常用力学计算公式
物理力学计算公式
物理力学计算公式物理力学是研究物体运动和受力的学科,它是物理学的一个重要分支。
力学的研究需要借助数学工具来表达和计算物体的运动和受力情况。
以下是一些在物理力学中常用的计算公式。
1.牛顿第二定律牛顿第二定律描述了物体的运动状态与其受力的关系。
它的公式形式为:F = ma其中,F代表物体所受的合力,m代表物体的质量,a代表物体的加速度。
2.牛顿第一定律牛顿第一定律,也称为惯性定律,描述了物体在没有外力作用下的运动状态。
它的公式形式为:F=0即物体所受的合力为零时,物体将保持静止或匀速直线运动。
3.牛顿定律牛顿定律是一组揭示物体运动规律的定律,它包括牛顿第一、二、三定律。
这些定律为物体的运动和受力提供了有效的描述和解释。
4.动能定理动能定理描述了物体动能与其所受的合力之间的关系。
它的公式形式为:W=ΔE_k其中,W代表物体所受的合外力所做的功,ΔE_k代表物体动能的增量。
5.功和能的转化关系功是描述力对物体作用的一种量度,能是描述物体所具有的做工能力的一种物理量。
根据工作-能量定理,力所做的功等于物体所具有的能的增量:W=ΔE其中,W代表力所做的功,ΔE代表物体的能的增量。
6.重力加速度重力加速度描述了物体在重力作用下的加速度大小。
在地球表面附近,重力加速度的近似值为9.8m/s²。
7.动量定理动量定理描述了物体的动量与作用在其上的合力之间的关系。
它的公式形式为:F=Δp/Δt其中,F代表物体所受的合力,Δp代表物体动量的变化,Δt代表时间的变化。
8.能量守恒定律能量守恒定律描述了封闭系统中能量的总和保持不变的现象。
它的公式形式为:E_1+W=E_2其中,E_1代表初始时刻系统的总能量,W代表系统所做的外界功,E_2代表最终时刻系统的总能量。
以上是物理力学中一些常用的计算公式,这些公式为我们理解和解释物体的运动和受力提供了有力的工具。
在实际应用中,根据具体情况选择合适的公式进行计算,能够更准确地描述和预测物体的运动和受力情况。
力学实验常用计算公式
⼒学实验常⽤计算公式主画⾯荷重单位选择N 全程位移单位选择mm 2点延伸计单位选择mm最⼤荷重N公式=Fp 【最⼤荷重Fp】最⼤荷重时位全程移数据,最⼤荷重位移mm公式=Dp 【最⼤荷重位移Dp】最⼤荷重时全程位移延伸率,最⼤荷重延伸率%公式=Dp//Lg*100【最⼤荷重位移Dp除以标距Lg乘以100】最⼤荷重时2点延伸计的数据,最⼤荷重延伸mm 公式=Ep 【最⼤荷重时2点延伸计的数据Ep)注明:在电路板接有2点延伸计的情况下】最⼤荷重时2点延伸计延伸率,最⼤荷重2点延伸率%公式= Ep /Lg*100【最⼤荷重时2点延伸计的数据Ep除以标距Lg乘以100)注明:在电路板接有2点延伸计的情况下】断裂荷重N 公式=Fb 【断裂荷重Fb】断裂强度Mpa 公式=Fb/A 【断裂荷重Fb除以截⾯积A】断裂时全程位移数据,断点位移mm 公式= Db 【断裂时全程位移数据Db】断裂时全程位移延伸率,断裂延伸率计算⽅法1,伸长率% 公式1= Db /Lg*100 【断裂时全程位移数据Db除以标距Lg乘以100】断裂时全程位移延伸率,断裂延伸率计算⽅法2,伸长率% 公式2= Le/Lg*100 【伸长量Le除以标距Lg乘以100,伸长量Le是⾃动抓取的使⽤2点延伸计的时候Le抓取的是断裂时2点延伸计的数据,不使⽤2点延伸计的时候Le抓取的是断裂时全程位移的数据】断裂时2点延伸计的数据,断裂2点延伸mm 公式=Exb 【(断裂时2点延伸计的数据Exb)注明:在电路板接有2点延伸计的情况下】断裂时2点延伸率,断裂延伸率计算⽅法1,伸长率% 公式1= Exb /Lg*100 【断裂时2点延伸计的数据Exb除以标距Lg乘以100)注明:在电路板接有2点延伸计的情况下】断裂时2点延伸率,断裂延伸率算⽅法2,伸长率% 公式2=Le/Lg*100【伸长量Le除以标距Lg乘以100,伸长量Le是⾃动抓取的使⽤2点延伸计的时候Le抓取的是断裂时2点延伸计的数据,不使⽤2点延伸计的时候Le抓取的是断裂时全程位移的数据】抗拉强度,抗压强度,剥离强度,剪切强度Mpa 公式=Fp/A 【最⼤荷重Fp除以截⾯积A】撕裂强度N/mm 公式=Fp/T 【最⼤荷重Fp除以试样厚度T】扯断强度N/mm 公式=Fp/W 【最⼤荷重Fp除以试样宽度W】拉伸模量,压缩模量,弹性模量,杨⽒模量Mpa公式=El*Lg/A 【弹性系数El乘以标距Lg除以截⾯积A。
工程力学公式整理
工程力学公式整理工程力学(Engineering Mechanics)是一门研究力学原理在工程中的应用的学科。
它主要研究物体在受力作用下的运动和变形规律。
在工程学中,力学公式是进行分析和计算的基础。
下面是一些常见的工程力学公式整理。
1.力的合成与分解公式:力的合成公式:F = √(F₁² + F₂² + 2F₁F₂cosθ)力的分解公式:F₁ = Fcosθ, F₂ = Fsinθ其中,F为施于物体的合力,F₁、F₂为分解后的力,θ为施力与横坐标方向的夹角。
2.矩形截面惯性矩和抗弯应力公式:惯性矩公式:I=(b*h³)/12抗弯应力公式:σ=(M*y)/I其中,b和h分别为矩形截面的宽度和高度,I为截面的惯性矩,M 为弯矩,y为截面内其中一点的纵坐标。
3.应力和变形的关系公式:胡克定律公式:σ=Ee弹性模量公式:E=(F/A)/(ΔL/L₀)其中,σ为应力,E为弹性模量,F为受力,A为受力面积,ΔL为长度变化量,L₀为初始长度。
4.摩擦力公式:滑动摩擦力公式:F=μN滚动摩擦力公式:F=RμN其中,F为摩擦力,μ为摩擦系数,N为垂直于接触面的力,R为滚动半径。
5.动量和能量守恒公式:动量守恒公式:m₁v₁+m₂v₂=m₁v₁'+m₂v₂'动能公式:K = (1/2)mv²其中,m为物体的质量,v为物体的速度,v'为受撞物体的速度。
6.应力和应变的关系公式:杨氏模量公式:E=(σ/ε)横向收缩率公式:μ=-(ε₁/ε₂)泊松比公式:μ=-(ε₁/ε₂)其中,E为杨氏模量,σ为应力,ε为应变,μ为泊松比,ε₁为纵向应变,ε₂为横向应变。
