高数周期函数例题
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高数周期函数例题
函数的周期性几道基本例题
1.对于函数f(x),满足f(x+2)=-f(x)对任意x∈R都成立.
求证:4是f(x)的一个周期
变式:对于函数f(x),满足f(x+2)=-1/f(x)对任意x∈R都成立.
求证:4是f(x)的一个周期
2.f(x)是定义在R上的周期为2的偶函数,当0≤x≤1时,f(x)=x^2,求f(
3.5)
1:证:欲证4是f(x)的一个周期,等价于对所有的x∈R有f(x)=f(x+4) ∵f(x)=-f(x+2)
∴f(x+2)=-f(x+4)
∴f(x)=f(x=4)
得证.
变式:同理,∵对所有的x∈R,f(x+2)=-1/f(x),
∴对所有的x∈R,f(x)≠0
∴f(x+4)=-1/f(x+2)=f(x)
得证.
2:证:∵f(x)是偶函数,所以有f(x)=f(-x)
又f(x)以2为周期,所以有f(x)=f(x-2)
∴f(3.5)=f(3.5-2)=f(1.5)=f(1.5-2)=f(-0.5)=f(0.5)=0.5²=0.25
再问:∴f(x+2)=-f(x+4) ∴f(x)=f(x=4) 这步是怎么来的?