三角函数的定义教案
三角函数的定义及应用教学教案
三角函数的定义及应用教学教案第一章:引言1.1 教学目标让学生了解三角函数在数学和科学领域的重要性。
引导学生理解三角函数的基本概念。
1.2 教学内容三角函数的定义与历史背景。
三角函数在不同领域的应用。
1.3 教学方法采用讲授法,介绍三角函数的定义和应用。
利用实例和实际问题,激发学生的学习兴趣。
1.4 教学评估课堂讨论:让学生分享对三角函数的理解和应用。
作业布置:要求学生完成相关练习题,巩固知识点。
第二章:正弦函数的定义及性质2.1 教学目标让学生掌握正弦函数的定义和性质。
培养学生运用正弦函数解决实际问题的能力。
2.2 教学内容正弦函数的定义和表达式。
正弦函数的周期性和对称性。
正弦函数的增减性和奇偶性。
2.3 教学方法采用讲解法,引导学生理解正弦函数的定义和性质。
利用图形和实例,让学生直观地感受正弦函数的特点。
2.4 教学评估课堂提问:检查学生对正弦函数定义和性质的理解。
作业布置:要求学生完成相关练习题,巩固知识点。
第三章:余弦函数的定义及性质3.1 教学目标让学生掌握余弦函数的定义和性质。
培养学生运用余弦函数解决实际问题的能力。
3.2 教学内容余弦函数的定义和表达式。
余弦函数的周期性和对称性。
余弦函数的增减性和奇偶性。
3.3 教学方法采用讲解法,引导学生理解余弦函数的定义和性质。
利用图形和实例,让学生直观地感受余弦函数的特点。
3.4 教学评估课堂提问:检查学生对余弦函数定义和性质的理解。
作业布置:要求学生完成相关练习题,巩固知识点。
第四章:正切函数的定义及性质4.1 教学目标让学生掌握正切函数的定义和性质。
培养学生运用正切函数解决实际问题的能力。
4.2 教学内容正切函数的定义和表达式。
正切函数的周期性和对称性。
正切函数的增减性和奇偶性。
4.3 教学方法采用讲解法,引导学生理解正切函数的定义和性质。
利用图形和实例,让学生直观地感受正切函数的特点。
4.4 教学评估课堂提问:检查学生对正切函数定义和性质的理解。
三角函数的定义及应用教学教案(优秀4篇)
三角函数的定义及应用教学教案(优秀4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!三角函数的定义及应用教学教案(优秀4篇)EXcel中经常需要使用到三角函数进行计算,三角函数具体该如何使用呢?读书破万卷下笔如有神,以下内容是本店铺为您带来的4篇《三角函数的定义及应用教学教案》,希望朋友们参阅后能够文思泉涌。
三角函数的定义教案
三角函数的定义教案教学目标:1. 理解三角函数的定义;2. 掌握常用三角函数的性质和图像;3. 能够利用三角函数的定义解决与角度和三角函数值有关的问题。
教学内容:1. 三角函数的定义;2. 三角函数的性质和图像;3. 解题方法和技巧。
教学步骤:第一步:引入教师引入三角函数的概念,提问学生是否听说过三角函数,它有哪些常用的函数。
第二步:三角函数的定义教师介绍正弦、余弦和正切三个常用的三角函数,并给出它们的定义:正弦函数(sin):在直角三角形中,对于一个角θ,它的正弦值等于对边与斜边的比值,即sinθ = 对边/斜边;余弦函数(cos):在直角三角形中,对于一个角θ,它的余弦值等于邻边与斜边的比值,即cosθ = 邻边/斜边;正切函数(tan):在直角三角形中,对于一个角θ,它的正切值等于对边与邻边的比值,即tanθ = 对边/邻边。
第三步:三角函数的性质和图像教师介绍三角函数的性质和图像,例如:- 正弦函数的值域是[-1,1],在区间[0,2π]上呈周期性变化;- 余弦函数的值域也是[-1,1],在区间[0,2π]上呈周期性变化,与正弦函数的图像相位差90°;- 正切函数在某些角度上无定义,它在区间[-π/2,π/2]上呈周期性变化。
教师还可以通过实际的例子和问题,让学生对三角函数的图像和性质有更加深入的理解和认识。
第四步:解题方法和技巧教师通过一些实际问题的例子,引导学生掌握三角函数的解题方法和技巧,如:- 利用三角函数的定义和性质,求解角度;- 利用三角函数的图像和性质,求解三角函数的值;- 利用三角函数的关系,求解三角函数的等式或不等式。
第五步:小结和拓展教师对本节课的内容进行小结,并根据学生的掌握情况进行适当的拓展,如引入反三角函数的概念,讨论三角函数的其他性质等。
第六步:练习和讨论教师布置练习题,让学生在课后进行练习,并在下节课上进行讨论和解答。
同时,鼓励学生自主学习,查找和整理关于三角函数的更多相关资料。
高中数学教案《三角函数的概念》
教学计划:《三角函数的概念》一、教学目标1.知识与技能:o学生能够准确理解三角函数(正弦、余弦、正切)的基本定义,并能识别其在直角三角形中的表示。
o学生能够掌握三角函数值与角度之间的对应关系,理解三角函数是周期函数的特点。
o学生能够运用三角函数的基本性质进行简单的计算与推导。
2.过程与方法:o通过观察、比较和归纳,引导学生从实际情境中抽象出三角函数的概念。
o借助图像直观展示三角函数的周期性,培养学生的数形结合能力。
o通过小组讨论和合作学习,促进学生之间的交流与合作,共同探索三角函数的性质。
3.情感态度与价值观:o激发学生对数学学习的兴趣,感受数学与生活的紧密联系。
o培养学生的探究精神和创新思维,鼓励他们勇于提出问题并尝试解决。
o引导学生认识到数学在解决实际问题中的重要性,增强应用数学的意识。
二、教学重点和难点●重点:三角函数(正弦、余弦、正切)的定义、图像及基本性质。
●难点:理解三角函数值与角度之间的对应关系,以及三角函数周期性的概念。
三、教学过程1. 导入新课(5分钟)●生活实例引入:通过展示如钟摆运动、海浪波动等自然界中的周期性现象,引导学生思考这些现象背后的数学规律,从而引出三角函数的概念。
●复习旧知:回顾直角三角形的相关知识,如勾股定理、锐角与钝角的定义,为学习三角函数做好铺垫。
●明确目标:简要介绍本节课的学习目标,即掌握三角函数的基本概念、图像及基本性质。
2. 讲授新知(15分钟)●定义讲解:详细讲解正弦、余弦、正切三种三角函数在直角三角形中的定义,强调它们与边长的比例关系。
●图像展示:利用多媒体设备展示三种三角函数的图像,引导学生观察图像特征,如正弦、余弦函数的周期性,正切函数的间断性等。
●性质归纳:结合图像,引导学生归纳出三角函数的基本性质,如定义域、值域、奇偶性、单调性等。
3. 互动探究(10分钟)●小组讨论:将学生分成若干小组,每组分配一个探究任务,如“探究正弦函数在哪些区间内是增函数?”、“尝试用三角函数表示一个圆上某点的坐标”。
新人教版九年级数学三角函数教案5篇最新
新人教版九年级数学三角函数教案5篇最新三角形中的恒等式是我们经常在考试中遇到的题型,教师需要好的教案范围去教导学生,今天小编在这里整理了一些新人教版九年级数学三角函数教案5篇最新,我们一起来看看吧!新人教版九年级数学三角函数教案1教学目的1,使学生了解本章所要解决的新问题是:已知直角三角形的一条边和另一个元素(一边或一锐角),求这个直角三角形的其他元素。
2,使学生了解“在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。
重点、难点、关键1,重点:正弦的概念。
2,难点:正弦的概念。
3,关键:相似三角形对应边成比例的性质。
教学过程一、复习提问1、什么叫直角三角形?2,如果直角三角形ABC中∠C为直角,它的直角边是什么?斜边是什么?这个直角三角形可用什么记号来表示?二、新授1,让学生阅读教科书第一页上的插图和引例,然后回答问题:(1)这个有关测量的实际问题有什么特点?(有一个重要的测量点不可能到达)(2)把这个实际问题转化为数学模型后,其图形是什么图形?(直角三角形)(3)显然本例不能用勾股定理求解,那么能不能根据已知条件,在地面上或纸上画出另一个与它全等的直角三角形,并在这个全等图形上进行测量?(不一定能,因为斜边即水管的长度是一个较大的数值,这样做就需要较大面积的平地或纸张,再说画图也不方便。