这些力学公式是工程力学中常用的基本公式,用于解决各种工程问题。
通过运用这些公式,我们可以计算结构的受力情况、变形情况,进行力学分析和设计,保证工程的稳定性和安全性。
当然,工程力学的应用还远不止于此,还包括静力学、动力学、流体力学等等。
力学计算公式
力学计算公式常用力学计算公式统计一、材料力学:1.轴力(轴向拉压杆的强度条件)σmax=N max/A≤[σ]其中,N为轴力,A为截面面积2.胡克定律(应力与应变的关系)σ=Eε或△L=NL/EA其中σ为应力,E为材料的弹性模量,ε为轴向应变,EA为杆件的刚度(表示杆件抵抗拉、压弹性变形的能力)3.剪应力(假定剪应力沿剪切面是均匀分布的)τ=Q/A Q其中,Q为剪力,A Q为剪切面面积4.静矩(是对一定的轴而言,同一图形对不同的坐标轴的静矩不同,如果参考轴通过图形的形心,则x c=0,y c=0,此时静矩等于零)对Z轴的静矩S z=∫A ydA=y c A其中:S为静矩,A为图形面积,y c为形心到坐标轴的距离,单位为m3。
5.惯性矩对y轴的惯性矩I y=∫A z2dA其中:A为图形面积,z为形心到y轴的距离,单位为m4常用简单图形的惯性矩矩形:I x=bh3/12,I y=hb3/12圆形:I z=πd4/64空心圆截面:I z=πD4(1-a4)/64,a=d/D(一)、求通过矩形形心的惯性矩求矩形通过形心,的惯性矩I x=∫Ay2dAdA=b·dy,则I x=∫h/2-h/2y2(bdy)=[by3/3]h/2-h/2=bh3/12 (二)、求过三角形一条边的惯性矩W x=I x/y c其中I x为对形心轴的惯性矩9.抛物线形曲线的主要特性A.抛物线曲线的最大垂度f max=y max=-(qL2)/(8H)任意点垂度y=(x-L)qx/(2H)dy/dx=q×(2x-L)/2H式中:q—均布荷载;L—跨距;H—水平张力B、抛物线的切线倾角tgφx= dy/dx=q(2x-L)/2HC、抛物线的一个重要特性D、抛物线的长度S=L+8f max/3LE、在索自重与集中力作用下,索的最大垂度f max=(qL2)/(8H)cosβ+ QL/4H式中:q—均布荷载;L—跨度;H—水平张力;Q—集中荷载10.泊松比当杆件受拉沿纵向伸长时,横向则缩短;当杆件沿纵向压缩缩短时,横向则伸长。
理论力学公式
理论力学公式理论力学是物理学中重要的分支之一,它研究的是物质运动的规律以及力对物体运动的影响。
在理论力学中有很多重要的公式,下面将介绍一些较为常用的公式。
1.速度与位移的关系:速度(v)是一个物体在单位时间内所经过的位移(s)的变化率。
速度的公式可以表示为:v = ds/dt其中,v代表速度,s代表位移,t代表时间。
这个公式表明,速度等于位移的导数。
2.加速度和速度的关系:加速度(a)是一个物体在单位时间内速度(v)的变化率。
加速度的公式可以表示为:a = dv/dt其中,a代表加速度,v代表速度,t代表时间。
这个公式表明,加速度等于速度的导数。
3.牛顿第二定律:牛顿第二定律描述了力对物体运动的影响。
牛顿第二定律可以表示为:F = ma其中,F代表力,m代表物体的质量,a代表物体的加速度。
这个公式表明,物体受到的力等于其质量乘以加速度。
4.动能和功的关系:动能(K)是物体运动时所具有的能量。
根据定义,动能等于物体的质量乘以速度的平方的一半,即:K = (1/2)mv^2其中,K代表动能,m代表物体的质量,v代表物体的速度。
功(W)则描述了力对物体运动所做的功。
功的公式可以表示为:W = F·s·cosθ其中,W代表功,F代表力,s代表位移,θ代表力在位移方向上与位移的夹角。
这个公式表明,功等于力乘以位移乘以力在位移方向上的投影。
5.势能和力的关系:势能(U)是力学系统中保持的一种能量形式。
势能的公式可以表示为:U = -∫F·ds其中,U代表势能,F代表力,s代表位移。
这个公式表明,势能等于力对位移的负积分。
6.角动量和力矩的关系:角动量(L)是一个物体围绕一些点旋转时所具有的动量。
L=r×p其中,L代表角动量,r代表与旋转点的矢量距离,p代表物体的动量。
这个公式表明,角动量等于与旋转点的矢量距离与动量的叉乘。
力矩(τ)则描述了力对物体旋转的影响。
力矩的公式可以表示为:τ=r×F其中,τ代表力矩,r代表与旋转点的矢量距离,F代表力。
力学计算公式
力学计算公式Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】常用力学计算公式统计一、材料力学:1.轴力(轴向拉压杆的强度条件)σmax=N max/A≤[σ]其中,N为轴力,A为截面面积2.胡克定律(应力与应变的关系)σ=Eε或△L=NL/EA其中σ为应力,E为材料的弹性模量,ε为轴向应变,EA为杆件的刚度(表示杆件抵抗拉、压弹性变形的能力)3.剪应力(假定剪应力沿剪切面是均匀分布的)τ=Q/A Q其中,Q为剪力,A Q为剪切面面积4.静矩(是对一定的轴而言,同一图形对不同的坐标轴的静矩不同,如果参考轴通过图形的形心,则x c=0,y c=0,此时静矩等于零)对Z轴的静矩S z=∫A ydA=y c A其中:S为静矩,A为图形面积,y c为形心到坐标轴的距离,单位为m3。
5.惯性矩对y轴的惯性矩I y=∫A z2dA其中:A为图形面积,z为形心到y轴的距离,单位为m4常用简单图形的惯性矩矩形:I x=bh3/12,I y=hb3/12圆形:I z=πd4/64空心圆截面:I z=πD4(1-a4)/64,a=d/D(一)、求通过矩形形心的惯性矩求矩形通过形心,的惯性矩I x=∫Ay2dAdA=b·dy,则I x=∫h/2-h/2y2(bdy)=[by3/3]h/2-h/2=bh3/12 (二)、求过三角形一条边的惯性矩I x=∫Ay2dA,dA=b x·dy,b x=b·(h-y)/h则I x=∫h0(y2b(h-y)/h)dy=∫h0(y2b –y3b/h)dy=[by3/3]h0-[by4/4h]h0=bh3/126.梁正应力强度条件(梁的强度通常由横截面上的正应力控制)σmax=M max/W z≤[σ]其中:M为弯矩,W为抗弯截面系数。
