北京第十八中学高三数学第一轮复习 14 函数的表示法学案
高三数学一轮复习学案:函数的概念及其表示方法
第05课 函数的概念及其表示方法教学目标:教学方法:教学过程:一、基础自测1.下列函数是同一函数的是①0)1(-=x y 与1=y ②x y =与2)(x y =③||x y =与⎩⎨⎧<-≥=0,0,x x x x y ④2x y =与2)1(-=x y2.下列说法中不正确的是①函数的值域中每一个数在定义域中都有数与之对应②函数的定义域和值域一定是不含0的集合③定义域和对应法则相同的函数表示同一函数④若函数的定义域中只含一个元素,则值域中也只含一个元素.3.设集合A={a,b},集合B={c,d, e}若从A 到B 的映射有m 个,从B 到A 的映射有n 个则m ,n 之间的关系为4.分别写出下列函数的定义域、值域. (1)311)(-=x x g ,定义域为 ,值域为 . (2) 12-+=x x y 的定义域为 ,值域为 .5.已知1)(,2)(2+=+=x x g x x x f ,则f[g(x)]= g[f(x)]=6.已知二次函数同时满足条件: ⑴ (1)(1)f x f x +=-;⑵ ()f x 的最大值是15;⑶()0f x =的两根立方和等于17,f(x)的解析式为7.)(x f 的定义域为[-1,1],则)12(+x f 的定义域为8.函数)23(32)(-≠+=x x cx x f 满足x x f f =)]([,则=c 二、例题讲解例1.(1)求函数21)lg(x x x y --=的定义域,(2)lgcos y x =(3)若函数f (x -1)的定义域是[41,9],求f (x )的定义域。
例2..求满足下列条件的函数)(x f (1)221)1(xx x x f +=+; (2)x x x f 2)1(+=+ (3)12)1(2)(-=+x xf x f ;(4)已知二次函数)(x f 满足342)2()1(2++=+++x x x f x f例3.设f (x )为定义在R 上的偶函数,当1-≤x 时,)(x f y =的图象是经过点(-2,0),斜率为1的射线,又在)(x f y =的图象中有一部分是顶点在(0,2),且过点 (-1,1)的一段抛物线,试写出函数f (x )的表达式,并在图中作出其图象.例4.(选讲)设f (x )是定义在[-1,1]上的偶函数,f (x )、g (x )的图象关于直线x=1对称,且当x ∈[2,3]时,g (x )=2a (x-2)- 4(x-2)3 (1)求f (x )的表达式;(2)是否存在正实数a ,使函数f (x )的图象的最高点在直线y=12上,若存在,求出正实数a 的值;若不存在,请说明理由。
高三数学一轮 2.1函数及其表示导学案 理 北师大版
第二章 函 数 学案4 函数及其表示导学目标: 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法等)表示函数.3.了解简单的分段函数,并能简单应用.自主梳理1.函数的基本概念 (1)函数定义设A ,B 是非空的 ,如果按照某种确定的对应关系f ,使对于集合A 中的 ,在集合B 中 ,称f :A →B 为从集合A 到集合B 的一个函数,x 的取值范围A 叫做函数的__________,__________________叫做函数的值域.(2)函数的三要素__________、________和____________. (3)函数的表示法表示函数的常用方法有:________、________、________. (4)函数相等如果两个函数的定义域和__________完全一致,则这两个函数相等,这是判定两函数相等的依据.(5)分段函数:在函数的________内,对于自变量x 的不同取值区间,有着不同的____________,这样的函数通常叫做分段函数.分段函数是一个函数,它的定义域是各段取值区间的________,值域是各段值域的________.2.映射的概念 (1)映射的定义设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中 确定的元素y 与之对应,那么就称对应f :A →B 为从集合A到集合B 的 .(2)由映射的定义可以看出,映射是 概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合,A 、B 必须是 数集.自我检测1.(2011·佛山模拟)设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列4个图形,其中能表示集合M 到N 的函数关系的有( )A .0个B .1个C .2个D .3个2.(2010·湖北)函数y =1log 0.5x -的定义域为( )A .(34,1)B .(34,+∞)C .(1,+∞)D .(34,1)∪(1,+∞)3.(2010·湖北)已知函数f(x)=⎩⎪⎨⎪⎧log 3x ,x >02x, x ≤0,则f(f (19))等于( )A .4 B.14C .-4D .-144.下列函数中,与函数y =x 相同的函数是( )A .y =x 2xB .y =(x )2C .y =lg 10xD .y =2log 2x5.(2011·衡水月考)函数y =lg(ax 2-ax +1)的定义域是R ,求a 的取值范围.探究点一 函数与映射的概念例1 (教材改编)下列对应关系是集合P 上的函数的是________.(1)P =Z ,Q =N *,对应关系f :对集合P 中的元素取绝对值与集合Q 中的元素相对应; y =x 2,x ∈P ,y ∈Q ;(2)P ={-1,1,-2,2},Q ={1,4},对应关系:f :x →y =x 2,x ∈P ,y ∈Q ;(3)P ={三角形},Q ={x |x >0},对应关系f :对P 中三角形求面积与集合Q 中元素对应.变式迁移1 已知映射f :A →B .其中B .其中A =B =R ,对应关系f :x →y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在元素与之对应,则k 的取值范围是 ( )A .k >1B .k ≥1C .k <1D .k ≤1 探究点二 求函数的定义域例2 (1)求函数y =x +1+x -0-x的定义域;(2)已知函数f (2x +1)的定义域为(0,1),求f (x )的定义域.变式迁移2 已知函数y =f (x )的定义域是[0,2],那么g (x )=f x 21+x +的定义域是________________________________________________________________________.探究点三 求函数的解析式例3 (1)已知f (2x+1)=lg x ,求f (x );(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x );(3)已知f (x )满足2f (x )+f (1x)=3x ,求f (x ).变式迁移3 (2011·武汉模拟)给出下列两个条件: (1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式.探究点四 分段函数的应用例4 设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c , x ≤0,2, x >0.若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4变式迁移 4 (2010·江苏)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1, x <0,则满足不等式f (1-x 2)>f (2x )的x 的范围是________________.1.与定义域有关的几类问题第一类是给出函数的解析式,这时函数的定义域是使解析式有意义的自变量的取值范围;第二类是实际问题或几何问题,此时除要考虑解析式有意义外,还应考虑使实际问题或几何问题有意义;第三类是不给出函数的解析式,而由f (x )的定义域确定函数f [g (x )]的定义域或由f [g (x )]的定义域确定函数f (x )的定义域.第四类是已知函数的定义域,求参数范围问题,常转化为恒成立问题来解决. 2.解析式的求法求函数解析式的一般方法是待定系数法和换元法,除此还有代入法、拼凑法和方程组法.(满分:75分)一、选择题(每小题5分,共25分)1.下列各组中的两个函数是同一函数的为 ( )(1)y 1=x +3x -5x +3,y 2=x -5;(2)y 1=x +1x -1,y 2=x +1x -1;(3)f (x )=x ,g (x )=x 2;(4)f (x )=3x 4-x 3,F (x )=x 3x -1;(5)f 1(x )=(2x -5)2,f 2(x )=2x -5.A .(1)(2)B .(2)(3)C .(4)D .(3)(5)2.函数y =f (x )的图象与直线x =1的公共点数目是 ( ) A .1 B .0 C .0或1 D .1或23.(2011·洛阳模拟)已知f (x )=⎩⎪⎨⎪⎧x +x ≤-,x 2-1<x,2x x,若f (x )=3,则x 的值是( )A .1B .1或32C .1,32或± 3D. 34.(2009·江西)函数y =x +-x 2-3x +4的定义域为( )A .(-4,-1)B .(-4,1)C .(-1,1)D .(-1,1]5.(2011·台州模拟)设f :x →x 2是从集合A 到集合B 的映射,如果B ={1,2},则A ∩B 为 ( )A .∅B .{1}6.下列四个命题:(1)f (x )=x -2+1-x 有意义;(2)函数是其定义域到值域的映射;(3)函数y =2x (x ∈N )的图象是一条直线;(4)函数y =⎩⎪⎨⎪⎧x 2, x ≥0,-x 2,x <0的图象是抛物线.其中正确的命题个数是________.7.设f (x )=⎩⎪⎨⎪⎧ 3x +1 x x 2 x ,g (x )=⎩⎪⎨⎪⎧2-x 2xx ,则f [g (3)]=________,g [f (-12)]=________.8.(2010·陕西)已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =______.三、解答题(共38分)9.(12分)(1)若f (x +1)=2x 2+1,求f (x )的表达式; (2)若2f (x )-f (-x )=x +1,求f (x )的表达式;(3)若函数f (x )=xax +b,f (2)=1,又方程f (x )=x 有唯一解,求f (x )的表达式.10.(12分)已知f (x )=x 2+2x -3,用图象法表示函数g (x )=f x +|f x2,并写出g (x )的解析式.11.(14分)(2011·湛江模拟)某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x (百台),其总成本为G (x )万元,其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R (x )(万元)满足R (x )=⎩⎪⎨⎪⎧-0.4x 2+4.2x -0.8, 0≤x ≤5,10.2, x >5.假定该产品产销平衡,那么根据上述统计规律:(1)要使工厂有盈利,产品x 应控制在什么范围?(2)工厂生产多少台产品时盈利最大?此时每台产品的售价为多少?答案 自主梳理 1.(1)数集 任意一个数x 都有唯一确定的数f(x)和它对应 定义域 函数值的集合{f(x)|x∈A} (2)定义域 值域 对应关系 (3)解析法 列表法 图象法 (4)对应关系 (5)定义域 对应关系 并集 并集 2.(1)都有唯一 一个映射 (2)函数 非空自我检测1.B [对于题图(1):M 中属于(1,2]的元素,在N 中没有象,不符合定义;对于题图(2):M 中属于(43,2]的元素的象,不属于集合N ,因此它不表示M 到N 的函数关系;对于题图(3):符合M 到N 的函数关系;对于题图(4):其象不唯一,因此也不表示M 到N 的函数关系.]2.A 3.B 4.C5.解 函数y =lg(ax 2-ax +1)的定义域是R ,即ax 2-ax +1>0恒成立. ①当a =0时,1>0恒成立;②当a ≠0时,应有⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0, ∴0<a <4.综上所述,a 的取值范围为0≤a <4. 课堂活动区例1 解题导引 函数是一种特殊的对应,要检验给定的两个变量之间是否具有函数关系,只需要检验:①定义域和对应关系是否给出;②根据给出的对应关系,自变量在其定义域中的每一个值,是否都有唯一确定的函数值.(2)解析 由于(1)中集合P 中元素0在集合Q 中没有对应元素,并且(3)中集合P 不是数集,所以(1)和(3)都不是集合P 上的函数.由题意知,(2)正确.变式迁移1 A [由题意知,方程-x 2+2x =k 无实数根,即x 2-2x +k =0无实数根.∴Δ=4(1-k )<0,∴k >1时满足题意.]例2 解题导引 在(2)中函数f (2x +1)的定义域为(0,1)是指x 的取值范围还是2x +1的取值范围?f (x )中的x 与f (2x +1)中的2x +1的取值范围有什么关系?解 (1)要使函数有意义,应有⎩⎪⎨⎪⎧x +1≥0,x -1≠0,2-x >0,2-x ≠1,即⎩⎪⎨⎪⎧x ≥-1,x ≠1,x <2,解得⎩⎪⎨⎪⎧-1≤x <2,x ≠1.所以函数的定义域是{x |-1≤x <1或1<x <2}. (2)∵f (2x +1)的定义域为(0,1), ∴1<2x +1<3,所以f (x )的定义域是(1,3).变式迁移2 (-1,-910)∪(-910,2]解析 由⎩⎪⎨⎪⎧0≤x 2≤2x +1>01+x +得-1<x ≤2且x ≠-910.即定义域为(-1,-910)∪(-910,2].例3 解题导引 函数解析式的类型与求法(1)若已知函数的类型(如一次函数、二次函数),可用待定系数法.(2)已知复合函数f (g (x ))的解析式,可用换元法,此时要注意变量的取值范围. (3)已知f (x )满足某个等式,这个等式除f (x )是未知量外,还出现其他未知量,如f (-x )、f (1x)等,要根据已知等式再构造其他等式组成方程组,通过解方程组求出f (x ).解 (1)令2x +1=t ,则x =2t -1,∴f (t )=lg 2t -1,∴f (x )=lg 2x -1,x ∈(1,+∞).(2)设f (x )=ax +b ,(a ≠0)则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17, ∴⎩⎪⎨⎪⎧a =2,b +5a =17, ∴a =2,b =7,故f (x )=2x +7.(3)2f (x )+f (1x)=3x , ①把①中的x 换成1x,得2f (1x )+f (x )=3x, ②①×2-②,得3f (x )=6x -3x,∴f (x )=2x -1x.变式迁移3 解 (1)令t =x +1,∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1,即f (x )=x 2-1,x ∈[1,+∞).(2)设f (x )=ax 2+bx +c (a ≠0),∴f (x +2)=a (x +2)2+b (x +2)+c , 则f (x +2)-f (x )=4ax +4a +2b =4x +2. ∴⎩⎪⎨⎪⎧ 4a =4,4a +2b =2. ∴⎩⎪⎨⎪⎧a =1,b =-1. 又f (0)=3,∴c =3,∴f (x )=x 2-x +3.例4 解题导引 ①本题可以先确定解析式,然后通过解方程f (x )=x 来确定解的个数;也可利用数形结合,更为简洁.②对于分段函数,一定要明确自变量所属的范围,以便于选择与之相应的对应关系. ③分段函数体现了数学的分类讨论思想,相应的问题处理应分段解决.C [方法一 若x ≤0,则f (x )=x 2+bx +c . ∵f (-4)=f (0),f (-2)=-2,∴⎩⎪⎨⎪⎧-2+b -+c =c ,-2+b -+c =-2, 解得⎩⎪⎨⎪⎧b =4,c =2.∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2, x ≤0,2, x >0.当x ≤0,由f (x )=x ,得x 2+4x +2=x , 解得x =-2,或x =-1;当x >0时,由f (x )=x ,得x =2. ∴方程f (x )=x 有3个解.方法二 由f (-4)=f (0)且f (-2)=-2,可得f (x )=x 2+bx +c 的对称轴是x =-2,且顶点为(-2,-2),于是可得到f (x )的简图(如图所示).方程f (x )=x 的解的个数就是函数图象y =f (x )与y =x 的图象的交点的个数,所以有3个解.]变式迁移4 (-1,2-1)解析 函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1, x <0的图象如图所示:f (1-x 2)>f (2x )⇔⎩⎪⎨⎪⎧1-x 2>2x1-x 2>0,解得-1<x <2-1.课后练习区1.C [(1)定义域不同;(2)定义域不同;(3)对应关系不同;(4)定义域相同,且对应关系相同;(5)定义域不同.]2.C [有可能是没有交点的,如果有交点,那么对于x =1仅有一个函数值.]3.D [该分段函数的三段各自的值域为(-∞,1],[0,4),[4,+∞),而3∈[0,4),∴f (x )=x 2=3,x =±3,而-1<x <2,∴x = 3.]4.C5.D [由已知x 2=1或x 2=2,解之得,x =±1或x =±2,若1∈A ,则A ∩B ={1},若1∉A ,则A ∩B =∅,故A ∩B =∅或{1}.] 6.1解析 (1)x ≥2且x ≤1,不存在;(2)函数是特殊的映射;(3)该图象是由离散的点组成的;(4)该图象是两个不同的抛物线的两部分组成的,不是抛物线.故只有(2)正确.7.7 31168.29.解 (1)令t =x +1,则x =t -1,∴f (t )=2(t -1)2+1=2t 2-4t +3,∴f (x )=2x 2-4x +3.………………………………………………………………………………………………(4分)(2)∵2f (x )-f (-x )=x +1,用-x 去替换式子中的x ,得2f (-x )-f (x )=-x +1,……(6分)即有⎩⎪⎨⎪⎧2f x -f -x =x +12f -x -f x =-x +1,解方程组消去f (-x ),得f (x )=x3+1.……………………………………………………(8分)(3)由f (2)=1得22a +b =1,即2a +b =2;由f (x )=x 得x ax +b =x ,变形得x (1ax +b -1)=0,解此方程得x =0或x =1-ba ,…(10分)又∵方程有唯一解,∴1-b a =0,解得b =1,代入2a +b =2得a =12,∴f (x )=2xx +2.……………………………………………………………………………(12分)10.解 函数f (x )的图象如图所示,……………………………………(6分)g (x )=⎩⎪⎨⎪⎧x 2+2x -3x ≤-3或x0 -3<x…………………………………………………(12分)11.解 依题意,G (x )=x +2,设利润函数为f (x ),则f (x )=⎩⎪⎨⎪⎧-0.4x 2+3.2x -2.8,0≤x ≤5,8.2-x , x >5.………………………………………………(4分)(1)要使工厂赢利,则有f (x )>0.当0≤x ≤5时,有-0.4x 2+3.2x -2.8>0,得1<x <7,所以1<x ≤5.………………………………………………………………(8分) 当x >5时,有8.2-x >0, 得x <8.2,所以5<x <8.2.综上所述,要使工厂赢利,应满足1<x <8.2,即产品应控制在大于100台小于820台的范围内.……………………………………………………………………………………(10分)(2)当0≤x ≤5时,f (x )=-0.4(x -4)2+3.6. 故当x =4时,f (x )有最大值3.6.…………………………………………………………(12分)而当x >5时,f (x )<8.2-5=3.2.所以当工厂生产400台产品时,赢利最大,x =4时,每台产品售价为R4=2.4(万元/百台)=240(元/台).……………………………………………………………………………(14分)。
高考数学一轮复习教学案函数及其表示(含解析)
第一节函数及其表示[知识能否忆起]1.函数的概念(1)函数的定义:一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应;那么就称f:A→B为从集合A到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.映射的概念设A,B是两个非空的集合,如果按照某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么称对应f:A→B为集合A 到集合B的一个映射.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[小题能否全取]1.(教材习题改编)设g(x)=2x+3,g(x+2)=f(x),则f(x)等于()A.-2x+1B.2x-1C.2x-3 D.2x+7解析:选D f(x)=g(x+2)=2(x+2)+3=2x+7.2.(·江西高考)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( )A.15 B .3 C.23D.139解析:选D f (3)=23,f (f (3))=⎝⎛⎭⎫232+1=139. 3.已知集合A =[0,8],集合B =[0,4],则下列对应关系中,不能看作从A 到B 的映射的是( )A .f :x →y =18xB .f :x →y =14xC .f :x →y =12xD .f :x →y =x解析:选D 按照对应关系f :x →y =x ,对A 中某些元素(如x =8),B 中不存在元素与之对应.4.已知f ⎝⎛⎭⎫1x =x 2+5x ,则f (x )=____________. 解析:令t =1x ,则x =1t .所以f (t )=1t 2+5t .故f (x )=5x +1x 2(x ≠0).答案:5x +1x2(x ≠0)5.(教材习题改编)若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (-1)=________.解析:由已知得⎩⎪⎨⎪⎧ 1+b +c =0,9+3b +c =0,得⎩⎪⎨⎪⎧b =-4,c =3.即f (x )=x 2-4x +3.所以f (-1)=(-1)2-4×(-1)+3=8. 答案:81.函数与映射的区别与联系(1)函数是特殊的映射,其特殊性在于集合A 与集合B 只能是非空数集,即函数是非空数集A 到非空数集B 的映射.(2)映射不一定是函数,从A 到B 的一个映射,A 、B 若不是数集,则这个映射便不是函数.2.定义域与值域相同的函数,不一定是相同函数如函数y =x 与y =x +1,其定义域与值域完全相同,但不是相同函数;再如函数y =sin x 与y =cos x ,其定义域与值域完全相同,但不是相同函数.因此判断两个函数是否相同,关键是看定义域和对应关系是否相同.3.求分段函数应注意的问题在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.函数的基本概念典题导入[例1] 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0表示同一函数;(2)函数y =f (x )的图象与直线x =1的交点最多有1个; (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;(4)若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________.[自主解答] 对于(1),由于函数f (x )=|x |x的定义域为{x |x ∈R ,且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y =f (x )定义域的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于(3),f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于(4),由于f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-⎪⎪⎪⎪12=0,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (0)=1. 综上可知,正确的判断是(2)(3). [答案] (2)(3)由题悟法两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x表示,但也可用其他字母表示,如:f(x)=2x-1,g(t)=2t-1,h(m)=2m-1均表示同一函数.以题试法1.试判断以下各组函数是否表示同一函数.(1)y=1,y=x0;(2)y=x-2·x+2,y=x2-4;(3)y=x,y=3t3;(4)y=|x|,y=(x)2.解:(1)y=1的定义域为R,y=x0的定义域为{x|x∈R,且x≠0},故它们不是同一函数.(2)y=x-2·x+2的定义域为{x|x≥2}.y=x2-4的定义域为{x|x≥2,或x≤-2},故它们不是同一函数.(3)y=x,y=3t3=t,它们的定义域和对应关系都相同,故它们是同一函数.(4)y=|x|的定义域为R,y=(x)2的定义域为{x|x≥0},故它们不是同一函数.求函数的解析式典题导入[例2] (1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ). [自主解答] (1)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2(x ≥2或x ≤-2). (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1(x >1).(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).由题悟法函数解析式的求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式(如例(1));(2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法(如例(3));(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围(如例(2));(4)方程思想:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x )(如A 级T6).以题试法2.(1)已知f (x +1)=x +2x ,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:(1)法一:设t =x +1,则x =(t -1)2(t ≥1);代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1(x ≥1).法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1(x +1≥1), 即f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根, ∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1.分 段 函 数典题导入[例3] (·广州调研考试)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ∈(-∞,1),x 2,x ∈[1,+∞),若f (x )>4,则x 的取值范围是______.[自主解答] 当x <1时,由f (x )>4,得2-x >4,即x <-2;当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2, 由于x ≥1,所以x >2. 综上可得x <-2或x >2.[答案] (-∞,-2)∪(2,+∞)若本例条件不变,试求f (f (-2))的值. 解:∵f (-2)=22=4, ∴f (f (-2))=f (4)=16.由题悟法求分段函数的函数值时,应根据所给自变量值的大小选择相应的解析式求解,有时每段交替使用求值.若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值或范围是否符合相应段的自变量的取值范围.以题试法3.(·衡水模拟)已知f (x )的图象如图,则f (x )的解析式为________. 解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝⎛⎭⎫1,32和⎝⎛⎭⎫1,32,(2,0)分别代入, 解得⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎨⎧32x ,0≤x ≤1,3-32x ,1≤x ≤21.下列四组函数中,表示同一函数的是( ) A .y =x -1与y =(x -1)2 B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lg x100答案:D2.下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln xxC .y =x e xD .y =sin xx解析:选D 函数y =13x的定义域为{x |x ≠0},选项A 中由sin x ≠0⇒x ≠k π,k ∈Z ,故A 不对;选项B 中x >0,故B 不对;选项C 中x ∈R ,故C 不对;选项D 中由正弦函数及分式型函数的定义域确定方法可知定义域为{x |x ≠0}.3.(·安徽高考)下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x解析:选C 对于选项A ,f (2x )=|2x |=2|x |=2f (x );对于选项B ,f (x )=x -|x |=⎩⎪⎨⎪⎧0,x ≥0,2x ,x <0,当x ≥0时,f (2x )=0=2f (x ),当x <0时,f (2x )=4x =2·2x =2f (x ),恒有f (2x )=2f (x );对于选项D ,f (2x )=-2x =2(-x )=2f (x );对于选项C ,f (2x )=2x +1=2f (x )-1.4.已知f (x )=⎩⎪⎨⎪⎧-cos (πx ),x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .-2 B .1 C .2D .3解析:选D f ⎝⎛⎭⎫43=12,f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=52,f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3. 5.现向一个半径为R 的球形容器内匀速注入某种液体,下面图形中能表示在注入过程中容器的液面高度h 随时间t 变化的函数关系的是( )解析:选C 从球的形状可知,水的高度开始时增加的速度越来越慢,当超过半球时,增加的速度又越来越快.6.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( )A .x -1B .x +1C .2x +1D .3x +3解析:选B 由题意知2f (x )-f (-x )=3x +1.① 将①中x 换为-x ,则有2f (-x )-f (x )=-3x +1.② ①×2+②得3f (x )=3x +3, 即f (x )=x +1.7.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________. 