)(4)这个实际问题可归结为怎样的数学问题?(在Rt△ABC中,已知锐角A和斜边求∠A的对边BC。
)但由于∠A不一定是特殊角,难以运用学过的定理来证明BC的长度,因此考虑能否通过式子变形和计算来求得BC的值。
2,在RT△ABC中,∠C=900,∠A=300,不管三角尺大小如何,∠A的对边与斜边的比值都等于1/2,根据这个比值,已知斜边AB的长,就能算出∠A的对边BC的长。
类似地,在所有等腰的那块三角尺中,由勾股定理可得∠A的对边/斜边=BC/AB=BC/=1/=/2 这就是说,当∠A=450时,∠A的对边与斜边的比值等于/2,根据这个比值,已知斜边AB的长,就能算出∠A 的对边BC的长。
初中数学教案三角函数的概念与计算方法
初中数学教案三角函数的概念与计算方法在解决初中数学教学中,三角函数的教学难点上,教师需要运用准确的概念与计算方法,使学生对三角函数有深入的理解。
本教案将重点介绍三角函数的概念以及相关计算方法,并通过不同形式的练习来巩固学生的掌握程度。
一、三角函数的概念1. 三角函数的定义三角函数是描述角度与边长之间关系的一组函数,主要包括正弦函数、余弦函数和正切函数。
其中,正弦函数(记作sin)表示一个角的对边与斜边的比值;余弦函数(记作cos)表示一个角的邻边与斜边的比值;正切函数(记作tan)表示一个角的对边与邻边的比值。
2. 三角函数的值域正弦函数和余弦函数的值域均为闭区间[-1, 1];正切函数的值域为全体实数。
二、三角函数的计算方法1. 弧度制与角度制的转换角度制是一种常用的角度计量单位,而弧度制是以弧长为单位的角度计量方法。
弧度制与角度制的转换公式为:弧度数 = 角度数× π/180;角度数 = 弧度数× 180/π。
2. 三角函数的计算方法(1) 根据已知边长求三角函数值:- 已知对边和斜边,可使用正弦函数求解:sinA = 对边/斜边。
- 已知邻边和斜边,可使用余弦函数求解:cosA = 邻边/斜边。
- 已知对边和邻边,可使用正切函数求解:tanA = 对边/邻边。
(2) 根据已知三角函数值求边长:- 已知正弦值和斜边,可求得对边:对边 = 正弦值 ×斜边。
- 已知余弦值和斜边,可求得邻边:邻边 = 余弦值 ×斜边。
- 已知正切值和邻边,可求得对边:对边 = 正切值 ×邻边。
三、教学实施1. 导入通过问题引入,如:"当一个人站在阳台上,从眼睛到楼底的距离为1.8米,他的视线与楼底的水平线的夹角是多少?"2. 概念讲解简要介绍三角函数的定义和基本概念,引导学生理解三角函数与角度以及边长之间的关系。
3. 计算方法演示通过示例演示,按照已知条件求解未知边长或已知边长求解三角函数值的计算方法。
三角函数教学教案
三角函数教学教案一、教学目标:1. 让学生理解三角函数的概念,掌握三角函数的基本性质和图像。
2. 培养学生运用三角函数解决实际问题的能力。
3. 提高学生对数学知识的兴趣和积极性。
二、教学内容:1. 三角函数的概念和定义2. 三角函数的图像和性质3. 特殊角的三角函数值4. 三角函数的运算5. 三角函数在实际问题中的应用三、教学重点与难点:1. 重点:三角函数的概念、图像和性质,特殊角的三角函数值,三角函数的运算。
2. 难点:三角函数图像的分析和运用,实际问题的解决。
四、教学方法:1. 采用问题驱动法,引导学生探索和发现三角函数的规律。
2. 利用多媒体课件,展示三角函数的图像和实际应用场景。
3. 开展小组讨论,培养学生的合作能力和口头表达能力。
4. 注重个体差异,给予学生个性化的指导和关爱。
五、教学过程:1. 导入新课:通过展示生活中常见的三角函数应用场景,激发学生的学习兴趣。
2. 知识讲解:讲解三角函数的概念、定义和图像,引导学生理解并掌握三角函数的基本性质。
3. 特殊角的三角函数值:让学生自主探究特殊角的三角函数值,培养学生的自主学习能力。
4. 三角函数的运算:通过例题讲解和练习,使学生掌握三角函数的运算方法。
5. 应用拓展:布置课后作业,让学生运用所学知识解决实际问题。
6. 课堂小结:对本节课的内容进行总结,强调重点和难点。
7. 课后反思:教师根据学生的反馈,调整教学方法,为下一节课做好准备。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况以及小组合作表现,了解学生的学习状态和兴趣。
2. 作业评价:通过学生提交的作业,检查学生对课堂所学知识的掌握程度和应用能力。
3. 测试评价:定期进行小型测试,评估学生对三角函数知识的系统掌握情况。
4. 学生自评与互评:鼓励学生进行自我评价和同伴评价,促进学生自我反思和相互学习。
七、教学资源:1. 教材:选用适合学生水平的三角函数教材,提供系统的学习材料。
三角函数的概念教案
三角函数的概念【第1课时】三角函数的概念【教学目标】【核心素养】1.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.(重点、难点)2.掌握任意角三角函数(正弦、余弦、正切)在各象限的符号.(易错点)3.掌握公式——并会应用.1.通过三角函数的概念,培养数学抽象素养.2.借助公式的运算,提升数学运算素养.【教学过程】一、新知初探1.单位圆在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆.2.任意角的三角函数的定义(1)条件在平面直角坐标系中,设α是一个任意角,α∈R 它的终边与单位圆交于点P (x ,y ),那么:(2)结论①y 叫做α的正弦函数,记作sin α,即sin α=y ;②x 叫做α的余弦函数,记作cos α,即cos α=x ;③y x 叫做α的正切,记作tan α,即tan α=yx(x ≠0).(3)总结yx=tan α(x ≠0)是以角为自变量,以单位圆上点的纵坐标或横坐标的比值为函数值的函数,正切函数我们将正弦函数、余弦函数、正切函数统称为三角函数.3.正弦、余弦、正切函数在弧度制下的定义域三角函数定义域sin αR cos αRtanα|x≠kπ+π2,k∈Z 4.正弦、余弦、正切函数值在各象限内的符号(1)图示:(2)口诀:“一全正,二正弦,三正切,四余弦”.5.公式一二、初试身手1.sin(-315°)的值是()A.-22B.-12C.22D.12答案:C解析:sin(-315°)=sin(-360°+45°)=sin45°=2 2.2.已知sinα>0,cosα<0,则角α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角答案:B解析:由正弦、余弦函数值在各象限内的符号知,角α是第二象限角.3.sin253=________.答案:3 2解析:sin 253=sinπ3=32.4.角α终边与单位圆相交于点cosα+sinα的值为________.答案:3+1 2解析:cosα=x=32,sinα=y=12,故cosα+sinα=3+1 2.三、合作探究三角函数的定义及应用类型1探究问题1.一般地,设角α终边上任意一点的坐标为(x,y),它与原点的距离为r,则sinα,cosα,tanα为何值?提示:sinα=yr,cosα=xr,tanα=yx(x≠0).2.sinα,cosα,tanα的值是否随P点在终边上的位置的改变而改变?提示:sinα,cosα,tanα的值只与α的终边位置有关,不随P点在终边上的位置的改变而改变.