7.超静定问题及其解法对一般超静定问题的解决办法是:(1)、根据静力学平衡条件列出应有的平衡方程;(2)、根据变形协调条件列出变形几何方程;(3)、根据力学与变形间的物理关系将变形几何方程改写成所需的补充方程。
物理力学计算公式
计算公式力学速度:v = t s , s = vt, t = v s质量:m =g G =ρv, ρ=V m , V=m重力:G = mg =ρgV,压强:P=S F , F=PS固体平放:F=G, P=SG 液体: P=ρgh, F=PS 浮力:F 浮= G-F (称重法)F 浮=ρ液gV 排= ρ液gV 浸 =ρ液gSh 浸 F 浮=F 向上-F 向下漂浮:F 浮=G 物功: W= Fs= Pt功率: P= t W = Fv杠杆平衡: F 1l 1=F 2l 2 或 21F F = 12l l滑轮组机械效率:η= 总有W W =Fs Gh =Fnh Gh =Fn G W 有=Gh ,W 总=Fs ,s=nh斜面机械效率:η= 总有W W =Gh FL W 有=Gh ,W 总=FL滑轮组省力情况:不考虑滑轮重力和摩擦时:F=n 1G物不考虑摩擦时:F=n 1(G 物+ G 轮) 线的末端移动的距离与动滑轮移动距离的关系:s=nh二、常量、常识、单位换算1m=109nm; 1g/cm 3= 103 kg/m 31m/s= 3.6 km/h中学生的质量: 50kg 。
一本物理课本的质量: 300g ;纯水的密度:1000kg/m 3或1g/cm 3 ;一个鸡蛋的重量: 0.5N ;课桌的高度约: 80cm ;每层楼的高度约: 3m ; ρ铜 > ρ铁 > ρ铝(填“>”或“<”)一个标准大气压=1.013×105Pa=760 mmHg;(1)密度、质量、体积的关系:ρ﹦m/V ,m=ρV,V= m/ρρ---密度--- Kg/m3 (千克每立方米)、m--- 质量--- Kg(千克)、 V----体积--- m3 (立方米)(2)速度、路程、时间的关系:v﹦s/t ,s=vt,t= s/vv---速度--- m/s(米每秒)、 s--- 路程---- m(米)、t---时间----s(秒)(3)重力、质量的关系:G=mg,m=G/g ,g=G/mG----重力---- N(牛顿)、 m ---质量--- Kg(千克),g=9.8N/Kg(4)杠杆的平衡条件:F1 ×L1 = F2 ×L2F1---动力--- 牛(N)、L1---动力臂---米(m)、F2---阻力---牛(N)、L2---阻力臂---米(m)(5)滑轮组计算:F= (1/n)G,s=nhF---拉力--- N(牛顿)、G----物体重力--- N(牛顿)、n----绳子的段数、s----绳移动的距离--- m(米)、h---物体移动的距离--- m(米)(6)压强的定义式:p= F/S(适用于任何种类的压强计算),F=pS,S=F/pp---- 压强--- Pa(帕)、F---压力---- N(牛顿)、S--- 受力面积--- m2 (平方米)(7)液体压强的计算:p = ρgh,ρ= p/gh,h=p/ρgp---压强--- Pa(帕)、ρ---液体密度--- Kg/m3 (千克每立方米)、g=9.8N/Kg、h---液体的深度--- m(米如有侵权请联系告知删除,感谢你们的配合!。
物理力学常用公式
物理力学常用公式物理力学是物理学的一个分支,研究物体的运动、力和能量等基本概念。
在物理力学中,有许多常用的公式可以帮助我们计算和解决各种物理问题。
下面是一些物理力学中常见的公式:1.速度公式:速度(V)=位移(s)/时间(t)v=s/t2.加速度公式:加速度(a)=速度变化量(Δv)/时间(t)a=Δv/t3.力的定义:力(F)=质量(m)×加速度(a)F=m×a4.动能公式:动能(K)=1/2×质量(m)×速度平方(v^2)K=1/2×m×v^25.势能公式:势能(U)=质量(m)×重力加速度(g)×高度(h)U=m×g×h6.动能和势能的关系:机械能(E)=动能(K)+势能(U)E=K+U7.动量公式:动量(p)=质量(m)×速度(v)p=m×v8.冲量公式:冲量(J)=力(F)×时间(t)J=F×t9.牛顿第二定律:力(F)=质量(m)×加速度(a)F=m×a10.牛顿第三定律:作用力(F1)=反作用力(F2)11.开普勒第二定律:行星与太阳的连线所扫过的面积和时间的乘积是一常数。
12.动能定理:动能(K)=力(F)×位移(s)K=F×s13.圆周运动的速度公式:速度(v)=2π×半径(r)×频率(f)v=2π×r×f14.圆周运动的加速度公式:加速度(a)=4π^2×半径(r)×频率(f)的平方a=4π^2×r×f^215.牛顿引力公式:引力(F)=万有引力常数(G)×(质量1(m1)×质量2(m2))/距离的平方(r^2)F=G×(m1×m2)/r^216.位移公式:位移(s)=初速度(u)×时间(t)+(1/2×加速度(a)×时间(t)的平方)s = ut + (1/2) × a × t^2这只是物理力学中的一些常用公式,根据不同的情况,还有很多其他的公式可以用来解决各种物理问题。
力学中各种公式的计算
力学中各种公式的计算力学是物理学的一个重要分支,研究物体受力的规律及其运动状态。
在力学中,有许多重要的公式用于计算各种物理量。
在本文中,我将为您介绍力学中一些常用的公式,并提供相应的计算方法。
1. 力的公式(F=ma):力(F)等于物体的质量(m)乘以物体的加速度(a)。
这个公式用于计算物体所受的力。
如果已知物体的质量和加速度,可以通过乘法运算得到物体所受的力。
2. 动能的公式(K=½mv²):动能(K)等于物体的质量(m)乘以物体的速度的平方(v²)再除以2、这个公式用于计算物体的动能。
如果已知物体的质量和速度,可以通过乘法和除法运算得到物体的动能。
