培养学生关注社会发展和环保意识。

二、教学内容根据课程目标,教学内容主要包括以下几个方面:1.换热器的基本概念和作用:介绍换热器的定义、分类和应用领域,理解换热器在工程中的重要性。

2.换热器的类型:讲解不同类型的换热器,如管壳式、板式、螺旋板式等,分析各种换热器的特点和适用范围。

3.换热器的设计方法:学习换热器的设计原理,掌握传热计算公式,了解换热器材料的选择和工艺要求。

4.换热器的应用:通过案例分析,了解换热器在热力系统、化工、空调等领域中的应用,熟悉换热器在不同行业中的重要性。

三、教学方法为了实现课程目标,我们将采用以下教学方法:1.讲授法:通过教师的讲解,让学生掌握换热器的基本概念、设计和应用知识。

2.案例分析法:通过分析实际案例,让学生了解换热器在不同领域中的应用,提高学生的应用能力。

3.实验法:安排实验室实践,让学生亲自动手进行换热器实验,培养学生的实践能力和实验技能。

4.讨论法:学生进行小组讨论,分享学习心得和经验,提高学生的沟通能力和团队合作精神。

四、教学资源为了支持课程的实施,我们将准备以下教学资源:1.教材:选用权威、实用的换热器教材,作为学生学习的主要参考资料。

2.参考书:提供相关的专业书籍,丰富学生的知识体系。

3.多媒体资料:制作精美的PPT课件,直观地展示换热器的工作原理和设计方法。

换热器设计手册

换热器设计手册

换热器设计手册
设计一个换热器的手册可以包含以下内容:
1. 引言:介绍换热器的定义、作用和使用范围。

2. 换热基础知识:解释热传递的基本概念和换热原理,包括传热方式、热传递方程和换热系数。

3. 换热器的分类:介绍各种常见的换热器类型,如壳管式换热器、板式换热器、螺旋板式换热器等,以及它们的特点和应用领域。

4. 换热器的设计步骤:详细阐述换热器设计的步骤,包括确定传热面积、计算传热量、选择换热器类型和尺寸、确定管道布局、计算流体流量等。

5. 换热器设计中的参数:介绍影响换热器性能的关键参数,如流体温度差、表面积比、管程系数、传热系数等,并提
供计算方法和工程经验。

6. 设计中的问题和解决方案:列举可能在换热器设计中遇
到的常见问题和解决方法,如阻力损失、结垢问题、流体
腐蚀等。

7. 换热器的实施与维护:介绍换热器的安装、调试和维护
要点,包括清洗方法、检查周期和维修常识。

8. 设计案例与实例分析:提供一些换热器设计案例和实例
分析,以帮助读者更好地理解设计过程和技巧。

9. 相关标准与规范:列举与换热器设计相关的国际和行业
标准,如ASME、API和GB等,并提供参考链接和书目。

10. 常用的换热器软件与工具:介绍常用的换热器设计软件和在线计算工具,以方便读者进行设计和计算。

最后,手册还可以提供参考文献、索引和图表以增加阅读的便利性和可读性。

换热器工作原理

换热器工作原理

换热器工作原理引言概述:换热器是一种常见的热交换设备,广泛应用于工业生产和日常生活中。

它通过传导、对流和辐射等方式,实现热量的传递和平衡。

本文将详细介绍换热器的工作原理,包括热量传导、对流换热、辐射换热、换热器的类型和应用。

一、热量传导1.1 热传导的基本原理热传导是指热量通过物质内部的分子振动和碰撞传递的过程。

它遵循热量从高温区向低温区传递的规律,符合热力学第二定律。

热传导的速率与物质的导热性能有关,导热性能好的物质能够更快地传递热量。

1.2 热传导的影响因素热传导的速率受到多个因素的影响,包括物质的导热系数、温度差、物质的厚度和面积等。

导热系数是物质传导热量的能力,不同物质的导热系数差异很大。

温度差越大,热传导速率越快。

物质的厚度和面积越大,传导热量的能力越强。

1.3 热传导的应用热传导在换热器中起着重要作用。

通过合理设计换热器的传热面积和材料选择,可以提高热传导效率,实现热量的高效传递。