例1:(1)已知角θ的终边上有一点P(x,3)(x≠0),且cosθ=1010x,则sinθ+tanθ的值为________.(2)已知角α的终边落在直线3x+y=0上,求sinα,cosα,tanα的值.思路点拨:(1)依据余弦函数定义列方程求x→依据正弦、正切函数定义求sinθ+tanθ(2)判断角α的终边位置→分类讨论求sinα,cosα,tanα(1)310+3010或310-3010因为r=x2+9,cosθ=x r,所以1010x=xx2+9.又x≠0,所以x=±1,所以r=10.又y=3>0,所以θ是第一或第二象限角.当θ为第一象限角时,sinθ=31010,tanθ=3,则sinθ+tanθ=310+3010.当θ为第二象限角时,sinθ=31010,tanθ=-3,则sin θ+tan θ=310-3010.(2)解:直线3x +y =0,即y =-3x ,经过第二、四象限,在第二象限取直线上的点(-1,3),则r =(-1)2+(3)2=2,所以sin α=32,cos α=-12,tan α=-3;在第四象限取直线上的点(1,-3),则r =12+(-3)2=2,所以sin α=-32,cos α=12,tan α=-3.母题探究1.将本例(2)的条件“3x +y =0”改为“y =2x ”其他条件不变,结果又如何?解:当角的终边在第一象限时,在角的终边上取点P (1,2),由r =|OP |=12+22=5,得sin α=25=255,cos α=15=55,tan α=21=2.当角的终边在第三象限时,在角的终边上取点Q (-1,-2),由r =|OQ |=(-1)2+(-2)2=5,得:sin α=-25=-255,cos α=-15=-55,tan α=-2-1=2.2.将本例(2)的条件“落在直线3x +y =0上”改为“过点P (-3a ,4a )(a ≠0)”,求2sin α+cos α.解:因为r =(-3a )2+(4a )2=5|a |,①若a >0,则r =5a ,角α在第二象限,sin α=y r =4a 5a =45,cos α=x r =-3a 5a =-35,所以2sin α+cos α=85-35=1.②若a <0,则r =-5a ,角α在第四象限,sin α=4a -5a =-45,cos α=-3a -5a =35,所以2sin α+cos α=-85+35=-1.规律方法由角α终边上任意一点的坐标求其三角函数值的步骤:(1)已知角α的终边在直线上时,常用的解题方法有以下两种:①先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值.②在α的终边上任选一点P(x,y),P到原点的距离为r(r>0).则sinα=yr,cosα=xr.已知α的终边求α的三角函数时,用这几个公式更方便.(2)当角α的终边上点的坐标以参数形式给出时,一定注意对字母正、负的辨别,若正、负未定,则需分类讨论.三角函数值符号的运用类型2例2:(1)已知点P(tanα,cosα)在第四象限,则角α终边在()A.第一象限B.第二象限C.第三象限D.第四象限(2)判断下列各式的符号:①sin145°cos(-210°);②sin3cos4tan5.思路点拨:(1)先判断tanα,cosα的符号,再判断角α终边在第几象限.(2)先判断已知角分别是第几象限角,再确定各三角函数值的符号,最后判断乘积的符号.答案:(1)C解析:因为点P α>0,α<0,由此可判断角α终边在第三象限.(2)解:①∵145°是第二象限角,∴sin145°>0,∵-210°=-360°+150°,∴-210°是第二象限角,∴cos(-210°)<0,∴sin145°cos(-210°)<0.②∵π2<3<π,π<4<3π2,3π2<5<2π,∴sin3>0,cos4<0,tan5<0,∴sin3·cos4·tan5>0.规律方法判断三角函数值在各象限符号的攻略:1.基础:准确确定三角函数值中各角所在象限;2.关键:准确记忆三角函数在各象限的符号;3.注意:用弧度制给出的角常常不写单位,不要误认为角度导致象限判断错误.提醒:注意巧用口诀记忆三角函数值在各象限符号.跟踪训练1.已知角α的终边过点(3a-9,a+2)且cosα≤0,sinα>0,则实数a的取值范围是________.答案:-2<a≤3解析:因为cosα≤0,sinα>0,所以角α的终边在第二象限或y轴非负半轴上,因为α终边过(3a-9,a+2),-9≤0,+2>0,所以-2<a≤3.2.设角α是第三象限角,且|sinα2|=-sinα2,则角α2是第________象限角.答案:四解析:角α是第三象限角,则角α2是第二、四象限角,∵|sinα2|=-sinα2,∴角α2诱导公式一的应用类型3例3:求值:(1)tan405°-sin450°+cos750°;(2)sin7π3cos13π3.解:(1)原式=tan(360°+45°)-sin(360°+90°)+cos(2×360°+30°)=tan45°-sin90°+cos30°=1-1+32=32.(2)原式=44=sinπ3cosπ6+tanπ4cosπ3=32×32+1×12=54.规律方法利用诱导公式一进行化简求值的步骤1.定形:将已知的任意角写成2kπ+α的形式,其中α∈[0,2π,k∈Z].2.转化:根据诱导公式,转化为求角α的某个三角函数值.3.求值:若角为特殊角,可直接求出该角的三角函数值.跟踪训练3.化简下列各式:(1)a2sin(-1350°)+b2tan405°-2ab cos(-1080°);(2)cos 125π·tan4π.解:(1)原式=a2sin(-4×360°+90°)+b2tan(360°+45°)-2ab cos(-3×360°)=a2sin90°+b2tan45°-2ab cos0°=a2+b2-2ab=(a-b)2.(2)-116πcos125π·tan4π=2cos25π·tan0=sinπ6+0=12.四、课堂小结1.三角函数的定义的学习是以后学习一切三角函数知识的基础,要充分理解其内涵,把握住三角函数值只与角的终边所在位置有关,与所选取的点无关这一关键点.2.诱导公式一指的是终边相同角的同名三角函数值相等,反之不一定成立,记忆时可结合三角函数定义进行记忆.3.三角函数值在各象限的符号主要涉及开方,去绝对值计算问题,同时也要注意终边在坐标轴上正弦、余弦的符号问题.五、课堂达标1.思考辨析(1)sinα表示sin与α的乘积.()(2)设角α终边上的点P(x,y),r=|OP|≠0,则sinα=yr,且y越大,sinα的值越大.()(3)终边相同的角的同一三角函数值相等.()(4)终边落在y轴上的角的正切函数值为0.()提示:(1)错误.sinα表示角α的正弦值,是一个“整体”.(2)错误.由任意角的正弦函数的定义知,sinα=yr.但y变化时,sinα是定值.(3)正确.(4)错误.终边落在y轴上的角的正切函数值不存在.答案:(1)×(2)×(3)√(4)×2.已知角α终边过点P(1,-1),则tanα的值为()A.1B.-1C.22D.-22答案:B解析:由三角函数定义知tanα=-11=-1.3.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于x轴对称,若sinα=15,则sinβ=________.答案:-1 5解析:设角α的终边与单位圆相交于点P(x,y),则角β的终边与单位圆相交于点Q(x,-y),由题意知y=sinα=15,所以sinβ=-y=-15.4.求值:(1)sin180°+cos90°+tan0°.