3. 动量的公式(p=mv):动量(p)等于物体的质量(m)乘以物体的速度(v)。
这个公式用于计算物体的动量。
如果已知物体的质量和速度,可以通过乘法运算得到物体的动量。
4.力与位移的公式(W=Fs):力(F)等于物体所受的作用力,位移(s)是物体移动的距离。
这个公式用于计算力对物体进行的位移所做的功(W)。
如果已知力和位移,可以通过乘法运算得到功。
5.功率的公式(P=W/t):功率(P)等于做功(W)的速率。
这个公式用于计算物体的功率。
如果已知做功和时间,可以通过除法运算得到功率。
6.动能定理(W=ΔK):根据动能定理,当物体受到合力的作用时,物体的动能会发生变化,动能的变化等于合外力(W)对物体所做的功。
这个公式用于计算物体动能的变化。
如果已知外力和动能的变化,可以通过等式计算功。
7. 运动学方程(v=u+at):当物体的初速度(u)、加速度(a)和时间(t)已知时,可以使用运动学方程计算物体的末速度(v)。
根据公式,最终速度等于初速度加上加速度乘以时间。
8. 自由落体公式(h=½gt²):自由落体公式用于计算自由落体运动中物体的下落距离(h)。
根据公式,下落距离等于重力加速度(g)的一半乘以时间的平方。
物理力学计算公式
物理力学计算公式物理力学是研究物体运动和相互作用的学科,其中包括了许多计算公式。
下面将介绍一些常见的物理力学计算公式。
1.力的计算公式力(F)是物体运动状态的直接原因,其计算公式为:F=m*a其中,m表示物体的质量,a表示物体的加速度。
根据牛顿第二定律,物体所受的力与物体的加速度成正比。
2.动量的计算公式动量(p)是物体运动状态的另一个重要量,其计算公式为:p=m*v其中,v表示物体的速度。
动量可以表示物体的运动状态和相互作用的强度。
3.动能的计算公式动能(K)是物体由于运动而具有的能量,其计算公式为:K=1/2*m*v^2其中,m表示物体的质量,v表示物体的速度。
动能与物体的质量和速度的平方成正比。
4.功的计算公式功(W)表示力对物体所做的功或能量转换的量,其计算公式为:W = F*d*cosθ其中,F表示施加力的大小,d表示物体的位移,θ表示力和物体位移之间的夹角。
功与施加力、位移和夹角有关。
5.功率的计算公式功率(P)表示单位时间内所做的功或能量转换的速率,其计算公式为:P=W/t其中,W表示做的功,t表示时间。
功率与所做功和时间成正比。
6.重力的计算公式物体受到的重力(Fg)是由于地球质量引起的,其计算公式为:Fg=m*g其中,m表示物体的质量,g表示重力加速度。
重力对物体产生的影响与质量和重力加速度成正比。
7.弹簧力的计算公式弹簧力(Fs)是弹簧受力的大小,其计算公式为:Fs=-k*x其中,k表示弹簧的弹性系数,x表示弹簧的伸长或压缩距离。
弹簧力与弹簧的弹性系数和伸长或压缩距离成正比。
8.圆周运动力学公式对于进行圆周运动的物体,有以下两个力学公式:a=v^2/rv=ω*r其中,a表示物体的向心加速度,v表示物体的速度,r表示物体运动的半径,ω表示物体围绕圆心的角速度。
9.转动惯量的计算公式转动惯量(I)表示物体对于旋转运动的惯性,其计算公式根据不同的刚体形状而有所不同。
例如,对于旋转轴在质心上的球体,其计算公式为:I=2/5*m*r^2其中,m表示球体的质量,r表示球体的半径。
常用力学公式总结
1、胡克定律:F = Kx (x为伸长量或压缩量,K为倔强系数,只与弹簧的原长、粗细和材料有关)2、重力:G = mg (g随高度、纬度而变化)力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离)5、摩擦力的公式:(1 ) 滑动摩擦力:f=μN说明:a、N为接触面间的弹力,可以大于G;也可以等于G;也可以小于G 为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面μb、积大小、接触面相对运动快慢以及正压力N无关.(2 ) 静摩擦力:由物体的平衡条件或牛顿第二定律求解,与正压力无关.fm (fm为最大静摩擦力,与正压力有关)≤ f静≤大小范围:O说明:a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角。
b、摩擦力可以作正功,也可以作负功,还可以不作功。
c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。
d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。
Vg (注意单位)ρ6、浮力:F=7、万有引力:F=GmM/r²(1).适用条件(2) .G为万有引力恒量(3) .在天体上的应用:(M一天体质量R一天体半径g一天体表面重力加速度)a 、万有引力=向心力Gb、在地球表面附近,重力=万有引力mg=GmM/r²c、第一宇宙速度mg = m V=8、库仑力:F=K (适用条件)9、电场力:F=qE (F 与电场强度的方向可以相同,也可以相反)10、磁场力:(1)洛仑兹力:磁场对运动电荷的作用力。
V) 方向一左手定⊥公式:f=BqV (B(2)安培力:磁场对电流的作用力。
I)方向一左手定则⊥公式:F= BIL (BFy = m ay∑Fx = m ax ∑11、牛顿第二定律:F合= ma 或者理解:(1)矢量性(2)瞬时性(3)独立性(4)同一性12、匀变速直线运动:基本规律:Vt = V0 + a t S = vo t + a t2几个重要推论:(1) Vt2 -V02 = 2as (匀加速直线运动:a为正值匀减速直线运动:a为正值)(2) A B段中间时刻的即时速度:Vt/ 2 = = A S a t B(3) AB段位移中点的即时速度:Vs/2 =匀速:Vt/2 =Vs/2 ; 匀加速或匀减速直线运动:Vt/2 <Vs/2(4) 初速为零的匀加速直线运动,在1s 、2s、3s¬……ns内的位移之比为12:22:32……n2;在第1s 内、第2s内、第3s内……第ns内的位移之比为1:3:5…… (2n-1); 在第1米内、第2米内、第3米内……第n米内的时间之比为1::……((5) 初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位s = aT2 (a一匀变速直线运动的加速度T一每个时间间隔的时间)∆移之差为一常数:13、竖直上抛运动:上升过程是匀减速直线运动,下落过程是匀加速直线运动。