在工业生产中,热传导广泛应用于蒸汽发生器、冷凝器等热交换设备。

二、对流换热2.1 对流换热的基本原理对流换热是指热量通过流体的对流传递的过程。

在对流换热中,热量通过流体的传导和对流两种方式进行传递。

对流换热的速率与流体的流速、温度差、流体的物性等有关。

2.2 对流换热的影响因素对流换热的速率受到多个因素的影响,包括流体的流速、温度差、流体的物性、流体的流动方式等。

流速越大,对流换热速率越快。

温度差越大,热量传递越快。

流体的物性如导热系数、比热容等也会影响对流换热的效果。

2.3 对流换热的应用对流换热广泛应用于换热器中,例如散热器、冷却塔等。

通过合理设计换热器的流体通道和流速,可以提高对流换热效率,实现热量的快速传递。

在工业生产中,对流换热被广泛应用于空调系统、汽车发动机冷却系统等领域。

三、辐射换热3.1 辐射换热的基本原理辐射换热是指热量通过电磁辐射传递的过程。

所有物体都会发射电磁辐射,辐射的强度与物体的温度有关。

换热器的结构及工作原理

换热器的结构及工作原理

换热器的结构及工作原理1. 换热器的基本概念嘿,大家好!今天我们来聊聊一个听起来有点高大上的东西——换热器。

你可能在生活中没有直接接触过它,但其实它就在我们身边,默默地发挥着作用,就像那位在你身边的“默默无闻”好朋友,关键时刻总能给你支招。

换热器,顾名思义,就是一个用来交换热量的设备。

简单来说,就是把热的东西和冷的东西放在一起,看看能不能让它们彼此“分享”一下温度。

1.1 换热器的结构换热器的结构其实并不复杂,它就像一个大大的“夹心饼干”,里面夹着热流体和冷流体。

通常情况下,外面是冷的流体,里面是热的流体,二者通过热交换管道互相“打招呼”。

这就好比在炎热的夏天,喝一杯冰凉的饮料,嘴巴里冰冰凉凉的,简直太舒服了!而换热器的“夹心”部分则是各种材料的组合,常见的有金属、塑料等。

它们都很擅长传导热量,就像运动员在比赛中传球一样,来来回回,热量就这样轻松地传递。

1.2 换热器的分类换热器的类型也不少,按照形状和用途可以分为几种,比如管壳式、板式、空气冷却式等等。

想象一下,一个个换热器就像各具特色的“明星”,各自都有自己的招牌动作。

管壳式换热器就像一个巨大的咖啡杯,热流体和冷流体在里面搅拌得热火朝天。

而板式换热器则像个叠罗汉,紧凑得让人心疼,却能在有限的空间里发挥出最大的功效。

2. 换热器的工作原理那么,换热器究竟是怎么工作的呢?好吧,接下来就让我们来“揭开它的面纱”。

换热器的工作原理可以用“热量转移”四个字来概括。

热流体在一个地方通过管道流动,碰到冷流体的时候,热量就开始悄悄“移情别恋”,渐渐把热量传递给冷流体。

而冷流体呢,就像是一个“海绵”,吸收着热量,慢慢变热起来。

这一过程就像是一场舞蹈,热和冷在换热器中翩翩起舞,生动又有趣。

2.1 热量的传递方式在传递热量的过程中,热流体和冷流体的流动方向是非常关键的。

有时候,它们是顺流而行,就像两位好友在河边散步,互相分享着各自的故事;而有时候,它们则是逆流而上,像一对老夫妇,在漫长的岁月中互相支持,始终如一。

换热器的分类

换热器的分类

二、换热器的分类
(二)换热器按传热原理分类
三、列管式换热器的基本结构形式


(一)列管式换热器的结构 列管式换热器由壳体、管束(传热管)、管板、封头(又称 端盖或管箱)、折流板、接管、支座等部件组成

(二)列管式换热器的工作原理 列管式换热器的工作原理:管程和壳程分别通过两 种不同温度的流体时,温度较高的流体通过换热管 壁将热量传递给温度较低的流体,温度较高的流体 被冷却,温度较低的流体被加热,进而实现两流体 换热工艺目的。
课堂巩固
练习 1、换热器按传热原理分为( )、 ( )、( )等。 2、在列管换热器中,一种流体在管内流过,其行 程称为 ;另一种流体在管外流过,其行程 称为 。管束的表面积即为 。