(2)cos 25π3+解:(1)sin180°+cos90°+tan0°=0+0+0=0.(2)cos25π3+=4=cos π3+tanπ4=12+1=32.【第2课时】同角三角函数的基本关系【教学目标】【核心素养】1.理解并掌握同角三角函数基本关系式的推导及应用.(重点)1.通过同角三角函数的基本关系进行运算,培养数学运算素养.2.会利用同角三角函数的基本关系式进行化简、求值与恒等式证明.(难点)2.借助数学式子的证明,培养逻辑推理素养.【教学过程】一、新知初探1.平方关系(1)公式:sin 2α+cos 2α=1.(2)语言叙述:同一个角α的正弦、余弦的平方和等于1.2.商数关系(1)公式:sin αcos α=tan α(α≠k π+π2,k ∈Z ).(2)语言叙述:同一个角α的正弦、余弦的商等于角α的正切.思考:对任意的角α,sin 22α+cos 22α=1是否成立?提示:成立.平方关系中强调的同一个角且是任意的,与角的表达形式无关.二、初试身手1.化简1-sin23π5的结果是()A .cos3π5B .sin3π5C .-cos3π5D .-sin 3π5答案:C解析:因为3π5是第二象限角,所以cos3π5<0,所以1-sin23π5=cos23π5=|cos 3π5|=-cos3π5.2.如果α是第二象限的角,下列各式中成立的是()A .tan α=-sin αcos αB .cos α=-1-sin2αC .sin α=-1-cos2αD .tan α=cos αsin α答案:B解析:由商数关系可知A ,D 均不正确.当α为第二象限角时,cos α<0,sin α>0,故B 正确.3.若cos α=35,且α为第四象限角,则tan α=________.答案:-43解析:因为α为第四象限角,且cos α=35,所以sin α=-1-cos2α=-=-45,所以tan α=sin αcosα=-43.三、合作探究直接应用同角三角函数关系求值类型1例1:(1)已知αtan α=2,则cos α=________.(2)已知cos α=-817,求sin α,tan α的值.思路点拨:(1)根据tan α=2和sin 2α+cos 2α=1列方程组求cos α.(2)先由已知条件判断角α是第几象限角,再分类讨论求sin α,tan α.答案:(1)-552,①cos2α=1,②由①得sin α=2cos α代入②得4cos 2α+cos 2α=1,所以cos 2α=15,又αcos α<0,所以cos α=-55.(2)解:∵cos α=-817<0,∴α是第二或第三象限的角.如果α是第二象限角,那么sin α=1-cos2α==1517,tan α=sin αcos α=1517-817=-158.如果α是第三象限角,同理可得sin α=-1-cos2α=-1517,tan α=158.规律方法利用同角三角函数的基本关系解决给值求值问题的方法:1.已知角α的某一种三角函数值,求角α的其余三角函数值,要注意公式的合理选择,一般是先选用平方关系,再用商数关系.2.若角α所在的象限已经确定,求另两种三角函数值时,只有一组结果;若角α所在的象限不确定,应分类讨论,一般有两组结果.提醒:应用平方关系求三角函数值时,要注意有关角终边位置的判断,确定所求值的符号.跟踪训练1.已知sin α+3cos α=0,求sin α,cos α的值.解:∵sin α+3cos α=0,∴sin α=-3cos α.又sin 2α+cos 2α=1,∴(-3cos α)2+cos 2α=1,即10cos 2α=1,∴cos α=±1010.又由sin α=-3cos α,可知sin α与cos α异号,∴角α的终边在第二或第四象限.当角α的终边在第二象限时,cos α=-1010,sin α=31010;当角α的终边在第四象限时,cos α=1010,sin α=-31010.灵活应用同角三角函数关系式求值类型2例2:(1)已知sinα+cosα=713,α∈(0,π),则tanα=________.(2)已知sinα+cosαsinα-cosα=2,计算下列各式的值.①3sinα-cosα2sinα+3cosα;②sin2α-2sinαcosα+1.思路点拨:(1)法一:求sinαcosα→求sinα-cosα→求sinα和cosα→求tanα法二:求sinαcosα→弦化切构建关于tanα的方程→求tanα(2)求tanα→换元或弦化切求值答案:(1)-12 5解析:法一:(构建方程组)因为sinα+cosα=7 13,①所以sin2α+cos2α+2sinαcosα=49 169,即2sinαcosα=-120 169.因为α∈(0,π),所以sinα>0,cosα<0.所以sinα-cosα=(sinα-cosα)2=1-2sinαcosα=17 13.②由①②解得sinα=1213,cosα=-513,所以tanα=sinαcosα=-125.法二:(弦化切)同法一求出sinαcosα=-60169,sinαcosαsin2α+cos2α=-60169,tanαtan2α+1=-60169,整理得60tan2α+169tanα+60=0,解得tanα=-512或tanα=-125.由sinα+cosα=713>0知|sinα|>|cosα|,故tanα=-125.(2)解:由sinα+cosαsinα-cosα=2,化简,得sinα=3cosα,所以tanα=3.①法一(换元)原式=3×3cos α-cos α2×3cos α+3cos α=8cos α9cos α=89.法二(弦化切)原式=3tan α-12tan α+3=3×3-12×3+3=89.②原式=sin2α-2sin αcos αsin2α+cos2α1=tan2α-2tan αtan2α+1+1=32-2×332+1+1=1310.母题探究1.将本例(1)条件“α∈(0,π)”改为“α∈(-π,0)”其他条件不变,结果又如何?解:由例(1)求出2sin αcos α=-120169,因为α∈(-π,0),所以sin α<0,cos α>0,所以sin α-cos α=-(sin α-cos α)2=-1-2sin αcos α=-1713.与sin α+cos α=713联立解得sin α=-513,cos α=1213,所以tan α=sin αcos α=-512.2.将本例(1)的条件“sin α+cos α=713”改为“sin α·cos α=-18”其他条件不变,求cos α-sin α.解:因为sin αcos α=-18<0,所以αcos α-sin α<0,cos α-sin α=-1-2sin αcos α=-=-52.规律方法1.sin α+cos α,sin α-cos α,sin αcos α三个式子中,已知其中一个,可以求其他两个,即“知一求二”,它们之间的关系是:(sin α±cos α)2=1±2sin αcos α.2.已知tan α=m ,求关于sin α,cos α的齐次式的值解决这类问题需注意以下两点:(1)一定是关于sin α,cos α的齐次式(或能化为齐次式)的三角函数式;(2)因为cos α≠0,所以可除以cos α,这样可将被求式化为关于tan α的表示式,然后代入tan α=m 的值,从而完成被求式的求值.提醒:求sinα+cosα或sinα-cosα的值,要注意根据角的终边位置,利用三角函数线判断它们的符号.应用同角三角函数关系式化简类型3例3:(1)化简2sin2α-11-2cos2α=________.(2)化简sinα1-cosα·tanα-sinαtanα+sinα.