解析:由f (1)=f (2)=0,得⎩⎪⎨⎪⎧ 12+p +q =0,22+2p +q =0,所以⎩⎪⎨⎪⎧p =-3,q =2.故f (x )=x 2-3x +2.所以f (-1)=(-1)2+3+2=6. 答案:68.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a ,若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3.答案:(-1,3)9.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的是________.解析:由函数的定义,对定义域内的每一个x 对应着唯一一个y ,据此排除①④,③中值域为{y |0≤y ≤3}不合题意.答案:②10.若函数f (x )=xax +b (a ≠0),f (2)=1,又方程f (x )=x 有唯一解,求f (x )的解析式.解:由f (2)=1得22a +b=1,即2a +b =2;由f (x )=x 得x ax +b =x ,变形得x ⎝ ⎛⎭⎪⎫1ax +b -1=0,解此方程得x =0或x =1-ba ,又因方程有唯一解,故1-ba =0,解得b =1,代入2a +b =2得a =12,所以f (x )=2x x +2. 11.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是 2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y (km)与时间x (min)的关系.试写出y =f (x )的函数解析式.解:当x ∈[0,30]时,设y =k 1x +b 1, 由已知得⎩⎪⎨⎪⎧b 1=0,30k 1+b 1=2,解得⎩⎪⎨⎪⎧ k 1=115,b 1=0.即y =115x .当x ∈(30,40)时,y =2; 当x ∈[40,60]时,设y =k 2x +b 2,由已知得⎩⎪⎨⎪⎧40k 2+b 2=2,60k 2+b 2=4,解得⎩⎪⎨⎪⎧k 2=110,b 2=-2.即y =110x -2.综上,f (x )=⎩⎨⎧115x ,x ∈[0,30],2,x ∈(30,40),110x -2,x ∈[40,60].12.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么? (4)图1、图2、图3中的票价分别是多少元?解:(1)点A 表示无人乘车时收支差额为-20元,点B 表示有10人乘车时收支差额为0元,线段AB 上的点表示亏损,AB 延长线上的点表示赢利.(2)图2的建议是降低成本,票价不变,图3的建议是提高票价. (3)斜率表示票价.(4)图1、2中的票价是2元.图3中的票价是4元.1.(·北京高考)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:选D 因为组装第A 件产品用时15分钟, 所以cA=15,① 所以必有4<A ,且c 4=c2=30.② 联立①②解得c =60,A =16.2.(·江西红色六校联考)具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.3.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有 a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x . ∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4,或x <-1}.1.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.解析:∵f (0)=3×0+2=2,f (f (0))=f (2)=4+2a =4a ,∴a=2.答案:22.若函数的定义域为{x|-3≤x≤6,且x≠4},值域为{y|-2≤y≤4,且y≠0},试在下图中画出满足条件的一个函数的图象.解:本题答案不唯一,函数图象可画为如图所示.3.已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.(1)若f(2)=3,求f(1);又若f(0)=a,求f(a);(2)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式.解:(1)因为对任意x∈R有f(f(x)-x2+x)=f(x)-x2+x,所以f(f(2)-22+2)=f(2)-22+2,又f(2)=3,从而f(1)=1.若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.(2)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x,又有且仅有一个实数x0,使得f(x0)=x0,故对任意x∈R,有f(x)-x2+x=x0.在上式中令x=x0,有f(x0)-x20+x0=x0.又因为f(x0)=x0,所以x0-x20=0,故x0=0或x0=1.若x0=0,则f(x)=x2-x,但方程x2-x=x有两个不相同实根,与题设条件矛盾,故x0≠0.若x0=1,则有f(x)=x2-x+1,易证该函数满足题设条件.综上,所求函数f(x)的解析式为f(x)=x2-x+1.。
北京第十八中学高三数学第一轮复习 34 导数的应用(3)综合教案(学生版)
北京第十八中学高三数学第一轮复习 34 导数的应用(3)综合教案(学生版)一、课前检测1. 函数()3239f x x ax x =+--,已知()f x 的两个极值点为12,x x ,则12x x =( )A .9B .9-C .1D .1-2. 函数2cos y x x =+在区间[0,]2π上的最大值是 .3. 函数()ln x f x x=的单调递减区间是_ _____.二、典型例题分析例1.已知函数32()f x x ax bx c =-+++图象上的点(1,(1))P f 处的切线方程为31y x =-+. ⑴若函数()f x 在2x =-处有极值,求()f x 的表达式;⑵若函数()f x 在区间[2,0]-上单调递增,求实数b 的取值范围.变式训练:已知3x =是函数2()ln(1)10f x a x x x =++-的极小值点.⑴求实数a 的值;⑵求函数()f x 的单调区间.例2.已知函数,6)(23b ax ax x f +-=问是否存在实数a 、b 使f (x )在[-1,2]上取得最大值3,最小值-29,若存在,求出a 、b 的值.并指出函数的单调区间 . 若不存在,请说明理由 .变式训练:设定函数32()(0)3a f x x bx cx d a =+++,且方程'()90f x x -=的两个根分别为1,4。
(Ⅰ)当a=3且曲线()y f x =过原点时,求()f x 的解析式;(Ⅱ)若()f x 在(,)-∞+∞无极值点,求a 的取值范围。
例3.已知函数f(x)=x 3-21x 2+bx+c.(1)若f(x)在(-∞,+∞)上是增函数,求b 的取值范围;(2)若f(x)在x=1处取得极值,且x∈[-1,2]时,f(x)<c 2恒成立,求c 的取值范围.变式训练:(2006全国)设函数()(1)ln(1).f x x x =++若对所有的0,x ≥都有()f x ax ≥成立,求实数a 的取值范围.四、归纳与总结(以学生为主,师生共同完成)1.知识:2.思想与方法:3.易错点:4.教学反思(不足并查漏):。
高中数学函数集体备课教案
高中数学函数集体备课教案
课时安排:2课时
教学目标:
1. 了解函数的基本概念和性质;
2. 能够掌握函数的表示方法;
3. 掌握函数的运算规律;
4. 能够解决与函数相关的问题。
教学准备:
1. 教师准备:教案、教材、课件、教具等;
2. 学生准备:学习笔记、教材、书写工具等。
教学过程:
第一课时:
1. 引入:通过实例引导学生思考什么是函数;
2. 定义函数:向学生介绍函数的定义,包括定义域、值域、对应关系等;
3. 函数的表示方法:介绍函数的表示方法,包括公式、图像、表格等;
4. 函数的运算规律:讲解函数的四则运算规律,包括加法、减法、乘法、除法;
5. 练习:让学生完成几道与函数相关的练习题。
第二课时:
1. 函数的性质:讲解函数的奇偶性、单调性、周期性等性质;
2. 函数的图像:介绍函数的图像,包括平移、翻转等变换;
3. 特殊函数:讲解常见的函数形式,如一次函数、二次函数、指数函数等;
4. 应用:引导学生通过函数解决实际问题;
5. 总结复习:回顾本节课的重点知识点,做一次小结,并布置相关作业。
教学反思:
通过本节课的教学,学生应该能够对函数的基本概念和性质有一定了解,并能够熟练运用函数的表示方法和运算规律。
同时,通过应用题的训练,学生的解决问题的能力也将有所提高。
在未来的教学中,应该继续强调函数与实际问题的联系,引导学生将数学知识灵活应用于实际生活中。
2019-2020学年高三数学第一轮复习 14 函数的表示法----求解析式教学案(教师版).doc
2019-2020学年高三数学第一轮复习 14 函数的表示法----求解析式教学案(教师版)一、课前检测1.若函数()f x 满足2(1)2f x x x +=-,则f= . 答案:6-2.已知()()()23,2f x x g x f x =++=,则()g x = . 答案:21x -3. 若)(x f 是一次函数,14)]([-=x x f f 且,则)(x f = . 答案:()123f x x =-或()21f x x =-+二、知识梳理求函数解析式的题型有:1.已知函数类型,求函数的解析式:待定系数法;解读:2.已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法;解读:3.已知函数图像,求函数解析式;解读:4.()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式:解方程组法; 解读:5.应用题求函数解析式常用方法有待定系数法等.解读:三、典型例题分析例1 设2211(),f x x x x+=+,求()f x 的解析式. 答案:()22f x x =-变式训练1:设(cos )cos 2,(sin )f x x f x =求的解析式. 答案:()2sin 1f x x =-变式训练2:设33221)1(,1)1(xx x x g x x x x f +=++=+, 求)]([x g f . 答案:()22f x x =-,()33g x x x =-,642[()]692f g x x x x =-+-小结与拓展:配凑法例2 设23)1(2+-=+x x x f ,求)(x f 的解析式. 答案:2()56f x x x =-+变式训练1:已知21lg f x x ⎛⎫+=⎪⎝⎭,求)(x f 的解析式. 答案:2()lg 1f x x =-变式训练2:设x x f 2cos )1(cos =-,求)(x f 的解析式. 答案:2()21f x x x =++小结与拓展:换元法例3 已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x 的解析式; 答案:()27f x x =+变式训练1:已知12()3f x f x x ⎛⎫+=⎪⎝⎭,求)(x f 的解析式. 答案:1()2f x x x =-例4.图中的图象所表示的函数的解析式为( B ) A. |1|23-=x y (0≤x ≤2) B. |1|2323--=x y (0≤x ≤2) C. |1|23--=x y (0≤x ≤2)。
高三数学一轮复习教案(函数)
函数(一)函数1.了解构成函数的要素,了解映射的概念,会求一些简单函数的定义域和值域.2.理解函数的三种表示法:解析法、图象法和列表法,能根据不同的要求选择恰当的方法表示简单的函数。
3.了解分段函数,能用分段函数来解决一些简单的数学问题。
4.理解函数的单调性,会讨论和证明一些简单的函数的单调性;理解函数奇偶性的含义,会判断简单的函数奇偶性。
5.理解函数的最大(小)值及其几何意义,并能求出一些简单的函数的最大(小)值.6.会运用函数图像理解和研究函数的性质.(二)指数函数1.了解指数函数模型的实际背景。
2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。
3.理解指数函数的概念,会求与指数函数性质有关的问题。
4.知道指数函数是一类重要的函数模型。
(三)对数函数1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。
2.理解对数函数的概念;会求与对数函数性质有关的问题.3.知道对数函数是一类重要的函数模型.4.了解指数函数与对数函数互为反函数()。
(四)幂函数1.了解幂函数的概念。
2.结合函数的图像,了解它们的变化情况。
(五)函数与方程1.了解函数零点的概念,结合二次函数的图像,了解函数的零点与方程根的联系。
2.理解并掌握连续函数在某个区间上存在零点的判定方法。
能利用函数的图象和性质判别函数零点的个数.(六)函数模型及其应用1.了解指数函数、对数函数以及幂函数的增长特征。
知道直线上升、指数增长、对数增长等不同函数类型增长的含义。
2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。
3.能利用给定的函数模型解决简单的实际问题。
定义定义域区间对应法则值域一元二次函数一元二次不等式映射函数性质奇偶性单调性周期性指数函数根式分数指数指数函数的图像和性质指数方程对数方程反函数互为反函数的函数图像关系对数函数对数对数的性质积、商、幂与根的对数对数恒等式和不等式常用对数自然对数对数函数的图像和性质函数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,包括解决几何问题.在近几年的高考试卷中,选择题、填空题、解答题三种题型中每年都有函数试题,而且常考常新.以基本函数为模型的应用题和综合题是高考命题的新趋势.考试热点:①考查函数的表示法、定义域、值域、单调性、奇偶性、反函数和函数的图象.②函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的函数模型并用来解决问题,是考试的热点.③考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本数学思想.函数概念(一)知识梳理1.映射的概念设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任意元素,在集合B 中都有唯一确定的元素与之对应,那么这样的单值对应叫做从A 到B 的映射,通常记为B A f →: ,f 表示对应法则 注意:⑴A 中元素必须都有象且唯一;⑵B 中元素不一定都有原象,但原象不一定唯一。
高考数学一轮复习 第2章 函数、导数及其应用 第1节 函数及其表示学案 文 北师大版