力学计算公式
常用力学计算公式统计一、材料力学:1. 轴力(轴向拉压杆的强度条件)(T ma)=Nn aX A W [ (T ]其中,N 为轴力,A 为截面面积2. 胡克定律(应力与应变的关系)T =E E或厶L=NL/EA其中T为应力,E为材料的弹性模量,E为轴向应变,EA为杆件的刚度(表示杆件抵抗拉、压弹性变形的能力)3. 剪应力(假定剪应力沿剪切面是均匀分布的)T =Q/A Q其中,Q为剪力,A Q为剪切面面积4. 静矩(是对一定的轴而言,同一图形对不同的坐标轴的静矩不同, 如果参考轴通过图形的形心,则x c=0,y c=0,此时静矩等于零)对Z轴的静矩S z=/ A ydA=y c A其中:S为静矩,A为图形面积,y c为形心到坐标轴的距离,单位为m3。
5. 惯性矩对y轴的惯性矩I y= / A Z2dA其中:A 为图形面积,z 为形心到y 轴的距离,单位为m常用简单图形的惯性矩矩形:l x=bh3/12 , l y=hb3/12圆形:l z=n d4/64空心圆截面:l z=n D4(1-a4) /64 , a=d/D(一)、求通过矩形形心的惯性矩求矩形通过形心,的惯性矩I x= / Ay dAdA=b - dy,贝U l x=/h/2-h/2 y2( bdy) =[by 3/3] h/2-h/2 =bh3/12(二)、求过三角形一条边的惯性矩I x=/ Ay2dA, dA=b • dy, b x=b • ( h-y ) /h则I x= / h o (y2b ( h-y ) /h ) dy= j h o (y2b —y3b/h ) dy =[by3/3]ho-[by 4/4h] h o=bh3/126. 梁正应力强度条件(梁的强度通常由横截面上的正应力控制)W [ (T ](T maX=M La/Hi Z其中:M为弯矩,W为抗弯截面系数。
7. 超静定问题及其解法对一般超静定问题的解决办法是:(1 )、根据静力学平衡条件列出应有的平衡方程;(2)、根据变形协调条件列出变形几何方程;(3)、根据力学与变形间的物理关系将变形几何方程改写成所需的补充方程。
力学常用计算公式
力学常用计算公式1. 牛顿第二定律牛顿第二定律表明,物体的加速度和作用在其上的合力成正比,反比于物体的质量。
公式为:\[ F = ma \]其中,\( F \) 是物体所受的合力(单位:牛顿),\( m \) 是物体的质量(单位:千克),\( a \) 是物体的加速度(单位:米/秒²)。
2. 动能定理动能定理描述了物体的动能与其所受的合力做功之间的关系。
公式为:\[ W = \frac{1}{2}mv^2 \]其中,\( W \) 是合力对物体所做的功(单位:焦耳),\( m \)是物体的质量(单位:千克),\( v \) 是物体的速度(单位:米/秒)。
3. 力的合成当一个物体受到多个力的作用时,这些力可以合成为一个等效的力。
合成力的大小和方向可以通过矢量相加得到。
如果有两个力\( F_1 \) 和 \( F_2 \),合成力 \( F_{\text{合成}} \) 的大小和方向可以通过以下公式计算:\[ F_{\text{合成}} = \sqrt{{F_1}^2 + {F_2}^2 +2F_1F_2\cos{\theta}} \]其中,\( \theta \) 是 \( F_1 \) 和 \( F_2 \) 之间的夹角(单位:弧度)。
4. 万有引力定律万有引力定律描述了两个物体之间的引力与它们的质量和距离的关系。
公式为:\[ F = G\frac{m_1m_2}{r^2} \]其中,\( F \) 是两个物体之间的引力(单位:牛顿),\( G \) 是万有引力常数(约等于 \( 6. \times 10^{-11} \, \text{m}^3 \,\text{kg}^{-1} \, \text{s}^{-2} \)),\( m_1 \) 和 \( m_2 \) 是两个物体的质量(单位:千克),\( r \) 是两个物体之间的距离(单位:米)。
5. 力矩公式力矩是描述力对物体产生转动效果的物理量。
工程常用计算资料及公式
工程常用计算资料及公式在工程领域,常用计算资料及公式非常重要,它们可以帮助工程师解决各种问题和优化设计。
以下是一些常用的计算资料及公式。
1.工程力学-力等于质量乘以加速度:F = ma-力矩等于力乘以力臂:M=Fd-应力等于力除以面积:σ=F/A-应变等于变形除以初始尺寸:ε=ΔL/L-杨氏模量等于应力除以应变:E=σ/ε-密度等于质量除以体积:ρ=m/V2.静力学-万有引力定律:F=G(m1m2/r^2)-压力等于力除以面积:P=F/A-浮力等于体积乘以液体密度乘以重力加速度:F=ρVg3.材料力学-杨氏模量(弹性模量):E=σ/ε-屈服应力:σy-断裂应力:σf-断裂伸长率:A%-泊松比:v4.流体力学-连续性方程:A1v1=A2v2-质量流率:ṁ=ρAv-动量守恒定律:F=Δp/Δt=ṁ(v2-v1)-伯努利方程:P + 0.5ρv^2 + ρgh = 常数5.热力学-热传导定律:Q=kA(ΔT/Δx)-热功公式:W=PΔV-理想气体状态方程:PV=nRT-热效率:η=W/Q6.电学-欧姆定律:V=IR-功率公式:P=IV-电阻公式:R=ρL/A-电容公式:C=Q/V7.结构力学-弯曲力矩:M=FL-悬臂梁最大弯曲应力:σmax = 3FL/2bd^28.照明工程-照度公式:E = F/(Acosθ)-灯具功率计算:P=E×A/η9.水力学-窄缝流量公式:Q = (2gh)^0.5×b×L/12-斜坡水射流距离:D=(K×Q^2/g)^0.33310.传热-对流传热公式:Q=hA(Ts-T∞)-热导率公式:Q=kA(ΔT/ΔX)以上是一些常用的计算资料及公式,用于解决和优化各种工程问题。