(其中α是第三象限角)思路点拨:(1)将cos2α=1-sin2α代入即可化简.(2)首先将tanα化为sinαcosα,然后化简根式,最后约分.答案:(1)1原式=2sin2α-11-21-sin2α=2sin2α-12sin2α-1=1.(2)解:原式=sinα1-cosα·sinαcosα-sinαsinαcosα+sinα=sinα1-cosα·1-cosα1+cosα=sinα1-cosα·(1-cosα)21-cos2α=sinα1-cosα·1-cosα|sinα|.又因为α是第三象限角,所以sinα<0.所以原式=sinα1-cosα·1-cosα-sinα=-1.规律方法三角函数式化简的常用方法1.化切为弦,即把正切函数都化为正、余弦函数,从而减少函数名称,达到化简的目的.2.对于含有根号的,常把根号里面的部分化成完全平方式,然后去根号达到化简的目的.3.对于化简含高次的三角函数式,往往借助于因式分解,或构造sin2α+cos2α=1,以降低函数次数,达到化简的目的.提醒:在应用平方关系式求sinα或cosα时,其正负号是由角α所在的象限决定,不可凭空想象.跟踪训练2.化简tanα1sin2α-1,其中α是第二象限角.解:因为α是第二象限角,所以sinα>0,cosα<0.故tanα1sin2α-1=tanα1-sin2αsin2α=tanαcos2αsin2α=sinαcosα|cosαsinα|=sinαcosα·-cosαsinα=-1.应用同角三角函数关系式证明类型4探究问题1.证明三角恒等式常用哪些方法?提示:(1)从右证到左.(2)从左证到右.(3)证明左右归一.(4)变更命题法.如:欲证明MN=PQ,则可证MQ=NP,或证QN=PM等.2.在证明1+sinα+cosα+2sinαcosα1+sinα+cosα=sinα+cosα时如何巧用“1”的代换.提示:在求证1+sinα+cosα+2sinαcosα1+sinα+cosα=sinα+cosα时,观察等式左边有2sinαcosα,它和1相加应该想到“1”的代换,即1=sin2α+cos2α,所以等式左边=sin2α+cos2α+2sinαcosα+sinα+cosα1+sinα+cosα=sinα+cosα2+sinα+cosα1+sinα+cosα=sinα+cosαsinα+cosα+1sinα+cosα+1=sinα+cosα=右边.例4:求证:tanαsinαtanα-sinα=tanα+sinαtanαsinα.思路点拨:解答本题可由关系式tanα=sinαcosα将两边“切”化“弦”来证明,也可由右至左或由左至右直接证明.证明:法一:(切化弦)左边=sin2αsinα-sinαcosα=sinα1-cosα,右边=sinα+sinαcosαsin2α=1+cosαsinα.因为sin2α=1-cos2α=(1+cosα)(1-cosα),所以sinα1-cosα=1+cosαsinα,所以左边=右边.所以原等式成立.法二:(由右至左)因为右边=tan2α-sin2αtanα-sinαtanαsinα=tan2α-tan2αcos2αtanα-sinαtanαsinα=tan2α1-cos2αtanα-sinαtanαsinα=tan2αsin2αtanα-sinαtanαsinα=tanαsinαtanα-sinα=左边,所以原等式成立.规律方法1.证明恒等式常用的思路是:(1)从一边证到另一边,一般由繁到简;(2)左右开弓,即证左边、右边都等于第三者;(3)比较法(作差,作比法).2.技巧感悟:朝目标奔.常用的技巧有:(1)巧用“1”的代换;(2)化切为弦;(3)多项式运算技巧的应用(分解因式).提醒:解决此类问题要有整体代换思想.跟踪训练3.求证:(1)sinα-cosα+1sinα+cosα-1=1+sinαcosα(2)2(sin6θ+cos6θ)-3(sin4θ+cos4θ)+1=0.证明:(1)左边=sinα-cosα+1sinα+cosα+1 sinα+cosα-1sinα+cosα+1=(sin α+1)2-cos2α(sin α+cos α)2-1=(sin2α+2sin α+1)-(1-sin2α)sin2α+cos2α+2sin αcos α-1=2sin2α+2sin α1+2sin αcos α-1=2sin α(sin α+1)2sin αcos α=1+sin αcos α=右边,∴原等式成立.(2)左边=2[(sin 2θ)3+(cos 2θ)3]-3(sin 4θ+cos 4θ)+1=2(sin 2θ+cos 2θ)(sin 4θ-sin 2θcos 2θ+cos 4θ)-3(sin 4θ+cos 4θ)+1=(2sin 4θ-2sin 2θcos 2θ+2cos 4θ)-(3sin 4θ+3cos 4θ)+1=-(sin 4θ+2sin 2θcos 2θ+cos 4θ)+1=-(sin 2θ+cos 2θ)2+1=-1+1=0=右边,∴原等式成立.四、课堂小结五、当堂达标1.思考辨析(1)对任意角α,sin α2cos α2=tan α2都成立.()(2)因为sin 294π+cos 2π4=1,所以sin 2α+cos 2β=1成立,其中α,β为任意角.()(3)对任意角α,sin α=cos α·tan α都成立.()提示:由同角三角函数的基本关系知(2)错,由正切函数的定义域知α不能取任意角,所以(1)错,(3)错.答案:(1)×(2)×(3)×2.已知tan α=-12,则2sin αcos αsin2α-cos2α的值是()A .43B .3C .-43D .-3答案:A解析:因为tan α=-12,所以2sin αcos αsin2α-cos2α=2tan αtan2α-1=-1=43.3.已知α是第二象限角,tan α=-12,则cos α=________.答案:-255解析:因为sin αcos α=-12,且sin 2α+cos 2α=1,又因为α是第二象限角,所以cos α<0,所以cos α=-255.4.(1)化简sin2α-sin4α,其中α是第二象限角.(2)求证:1+tan 2α=1cos2α.解:(1)因为α是第二象限角,所以sin α>0,cos α<0,所以sin αcos α<0,所以sin2α-sin4α=sin2α(1-sin2α)=sin2αcos2α=-sin αcos α.(2)证明:1+tan 2α=1+sin2αcos2α=cos2α+sin2αcos2α=1cos2α.。
三角函数的定义及应用教学教案
三角函数的定义及应用教学教案一、教学目标1. 让学生了解三角函数的定义,理解正弦、余弦、正切函数的概念。
2. 培养学生运用三角函数解决实际问题的能力。
3. 引导学生通过观察、分析、归纳等方法,探索三角函数的性质和变化规律。
二、教学内容1. 三角函数的定义1.1 正弦函数1.2 余弦函数1.3 正切函数2. 三角函数的图像和性质2.1 正弦函数的图像和性质2.2 余弦函数的图像和性质2.3 正切函数的图像和性质3. 三角函数的应用3.1 实际问题求解3.2 三角函数在工程和技术领域的应用三、教学重点与难点1. 教学重点:三角函数的定义,三角函数的图像和性质,三角函数的应用。
2. 教学难点:三角函数图像的分析和理解,三角函数在实际问题中的应用。
四、教学方法1. 采用问题驱动法,引导学生通过观察、分析、归纳等方法,探索三角函数的性质和变化规律。
2. 利用多媒体课件,展示三角函数的图像,增强学生的直观感受。
3. 结合实际例子,让学生体会三角函数在工程和技术领域的应用。
五、教学过程1. 导入新课:通过复习初中阶段学习的三角函数知识,引导学生进入高中阶段的学习。