第一节函数及其表示[考纲传真] 1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).(对应学生用书第7页)[基础知识填充]1.函数与映射的概念2.(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫作自变量,集合A叫作函数的定义域;与x的值相对应的y值叫作函数值,函数值的集合{f(x)|x∈A}叫作函数的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法表示函数的常用方法有解析法、图像法和列表法.3.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.[知识拓展]求函数定义域的依据(1)整式函数的定义域为R ; (2)分式的分母不为零;(3)偶次根式的被开方数不小于零; (4)对数函数的真数必须大于零;(5)正切函数y =tan x 的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z; (6)x 0中x ≠0;(7)实际问题中除要考虑函数解析式有意义外,还应考虑实际问题本身的要求.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数是特殊的映射.( )(2)函数y =1与y =x 0是同一个函数.( )(3)与x 轴垂直的直线和一个函数的图像至多有一个交点.( ) (4)分段函数是两个或多个函数.( ) [答案] (1)√ (2)× (3)√ (4)× 2.(教材改编)函数y =2x -3+1x -3的定义域为( ) A .⎣⎢⎡⎭⎪⎫32,+∞ B .(-∞,3)∪(3,+∞) C .⎣⎢⎡⎭⎪⎫32,3∪(3,+∞) D .(3,+∞)C [由题意知 ⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.]3.(2018·西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≤1log 12x ,x >1则f [f (4)]=________.【导学号:00090012】14 [f (4)=log 124=-2,所以f [f (4)]=f (-2)=2-2=14.] 4.(2015·全国卷Ⅱ)已知函数f (x )=ax 3-2x 的图像过点(-1,4),则a =________. -2 [∵f (x )=ax 3-2x 的图像过点(-1,4), ∴4=a ×(-1)3-2×(-1),解得a =-2.] 5.给出下列四个命题:①函数是其定义域到值域的映射; ②f (x )=x -3+2-x 是一个函数;③函数y =2x (x ∈N )的图像是一条直线; ④f (x )=lg x 2与g (x )=2lg x 是同一个函数. 其中正确命题的序号是________. ① [由函数的定义知①正确.∵满足⎩⎪⎨⎪⎧x -3≥0,2-x ≥0的x 不存在,∴②不正确.∵y =2x (x ∈N )的图像是位于直线y =2x 上的一群孤立的点, ∴③不正确.∵f (x )与g (x )的定义域不同,∴④也不正确.](对应学生用书第8页)A .(-2,1)B .[-2,1]C .(0,1)D .(0,1](2)(2017·郑州模拟)若函数y =f (x )的定义域为[0,2],则函数g (x )=f x x -1的定义域是________.(1)C (2)[0,1) [(1)由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0ln x ≠0x >0,解得0<x <1,故选C .(2)由0≤2x ≤2,得0≤x ≤1,又x -1≠0,即x ≠1, 所以0≤x <1,即g (x )的定义域为[0,1).][规律方法] 1.求给出解析式的函数的定义域,可构造使解析式有意义的不等式(组)求解.2.(1)若已知f (x )的定义域为[a ,b ],则f (g (x ))的定义域可由a ≤g (x )≤b 求出; (2)若已知f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. [变式训练1] (1)函数f (x )=1-2x+1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)已知函数f (2x)的定义域为[-1,1],则f (x )的定义域为________.(1)A (2)⎣⎢⎡⎦⎥⎤12,2 [(1)由题意,自变量x 应满足⎩⎪⎨⎪⎧1-2x≥0,x +3>0,解得⎩⎪⎨⎪⎧x ≤0,x >-3,∴-3<x ≤0.(2)∵f (2x)的定义域为[-1,1], ∴12≤2x≤2,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2.](1)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式.(2)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式.(3)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x=x (x ≠0),求f (x )的解析式.[解] (1)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴⎩⎪⎨⎪⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32,∴f (x )=12x 2-32x +2.(3)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x +2f (x )=1x.联立方程组⎩⎪⎨⎪⎧f x +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,解得f (x )=23x -x3(x ≠0).[规律方法] 求函数解析式的常用方法(1)待定系数法:若已知函数的类型,可用待定系数法;(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (3)构造法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f (x );(4)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x替代g (x ),即得f (x )的表达式.[变式训练2] (1)已知f (x +1)=x +2x ,则f (x )=________. 【导学号:00090013】 (2)已知f (x )是一次函数,且2f (x -1)+f (x +1)=6x ,则f (x )=________. (3)已知函数f (x )满足f (-x )+2f (x )=2x,则f (x )=________. (1)x 2-1(x ≥1) (2)2x +23(3)2x +1-2-x3[(1)(换元法)设x +1=t (t ≥1),则x =t -1,所以f (t )=(t -1)2+2(t -1)=t 2-1(t ≥1),所以f (x )=x 2-1(x ≥1). (配凑法)f (x +1)=x +2x =(x +1)2-1, 又x +1≥1,∴f (x )=x 2-1(x ≥1). (2)∵f (x )是一次函数, ∴设f (x )=kx +b (k ≠0), 由2f (x -1)+f (x +1)=6x ,得2[k (x -1)+b ]+k (x +1)+b =6x ,即3kx -k +3b =6x ,∴⎩⎪⎨⎪⎧3k =-k +3b =0,∴k =2,b =23,即f (x )=2x +23.(3)由f (-x )+2f (x )=2x①, 得f (x )+2f (-x )=2-x②, ①×2-②,得3f (x )=2x +1-2-x.即f (x )=2x +1-2-x3. ∴f (x )的解析式为f (x )=2x +1-2-x3.]角度1(1)(2017·湖南衡阳八中一模)若f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x ,x ≤0,log 3x ,x >0,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=( ) A .-2 B .-3 C .9D .-9(2)(2017·东北三省四市一联)已知函数f (x )的定义域为(-∞,+∞),如果f (x +2 016)=⎩⎨⎧2sin x ,x ≥0,-x ,x <0,那么f 2 016+π4·f (-7 984)=( )A .2 016B .14C .4D .12 016(1)C (2)C [(1)∵f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x ,x ≤0,log 3x ,x >0,∴f ⎝ ⎛⎭⎪⎫19=log 319=-2,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=f (-2)=⎝ ⎛⎭⎪⎫13-2=9.故选C .(2)当x ≥0时,有f (x +2 016)=2sin x ,∴f ⎝⎛⎭⎪⎫2 016+π4=2sin π4=1;当x <0时,f (x +2 016)=lg(-x ),∴f (-7 984)=f (-10 000+2 016)=lg 10 000=4,∴f ⎝⎛⎭⎪⎫2 016+π4·f (-7 984)=1×4=4,故选C .]角度2 已知分段函数的函数值求参数(1)(2017·成都二诊)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,x 2+m 2,x <1,若f (f (-1))=2,则实数m 的值为( ) A .1 B .1或-1 C . 3 D .3或- 3(2)设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x,x ≥1.若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫56=4,则b =( )A .1B .78C .34D .12(1)D (2)D [(1)f (f (-1))=f (1+m 2)=log 2(1+m 2)=2,m 2=3,解得m =±3,故选D .(2)f ⎝ ⎛⎭⎪⎫56=3×56-b =52-b ,若52-b <1,即b >32,则3×⎝ ⎛⎭⎪⎫52-b -b =152-4b =4,解得b =78,不符合题意,舍去;若52-b ≥1,即b ≤32,则252-b =4,解得b =12.]角度3 解与分段函数有关的方程或不等式(1)(2017·石家庄一模)已知函数f (x )=⎩⎪⎨⎪⎧sin πx 2,-1<x ≤0,log 2x +,0<x <1,且f (x )=-12,则x 的值为________. 【导学号:00090014】(2)(2014·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.(1)-13 (2)(-∞,8] [(1)当-1<x ≤0时,f (x )=sin πx 2=-12,解得x =-13;当0<x <1时,f (x )=log 2(x +1)∈(0,1),此时f (x )=-12无解,故x 的值为-13.(2)当x <1时,x -1<0,ex -1<e 0=1≤2,∴当x <1时满足f (x )≤2.当x ≥1时,x 13≤2,x ≤23=8,∴1≤x ≤8.综上可知x ∈(-∞,8].][规律方法] 1.求分段函数的函数值,要先确定要求值的自变量属于定义域的哪一个子集,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值. 2.已知函数值或函数值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.易错警示:当分段函数自变量的范围不确定时,应分类讨论.。
高考数学一轮复习总教案2.1函数的概念及表示法(人教版)
第二章函数高考导航知识网络2.1函数的概念及表示法典例精析题型一 求函数的解析式【例1】 (1)已知f(x +1)=x2+x +1,求f (x)的表达式; (2)已知f(x)+2f(-x)=3x2+5x +3,求f (x)的表达式. 【解析】(1)设x +1=t ,则x =t -1,代入得f (x)=(t -1)2+(t -1)+1=t2-t +1,所以f (x)=x2-x +1. (2)由f (x)+2f (-x)=3x2+5x +3,x 换成-x ,得f (-x)+2 f (x)=3x2-5x +3,解得f (x)=x2-5x +1.【点拨】已知f(x),g(x),求复合函数f[g(x)]的解析式,直接把f(x)中的x 换成g(x)即可,已知f[g(x)],求f (x)的解析式,常常是设g(x)=t ,或者在f[g(x)]中凑出g(x),再把g(x)换成x.【变式训练1】已知f (x x +-11)=2211x x +-,求f (x)的解析式.【解析】设x x +-11=t ,则x =t t +-11,所以f (t)=22)11(1)11(1t t tt +-++--=212t t +, 所以f (x)=212x x+(x≠-1).题型二 求函数的定义域【例2】(1)求函数y =229)2lg(x x x --的定义域;(2)已知f(x)的定义域为[-2,4],求f(x2-3x)的定义域. 【解析】(1)要使函数有意义,则只需要⎩⎨⎧>->-,09,0222x x x 即⎩⎨⎧<<-<>,33,02x x x 或解得-3<x <0或2<x <3,故所求的定义域为(-3,0)∪(2,3).(2)依题意,只需-2≤x2-3x≤4,解得-1≤x≤1或2≤x≤4,故f(x2-3x)的定义域为[-1,1]∪[2,4].【点拨】有解析式的函数的定义域是使解析式有意义的自变量的取值范围,往往列不等式组求解.对于抽象函数f[g(x)]的定义域要把g(x)当作f(x)中的x 来对待.【变式训练2】已知函数f (2x)的定义域为[-1,1],求f(log2x)的定义域.【解析】因为y =f(2x)的定义域为[-1,1],即-1≤x≤1时2-1≤2x≤21,所以y =f(x)的定义域为[12,2].令12≤log2x≤2,所以2≤x≤22=4,故所求y =f(log2x)的定义域为[2,4].题型三 由实际问题给出的函数【例3】 用长为l 的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若矩形底部长为2x ,求此框围成的面积y 与x 的函数关系式,并指出其定义域.【解析】由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,而矩形的长AB =2x ,设宽为a ,则有2x +2a +πx =l ,即a =2l -2πx -x ,半圆的半径为x , 所以y =22πx +(2l -π2x -x)·2x =-(2+π2)x2+lx.由实际意义知2l -π2x -x >0,因x >0,解得0<x <π+2l. 即函数y =-(2+π2)x2+lx 的定义域是{x|0<x <π+2l}.【点拨】求由实际问题确定的定义域时,除考虑函数的解析式有意义外,还要考虑使实际问题有意义.如本题使函数解析式有意义的x 的取值范围是x ∈R ,但实际问题的意义是矩形的边长为正数,而边长是用变量x 表示的,这就是实际问题对变量的制约.【变式训练3】一张正方形的纸片,剪去两个一样的小矩形得到一个“E”形图案,如图所示,设小矩形的长、宽分别为x 、y ,剪去部分的面积为20,若2≤x≤10,记y =f(x),则y =f(x)的图象是( )【解析】由题意得y =10x (2≤x≤10),选A. 题型四 分段函数【例4】 已知函数f(x)=⎩⎨⎧≥+<+).0(1),0(32x x x x(1)求f(1)+f(-1)的值; (2)若f(a)=1,求a 的值;(3)若f(x)>2,求x 的取值范围.【解析】(1)由题意,得f(1)=2,f(-1)=2,所以f(1)+f(-1)=4. (2)当a <0时,f(a)=a +3=1,解得a =-2;当a≥0时,f(a)=a2+1=1,解得a =0. 所以a =-2或a =0. (3)当x <0时,f(x)=x +3>2,解得-1<x <0; 当x≥0时,f(x)=x2+1>2,解得x >1. 所以x 的取值范围是-1<x <0或x >1.【点拨】分段函数中,x 在不同的范围内取值时,其对应的函数关系式不同.因此,分段函数往往需要分段处理.【变式训练4】已知函数f(x)=⎪⎩⎪⎨⎧>+-≤<.10,621,100|,lg |x x x x 若a ,b ,c 互不相等,且f(a)=f(b)=f(c),则abc 的取值范围是( )A.(1,10)B.(5,6)C.(10,12)D.(20,24)【解析】不妨设a <b <c ,由f(a)=f(b)=f(c)及f(x)图象知110<a <1<b <10<c <12,所以-lg a =lg b =-12c +6,所以ab =1,所以abc 的范围为(10,12),故选C. 总结提高1.在函数三要素中,定义域是灵魂,对应法则是核心,因为值域由定义域和对应法则确定,所以两个函数当且仅当定义域与对应法则均相同时才表示同一个函数,而值域相同是两函数为同一函数的必要非充分条件.2.若一个函数在其定义域不同的子集上,解析式不同,则可用分段函数的形式表示.3.函数的三种表示法各有利弊,一般情况下,研究函数要求出函数的解析式,通过解析式来解题.求函数解析式的方法有:配方法、观察法、换元法和待定系数法等.。