(3)提高热能的综合利用和余热回收 (4)减少设备的热量(或冷量)的损失
传热在生产中应用实例
传热在生产中应用实例
的部分热量传递给冷流体,使流体温 度达到工艺流程规定的指标的热量交换设备,又称热交换 器。 换热器应满足的要求: (1)满足工艺条件规定的要求。 (2)结构安全可靠,换热器应具有足够的强度和刚 度保证整体结构的安全可靠。 (3)具有较高的传热效率,换热器所有的材料传热 行动能要好,传热面积足够且流体阻力小。 (4)便于制造、安装、操作和维修。 (5)经济上合理。
二、换热器的分类 (一)换热器按传热用途分类
名 称
加热器 预热器 过热器 蒸发器 再沸器 冷却器 冷凝器


把流体加热到必要的温度,但加热流体没有发生相的变化。 预先加热流体,为工序提供所需的工艺参数或提高设备的整体效率。 用于把流体(工艺气或蒸汽)加热到过热状态。 用于加热流体达到沸点以上温度,使其流体蒸发。一般有相的变化。 是蒸馏过程的专用设备,用于加热塔底液体,使之受热汽化。 用于冷却流体,使之达到所需的温度。 用于冷凝饱和蒸汽,使之放出潜热而凝结液化。

2024换热器ppt课件

2024换热器ppt课件

•换热器基本概念与分类•换热器结构与工作原理•换热器性能评价指标及方法•换热器选材与制造工艺目录•换热器安装调试与维护保养•换热器在节能减排中应用01换热器基本概念与分类换热器定义及作用定义作用换热器发展历程近代换热器早期换热器随着工业的发展,对换热器的传热效率和性能要求越来越高,出现了各种新型、高效的换热器。

现代换热器管壳式换热器板式换热器螺旋板式换热器热管式换热器常见类型及其特点应用领域与市场前景应用领域市场前景02换热器结构与工作原理主要组成部分介绍01020304换热管管板折流板/支撑板壳体工作原理简述换热管内的流体与管外的流体通过管壁进行热量折流板热量通过固体壁面(如换热管壁)从高温侧传递到低温侧。

热传导流体流过固体表面时,与固体表面发生热量交换。

对流换热在高温环境下,物体通过电磁波的形式向外发射热量。

辐射传热传热过程分析010204流体动力学特性流体在换热器内的流动状态(层流或湍流)影响传热效果。

折流板/支撑板的形状和位置对流体流动和传热有重要影响。

换热器的进出口位置和连接方式也会影响流体的分布和流动状态。

流体的物理性质(如密度、粘度、导热系数等)对传热效果有直接影响。

0303换热器性能评价指标及方法换热效率衡量换热器在单位时间内传递热量的能力,是评价换热器性能的重要指标。

压力损失流体在换热器内流动时产生的压力降,直接影响系统的能耗和运行成本。

换热面积有效传热面积的大小直接影响换热器的传热效率,是设计和选型的关键参数。

结构紧凑性紧凑的换热器结构有利于减小设备体积和重量,提高空间利用率。

性能评价指标概述实验测试方法介绍热平衡法压差法红外热像仪检测流体可视化实验数值模拟技术应用计算流体力学(CFD)模拟利用CFD软件对换热器内流体流动和传热过程进行数值模拟,预测性能并优化设计方案。

有限元分析(FEA)应用FEA方法对换热器结构进行力学分析和热应力计算,确保设备安全可靠。

多物理场耦合模拟考虑多种物理场(如流场、温度场、应力场等)之间的相互作用和影响,提高模拟精度和可靠性。

标准式换热器课程设计

标准式换热器课程设计

标准式换热器课程设计一、课程目标知识目标:1. 学生能理解换热器的基本概念、分类和工作原理;2. 学生能掌握标准式换热器的结构、特点和设计参数;3. 学生能了解换热器在工程实际中的应用和重要性。

技能目标:1. 学生能运用所学知识,分析并解决换热器在设计、运行过程中遇到的问题;2. 学生能通过计算和绘图,完成标准式换热器的设计;3. 学生能运用相关软件对换热器进行模拟和分析,提高实际操作能力。

情感态度价值观目标:1. 学生通过学习换热器知识,培养对热能转换和利用的兴趣,增强环保意识;2. 学生在学习过程中,培养合作精神、创新思维和批判性思维;3. 学生认识到换热器在国民经济发展中的重要作用,增强社会责任感和职业使命感。

课程性质分析:本课程为工程专业基础课程,旨在培养学生掌握换热器的基本理论、设计和应用能力。

学生特点分析:学生为高中年级学生,具备一定的物理和数学基础,对工程实际有一定了解,但缺乏实际操作经验。

教学要求:1. 理论与实践相结合,注重培养学生的实际操作能力;2. 采用案例分析、小组讨论等多种教学方法,提高学生的参与度和积极性;3. 结合实际工程背景,提高学生的工程素养和创新能力。