2. 讲解三角函数的定义:正弦函数、余弦函数、正切函数。
3. 分析三角函数的图像和性质:正弦函数、余弦函数、正切函数。
4. 应用三角函数解决实际问题:举例说明三角函数在工程和技术领域的应用。
6. 布置作业:巩固所学知识,提高运用能力。
六、教学策略与手段6.1 教学策略采用问题驱动法,引导学生通过观察、分析、归纳等方法,探索三角函数的性质和变化规律。
利用多媒体课件,展示三角函数的图像,增强学生的直观感受。
结合实际例子,让学生体会三角函数在工程和技术领域的应用。
提供丰富的练习题,巩固所学知识,提高学生的解题能力。
6.2 教学手段使用多媒体课件,展示三角函数的图像和实例,帮助学生更好地理解和掌握知识。
提供纸质或电子版的教学资源,供学生复习和参考。
利用数学软件或工具,让学生亲身体验和探究三角函数的性质。
三角函数的概念教案
三角函数的概念教案引言:三角函数是数学中重要的概念之一。
它们在几何、物理、工程等领域中广泛应用。
本教案旨在介绍三角函数的基本概念、性质和应用,以帮助学生建立对三角函数的理解和应用能力。
一、三角函数的定义1. 弧度制和角度制的转换在三角函数的定义中,弧度是一种常用的单位。
它是与半径长度相等的圆上的一段弧所对应的角度单位。
角度制是我们通常使用的角度单位,以度为计量单位。
2. 正弦函数、余弦函数和正切函数的定义正弦函数(sin)、余弦函数(cos)和正切函数(tan)是三角函数中最基本的三种函数。
- 正弦函数定义:在直角三角形中,正弦函数的值等于对边与斜边之比。
- 余弦函数定义:在直角三角形中,余弦函数的值等于邻边与斜边之比。
- 正切函数定义:在直角三角形中,正切函数的值等于对边与邻边之比。
3. 反三角函数的定义和性质反三角函数是三角函数的逆运算。
学习反三角函数可以帮助我们找到角的度数或弧度。
- 反正弦函数(asin):反正弦函数的值等于对边与斜边之比的角度,取值范围为[-π/2, π/2]。
- 反余弦函数(acos):反余弦函数的值等于邻边与斜边之比的角度,取值范围为[0, π]。
- 反正切函数(atan):反正切函数的值等于对边与邻边之比的角度,取值范围为(-π/2, π/2)。
二、三角函数的性质与公式1. 周期性三角函数在一定范围内具有周期性。
正弦函数和余弦函数的周期为2π,正切函数的周期为π。
2. 奇偶性正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。
3. 三角函数的和差角公式三角函数具有和差角公式,可以用来求解特定角度的三角函数值。
例如,sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)。
三、三角函数的应用1. 三角函数在几何中的应用三角函数可以用于计算三角形的边长、角度、面积等相关问题。
例如,通过正弦定理和余弦定理,可以计算非直角三角形的边长。
三角函数教案
三角函数教案三角函数教案(精选4篇)三角函数教案篇11、锐角三角形中,任意两个内角的和都属于区间,且满意不等式:即:一角的正弦大于另一个角的余弦。
2、若,则,3、的图象的对称中心为( ),对称轴方程为。
4、的图象的对称中心为( ),对称轴方程为。
5、及的图象的对称中心为( )。
6、常用三角公式:有理公式: ;降次公式: , ;万能公式: , , (其中)。
7、帮助角公式: ,其中。
帮助角的位置由坐标打算,即角的终边过点。
8、时, 。
9、。
其中为内切圆半径, 为外接圆半径。
特殊地:直角中,设c为斜边,则内切圆半径,外接圆半径。
10、的图象的图象( 时,向左平移个单位, 时,向右平移个单位)。
11、解题时,条件中若有消失,则可设,则。
12、等腰三角形中,若且,则。
13、若等边三角形的边长为,则其中线长为,面积为。
14、;三角函数教案篇2二、复习要求1、三角函数的概念及象限角、弧度制等概念;2、三角公式,包括诱导公式,同角三角函数关系式和差倍半公式等;3、三角函数的图象及性质。
三、学习指导1、角的概念的推广。
从运动的角度,在旋转方向及旋转圈数上引进负角及大于3600的角。
这样一来,在直角坐标系中,当角的终边确定时,其大小不肯定(通常把角的始边放在x轴正半轴上,角的顶点与原点重合,下同)。
为了把握这些角之间的联系,引进终边相同的角的概念,凡是与终边α相同的角,都可以表示成k·3600 α的形式,特例,终边在x 轴上的角集合{α|α=k·1800,k∈z},终边在y轴上的角集合{α|α=k·1800 900,k∈z},终边在坐标轴上的角的集合{α|α=k·900,k∈z}。
在已知三角函数值的大小求角的大小时,通常先确定角的终边位置,然后再确定大小。
弧度制是角的度量的重要表示法,能正确地进行弧度与角度的换算,熟记特别角的弧度制。
在弧度制下,扇形弧长公式l=|α|r,扇形面积公式,其中α为弧所对圆心角的弧度数。
三角函数的概念教案(一)
三角函数的概念教案(一)三角函数的概念教学教案教学目标通过本次课程的学习,学生将会掌握以下知识:1.了解三角函数的概念和定义2.掌握三角函数的基本性质和特点3.能够在不同三角函数之间进行转化和变形4.能够应用三角函数解决简单的实际问题教学重点•理解三角函数的三角形定义•理解正弦、余弦、正切、余切的定义•了解三角函数的图像及其周期性教学难点•通过三角函数图像,探究其性质和特点•能够理解三角函数在不同象限的变化教学过程导入-启发式问题•教师提问:“环球旅行家徐霞客曾在他的游记中提到:’在线段AC上取B点,将∠CAB顶点落在直线PQ上,则BC/AB与PQ呈怎样的关系呢?”•学生思考,回答问题。
教师引导学生,让学生通过作图和讨论来推导出正弦函数的定义。
基本概念的介绍•介绍三角函数的定义和基本性质•介绍正弦、余弦、正切、余切的定义•介绍三角函数的图像及其周期性三角函数的图像及性质•将正弦、余弦、正切、余切的图像展示给学生•引导学生通过观察图像,得出三角函数的一些特点,如周期、最大值、最小值等•让学生通过绘制函数曲线,尝试构造更多的三角函数图像,并探究其性质和特点•让学生通过比较三角函数的图像,了解另外三个基本三角函数的定义三角函数的性质和变换•引导学生探究三角函数在不同象限的变化•教师讲解三角函数的一些常用变换,如平移、伸缩、反转等,让学生通过绘图来理解其作用和效果•给学生一些简单的练习题,让他们尝试将不同的函数变形成指定的函数三角函数的应用•通过练习,让学生熟悉如何使用三角函数解决实际问题,如测量远距离的高度、计算三角形的边角等•引导学生通过思考,定制问题,将三角函数的使用延伸至其他领域总结•教师对本节课中涉及的概念、知识点以及解题方法进行总结,巩固学生的学习成果•对本节课学生表现出色的同学进行表扬,激励其学习积极性•指出学生在学习中存在的问题,为下节课的教学提出相应的建议课后作业•请学生完成课后作业,巩固本节课所学知识,拓展思维,达到应用的目的。
三角函数的定义及应用教学教案【优秀4篇】
三角函数的定义及应用教学教案【优秀4篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!三角函数的定义及应用教学教案【优秀4篇】EXcel中经常需要使用到三角函数进行计算,三角函数具体该如何使用呢?它山之石可以攻玉,以下内容是本店铺为您带来的4篇《三角函数的定义及应用教学教案》,如果对您有一些参考与帮助,请分享给最好的朋友。
三角函数的定义及应用教学教案
三角函数的定义及应用教学教案一、教学目标1. 知识与技能:(1)理解三角函数的定义及其在直角坐标系中的表示方法;(2)掌握三角函数的图像和性质;(3)学会运用三角函数解决实际问题。