这些公式和资料在工程实践中非常有用,可以帮助工程师进行设计、分析和优化。
工程师应始终熟悉这些公式,并根据具体情况进行适当的应用。
常用计算公式
1、速度:V=S/t2、重力:G=mg3、密度:ρ=m/V4、压强:p=F/S5、液体压强:p=ρgh6、浮力:(1)、F浮=F’-F (压力差)(2)、F浮=G-F (视重力)(3)、F浮=G (漂浮、悬浮)(4)、阿基米德原理:F浮=G排=ρ液gV排7、杠杆平衡条件:F1 L1=F2 L28、理想斜面:F/G=h/L9、理想滑轮:F=G/n10、实际滑轮:F=(G+G动)/ n (竖直方向)11、功:W=FS=Gh (把物体举高)12、功率:P=W/t=FV13、功的原理:W手=W机14、实际机械:W总=W有+W额外15、机械效率:η=W有/W总16、滑轮组效率:(1)、η=G/ nF(竖直方向)(2)、η=G/(G+G动) (竖直方向不计摩擦)(3)、η=f / nF (水平方向)【热学部分】1、吸热:Q吸=Cm(t-t0)=CmΔt2、放热:Q放=Cm(t0-t)=CmΔt3、热值:q=Q/m4、炉子和热机的效率:η=Q有效利用/Q燃料5、热平衡方程:Q放=Q吸6、热力学温度:T=t+273K【电学部分】1、电流强度:I=Q电量/t2、电阻:R=ρL/S3、欧姆定律:I=U/R4、焦耳定律:(1)、Q=I2Rt普适公式)(2)、Q=UIt=Pt=UQ电量=U2t/R (纯电阻公式)5、串联电路:(1)、I=I1=I2(2)、U=U1+U2(3)、R=R1+R2(4)、U1/U2=R1/R2 (分压公式)(5)、P1/P2=R1/R26、并联电路:(1)、I=I1+I2(2)、U=U1=U2(3)、1/R=1/R1+1/R2 [ R=R1R2/(R1+R2)](4)、I1/I2=R2/R1(分流公式) (5)、P1/P2=R2/R17定值电阻:(1)、I1/I2=U1/U2(2)、P1/P2=I12/I22(3)、P1/P2=U12/U228电功:(1)、W=UIt=Pt=UQ (普适公式) (2)、W=I2Rt=U2t/R (纯电阻公式) 9电功率:(1)、P=W/t=UI (普适公式) (2)、P=I2R=U2/R (纯电阻公式)。
力学公式总结
力学公式总结力学是物理学的一个重要分支,研究物体在外界作用下的运动和力的关系。
在力学研究中,有许多核心的公式被广泛使用。
本文档将总结一些常见的力学公式,并提供其含义和应用场景。
1. 牛顿第一定律牛顿第一定律又被称为惯性定律,它规定如果没有外力作用于物体,物体将保持匀速直线运动或静止状态。
公式:F = 0应用:在没有外力的情况下,物体的加速度为零,速度保持不变。
2. 牛顿第二定律牛顿第二定律描述了物体在外力作用下的加速度与所受力的关系。
公式:F = ma其中,F为作用于物体的力,m为物体的质量,a为物体的加速度。
应用:通过测量物体的质量和所受力,可以计算出物体的加速度。
3. 牛顿第三定律牛顿第三定律也被称为作用反作用定律,它规定对于任意两个物体,彼此之间的作用力大小相等、方向相反。
公式:F₁ = -F₂其中,F₁和F₂分别表示两个物体之间的作用力。
应用:当物体受到外界力的作用时,会对其他物体产生相等大小、方向相反的力。
4. 动能公式动能是物体运动时拥有的能量,它与物体的质量和速度有关。
公式:K = (1/2)mv²其中,K为动能,m为物体的质量,v为物体的速度。
应用:可以通过测量物体的质量和速度,计算出物体的动能。
5. 动量定理动量定理描述了物体受到外力作用时动量的变化。
公式:FΔt = Δp = mΔv其中,F为作用力,Δt为作用时间,Δp为动量的变化量,m为物体的质量,Δv为速度的变化量。
应用:可以通过测量作用力、作用时间和物体质量,计算出物体的动量变化量。
6. 弹力公式弹力是一种恢复性力,当物体受到压缩、拉伸或弯曲时产生。
公式:F = kΔx其中,F为弹力,k为弹簧常数,Δx为物体弹性变形的位移量。
应用:通过测量弹簧常数和物体弹性变形的位移量,可以计算出物体所受的弹力。
7. 万有引力定律万有引力定律描述了两个物体之间的引力大小与它们的质量和距离的关系。
公式:F = G(m₁m₂/r²)其中,F为引力,G为万有引力常数,m₁和m₂为两个物体的质量,r为两个物体之间的距离。
力学公式大全
1、力学公式大全
2、热学公式
吸收热Q吸=cm(t-t0)放出热量:Q放=cm(t0-t)Array燃料放出的热量:Q燃放=qm(固体燃料)、Q燃放=qV(气体燃料)
3、电学公式大全
4、串、并联电路的特点
5、透镜三条特殊光路:
⑴凸透镜的三条特殊光线(见图3)
①平行于主光轴的光线经凸透镜折射后通过焦点;②经过焦点的光线被凸透镜折射后与主光轴平行;③通过光心的光线传播方向不改变.
⑵凹透镜的三条特殊光线(见图4)
①平行于主光轴的光线经凹透镜折射后发散,其反向延长线通过焦点;②射向凹透镜焦点的光线被凹透镜折射后与主光轴平行;③通过光心的光线传播方向不改变.
6
7、凸透镜成像的动态规律
“一焦分虚实、二焦分大小、虚像同侧正、实像异侧倒、物远像近像变小、物近像远像变大.” 一倍焦距是实像和虚像的分界点,以内是虚像,以外是实像;二倍焦距实像的大小分界点,以内是放大的像,以外是缩小的像;在成实像的前提下,物体向远离透镜方向移动时,所成的像向靠近透镜方向移动,并且是逐渐变小的;物体向靠近透镜方向移动时,所成的像向远离透镜方向移动,并且是逐渐变大的.
8、(1)计算固体的压力和压强,一般情况下,先有G F =算出压力,再由S
F
P =
计算出压强,特别注意公式中“S ”指的是“受压”面积,不能和物体的表面积混为一谈.
(2)计算液体压力和压强,通常先有gh P 液ρ=求出压强,再由PS F =求出压力,对于容器对水平面的压强,应把容器和它盛的液体看作一个整体,按固体压强计算思路进行计算.