高考数学一轮复习第2章函数第1节函数及其表示教学案文北师大版
第2章函数全国卷五年考情图解高考命题规律把握1.考查形式本章在高考中一般为2~3个客观题.2.考查内容高考中基础题主要考查对基础知识和基本方法的掌握.主要涉及函数奇偶性的判断,函数的图像,函数的奇偶性、单调性及周期性综合,指数、对数运算以及指数、对数函数的图像与性质,分段函数求函数值等.3.备考策略(1)重视函数的概念和基本性质的理解:深刻把握函数的定义域、值域、单调性、奇偶性、零点等概念.研究函数的性质,注意分析函数解析式的特征,同时注意函数图像的作用.(2)重视对基本初等函数的研究,复习时通过选择、填空题加以训练和巩固,将问题和方法进行归纳整理.第一节函数及其表示[最新考纲] 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).(对应学生用书第9页)1.函数与映射的概念函数映射两集合A,B 设A,B是两个非空的数集设A,B是两个非空的集合对应关系f:如果按照某个对应关系f,对于集合如果按某一个确定的对应关系f,使(1)函数的定义域、值域在函数y =f (x ),x ∈A 中,自变量x 的取值范围(数集A )叫做函数的定义域;函数值的集合{f (x )|x ∈A }叫做函数的值域.(2)函数的三要素:定义域、对应关系和值域.(3)相等函数:如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.(4)函数的表示法表示函数的常用方法有解析法、图像法和列表法. 3.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.[常用结论]1.常见函数的定义域 (1)分式函数中分母不等于0.(2)偶次根式函数的被开方式大于或等于0. (3)一次函数、二次函数的定义域为R . (4)零次幂的底数不能为0.(5)y =a x(a >0且a ≠1),y =sin x ,y =cos x 的定义域均为R . (6)y =log a x (a >0,a ≠1)的定义域为{x |x >0}.(7)y =tan x 的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z. 2.基本初等函数的值域 (1)y =kx +b (k ≠0)的值域是R .(2)y =ax 2+bx +c (a ≠0)的值域:当a >0时,值域为⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞;当a <0时,值域为⎝ ⎛⎦⎥⎤-∞,4ac -b 24a .(3)y =kx(k ≠0)的值域是{y |y ≠0}.(4)y =a x(a >0且a ≠1)的值域是(0,+∞). (5)y =log a x (a >0且a ≠1)的值域是R .一、思考辨析(正确的打“√”,错误的打“×”) (1)对于函数f :A →B ,其值域是集合B . ( )(2)若两个函数的定义域与值域相同,则这两个函数是相等函数. ( ) (3)函数是一种特殊的映射.( )(4)若A =R ,B =(0,+∞),f :x →y =|x |,则对应f 可看作从A 到B 的映射.( )(5)分段函数是由两个或几个函数组成的. ( )[答案](1)× (2)× (3)√ (4)× (5)× 二、教材改编1.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图像可能是( )A B C DB [由函数定义可知,选项B 正确.] 2.函数y =2x -3+1x -3的定义域为( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B .(-∞,3)∪(3,+∞) C.⎣⎢⎡⎭⎪⎫32,3∪(3,+∞) D .(3,+∞)C [由题意知⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.]3.下列函数中,与函数y =x +1是相等函数的是( ) A .y =(x +1)2B .y =3x 3+1 C .y =x 2x+1D .y =x 2+1B [y =3x 3+1=x +1,且函数定义域为R ,故选B.]4.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=________.139 [f (3)=23,f (f (3))=f ⎝ ⎛⎭⎪⎫23=⎝ ⎛⎭⎪⎫232+1=49+1=139.]5.已知函数f (x )=2x +1,若f (a )=5,则实数a 的值为________. 12 [由f (a )=5得2a +1=5,解得a =12.](对应学生用书第10页)⊙考点1 求函数的定义域已知函数解析式求定义域已知函数的具体解析式求定义域的方法(1)若f (x )是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可.1.(2019·济南模拟)函数y =x ln(2-x )的定义域为( )A .(0,2)B .[0,2)C .(0,1]D .[0,2] B [由题意知,x ≥0且2-x >0, 解得0≤x <2, 故其定义域是[0,2).] 2.函数f (x )=1log 2x2-1的定义域为________.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) [要使函数f (x )有意义,则(log 2x )2-1>0,即log 2x >1或log 2x <-1,解得x >2或0<x <12,故所求函数的定义域是⎝ ⎛⎭⎪⎫0,12∪(2,+∞).][逆向问题]若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________. -92 [∵函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2}. ∴不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2}.可知a <0,不等式化为a (x -1)(x -2)≥0, 即ax 2-3ax +2a ≥0.∴⎩⎪⎨⎪⎧-3a =ab ,2a =b ,即⎩⎪⎨⎪⎧b =-3,a =-32.∴a +b =-92.]求函数定义域时,对函数解析式先不要化简,求出定义域后,一定要将其写成集合或区间的形式.若用区间表示,不能用“或”连接,而应该用并集符合“∪”连接.如T 2.抽象函数的定义域 抽象函数的定义域的求法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出.(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.已知函数f (x )的定义域是[0,4],则F (x )=f (x +1)+f (x -1)的定义域是________.[1,3] [由题意知⎩⎪⎨⎪⎧0≤x +1≤4,0≤x -1≤4,解得1≤x ≤3.故F (x )=f (x +1)+f (x -1)的定义域为[1,3].] [逆向问题]已知函数y =f (x -1)的定义域为[-3,3],则函数y =f (x )的定义域为________. [-3-1,3-1] [因为f (x -1)的定义域为[-3,3],所以-3-1≤x -1≤3-1,所以函数y =f (x )的定义域为[-3-1,3-1].]函数(())的定义域为自变量的取值范围,而不是()的取值范围.(如本例[逆向问题])1.函数f (x )=3x21-x+lg(3x +1)的定义域是( )A.⎝ ⎛⎭⎪⎫-13,1B.⎝ ⎛⎭⎪⎫-13,+∞C.⎝ ⎛⎭⎪⎫-13,13 D.⎝⎛⎭⎪⎫-∞,13A [由题意可知⎩⎪⎨⎪⎧1-x >0,3x +1>0,解得⎩⎪⎨⎪⎧x <1,x >-13,∴-13<x <1,故选A.]2.函数f (x -1)的定义域为[0,2 020],则函数g (x )=f x +1x -1的定义域为________.[-2,1)∪(1,2 018] [∵函数f (x -1)的定义域为[0,2 020],∴-1≤x -1≤2 019.∴要使函数g (x )有意义,则⎩⎪⎨⎪⎧-1≤x +1≤2 019,x -1≠0,解得-2≤x ≤2 018且x ≠1.∴函数g (x )的定义域为[-2,1)∪(1,2 018].]3.若函数f (x )=x 2+ax +1的定义域为实数集R ,则实数a 的取值范围为________. [-2,2] [∵函数f (x )=x 2+ax +1的定义域为R , ∴a 2-4≤0,即-2≤a ≤2.] ⊙考点2 求函数的解析式求函数解析式的四种方法及适用条件(1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).(1)[一题多解]已知二次函数f (2x +1)=4x 2-6x +5,求f (x );(2)已知函数f (x )满足f (-x )+2f (x )=2x,求f (x ). [解](1)法一:(待定系数法)因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5,所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R ). 法二:(换元法)令2x +1=t (t ∈R ),则x =t -12,所以f (t )=4⎝ ⎛⎭⎪⎫t -122-6·t -12+5=t 2-5t +9(t ∈R ),所以f (x )=x 2-5x +9(x ∈R ). 法三:(配凑法)因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9,所以f (x )=x 2-5x +9(x ∈R ).(2)解方程组法 由f (-x )+2f (x )=2x, ① 得f (x )+2f (-x )=2-x,②①×2-②,得3f (x )=2x +1-2-x,即f (x )=2x +1-2-x3. 故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R ). 谨防求函数解析式的两种失误(1)在求函数解析式时,一定要注意自变量的范围,也就是定义域问题.求出解析式后要标注x 的取值范围.(2)利用换元法求解析式时要注意新元的取值范围.如已知f (x )=x +1,求函数f (x )的解析式,可通过换元的方法得f (x )=x 2+1,函数f (x )的定义域是[0,+∞),而不是(-∞,+∞).1.如果f ⎝ ⎛⎭⎪⎫1x =x 1-x,则当x ≠0且x ≠1时,f (x )等于( )A.1xB.1x -1C.11-xD.1x-1B [(换元法)令1x =t ,得x =1t (t ≠0且t ≠1),∴f (t )=1t 1-1t=1t -1(t ≠0且t ≠1),∴f (x )=1x -1(x ≠0且x ≠1).] 2.已知f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x ,则f (x )=( )A .(x +1)2B .(x -1)2C .x 2-x +1D .x 2+x +1 C [(配凑法)f ⎝ ⎛⎭⎪⎫1+x x =x 2+1x 2+1x =⎝ ⎛⎭⎪⎫x +1x 2-x +1x +1,所以f (x )=x 2-x +1.] 3.已知f (x )满足2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,则f (x )=________.2x -1x(x ≠0) [(解方程组法)∵2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,①把①中的x 换成1x,得2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x.②联立①②可得⎩⎪⎨⎪⎧2fx +f ⎝ ⎛⎭⎪⎫1x =3x ,2f ⎝ ⎛⎭⎪⎫1x +f x =3x,解此方程组可得f (x )=2x -1x(x ≠0).]4.已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x )的解析式. [解] (待定系数法)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R ).⊙考点3 分段函数求函数值解决分段函数有关问题的关键是“分段归类”,即自变量的取值属于哪一段范围,就用哪一段的解析式来解决问题.(1)(2019·合肥模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +1x -2,x >2,x 2+2,x ≤2,则f (f (1))=( )A .-12B .2C .4D .11(2)设函数f (x )=⎩⎪⎨⎪⎧x 2-2xx ≤0,f x -3x >0,则f (5)的值为( )A .-7B .-1C .0 D.12(1)C (2)D [(1)因为f (1)=12+2=3,所以f (f (1))=f (3)=3+13-2=4.故选C.(2)f (5)=f (5-3)=f (2)=f (2-3)=f (-1)=(-1)2-2-1=12.故选D.]求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值.(2)当出现f (f (a ))的形式时,应从内到外依次求值.(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.[教师备选例题]已知函数f (x )=⎩⎪⎨⎪⎧2cos πx ,x ≤0,f x -1+1,x >0,则f ⎝ ⎛⎭⎪⎫43的值为( )A .-1B .1 C.32 D.52B [依题意得f ⎝ ⎛⎭⎪⎫43=f ⎝ ⎛⎭⎪⎫13+1=f ⎝ ⎛⎭⎪⎫-23+1+1=2cos ⎝ ⎛⎭⎪⎫-2π3+2=2×⎝ ⎛⎭⎪⎫-12+2=1.故选B.]解决此类问题时,先在分段函数的各段上分别求解,然后将求出的值或范围与该段函数的自变量的取值范围求交集,最后将各段的结果合起来(取并集)即可.(1)已知函数f (x )=⎩⎪⎨⎪⎧2x-2,x ≤1,-log 2x +1,x >1,且f (a )=-3,则f (6-a )=________.(2)设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0.若f (f (a ))=2,则a =________.(1)-32 (2)2 [(1)当a ≤1时,f (a )=2a-2=-3,无解;当a >1时,由f (a )=-log 2(a +1)=-3,得a +1=8, 解得a =7,所以f (6-a )=f (-1)=2-1-2=-32.(2)当a >0时,f (a )=-a 2<0,f (f (a ))=a 4-2a 2+2=2,得a =2(a =0与a =-2舍去).当a ≤0时,f (a )=a 2+2a +2=(a +1)2+1>0,f (f (a ))=-(a 2+2a +2)2=2,此方程无解.故a = 2.]求解本题的关键是就a 的取值讨论f (a )的情形,另本题也可作出f (x )的图像,数形结合求解,即f (a )=0或f (a )=-2,从而求得a 的值.分段函数与方程、不等式问题解由分段函数构成的不等式,一般要根据分段函数的不同分段区间进行分类讨论.如果分段函数的图像比较容易画出,也可以画出函数图像后,结合图像求解.(2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)D [当x ≤0时,函数f (x )=2-x是减函数,则f (x )≥f (0)=1.作出f (x )的大致图像如图所示,结合图像可知,要使f (x +1)<f (2x ),则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,所以x <0,故选D.]