2. 过程与方法:(1)通过观察和实验,引导学生发现三角函数的规律;(2)利用信息技术工具,探究三角函数的图像和性质;(3)培养学生的合作交流能力和解决问题的能力。
3. 情感态度与价值观:(1)激发学生对三角函数的兴趣,培养其对数学美的感知;(2)培养学生勇于探索、积极思考的科学精神;(3)引导学生感受数学在生活中的应用,提高其数学素养。
二、教学内容1. 三角函数的定义(1)正弦函数、余弦函数、正切函数的定义;(2)角度与弧度的转换。
2. 三角函数的表示方法(1)解析式的表示;(2)图像的表示;(3)表格的表示。
3. 三角函数的图像与性质(1)正弦函数、余弦函数、正切函数的图像;(2)三角函数的周期性;(3)三角函数的奇偶性;(4)三角函数的单调性。
三、教学重点与难点1. 教学重点:(1)三角函数的定义;(2)三角函数的表示方法;(3)三角函数的图像与性质。
2. 教学难点:(1)三角函数图像的绘制;(2)三角函数性质的证明。
四、教学方法与手段1. 教学方法:(1)讲授法:讲解三角函数的定义、表示方法和图像性质;(2)实验法:引导学生观察和绘制三角函数图像;(3)讨论法:分组讨论,分享学习心得和解决问题的方法。
2. 教学手段:(1)多媒体课件:展示三角函数的图像和性质;(2)信息技术工具:辅助绘制三角函数图像;(3)黑板:板书关键公式和推导过程。
五、教学过程1. 导入新课:(1)复习已知函数的性质和图像;(2)提问:什么是三角函数?为什么学习三角函数?2. 讲解三角函数的定义:(1)介绍正弦函数、余弦函数、正切函数的定义;(2)讲解角度与弧度的转换。
3. 学习三角函数的表示方法:(1)解析式的表示;(2)图像的表示;(3)表格的表示。
三角函数定义教案
三角函数定义教案教案标题:三角函数定义教案教案概述:本教案旨在帮助学生理解和掌握三角函数的定义,包括正弦函数、余弦函数和正切函数。
通过引入相关概念和实际应用,学生将能够理解三角函数的含义、性质和图像,并能够运用它们解决实际问题。
教学目标:1. 理解正弦函数、余弦函数和正切函数的定义;2. 掌握三角函数的性质,如定义域、值域和周期性;3. 能够绘制三角函数的图像,并解释图像的特征;4. 运用三角函数解决实际问题,如测量高度、角度等。
教学准备:1. 教师准备:投影仪、白板、彩色粉笔、教学PPT等;2. 学生准备:教科书、笔记本、计算器。
教学过程:步骤一:引入概念(10分钟)1. 教师通过投影仪展示一个直角三角形,并引导学生回顾三角函数的定义;2. 教师解释正弦、余弦和正切的含义,并与直角三角形中的对应关系进行对比;3. 教师提出问题,让学生思考并回答:在直角三角形中,如何计算三角函数的值?步骤二:讲解定义及性质(15分钟)1. 教师详细讲解正弦函数、余弦函数和正切函数的定义;2. 教师解释三角函数的周期性及其性质,如定义域和值域;3. 教师通过示例演示如何计算三角函数的值,并解释计算过程。
步骤三:图像展示与分析(15分钟)1. 教师使用白板或教学PPT上的图像,展示正弦函数、余弦函数和正切函数的图像;2. 教师引导学生观察图像的特征,如振幅、周期和对称性;3. 教师解释图像的意义,并与三角函数的定义进行关联。
步骤四:实际应用(20分钟)1. 教师提供一些实际问题,如测量建筑物高度、角度等,要求学生运用三角函数解决;2. 学生个别或小组合作解决问题,并展示解题过程;3. 教师进行评价和指导,并解答学生的疑问。
步骤五:总结与拓展(10分钟)1. 教师与学生共同总结本节课的重点内容,并强调学生需要掌握的知识点;2. 教师提供一些拓展问题,鼓励学生进一步思考和探索三角函数的应用。
教学延伸:1. 学生可通过练习题巩固所学知识,并进一步拓展应用;2. 学生可以使用计算器或数学软件绘制三角函数的图像,并进行比较和分析;3. 学生可以研究三角函数的导数和积分,进一步深入理解其性质和应用。
三角函数的定义 教案
三角函数的定义教案一、知识要点1. 什么是三角函数三角函数,顾名思义,是与三角形相关的函数。
在初中和高中的数学和物理课程中,我们经常使用三角函数来描述和解决各种问题,如测量角度、计算三角形的周长和面积、分析周期性现象等等。
(1) 正弦函数:定义域为实数集合,值域为[-1,1]。
其定义式为:y=sin(x)。
二、教学过程1. 正弦函数的定义及简单应用(1) 导入:告诉学生三角函数是什么,引导学生回想初中时学习的正余弦函数的相关知识。
(2) 定义:正弦函数是指一个角的正弦值与该角的对边长度之比所确定的函数,通常用sin表示。
(3) 理解:图形辅助理解正弦函数的定义。
绘制一条半径为1的半圆,以圆心为原点建立平面直角坐标系,横坐标轴代表角度,纵坐标轴表示正弦值。
通过在半圆上移动一个点P,观察P 点的正弦值的变化,从而建立正弦函数的概念。
(4) 案例:分别计算在直角三角形中,已知角A=30°,对边长度为2时,斜边长度和邻边长度的值。
解:∠A=30°,则正弦值为sin30°=1/2。
斜边长度为:c=2/sin30°=4。
邻边长度为:b=√c²-a²=√4²-2²=√12。
对边长度为:a=b·tan60°=b·√3。
由a²+b²=c²,代入得b=√c²-a²=√3。
图形辅助理解正切函数的定义。
绘制直角三角形,以角A为例,角A的正切值是指该角的对边长度与邻边长度之比。
画出该角的对边和邻边,通过计算对边和邻边的长度,求出角A的正切值,从而建立正切函数的概念。
解:∠A=45°,对边长度为x,邻边长度为x·√3。
余切值为cot45°=1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数的定义教案使学生理解并掌握三角函数线的作法,能利用三角函数线解决一些简单问题. 2.培养学生分析、探索、归纳和类比的能力,以及形象思维能力。
下面是我给大家整理的三角函数的定义教案5篇,希望大家能有所收获!三角函数的定义教案1教学准备教学目标1、知识与技能(1)了解周期现象在现实中广泛存在;(2)感受周期现象对实际工作的意义;(3)理解周期函数的概念;(4)能熟练地判断简单的实际问题的周期;(5)能利用周期函数定义进行简单运用。
2、过程与方法通过创设情境:单摆运动、时钟的圆周运动、潮汐、波浪、四季变化等,让学生感知周期现象;从数学的角度分析这种现象,就可以得到周期函数的定义;根据周期性的定义,再在实践中加以应用。
3、情感态度与价值观通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物。
教学重难点重点:感受周期现象的存在,会判断是否为周期现象。
难点:周期函数概念的理解,以及简单的应用。
教学工具投影仪教学过程【创设情境,揭示课题】同学们:我们生活在海南岛非常幸福,可以经常看到大海,陶冶我们的情操。
众所周知,海水会发生潮汐现象,大约在每一昼夜的时间里,潮水会涨落两次,这种现象就是我们今天要学到的周期现象。
再比如,[取出一个钟表,实际操作]我们发现钟表上的时针、分针和秒针每经过一周就会重复,这也是一种周期现象。
所以,我们这节课要研究的主要内容就是周期现象与周期函数。
(板书课题)【探究新知】1.我们已经知道,潮汐、钟表都是一种周期现象,请同学们观察钱塘江潮的图片(投影图片),注意波浪是怎样变化的?可见,波浪每隔一段时间会重复出现,这也是一种周期现象。
请你举出生活中存在周期现象的例子。
(单摆运动、四季变化等)(板书:一、我们生活中的周期现象)2.那么我们怎样从数学的角度研究周期现象呢?教师引导学生自主学习课本P3——P4的相关内容,并思考回答下列问题:①如何理解“散点图”?②图1-1中横坐标和纵坐标分别表示什么?③如何理解图1-1中的“H/m”和“t/h”?④对于周期函数的定义,你的理解是怎样?以上问题都由学生来回答,教师加以点拨并总结:周期函数定义的理解要掌握三个条件,即存在不为0的常数T;x 必须是定义域内的任意值;f(x+T)=f(x)。