二、教学内容1. 换热器基本概念:包括换热器定义、分类、工作原理及在工程中的应用;- 教材章节:第一章 换热器概述2. 标准式换热器结构及特点:详细讲解板式、管式、壳管式等换热器的结构、设计参数及性能特点;- 教材章节:第二章 换热器结构及类型3. 换热器设计原理与方法:介绍换热器设计的基本原理,结合实例讲解换热器设计步骤及计算方法;- 教材章节:第三章 换热器设计原理与计算4. 换热器选型与应用:分析不同工况下换热器选型的原则,介绍换热器在典型行业中的应用案例;- 教材章节:第四章 换热器选型与应用5. 换热器仿真与优化:运用相关软件对换热器进行模拟分析,探讨换热器性能优化方法;- 教材章节:第五章 换热器仿真与优化6. 换热器实验与操作:结合实验课程,让学生亲自动手操作,提高实际操作能力;- 教材章节:第六章 换热器实验与操作教学安排与进度:1. 第1周:换热器基本概念及分类;2. 第2周:标准式换热器结构及特点;3. 第3-4周:换热器设计原理与计算方法;4. 第5周:换热器选型与应用案例分析;5. 第6周:换热器仿真与优化;6. 第7周:换热器实验与操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

换热器的概念、特点、分类及应用换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。

在石油、化工、轻工、制药、能源等工业生产中,常常需要把低温流体加热或者把高温流体冷却,把液体汽化成蒸汽或者把蒸汽冷凝成液体。

这些过程均和热量传递有着密切联系,因而均可以通过换热器来完成。

随着经济的发展,各种不同型式和种类的换热器发展很快,新结构、新材料的换热器不断涌现。

为了适应发展的需要,我国对某些种类的换热器已经建立了标准,形成了系列。

完善的换热器在设计或选型时应满足以下基本要求:(1)合理地实现所规定的工艺条件;(2)结构安全可靠;(3)便于制造、安装、操作和维修;(4)经济上合理。

浮头式换热器的一端管板与壳体固定,而另一端的管板可在壳体内自由浮动,壳体和管束对膨胀是自由的,故当两张介质的温差较大时,管束和壳体之间不产生温差应力。

浮头端设计成可拆结构,使管束能容易的插入或抽出壳体。

(也可设计成不可拆的)。

这样为检修、清洗提供了方便。

但该换热器结构较复杂,而且浮动端小盖在操作时无法知道泄露情况。

因此在安装时要特别注意其密封。

浮头换热器的浮头部分结构,按不同的要求可设计成各种形式,除必须考虑管束能在设备内自由移动外,还必须考虑到浮头部分的检修、安装和清洗的方便。

在设计时必须考虑浮头管板的外径Do。

该外径应小于壳体内径Di,一般推荐浮头管板与壳体内壁的间隙b1=3~5mm。

这样,当浮头出的钩圈拆除后,即可将管束从壳体内抽出。

以便于进行检修、清洗。

浮头盖在管束装入后才能进行装配,所以在设计中应考虑保证浮头盖在装配时的必要空间。

钩圈对保证浮头端的密封、防止介质间的串漏起着重要作用。

随着幞头式换热器的设计、制造技术的发展,以及长期以来使用经验的积累,钩圈的结构形式也得到了不段的改进和完善。

钩圈一般都为对开式结构,要求密封可靠,结构简单、紧凑、便于制造和拆装方便。

浮头式换热器以其高度的可靠性和广泛的适应性,在长期使用过程中积累了丰富的经验。

尽管近年来受到不断涌现的新型换热器的挑战,但反过来也不断促进了自身的发展。

故迄今为止在各种换热器中扔占主导地位。

管子构成换热器的传热面,管子尺寸和形状对传热有很大影响。

采用小直径的管子时,换热器单位体积的换热面积大一些,设备比较紧凑,单位传热面积的金属消耗量少,传热系数也较高。

但制造麻烦,管子易结垢,不易清洗。

大直径管子用于粘性大或者污浊的流体,小直径的管子用于较清洁的流体。

管子材料的选择应根据介质的压力、温度及腐蚀性来确定。

换热器的管子在管板上的排列不单考虑设备的紧凑性,还要考虑到流体的性质、结构设计以及加工制造方面的情况。