本例借助图像较直观地求解得出不等式的解集,另注意求解时要思考全面,需考虑变量可能落在同一区间,也可能落在不同区间的情况.[教师备选例题]设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是________.⎝ ⎛⎭⎪⎫-14,+∞ [根据分段函数的性质分情况讨论,当x ≤0时,则f (x )+f ⎝ ⎛⎭⎪⎫x -12=x +1+x -12+1>1,解得-14<x ≤0.当x >0时,根据指数函数的图像和性质以及一次函数的性质与图像可得,f (x )+f ⎝ ⎛⎭⎪⎫x -12>1恒成立,所以x 的取值范围是⎝ ⎛⎭⎪⎫-14,+∞.] 1.已知f (x )=⎩⎪⎨⎪⎧ 2x ,x >0,f x +1,x ≤0,则f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43的值等于( ) A .-2 B .4 C .2 D .-4 B [由题意得f ⎝ ⎛⎭⎪⎫43=2×43=83, f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-13=f ⎝ ⎛⎭⎪⎫23=2×23=43, 所以f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=4.] 2.已知函数f (x )=⎩⎨⎧ x +1,-1<x <0,2x ,x ≥0.若实数a 满足f (a )=f (a -1),则f ⎝ ⎛⎭⎪⎫1a =( )A .2B .4C .6D .8 D [由题意得a >0.当0<a <1时,由f (a )=f (a -1),即2a =a ,解得a =14, 则f ⎝ ⎛⎭⎪⎫1a =f (4)=8, 当a ≥1时,由f (a )=f (a -1),得2a =2(a -1),不成立.故选D.]3.已知函数f (x )=⎩⎪⎨⎪⎧ log 2x ,x ≥1,11-x,x <1,则不等式f (x )≤1的解集为( ) A .(-∞,2]B .(-∞,0]∪(1,2]C .[0,2]D .(-∞,0]∪[1,2]D [当x ≥1时,不等式f (x )≤1为log 2x ≤1,即log 2x ≤log 22,∵函数y =log 2x 在(0,+∞)上单调递增,∴1≤x ≤2.当x <1时,不等式f (x )≤1为11-x≤1, ∴11-x -1≤0,∴x 1-x ≤0,∴x x -1≥0, ∴x ≤0或x >1(舍去),∴f (x )≤1的解集是(-∞,0]∪[1,2].故选D.]以学习过的函数相关知识为基础,通过一类问题共同特征的“数学抽象”,引出新的概念,然后在快速理解的基础上,解决新问题.【典例】 (2019·深圳模拟)在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,若函数f (x )的图像恰好经过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数.给出下列函数:①f (x )=sin 2x ;②g (x )=x 3; ③h (x )=⎝ ⎛⎭⎪⎫13x;④φ(x )=ln x . 其中是一阶整点函数的是( )A .①②③④B .①③④C .①④D .④ C [对于函数f (x )=sin 2x ,它的图像(图略)只经过一个整点(0,0),所以它是一阶整点函数,排除D ;对于函数g (x )=x 3,它的图像(图略)经过整点(0,0),(1,1),…,所以它不是一阶整点函数,排除A ; 对于函数h (x )=⎝ ⎛⎭⎪⎫13x,它的图像(图略)经过整点(0,1),(-1,3),…,所以它不是一阶整点函数,排除B.故选C.][评析] 本题意在考查考生的数学抽象、逻辑推理、数学运算、直观想象等核心素养.破解新定义函数题的关键是紧扣新定义的函数的含义,学会语言的翻译、新旧知识的转化,便可使问题顺利获解.如本例,若能把新定义的一阶整点函数转化为函数f (x )的图像恰好经过1个整点,问题便迎刃而解.【素养提升练习】1.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y =x 2+1,值域为{1,3}的同族函数有( )A .1个B .2个C .3个D .4个C[由x2+1=1得x=0,由x2+1=3得x=±2,所以函数的定义域可以是{0,2},{0,-2},{0,2,-2},故值域为{1,3}的同族函数共有3个.]2.若定义在R上的函数f(x)当且仅当存在有限个非零自变量x,使得f(-x)=f(x),则称f(x)为“类偶函数”,则下列函数中为类偶函数的是( )A.f(x)=cos x B.f(x)=sin xC.f(x)=x2-2x D.f(x)=x3-2xD[A中函数为偶函数,则在定义域内均满足f(x)=f(-x),不符合题意;B中,当x =kπ(k∈Z)时,满足f(x)=f(-x),不符合题意;C中,由f(x)=f(-x),得x2-2x=x2+2x,解得x=0,不符合题意;D中,由f(x)=f(-x),得x3-2x=-x3+2x,解得x=0或x =±2,满足题意,故选D.]。
北京第十八中学高三数学第一轮复习 20 函数的图象(1)教案(学生版)
北京第十八中学高三数学第一轮复习 20 函数的图象(1)教案(学生版)一、课前检测1. 要得到)3lg(x y -=的图像,只需作x y lg =关于 轴对称的图像,再向 平移3个单位而得到。
2. 当1>a 时,在同一坐标系中函数x ay -=与x y a log =的图像是 ( ) 3. (2010重庆理)(5) 函数()412x x f x +=的图象( ) A. 关于原点对称 B. 关于直线y=x 对称 C. 关于x 轴对称 D. 关于y 轴对称二、知识梳理(一)基本函数图象特征(作出草图)1.一次函数为 ;2.二次函数为 ;3.反比例函数为 ;4.指数函数为 ,对数函数为 .解读:(二)图象变换(1)平移变换:()()(0)y f x y f x a a =→=±> 口诀:()()(0)y f x y f x b b =→=±> 口诀:解读:(2)对称变换:()()y f x y f x =→=- 关于______对称()()y f x y f x =→=- 关于______对称()()y f x y f x =→=-- 关于______对称解读:(3)翻折变换:AC DB()|()|y f x y f x =→= 变换法则:______________________________ ()(||)y f x y f x =→= 变换法则:______________________________ 解读:(4)伸缩变换:()()(0)y f x y af x a =→=> 变换法则:______________________________ ()()(0)y f x y f ax a =→=> 变换法则:______________________________ 解读:(三)善于利用图象解决问题,注意数形结合思想的运用.解读:三、典型例题分析例1.作出下列函数的简图:(1)y=112--x x ; (2)12xy ⎛⎫= ⎪⎝⎭; (3)2|2|y x x =-;变式训练:作函数()11f x x =-的简图:小结与拓展:做函数图像的方法:(1)描点法(2)图像变换法例2.函数y=f(x)与函数y=g(x)的图象如图,则函数y=f(x)·g(x)的图象可能是 ( )变式训练:函数f(x)=log2|x|,2()2g x x=-+,则f(x)·g(x)的图象只可能是 ( )例3 设函数f(x)=x2-2|x|-1 (-3≤x≤3).(1)证明:f(x)是偶函数;(2)画出函数的图象;(3)指出函数f(x)的单调区间,并说明在各个单调区间上f(x)是增函数还是减函数;(4)求函数的值域.变式训练3:当x∈(1,2)时,不等式(x-1)2<log a x恒成立,则a的取值范围为 .四、归纳与总结(以学生为主,师生共同完成)1.知识:2.思想与方法:3.易错点:4.教学反思(不足并查漏):。
北师大版版高考数学一轮复习函数导数及其应用函数及其表示教学案理解析版
[考纲传真] 1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用.1.函数与映射的概念函数映射两集合A,B设A,B是两个非空的数集设A,B是两个非空的集合对应关系f:A→B 如果按照某个对应关系f,对于集合A中的任何一个数x,在集合B中都存在唯一确定的数f(x)和它对应集合A与B存在着对应关系f,对于集合A中的每一个元素x,集合B中总有唯一的元素y与之对应名称把对应关系f叫作定义在集合A上的函数称这种对应为从集合A到集合B的映射记法函数y=f(x),x∈A映射:f:A→B(1)函数的定义域、值域:数集A叫作函数的定义域;函数值的集合{f(x)|x∈A}叫作函数的值域.(2)函数的三要素:定义域、对应关系和值域.(3)相等函数:如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数.(4)函数的表示法:表示函数的常用方法有解析法、图像法和列表法.3.分段函数若函数在其定义域内,对于定义域的不同取值区间,有着不同的对应关系,这样的函数通常叫作分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.[常用结论]简单函数定义域的类型(1)f(x)为分式型函数时,分式分母不为零;(2)f(x)为偶次根式型函数时,被开方式非负;(3)f(x)为对数型函数时,真数为正数、底数为正且不为1;(4)若f(x)=x0,则定义域为{x|x≠0};(5)指数函数的底数大于0且不等于1;(6)正切函数y=tan x的定义域为xx≠kπ+错误!,k∈Z.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数是特殊的映射.()(2)函数y=1与y=x0是同一个函数()(3)f(x)=错误!+错误!是一个函数.()[答案] (1)√(2)×(3)×2.(教材改编)函数y=错误!+错误!的定义域为()A.错误!B.(—∞,3)∪(3,+∞)C.错误!∪(3,+∞)D.(3,+∞)C[由题意知错误!解得x≥错误!且x≠3.]3.(教材改编)若函数y=f(x)的定义域为M={x|—2≤x≤2},值域为N={y|0≤y≤2},则函数y=f (x)的图像可能是()A B C DB[∵M={x|—2≤x≤2},N={y|0≤y≤2},∴y=f(x)图像只可能是B.]4.下列各组函数中,表示同一函数的是()A.f(x)=错误!与g(x)=错误!B.f(x)=|x|与g(x)=(错误!)2C.f(x)=错误!与g(x)=x+1D.f(x)=x0与g(x)=错误!D[在选项A中,由f(x)=错误!=x与g(x)=错误!=|x|的对应法则不同;对于选项B,f(x)=|x|的定义域为R,g(x)=(错误!)2的定义域为{x|x≥0},故定义域不同;在选项C中,f(x)=错误!的定义域为{x∈R|x≠1},而g(x)=x+1的定义域为R,故两函数的定义域不同;对于选项D,f(x)=x0=1(x≠0),g(x)=错误!=1(x≠0),定义域和对应法则都相同,故选D.]5.(教材改编)已知函数f(x)=错误!则f(1)=________;若f(a)=5,则a=________.5±1[f(1)=5.当a≥0时,由f(a)=a2+4a=5可知a=1;当a<0时,由f(a)=a2—4a=5得a=—1.综上可知a=±1.]函数的定义域【例1】(1)在下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是()A.y=xB.y=lg xC.y=2xD.y=错误!(2)若函数y=f(x)的定义域是[0,2018],则函数g(x)=错误!的定义域是()A.[—1,2017] B.[—1,1)∪(1,2017]C.[0,2018] D.[—1,1)∪(1,2018](1)D(2)B[(1)y=10lg x=x,定义域与值域均为(0,+∞).y=x的定义域和值域均为R;y=lg x的定义域为(0,+∞),值域为R;y=2x的定义域为R,值域为(0,+∞);y=错误!的定义域与值域均为(0,+∞).故选D.(2)令t=x+1,则由已知函数y=f(x)的定义域为[0,2018]可知f(t)中0≤t≤2018,故要使函数f(x+1)有意义,则0≤x+1≤2018,解得—1≤x≤2017,故函数f(x+1)的定义域为[—1,2017].所以函数g(x)有意义的条件是错误!解得—1≤x<1或1<x≤2017.故函数g(x )的定义域为[—1,1)∪(1,2 017].] [规律方法]1求给定函数的定义域往往转化为解不等式组的问题,可借助于数轴,注意端点值的取舍.2求抽象函数的定义域:1若y =f x 的定义域为a ,b ,则解不等式a <g x <b 即可求出y =f g x 的定义域;2若y =f g x 的定义域为a ,b ,则求出g x 在a ,b 上的值域即得f x 的定义域.3已知函数定义域求参数范围,可将问题转化成含参数的不等式,然后求解.A.错误!B.错误! C.错误! D.错误!(2)已知函数f (2x )的定义域为[—1,1],则f (x )的定义域为________.(1)A (2)错误! [(1)由题意可知错误!解得错误!∴—错误!<x <1,故选A.(2)∵f (2x )的定义域为[—1,1],∴错误!≤2x ≤2,即f (x )的定义域为错误!.]求函数的解析式【例2】 (1)已知f 错误!=x 2+错误!,求f (x )的解析式;(2)已知f 错误!=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数且f (0)=2,f (x +1)—f (x )=x —1,求f (x )的解析式; (4)已知f (x )+2f 错误!=x (x ≠0),求f (x )的解析式.[解] (1)由于f 错误!=x 2+错误!=错误!2—2,令t =x +错误!,当x >0时,t ≥2错误!=2,当且仅当x =1时取等号;当x <0时,t =—错误!≤—2,当且仅当x =—1时取等号,∴f (t )=t 2—2,t ∈(—∞,—2]∪[2,+∞).综上所述,f (x )的解析式是f (x )=x 2—2,x ∈(—∞,—2]∪[2,+∞).(2)令错误!+1=t ,由于x >0,∴t >1且x =错误!,∴f(t)=lg错误!,即f(x)=lg错误!(x>1).(3)设f(x)=ax2+bx+c(a≠0),由f(0)=2,得c=2,f(x+1)—f(x)=a(x+1)2+b(x+1)—ax2—bx=x—1,即2ax+a+b=x—1,∴错误!即错误!∴f(x)=错误!x2—错误!x+2.(4)∵f(x)+2f错误!=x,∴f错误!+2f(x)=错误!.联立方程组错误!解得f(x)=错误!—错误!(x≠0).[规律方法] 求函数解析式的常用方法1待定系数法:若已知函数的类型,可用待定系数法.2配凑法:由已知条件f g x=F x,可将F x改写成关于g x的表达式,然后以x 替代g x,便得f x的解析式.3换元法:已知复合函数f g x的解析式,可用换元法,此时要注意新元的取值范围4消元法:已知关于f x与f错误!或f—x的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出f x.A.x+1B.2x—1C.—x+1D.x+1或—x—1(2)定义在(—1,1)内的函数f(x)满足2f(x)—f(—x)=lg(x+1),则f(x)=________.(1)A(2)错误!lg(x+1)+错误!lg(1—x),x∈(—1,1)[(1)设f(x)=kx+b(k≠0),又f[f(x)]=x+2,得k(kx+b)+b=x+2,即k2x+kb+b=x+2.∴k2=1,且kb+b=2,解得k=b=1,则f(x)=x+1.(2)当x∈(—1,1)时,有2f(x)—f(—x)=lg(x+1).1将x换成—x,则—x换成x,得2f(—x)—f(x)=lg(—x+1).2由12消去f(—x)得,f(x)=错误!lg(x+1)+错误!lg(1—x),x∈(—1,1).]