(板书:二、周期函数的概念)3.[展示投影]练习:(1)已知函数f(x)满足对定义域内的任意x,均存在非零常数T,使得f(x+T)=f(x)。
求f(x+2T),f(x+3T)略解:f(x+2T)=f[(x+T)+T]=f(x+T)=f(x)f(x+3T)=f[(x+2T)+T]=f(x+2T)=f(x)本题小结,由学生完成,总结出“周期函数的周期有无数个”,教师指出一般情况下,为避免引起混淆,特指最小正周期。
(2)已知函数f(x)是R上的周期为5的周期函数,且f(1)=2023,求f(11)略解:f(11)=f(6+5)=f(6)=f(1+5)=f(1)=2023(3)已知奇函数f(x)是R上的函数,且f(1)=2,f(x+3)=f(x),求f(8)略解:f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2 【巩固深化,发展思维】1.请同学们先自主学习课本P4倒数第五行——P5倒数第四行,然后各个学习小组之间展开合作交流。
2.例题讲评例1.地球围绕着太阳转,地球到太阳的距离y是时间t 的函数吗?如果是,这个函数y=f(t)是不是周期函数?例2.图1-4(见课本)是钟摆的示意图,摆心A到铅垂线MN的距离y是时间t的函数,y=g(t)。
根据钟摆的知识,容易说明g(t+T)=g(t),其中T为钟摆摆动一周(往返一次)所需的时间,函数y=g(t)是周期函数。
若以钟摆偏离铅垂线MN的角θ的度数为变量,根据物理知识,摆心A到铅垂线MN的距离y也是θ的周期函数。
例3.图1-5(见课本)是水车的示意图,水车上A点到水面的距离y是时间t的函数。
假设水车5min转一圈,那么y的值每经过5min就会重复出现,因此,该函数是周期函数。
3.小组课堂作业(1)课本P6的思考与交流(2)(回答)今天是星期三那么7k(k∈Z)天后的那一天是星期几?7k(k∈Z)天前的那一天是星期几?100天后的那一天是星期几?五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?六、布置作业1.作业:习题1.1第1,2,3题.2.多观察一些日常生活中的周期现象的例子,进一步理解它的特点.课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?课后习题作业1.作业:习题1.1第1,2,3题.2.多观察一些日常生活中的周期现象的例子,进一步理解它的特点.板书略三角函数的定义教案2教学准备教学目标1、知识与技能(1)理解并掌握正弦函数的定义域、值域、周期性、(小)值、单调性、奇偶性;(2)能熟练运用正弦函数的性质解题。
2、过程与方法通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。
3、情感态度与价值观通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。
教学重难点重点:正弦函数的性质。
难点:正弦函数的性质应用。
教学工具投影仪教学过程【创设情境,揭示课题】同学们,我们在数学一中已经学过函数,并掌握了讨论一个函数性质的几个角度,你还记得有哪些吗?在上一次课中,我们已经学习了正弦函数的y=sinx在R上图像,下面请同学们根据图像一起讨论一下它具有哪些性质?【探究新知】让学生一边看投影,一边仔细观察正弦曲线的图像,并思考以下几个问题:(1)正弦函数的定义域是什么?(2)正弦函数的值域是什么?(3)它的最值情况如何?(4)它的正负值区间如何分?(5)?(x)=0的解集是多少?师生一起归纳得出:1.定义域:y=sinx的定义域为R2.值域:引导回忆单位圆中的正弦函数线,结论:|sinx|≤1(有界性)再看正弦函数线(图象)验证上述结论,所以y=sinx的值域为[-1,1]三角函数的定义教案3一、教学目标1. 通过观察、猜想、比较、具体操作等数学活动,学会用计算器求一个锐角的三角函数值。
2.经历利用三角函数知识解决实际问题的过程,促进观察、分析、归纳、交流等能力的发展。
3.感受数学与生活的密切联系,丰富数学学习的成功体验,激发学生继续学习的好奇心,培养学生与他人合作交流的意识。
二、教材分析在生活中,我们会经常遇到这样的问题,如测量建筑物的高度、测量江河的宽度、船舶的定位等,要解决这样的问题,往往要应用到三角函数知识。
在上节课中已经学习了30°,45°,60°角的三角函数值,可以进行一些特定情况下的计算,但是生活中的问题,仅仅依靠这三个特殊角度的三角函数值来解决是不可能的。
本节课让学生使用计算器求三角函数值,让他们从繁重的计算中解脱出来,体验发现并提出问题、分析问题、探究解决方法直至最终解决问题的过程。
三、学校及学生状况分析九年级的学生年龄一般在15岁左右,在这个阶段,学生以抽象逻辑思维为主要发展趋势,但在很大程度上,学生仍然要依靠具体的经验材料和操作活动来理解抽象的逻辑关系。
另外,计算器的使用可以极大减轻学生的负担。
因此,依据教材中提供的背景材料,辅以计算器的使用,可以使学生更好地解决问题。
学生自小学起就开始使用计算器,对计算器的操作比较熟悉。
同时,在前面的课程中学生已经学习了锐角三角函数的定义,30°,45°,60°角的三角函数值以及与它们相关的简单计算,具备了学习本节课的知识和技能。
四、教学设计(一)复习提问1.梯子靠在墙上,如果梯子与地面的夹角为60°,梯子的长度为3米,那么梯子底端到墙的距离有几米?学生活动:根据题意,求出数值。
2.在生活中,梯子与地面的夹角总是60°吗?不是,可以出现各种角度,60°只是一种特殊现象。
图1(二)创设情境引入课题1如图1,当登山缆车的吊箱经过点A到达点B时,它走过了200 m。
已知缆车的路线与平面的夹角为∠A=16 °,那么缆车垂直上升的距离是多少?哪条线段代表缆车上升的垂直距离?线段BC。
利用哪个直角三角形可以求出BC?在Rt△ABC中,BC=ABsin 16°,所以BC=200sin 16°。
你知道sin 16°是多少吗?我们可以借助科学计算器求锐角三角形的三角函数值。
那么,怎样用科学计算器求三角函数呢?用科学计算器求三角函数值,要用sin cos和tan键。
教师活动:(1)展示下表;(2)按表口述,让学生学会求sin16°的值。
按键顺序显示结果sin 16°sin16=sin 16°=0275 637 355学生活动:按表中所列顺序求出sin 16°的值。
你能求出cos 42°,tan 85°和sin 72°38′25″的值吗?学生活动:类比求sin 16°的方法,通过猜想、讨论、相互学习,利用计算器求相应的三角函数值(操作程序如下表):按键顺序显示结果cos 42°cos42 =cos 42°=0743 144 825tan 85°tan85=tan 85°=11430 052 3sin 72°38′25″sin72D′M′S38D′M′S25D′M′S=sin 72°38′25″→0954 450 321师:利用科学计算器解决本节一开始的问题。
生:BC=200sin 16°≈5212(m)。
说明:利用学生的学习兴趣,巩固用计算器求三角函数值的操作方法。
(三)想一想师:在本节一开始的问题中,当缆车继续由点B到达点D时,它又走过了200 m,缆车由点B到达点D的行驶路线与水平面的夹角为∠β=42°,由此你还能计算什么?学生活动:(1)可以求出第二次上升的垂直距离DE,两次上升的垂直距离之和,两次经过的水平距离,等等。