管子在管板上的标准排列形式有四种:正三角形和转角正三角形排列,适用与壳程介质清洁,且不需要进行机械清洗的场合。

正方形和转角正方形排列,能够使管间的小桥形成一条直线通道,便于用机械进行清洗,一般用于管束可抽出管间清洗的场合。

另外对于多管程换热器,常采用组合排列方法,其每一程中一般都采用三角形排列,而各程之间则常常采用正方形排列,这样便于安排隔板位置。

当换热器直径较大,管子较多时,都必须在管束周围的弓形空间内尽量配置换热管。

这不但可以有效地增大传热面积,也可以防止在壳程流体在弓形区域内短路而给传热带来不利影响。

管板上换热管中心距的选择既要考虑结构的紧凑性,传热效果,又要考虑管板的强度和清洗管子外表面所需的空间。

除此之外,还要考虑管子在管板上的固定方法。

若间距太小,当采用焊接连接时,相邻两根管的焊缝太近,焊缝质量受热影响不易得到保证;若采用胀接,挤压力可能造成管板发生过大的变形,失去管子和管板间的结合力。

一般采用的换热管的中心距不小于管子外径的1.25倍。

当换热器多需的换热面积较大,而管子又不能做的太长时,就得增大壳体直径,以排列较多的管子。

此时为了提高管程流速,增加传热效果,须将管束分程,使流体依次流过各程管束。

为了把换热器做成多管程,可在一端或两端的管箱中分别安置一定数量的隔板。

浮头式换热器的优缺点:优点:(1)管束可以抽出,以方便清洗管、壳程;(2)介质间温差不受限制;(3)可在高温、高压下工作,一般温度小于等于450度,压力小于等于6.4兆帕;(4)可用于结垢比较严重的场合;(5)可用于管程易腐蚀场合。

缺点:(1)小浮头易发生内漏;(2)金属材料耗量大,成本高20%;(3)结构复杂制造工艺选取换热设备的制造材料及牌号,进行材料的化学成分检验,机械性能合格后,对钢板进行矫形,方法包括手工矫形,机械矫形及火焰矫形。

备料--划线--切割--边缘加工(探伤)--成型--组对--焊接--焊接质量检验--组装焊接--压力试验质量检验化工设备不仅在制造之前对原材料进行检验,而且在制造过程中要随时进行检查。

质量检验内容和方法:设备制造过程中的检验,包括原材料的检验、工序间的检验及压力试验,具体内容如下:(1)原材料和设备零件尺寸和几何形状的检验;(2)原材料和焊缝的化学成分分析、力学性能分析试验、金相组织检验,总称为破坏试验;(3)原材料和焊缝内部缺陷的检验,其检验方法是无损检测,它包括:射线检测、超声波检测、磁粉检测、渗透检测等;(4)设备试压,包括:水压试验、介质试验、气密试验等。

耐压试验和气密性试验:制造完工的换热器应对换热器管板的连接接头,管程和壳程进行耐压试验或增加气密性试验,耐压试验包括水压试验和气压试验。

换热器一般进行水压试验,但由于结构或支撑原因,不能充灌液体或运行条件不允许残留试验液体时,可采用气压试验。

如果介质毒性为极度,高度危害或管、壳程之间不允许有微量泄漏时,必须增加气密性试验。

换热器压力试验的顺序如下:固定管板换热器先进行壳程试压,同时检查换热管与管板连接接头,然后进行管程试压;U形管式换热器、釜式重沸器(U形管束)及填料函式换热器先用试验压环进行壳程试压,同时检查接头,然后进行管程试压;浮头式换热器、釜式重沸器(浮头式管束)先用试验压环和浮头专用工具进行管头试压,对于釜式重沸器尚应配备管头试压专用壳体,然后进行管程试压,最后进行壳程试压;重叠换热器接头试压可单台进行,当各台换热器程间连通时,管程和壳程试压应在重叠组装后进行。

安装:安装换热器的基础必须满足以使换热器不发生下沉,或使管道把过大的变形传到传热器的接管上。

基础一般分为两种:一种为砖砌的鞍形基础,换热器上没有鞍式支座而直接放在鞍形基础上,换热器与基础不加固定,可以随着热膨胀的需要自由移动。

另一种为混凝土基础,换热器通过鞍式支座由地脚螺栓将其与基础牢固的连接起来。

在安装换热器之前应严格的进行基础质量的检查和验收工作,主要项目如下:基础表面概况;基础标高,平面位置,形状和主要尺寸以及预留孔是否符合实际要求;地脚螺栓的位置是否正确,螺纹情况是否良好,螺帽和垫圈是否齐全;放置垫铁的基础表面是否平整等。