分段函数►考法1求分段函数的函数值【例3】已知函数f(x)=错误!则f错误!+f错误!=________.8 [由题可得f错误!=log错误!错误!=2,因为log2错误!<0,所以f错误!=错误!错误!=2log26=6,故f错误!+f错误!=8.]►考法2已知分段函数的函数值求参数【例4】(2017·山东高考)设f(x)=错误!若f(a)=f(a+1),则f错误!=()A.2B.4C.6 D.8C[∵f(a)=f(a+1),∴错误!或错误!即错误!或错误!∴a=错误!,∴f错误!=f(4)=6.]►考法3解与分段函数有关的方程或不等式【例5】(2019·福州模拟)设函数f(x)=错误!若f(x0)>1,则x0的取值范围是________.(0,2)∪(3,+∞)[∵f(x)=错误!且f(x0)>1,此不等式转化为错误!或错误!即错误!或错误!解之得0<x0<2或x0>3.∴x0的取值范围是(0,2)∪(3,+∞).][规律方法] 1求分段函数的函数值,要先确定要求值的自变量属于定义域的哪一个子集,然后代入该段的解析式求值,当出现f f a的形式时,应从内到外依次求值.2已知函数值或函数值范围求自变量的值或范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.易错警示:当分段函数自变量的范围不确定时,应分类讨论.(2)函数f(x)=错误!若f(a)≤a,则实数a的取值范围是________.(1)log32(2)[—1,+∞)[(1)f错误!=log3错误!=—2,∴f错误!=f(—2)=f(—2+2)=f(0)=f(0+2)=f(2),∴f(2)=log32,∴f错误!=f(—2)=log32.(2)当a≥0时,由f(a)=错误!a—1≤a,解得a≥—2,即a≥0;当a<0时,由f(a)=错误!≤a,解得—1≤a≤1,即—1≤a<0.综上所述,实数a的取值范围是[—1,+∞).]1.(2015·全国卷Ⅱ)设函数f(x)=错误!则f(—2)+f(log212)=()A.3B.6C.9 D.12C[∵—2<1,∴f(—2)=1+log2(2+2)=1+log24=1+2=3.∵log212>1,∴f(log212)=2log212—1=错误!=6.∴f(—2)+f(log212)=3+6=9.故选C.]2.(2017·全国卷Ⅲ)设函数f(x)=错误!则满足f(x)+f错误!>1的x的取值范围是________.错误![当x≤0时,原不等式为x+1+x+错误!>1,解得x>—错误!,∴—错误!<x≤0.当0<x≤错误!时,原不等式为2x+x+错误!>1,显然成立.当x>错误!时,原不等式为2x+2x—错误!>1,显然成立.综上可知,x的取值范围是错误!.]。
北京第十八中学高三数学第一轮复习 15 函数的定义域教案(学生版)
教案15 函数的定义域一、课前检测1. (2008全国)函数()f x 的定义域是____________.2.函数()f x 的定义域为[1,1]-,则(1f x )-的定义域为____________.3.函数1()lg4x f x x -=-的定义域为( )二、知识梳理 1.函数的定义域就是使函数式 的集合. 解读:2.常见的三种题型确定定义域:① 已知函数的解析式,就是 .如:①)()(x g x f y =,则 ; ②)()(*2N n x f y n ∈=,则 ;③0)]([x f y =,则 ; ④)(log )(x g y x f =,则 ;⑤tan y x =,则 ; ⑥()f x 是整式时,定义域是全体实数。
解读:② 复合函数f [g(x )]的有关定义域,就要保证内函数g(x )的 域是外函数f (x )的 域.解读:③实际应用问题的定义域,就是要使得 有意义的自变量的取值集合.三、典型例题分析例1 求下列函数的定义域 (1)2112y x |x|=+--;(2)20(54)lg(43)x y x x =+-+ 变式训练:求下列函数的定义域:(1)12log (32)y x =- (2)f (x )=x 21-例2 (1)若)(x f 的定义域为[-1,1],求函数)1(+x f 的定义域(2)若)1(+x f 的定义域是[-1,1],求函数)(x f 的定义域 变式训练1:已知函数2()f x 的定义域为[]11,-,则函数(2)x f 的定义域为变式训练2:若函数f(x)的定义域是[0,1],则f(x+a)·f(x -a)(0<a <21)的定义域是 ( ) A.∅B.[a ,1-a ]C.[-a ,1+a ]D.[0,1] 小结与拓展:求函数的定义域要注意是求x 的取值范围,对同一对应法则定义域是相同的。
例3 如图,等腰梯形ABCD 内接于一个半径为r 的圆,且下底AD =2r ,如图,记腰AB 长为x ,梯形周长为y ,试用x 表示y 并求出函数的定义域。
2020年高三数学第一轮复习教案-函数-第一节 函数及其表示
【典型例题】
考点三分段函数 考向1 求分段函数的函数值
解
【典型例题】
考点三分段函数 考向2 分段函数的含参问题
解
【典型例题】
考点三分段函数 考向3 分段函数的增减性
解
【典题演练】
D
B
D
D
【典题演练】
D
B
【典题演练】
0
【典题演练】
【作 业】
1、完成新数学中的【典例剖析】 2、完成课时作业(四)
第二章 函数
第一节 函数及其表示
【知识必备】
【知识必备】
【典型例题】
考点一函数定义域 考向1 求给定函数解析式的定义域
解
【典型例题】
考点一函数定义域 考向2求抽象函数的定义域
解
【典型例题】
考点二函数的解析式
解
待定系数法
【典型例题】
考点二函数的解析式
解
解函方程
【典型例题】
考点二函数的解析式 解
再见
高中数学《函数的表示方法》学案1 北师大版必修1
函数的表示法【要点导学】1、函数的表示法(1)解析法:就是把两个变量的函数关系,用一个等式表示,这个等式叫做函数的解析表达式,简称解析式.优点:一是简明、全面地概括了变量间的关系;二是可以通过解析式求出任意一个自变量的值所对应的函数值.中学阶段研究的函数主要是用解析法表示的函数.(2)列表法:就是列出表格来表示两个变量的函数关系.优点:不需要计算就可以直接看出与自变量的值相对应的函数值. (3)图象法:就是用函数图象表示两个变量之间的关系.优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势.2、分段函数:有些函数在它的定义域中,对于自变量x 的不同取值范围,对应法则不同,这样的函数称为分段函数.分段函数是一个函数,而不是几个函数. 3、求函数解析式的方法:(1)待定系数法;(2)换元法;(3)方程法 ;(4)配凑法等.4、作函数图象的一般步骤:(1)确定函数定义域;(2)化简或变形函数表达式(一般来说可化简成常见函数或其复合函数);(3)利用描点法或图象变换法作出图象.5、常见的图象变换有:平移变换、对称变换和翻折变换等.【范例精析】例1 (1)已知)(x f 是一次函数, 且14))((-=x x f f ,求)(x f 的解析式 ; ( 2)已知x x x f 2)1(+=+,求)(x f ; (3)已知)(x f 满足x xf x f 3)1()(2=+,求)(x f 思路剖析 根据题设条件的特点,灵活采用相应的方法求解. 解题示范 (1)(待定系数法)设0,)(≠+=k b kx x f , 则 14)(-=++x b b kx k ,即14)1(2-=++x b k x k .比较系数,得⎩⎨⎧-=+=1)1(42b k k ,解得,⎪⎩⎪⎨⎧-==312b k 或 ⎩⎨⎧=-=12b k .∴312)(-=x x f 或12)(+-=x x f .(2)法1(换元法):令t =1+x ( t ≥1),则2)1(-=t x , ∴1)1(2)1()(22-=-+-=t t t t f ∴1)(2-=x x f (x ≥1)法2(配凑法):∵1)1(2)1(2-+=+=+x x x x f , 又 ∵ 1+x ≥1, ∴1)(2-=x x f (x ≥1). (3)(方程法)∵x xf x f 3)1()(2=+ ---①,将①中x 换成x 1,得 xx f x f 3)()1(2=+---②, ①×2-②,得 xx x f 36)(3-=,∴xx x f 12)(-=.回顾反思 求函数解析式的方法:(1)待定系数法:适用于已知函数的类型,求函数的解析式;(2)换元法或配凑法:适用于已知复合函数))((x g f 的表达式,求)(x f 的解析式,但运用时要注意正确确定中间变量)(x g t =的取值范围;(3)方程法:只已知关于)(x f 及)1(xf 的一个条件要求)(x f ,可通过条件再寻找关于)(x f 及)1(x f 的另一个方程,利用解方程组求出)(x f .请思考:若本题中把x1换成x -,你能求)(x f 的解析式吗?(4)由实际问题求函数解析式时, 常根据实际意义(如面积、距离等)确定函数解析式,并注明符合实际问题的定义域.例2 动点P 从边长为1的正方形ABCD 的顶点A 出发,顺次经过B 、C 、D 再回到A .设x 表示P 点的行程,y 表示PA 的长,求y 关于x 的函数关系式.思路剖析 视P 点所处的正方形边的位置分别计算PA 的长.解题示范 如图 ,当P 在AB 边上运动,即10≤≤x 时, PA =x ;当P 在BC 边上运动,即21≤<x 时, PA =2)1(1-+x =222+-x x ; 当P 在CD 边上运动,即32≤<x 时,PA =2)3(1x -+=1062+-x x ;当P 在DA 边上运动,即43≤<x 时, PA =4-x .DA∴⎪⎪⎩⎪⎪⎨⎧-+-+-=x x x x x x y 41062222 )43()32()21()10(≤<≤<≤<≤≤x x x x 回顾反思 由于y 表示的是线段PA 的长度,而x 表示的是P 点从A 点出发后所走的路程,从而计算PA长度的方式应随着P 点所在正方形边的位置的变化而改变,因此计算PA 时需对P 点的位置进行分类讨论, 故y 不可能用关于x 的一个表达式来表示,应用分段函数来表示.例 3 作出函数(1)y =|122--x x |;(2)y =|x |2-2|x |-1的图象.思路剖析 找出所作图象的函数与常见函数间的联系,利用函数的图象变换作图.解题示范 (1)当122--x x ≥0时,y =122--x x当122--x x <0时,y =-(122--x x ) 作图步骤:①作出函数y =122--x x 的图象②将上述图象在x 轴下方的部分沿x 轴翻折到x轴上方(原在x 轴上方的部分保留不变),即得y =|x 2-2x -1|的图象(如图).(2)当x ≥0时 y =122--x x 当x <0时 y =122-+x x即 y =(-x )2-2(-x )-1 作图步骤:①作出y =122--x x 的图象;②保留所得图象在y 轴右方的部分,去掉y 轴左方的部分,以y 轴为对称轴将右方部分的图象翻折到y 轴的左方(翻折过程中保留y轴右方的图象),即得y =|x |2-2|x |-1的图象 (如图).回顾反思 1、常见的图象变换有:(1)平移变换:用于研究函数)(x f y =的图象与b a x f y ++=)(的图象之间的联系: ①将函数)(x f y =的图象向左(或向右)平移|k |个单位(k >0向左,k <0向右)得)(k x f y +=图象;P②将函数)(x f y =的图象向上(或向下)平移|k |个单位(k >0向上,k <0向下)得k x f y +=)(图象.(2)对称变换: 用于研究函数的图象)(x f y =与)(x f y -=、)(x f y -=及)(x f y --=的图象之间的联系:①函数)(x f y =的图象与)(x f y -=的图象关于x 轴对称; ②函数)(x f y =的图象与)(x f y -=的图象关于y 轴对称; ③函数)(x f y =的图象与)(x f y --=的图象关于原点对称.(3)翻折变换:用于研究函数)(x f y =的图象与|)(|x f y =与|)(|x f y =的图象之间的联系:①将)(x f y =的图象在x 轴上方的部分不变,下方部分以x 轴为对称轴向上翻折即得|)(|x f y =的图象;②将)(x f y =的图象在y 轴右方的部分保留不变,去掉y 轴左方的部分,以y 轴为对称轴将右方部分向左翻折即得|)(|x f y =的图象.2、并不是每一个函数都能作出它的图象,如狄利克雷(Dirichlet )函数D(x )=⎩⎨⎧.x 0x 1是无理数,是有理数,,,我们就作不出它的图象.例4 对于任意的实数x ,规定y 取4-x ,x +1,)5(21x -三个值中的最小值. (1)求y 与x 的函数关系式,并画出此函数的图象. (2)x 为何值时,y 最大?最大值是多少?思路剖析 所谓y 是4-x ,x +1,)5(21x -三个值中的最小值,是对于同一个x 值而言的,从图象上反映应是三个函数y =4-x ,y =x +1,y =)5(21x -的图象中处于最下方的那一个.解题示范 (1)在同一坐标系中作出三个函数y =4-x ,y =x +1,y =)5(21x -的图象.设函数y =)5(21x -的图象分别与函数 ABy =x +1,y =4-x 的图象交于A 、B 两点,由⎪⎩⎪⎨⎧+=-=1)5(21x y x y 解得A (1, 2); 由⎪⎩⎪⎨⎧=-=xy x y -4)5(21解得B (3, 1). ∴y 与x 的函数关系式是⎪⎩⎪⎨⎧>-≤<-≤+=3431)5(2111x xx x x x y ,其图象为实线部分.(2)由图象可知,当x = 1时, y 最大,其最大值为max y = 2 .回顾反思 求解此题的数学思想方法称为数形结合思想. 数形结合思想是数学中的重要思想方法之一,它在求解数学问题时有着广泛的应用,它在解题中的独到之处在于以形助数,利用形的直观性寻找到解题的突破口.例5 已知函数 3222)(a b x a ax x f -++= .(1) 当x ∈(-2,6)时,其值为正;x ∈),6()2,(+∞--∞ 时,其值为负,求a , b 的值及f (x )的表达式; (2) 设)16(2)1(4)(4)(-+++-=k x k x f kx F ,k 为何值时,函数F (x )的值恒为负值?思路剖析 利用不等式与方程的关系以及数形结合的思想求解. 解题示范 (1)显然0≠a .当x ∈(-2,6)时,其值为正;x ∈),6()2,(+∞--∞ 时,其值为负,∴-2,6是方程02322=a b x a ax -++的两个根,∴ ⎩⎨⎧=-++=-+-0263602243232a b a a a b a a 解得 a = - 4 ,b = - 8 ∴48164)(2++-=x x x f(2) 24)16(2)1(4)48164(4)(22-+=-+++++--=x kx k x k x x kx F 欲使函数F (x )的值恒为负值,显然0≠k,故 ⎩⎨⎧<+=∆<08160k k ,解得 k < - 2∴当k < - 2时,函数F (x )的值恒为负值.回顾反思 1、 二次函数、一元二次方程、一元二次不等式间的关系:设)(x f =c bx ax ++2(0≠a ),则(1)方程c bx ax ++2=0的两根即为)(x f =c bx ax ++2的图象与x 轴两交点的横坐标;(2)不等式c bx ax ++2>0的解集即为)(x f =c bx ax ++2的图象在x 轴上方部分的横坐标x 的取值范围 ;不等式c bx ax ++2<0的解集即为)(x f =c bx ax ++2的图象在x 轴下方部分的横坐标x 的取值范围 ;(3)若不等式c bx ax ++2>0()0>a 的解集为}|{21x x x x x ><或,则21,x x 是方程c bx ax ++2=0的两个根;若21,x x )(21x x < 是方程c bx ax ++2=0的两个根,则不等式c bx ax ++2>0()0>a 的解集为}|{21x x x x x ><或.2、 设)(x f =c bx ax ++2(0≠a ),由二次函数的图象可直观地得到:当⎩⎨⎧<->0402ac b a 时,0)(>x f 恒成立;当⎩⎨⎧<-<0402ac b a 时,0)(<x f 恒成立,反之也成立. 