图3
图4。
工程力学必备公式
工程力学必备公式
工程力学必备公式包括:
1. 轴向拉压杆件截面正应力NFAσ =,强度校核max[ ]σσ≤。
2. 轴向拉压杆件变形Ni iiF llEA∆ =∑。
3. 伸长率:1100%lllδ−=×,断面收缩率:1100%AAAψ−=×。
4. 胡克定律:Eσε=,泊松比:' ευε= −,剪切胡克定律:Gτγ=。
5. 扭转切应力表达式:TIρρτρ=,最大切应力:maxPPTTRIWτ==,
PdIπα−=,PdWπα−=,强度校核:maxmax[ ]τPTWτ=≤。
6. 单位扭转角:PdTdxGIϕθ ==,刚度校核:maxmax[ ]θPTGIθ=≤,长度为l 的一段轴两截面之间的相对扭转角PTlGIϕ=,扭转外力偶的计算公式:( /min)r9549KWpMen=。
7. 薄壁圆管的扭转切应力:20δ2πTRτ=。
8. 平面应力状态下的切应力公式:T1=σtanα,T2=σtanβ,其中α和β分别是与x1和x2轴的夹角。
这些公式在工程力学中经常用到,可以用来解决许多实际问题。
如需获取更多信息,建议查阅工程力学书籍或咨询专业人士。
力学运动学公式
力学运动学公式
以下是部分力学运动学公式:
1. 平均速度公式:V=S/t,其中V表示平均速度,S表示位移,t表示时间。
2. 匀变速直线运动的平均速度公式:V=(v1+v2)/2,其中v1和v2分别是
初速度和末速度,V是平均速度。
3. 加速度定义式:a=(v2-v1)/t,其中a是加速度,v2是末速度,v1是初
速度,t是时间。
4. 牛顿第二定律:F合=ma或a=F合/ma,其中F合表示合外力,m表
示质量,a表示加速度。
5. 共点力的平衡:F合=0,推广有正交分解法、三力汇交原理。
6. 超重和失重的公式:超重时,FN>G;失重时,FN<G。
其中FN表示支
持力,G表示重力。
以上公式仅供参考,如需更多公式,建议查阅相关资料或咨询专业人士。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计过程及计算一、提升装置提升力(伸长力)计算因活塞两侧受力面积相等,所以,F 提升=F 伸长=P ·A =P ·[0.25×π×(D 22 –D 12)]=35MPa ×[0.25×3.14×(1662-95.52)]mm 2 =506522N ≈506.5KNF 提升>500KN ,满足设计要求。
式中:● P :提升装置额定工作压力,取35MPa ● F 提升 :提升装置额定提升力,单位N ● F 伸长:提升装置额定伸长力,单位N● A :受力面积,单位mm 2 ● D1:受力面外径,为166mm ● D2:受力面内径,为95.5mm二、传压管耐压强度校核1、传压管抗内压强度校核根据套管(D/δ>14)抗内压计算公式Dn P sδσ2=,得 )(4.4835875.02183352mm n PD s =⨯⨯⨯==σδ, δ小于实际设计壁厚8.5mm ,满足抗内压强度要求。
式中:● Pmax :管内最高工作压力,单位MPa ,此处取Pmax =35MPa ● D :管外径,单位mm● σs :材料屈服极限,单位MPa ,材料为35CrMo ,取σs =835MPa ● P :管子抗内压强度的压力,单位MPa ,● n :安全系数,一般按壁厚的12.5%的负公差,取n =0.8752、传压管抗外压强度校核根据套管(D/δ>14)抗外压计算公式)046.0/503.2(-=δσD n P s ,得 =+=503.2/)]046.0([sn P D σδ7.44mmδ小于实际设计壁厚8.5mm ,满足抗外压强度要求。
式中:● Pmax :管内最高工作压力,单位MPa ,此处取Pmax =35 MPa ● D :管外径,单位mm● σs :材料屈服极限,单位MPa ,材料为35CrMo ,取σs =835MPa ● P :管子抗外压强度的压力,单位MPa , ● n :安全系数,取n =0.75三、下壳体耐压强度校核1、下壳体抗内压强度校核根据套管(D/δ>14)抗内压计算公式Dn P sδσ2=,得 )(91.4835875.02205352mm n PD s =⨯⨯⨯==σδ, δ小于实际设计壁厚10mm ,满足抗内压强度要求。
式中:● Pmax :管内最高工作压力,单位MPa ,此处取Pmax =35MPa ● D :管外径,单位mm● σs :材料屈服极限,单位MPa ,材料为35CrMo ,取σs =835MPa ● P :管子抗内压强度的压力,单位MPa ,● n :安全系数,一般按壁厚的12.5%的负公差,取n =0.8752、下壳体抗外压强度校核根据套管(D/δ>14)抗外压计算公式)046.0/503.2(-=δσD n P s ,得=+=503.2/)]046.0([sn P D σδ8.34mmδ小于实际设计壁厚10mm ,满足抗外压强度要求。
式中:● Pmax :管内最高工作压力,单位MPa ,此处取Pmax =35MPa ● D :管外径,单位mm● σs :材料屈服极限,单位MPa ,材料为35CrMo ,取σs =835MPa ● P :管子抗外压强度的压力,单位MPa , ● n :安全系数,取n =0.75四、提升装置上顶安全性校核根据管柱及井口装置结构,当提升装置伸长使管柱上顶是,上顶力通过油管挂作用在采油树上,所以根据采油树法兰与井口装置连接处螺栓强度进行强度校核。
当采油树法兰与井口装置连接处承受最大上顶力时,每根螺栓承受的上顶力为:N NF F 422081250650012==伸长每根=1、螺纹副抗挤压强度校核根据抗挤压强度计算要求][p p AFσσ≤=, 挤压应力)(18103541.0051.4614.342208MPa AF p =⨯⨯⨯⨯==每根σ许用挤压应力[σp ]=MPa MPaSs1782355==σ因][p p σσ<,所以,满足抗挤压强度校核。
式中:● σp :挤压应力,单位MPa ● [σp]:许用挤压应力,单位MPa● S :安全系数,静载荷工况下,S=2~1.3,此处取S =2 ● A :挤压面积,单位mm 2,A=πd 2hz ● h :螺纹工作高度,单位mm, h=P P 541.01635=(普通螺纹) 2、螺纹副抗剪切强度校核因为当外螺纹与内螺纹材质相同时,公螺纹首先破坏,所以这里只对外螺纹进行强度校核。