基础验收完毕后,在安装换热器之前在基础上放垫铁,安放垫铁处的基础表面必须铲平,使两者能很好的接触。

垫铁厚度可以调整,使换热器能达到设计的水平高度。

垫铁放置后可增加换热器在基础上的稳定性,并将其重量通过垫铁均匀地传递到基础上去。

垫铁可分为平垫铁、斜垫铁和开口垫铁。

其中,斜垫铁必须成对使用。

地脚螺栓两侧均应有垫铁,垫铁的安装不应妨碍换热器的热膨胀。

换热器就位后需用水平仪对换热器找平,这样可使各接管都能在不受力的情况下连接管道。

找平后,斜垫铁可与芝座焊牢,但不得与下面的平垫铁或滑板焊死。

当两个以上重叠式换热器安装时,应在下部换热器找正完毕,并且地脚螺栓充分固定后,再安装上部换热器。

可抽管束换热器安装前应抽芯检查,清扫,抽管束时应注意保护密封面和折流板。

移动和起吊管束时应将管束放置在专用的支承结构上,以避免损伤换热管。

根据换热器的形式,应在换热器的两端留有足够的空间来满足条件(操作)清洗、维修的需要。

浮头式换热器的固定头盖端应留有足够的空间以便能从壳体内抽出管束,外头盖端必须也留出一米以上的位置以便装拆外头盖和浮头盖。

固定管板式换热器的两端应留出足够的空间以便能抽出和更换管子。

并且,用机械法清洗管内时。

两端都可以对管子进行刷洗操作。

U形管式换热器的固定头盖应留出足够的空间以便抽出管束,也可在其相对的一端留出足够的空间以便能拆卸壳体。

换热器不得在超过铭牌规定的条件下运行。

应经常对管,壳程介质的温度及压降进行监督,分析换热管的泄漏和结垢情况。

管壳式换热器就是利用管子使其内外的物料进行热交换、冷却、冷凝、加热及蒸发等过程,与其他设备相比较,其余腐蚀介质接触的表面积就显得非常大,发生腐蚀穿孔结合处松弛泄漏的危险性很高,因此对换热器的防腐蚀和防泄漏的方法也比其他设备要多加考虑,当换热器用蒸汽来加热或用水来冷却时,水中的溶解物在加热后,大部分溶解度都会有所提高,而硫酸钙类型的物质则几乎没有变化。

冷却水经常循环使用,由于水的蒸发,使盐类浓缩,产生沉积或污垢。

又因水中含有腐蚀性溶解气体及氯离子等引起设备腐蚀,腐蚀与结垢交替进行,激化了钢材的腐蚀。

因此必须经过清洗来改善换热器的性能。

由于清洗的困难程度是随着垢层厚度或沉积的增加而迅速增大的,所以清洗间隔时间不宜过长,应根据生产装置的特点,换热介质的性质,腐蚀速度及运行周期等情况定期进行检查,修理及清洗。

换热器的应用广泛,日常生活中取暖用的暖气散热片、汽轮机装置中的凝汽器和航天火箭上的油冷却器等,都是换热器。

它还广泛应用于化工、石油、动力和原子能等工业部门。

它的主要功能是保证工艺过程对介质所要求的特定温度,同时也是提高能源利用率的主要设备之一。

换热器既可是一种单独的设备,如加热器、冷却器和凝汽器等;也可是某一工艺设备的组成部分,如氨合成塔内的热交换器。

由于制造工艺和科学水平的限制,早期的换热器只能采用简单的结构,而且传热面积小、体积大和笨重,如蛇管式换热器等。

随着制造工艺的发展,逐步形成一种管壳式换热器,它不仅单位体积具有较大的传热面积,而且传热效果也较好,长期以来在工业生产中成为一种典型的换热器。

二十世纪20年代出现板式换热器,并应用于食品工业。

以板代管制成的换热器,结构紧凑,传热效果好,因此陆续发展为多种形式。

30年代初,瑞典首次制成螺旋板换热器。

接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。

30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。

在此期间,为了解决强腐蚀性介质的换热问题,人们对新型材料制成的换热器开始注意。

60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。

此外,自60年代开始,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展。

相关文档
最新文档