由][6.0][στ=,S[]Sσσ=得,MPa 107][=τ公螺纹所受剪切应力为:)(1310375.0752.4414.3422081MPa bz d F =⨯⨯⨯⨯==πτ][ττ<,满足剪切强度要求。
式中:● [τ]:许用剪切应力,单位MPa ● [σ]:许用拉应力,单位MPa ● τ:剪切应力,单位MPa● b :螺纹牙底宽度,单位mm ,b=0.75p (普通螺纹) ● S :安全系数,静载荷工况下,S=2~1.3,此处取S =2综上所述,当采油树法兰与井口装置连接处承受最大上顶力时,螺栓连接强度满足强度要求。
五、零件1(上接头)与零件2(上壳体)连接处螺纹副强度校核螺纹副参数表材质名称35CrMo螺距p (mm )31、螺纹副抗挤压强度校核根据抗挤压强度计算要求][p p AFσσ≤=, 挤压应力)(113133541.0051.13314.31000000MPa A F p =⨯⨯⨯⨯==σ 许用挤压应力[σp ]=MPa MPaSs3802.2835==σ 因][p p σσ<,所以,满足抗挤压强度校核。
式中:● σp :挤压应力,单位MPa ● [σp]:许用挤压应力,单位MPa ● S :安全系数, 因85.0980835==MPa MPab s σσ(对于塑性材料,bs σσ=0.45~0.5,S=1.2~1.5;b s σσ=0.55~0.7,S=1.4~1.8;bs σσ=0.7~0.9,S=1.7~2.2),此处取S =2.2● A :挤压面积,单位mm 2,A=πd 2hz ● h :螺纹工作高度,单位mm, h=P P 541.01635=(普通螺纹) 2、螺纹副抗剪切强度校核因为当外螺纹与内螺纹材质相同时,外螺纹首先破坏,所以这里只对外螺纹进行强度校核。
由][6.0][στ=,S[]Sσσ=得,MPa 167][=τ公螺纹所受剪切应力为:)(8313375.0752.13114.310000001MPa bz d F =⨯⨯⨯⨯==πτ][ττ<,满足剪切强度要求。
式中:● [τ]:许用剪切应力,单位MPa ● [σ]:许用拉应力,单位MPa ● τ:剪切应力,单位MPa● b :螺纹牙底宽度,单位mm ,b=0.75p (普通螺纹) ● S :安全系数,一般取S =3~5,此处取S=3 3、螺纹副自锁性能校核 螺旋升角:︒===41.0tan tan22d np a d S a ππψ 当量摩擦角:︒===24.7)tan(cos tanv v f a fa βψv ψψ<,满足自锁性能要求。
式中:● ψ:螺旋升角,在中径圆柱面上螺旋线的切线与垂直于螺旋线轴线的平面的夹角,单位度 ●vψ:当量摩擦角,单位度● β:牙型斜角,螺纹牙型的侧边与螺纹轴线的垂直平面的夹角,对称牙型2αβ=● vf :螺旋副的当量摩擦系数,无量纲,βcos ff v =六、零件6(连接接头)与零件8(上连接体)连接处螺纹副强度校核螺纹副参数表1、螺纹副抗挤压强度校核根据抗挤压强度计算要求][p p AFσσ≤=, 挤压应力)(78153541.0051.16814.31000000MPa A F p =⨯⨯⨯⨯==σ 许用挤压应力[σp ]=MPa MPaSs3802.2835==σ 因][p p σσ<,所以,满足抗挤压强度校核。
式中:● σp :挤压应力,单位MPa ● [σp]:许用挤压应力,单位MPa ● S :安全系数, 因85.0980835==MPa MPab s σσ(对于塑性材料,bs σσ=0.45~0.5,S=1.2~1.5;b s σσ=0.55~0.7,S=1.4~1.8;bs σσ=0.7~0.9,S=1.7~2.2),此处取S =2.2● A :挤压面积,单位mm 2,A=πd 2hz ● h :螺纹工作高度,单位mm, h=P P 541.01635=(普通螺纹) 2、螺纹副抗剪切强度校核因为当外螺纹与内螺纹材质相同时,外螺纹首先破坏,故这里只对外螺纹进行强度校核。
由][6.0][στ=,S[]Sσσ=得,MPa 167][=τ公螺纹所受剪切应力为:)(5715375.0752.16614.310000001MPa bz d F =⨯⨯⨯⨯==πτ][ττ<,满足剪切强度要求。
式中:● [τ]:许用剪切应力,单位MPa ● [σ]:许用拉应力,单位MPa ● τ:剪切应力,单位MPa● b :螺纹牙底宽度,单位mm ,b=0.75p (普通螺纹) ● S :安全系数,一般取S =3~5,此处取S=3 3、螺纹副自锁性能校核 螺旋升角:︒===33.0tan tan22d np a d S a ππψ 当量摩擦角:︒===24.7)tan(cos tanv v f a fa βψ v ψψ<,满足自锁性能要求。
式中:● ψ:螺旋升角,在中径圆柱面上螺旋线的切线与垂直于螺旋线轴线的平面的夹角,单位度 ●vψ:当量摩擦角,单位度● β:牙型斜角,螺纹牙型的侧边与螺纹轴线的垂直平面的夹角,对称牙型2αβ=● vf :螺旋副的当量摩擦系数,无量纲,βcos f f v =七、零件8(上连接体)与零件12(下壳体)连接处螺纹副强度校核1、螺纹副抗挤压强度校核根据抗挤压强度计算要求][p p AFσσ≤=, 挤压应力)(80133541.0051.18814.31000000MPa A F p =⨯⨯⨯⨯==σ 许用挤压应力[σp ]=MPa MPaSs3802.2835==σ 因][p p σσ<,所以,满足抗挤压强度校核。
式中:● σp :挤压应力,单位MPa ● [σp]:许用挤压应力,单位MPa ● S :安全系数, 因85.0980835==MPa MPab s σσ(对于塑性材料,bs σσ=0.45~0.5,S=1.2~1.5;b s σσ=0.55~0.7,S=1.4~1.8;bs σσ=0.7~0.9,S=1.7~2.2),此处取S =2.2● A :挤压面积,单位mm 2,A=πd 2hz ● h :螺纹工作高度,单位mm, h=P P 541.01635=(普通螺纹) 2、螺纹副抗剪切强度校核因为当外螺纹与内螺纹材质相同时,外螺纹首先破坏,故这里只对外螺纹进行强度校核。