【能力训练】一、 选择题1、已知11)1(+=x x f ,那么)(x f 的解析式为 ( )A 、11+xB 、x x +1C 、1+x xD 、x +12、在x 克a %的盐水中,加入y 克b %的盐水,浓度变成c %),0,(b a b a ≠>, 则x 与y 的函数关系式是 ( ) A 、x b c a c y --=B 、x c b ac y --= C 、x c b c a y --=D 、x ac cb y --= 3、某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程.在下图中纵轴表示离学校的距离d ,横轴表示出发后的时间t ,则下列四个图形中较符合该生走法的是 ( )A 、B 、C 、D 、 4、函数2)1(+=x y -2的图象可由函数2x y =的图象经过( )得到. A 、先向右平移1个单位,再向下平移2个单位 B 、先向右平移1个单位,再向上平移2个单位C 、先向左平移1个单位,再向下平移2个单位D 、先向左平移1个单位,再向上平移2个单位5、函数1)1(2-+-=x y 的图象与函数1)1(2+-=x y 的图象关于( ) A 、y 轴对称 B 、x 轴对称 C 、原点对称 D 、以上都不对二、填空题6、已知⎪⎩⎪⎨⎧+=10)(x x f π )0()0()0(>=<x x x ,则_______)]}1([{=-f f f .7、已知f (x )=x x 22+,则f (2x +1)= .8、已知x x x f 2)1(+=-,则___________)(=x f . 9、将长为a 的铁丝折成矩形,设矩形的长为x ,则面积y 关于x 的函数关系式是_______ ,其定义域是 ______.10、已知f (x )=⎩⎨⎧>-≤+)0(2)0(12x x x x ,若f (x )=10,则x = .三、解答题11、(1)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x );(2)设二次函数f (x )满足f (x +2)= f (2-x ),且方程f (x )=0的两实根的平方和为10,)(x f 的图象过点(0,3),求f (x )的解析式.12、已知[]221)(,21)(x x x g f x x g -=-= (x≠0), 求)21(f . 13、(1) 已知12)(3)(+=-+x x f x f ,求)(x f .(2)设,)(331--+=+x x x x f 221)(--+=+x x x x g 求f [g (x )]. 14、作出下列函数的图象:(1)⎩⎨⎧---=14)(22x x x f )20()02(≤<≤≤-x x ; (2)322-+=x x y ;(3)xx x y -+=||)21(015、讨论函数273++=x x y 的图象与xy 1=的图象的关系. 【素质提高】16、已知函数f (x )满足f (a b )= f (a )+ f (b )且f (2)=p ,f (3)= q ,则f (36)= .17、讨论关于x 的方程)(|34|2R a a x x ∈=+-的实数解的个数.18、设函数f (x )=x 2-4x -4的定义域为[t -2, t -1],对任意t ∈R ,求函数f (x )的最小值ϕ(t )的解析式,并画出)(t ϕ的图象.2.2 函数的表示法1、C2、B3、D4、C5、C6、1+π7、3842++x x 8、)1(342-≥++x x x 9、y = 221x ax -,定义域是(0, 2a ) 10、-3 11、(1)f (x )=2x +7; (2)f (x )=x 2-4x +312、15 13、(1)41)(+-=x x f (2) f [g (x )]=296246-+-x x x 14、略 15、273++=x x y 的图象可由xy 1=的图象先向左平移两个单位,再向上平移三个单位得到 16、2(p +q ) 17、当)0,(-∞∈a 时,没有解;当0=a 或),1(+∞∈a 时,两解;当1=a 时,三解;当)1,0(∈a 时,四解18、⎪⎩⎪⎨⎧>+-≤≤-<+-=)4(88)43(8)3(16)(22t t t t t t t t ϕ ,图略。
数学一轮复习第二章函数导数及其应用第一讲函数及其表示学案含解析
第二章函数、导数及其应用第一讲函数及其表示知识梳理·双基自测错误!错误!错误!错误!知识点一函数的概念及表示1.函数与映射的概念函数映射两集合A,B 设A,B是两个__非空数集__设A,B是两个__非空集合__对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的__任意__一个数x,在集合B中有__唯一__的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的__任意__一个元素x在集合B中有__唯一__的元素y与之对应名称称对应__f:A→B__为从集合A到集合B的一个函数称对应__f:A→B__为从集合A到集合B的一个映射记法y=f(x),x∈A对应f:A→B是一个2。
函数(1)函数实质上是从一个非空数集到另一个非空数集的映射.(2)函数的三要素:__定义域、值域、对应法则__。
(3)函数的表示法:__解析法、图象法、列表法__。
(4)两个函数只有当__定义域和对应法则__都分别相同时,这两个函数才相同.知识点二分段函数及应用在一个函数的定义域中,对于自变量x的不同取值范围,有着不同的对应关系,这样的函数叫分段函数,分段函数是一个函数而不是几个函数.错误!错误!错误!错误!1.映射:(1)映射是函数的推广,函数是特殊的映射,A,B为非空数集的映射就是函数;(2)映射的两个特征:第一,在A中取元素的任意性;第二,在B中对应元素的唯一性;(3)映射问题允许多对一,但不允许一对多.2.判断两个函数相等的依据是两个函数的定义域和对应关系完全一致.3.分段函数虽由几个部分组成,但它表示的是一个函数.4.与x轴垂直的直线和一个函数的图象至多有1个交点.双错误!错误!错误!题组一走出误区1.判断下列结论是否正确(请在括号中打“√"或“×”)(1)f(x)=错误!+错误!是一个函数.(×)(2)函数f(x)的图象与直线x=1的交点只有1个.(×)(3)已知f(x)=m(x∈R),则f(m3)等于m3.(×)(4)y=ln x2与y=2ln x表示同一函数.(×)(5)f(x)=错误!则f(-x)=错误!(√)题组二走进教材2.(必修P23T2改编)下列所给图象是函数图象的个数为(B)A.1 B.2C.3 D.4[解析]①中当x〉0时,每一个x的值对应两个不同的y值,因此不是函数图象,②中当x=x0时,y的值有两个,因此不是函数图象,③④中每一个x的值对应唯一的y值,因此是函数图象.3.(必修1P24T4改编)已知f(x5)=lg x,则f(2)等于(D) A.lg 2 B.lg 32C.lg 错误!D.错误!lg 2[解析]解法一:由题意知x〉0,令t=x5,则t〉0,x=t错误!,∴f(t)=lg t错误!=错误!lg t,即f(x)=错误!lg x(x>0),∴f(2)=错误!lg 2,故选D.解法二:令x5=2,则x=2错误!,∴f(2)=lg 2错误!=错误!lg 2。
人教版高三一轮复习学案14函数的表示法学案
学案14:函数的表示法【课前预习,听课有针对性】(5m )1. 若()23,(2)(),()f x x g x f x g x =--=则的表达式为 ( A )A . 2x+1B . 2x —1C .2x —3D . 2x+72.已知1)1(+=+x x f ,则函数)(x f 的解析式为 ( C )A .2)(x x f =B .)1(1)(2≥+=x x x f C .)1(22)(2≥+-=x x x x f D .)1(2)(2≥-=x x x x f3.若一次函数y=f (x)在区间[]1,2-上的最大值为3,最小值为1,则y=f (x)的解析式为_____________.答案:()2533f x x =+或()2733f x x =-+ 4.若二次函数y=f (x)过点()()()0,3,1,4,1,6-,则 f (x)=_______________. 答案:()223f x x x =-+5.已知f(x)是奇函数,g(x)是偶函数,且f(x)+g(x)= 11-x ,则f(x)= ___答案:()21x f x x =- 【及时巩固,牢固掌握知识】(20——30m )A 组 夯实基础,运用知识6. 下列各函数解析式中,满足)(21)1(x f x f =+的是( C ) A .2x B . 21+x C . x -2 D . x 21log7.已知32)121(+=-x x f ,且 6)(=m f ,则m 等于( A )A .41-B . 41C . 23 D . 23-8. 若2)(,2)(xx x x e e x g e e x f --+=-=,则)2(x f 等于( D ) A .)(2x f B . )]()([2x g x f + C .)(2x g D . )()(2x g x f ⋅9. 已知221111xx x x f +-=⎪⎭⎫ ⎝⎛+-,则)(x f 的解析式可取为( C ) A .21x x + B . 212x x +- C . 212x x + D .-21x x +B 组 提高能力,灵活迁移10. 若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则( A )A .a=2,b=2B . a= 2 ,b=2C .a=2,b=1D .a= 2 ,b= 211. 若函数)(x f 满足关系式1()2()3f x f x x-=,则的表达式为__________.答案:2()f x x x=- 12. 设函数11)(+=x x f 的图象为1C ,若函数)(x g 的图象2C 与1C 关于x 轴对称,则)(x g 的解析式 为________________.答案:1()1f x x =-+ 13.已知,sin )cos 1(2x x f =-求()2x f 的解析式。
北京第十八中学高三数学第一轮复习 14 函数的表示法求解析式教案(学生版)
北京第十八中学高三数学第一轮复习 14 函数的表示法求解析式教案(学生版)一、课前检测1.若函数()f x 满足2(1)2f x x x +=-,则f= 。
2.已知()()()23,2f x x g x f x =++=,则()g x = 。
3. 若)(x f 是一次函数,14)]([-=x x f f 且,则)(x f = 。
二、知识梳理求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;解读:(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法;解读:(3)已知函数图像,求函数解析式;解读:(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式:解方程组法;解读:(5)应用题求函数解析式常用方法有待定系数法等.解读:三、典型例题分析例1.设2211(),f x x x x+=+,求()f x 的解析式.变式训练1:设(cos )cos 2,(sin )f x x f x =求的解析式.变式训练2:设33221)1(,1)1(x x x x g x x x x f +=++=+,求)]([x g f .例2 设23)1(2+-=+x x x f ,求)(x f 的解析式.变式训练1:已知21lg f x x ⎛⎫+=⎪⎝⎭,求)(x f 的解析式.变式训练2:设x x f 2cos )1(cos =-,求)(x f 的解析式.例3 已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x 的解析式;变式训练1:已知12()3f x f x x ⎛⎫+= ⎪⎝⎭,求)(x f 的解析式.例4 图中的图象所表示的函数的解析式为( )A. |1|23-=x y (0≤x ≤2) B. |1|2323--=x y (0≤x ≤2) C. |1|23--=x y (0≤x ≤2) D. |1|1--=x y (0≤x ≤2)四、归纳与总结(以学生为主,师生共同完成)1.知识:2.思想与方法:3.易错点:4.教学反思(不足并查漏):。
2019-2020学年高三数学第一轮复习 14 函数的表示法学案.doc
2019-2020学年高三数学第一轮复习 14 函数的表示法学案【课前预习,听课有针对性】1. 若()23,(2)(),()f x x g x f x g x =--=则的表达式为 ( )A . 2x+1B . 2x —1C .2x —3D . 2x+72.已知1)1(+=+x x f ,则函数)(x f 的解析式为 ( )A .2)(x x f =B .)1(1)(2≥+=x x x fC .)1(22)(2≥+-=x x x x fD .)1(2)(2≥-=x x x x f3.若一次函数y=f (x)在区间[]1,2-上的最大值为3,最小值为1,则y=f (x)的解析式为_____________.4.若二次函数y=f (x)过点()()()0,3,1,4,1,6-,则f (x)=_______________.5.已知f(x)是奇函数,g(x)是偶函数,且f(x)+g(x)=11-x ,则f(x)= ___【及时巩固,牢固掌握知识】A 组 夯实基础,运用知识6. 下列各函数解析式中,满足)(21)1(x f x f =+的是( ) A .2x B . 21+x C . x -2 D . x 21log7.已知32)121(+=-x x f ,且 6)(=m f ,则m 等于( )A .41-B . 41C . 23D . 23-8. 若2)(,2)(xx x x e e x g e e x f --+=-=,则)2(x f 等于 ( ) A .)(2x f B . )]()([2x g x f + C .)(2x g D . )()(2x g x f ⋅9. 已知221111xx x x f +-=⎪⎭⎫ ⎝⎛+-,则)(x f 的解析式可取为( ) A .21x x + B . 212x x +- C . 212x x + D .-21xx +B 组 提高能力,灵活迁移10. 若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则( )A .a=2,b=2B . a= 2 ,b=2C .a=2,b=1D .a= 2 ,b= 211. 若函数)(x f 满足关系式1()2()3f x f x x -=,则的表达式为__________.12. 设函数11)(+=x x f 的图象为1C ,若函数)(x g 的图象2C 与1C 关于x 轴对称,则)(x g 的解析式为________________.13.已知,sin )cos 1(2x x f =-求()2xf 的解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学案14:函数的表示法
【课前预习,听课有针对性】
1. 若()23,(2)(),()f x x g x f x g x =--=则的表达式为 ( )
A . 2x+1
B . 2x —1
C .2x —3
D . 2x+7
2.已知1)1(+=+x x f ,则函数)(x f 的解析式为 ( )
A .2)(x x f =
B .)1(1)(2≥+=x x x f
C .)1(22)(2≥+-=x x x x f
D .)1(2)(2≥-=x x x x f
3.若一次函数y=f (x)在区间[]1,2-上的最大值为3,最小值为1,则y=f (x)的解析式为_____________.
4.若二次函数y=f (x)过点()()()0,3,1,4,1,6-,则f (x)=_______________.
5.已知f(x)是奇函数,g(x)是偶函数,且f(x)+g(x)=
11-x ,则f(x)= ___
【及时巩固,牢固掌握知识】
A 组 夯实基础,运用知识
6. 下列各函数解析式中,满足)(21)1(x f x f =
+的是( ) A .
2x B . 21+x C . x -2 D . x 21log
7.已知32)121(+=-x x f ,且 6)(=m f ,则m 等于( )
A .41-
B . 41
C . 23
D . 2
3-
8. 若2
)(,2)(x
x x x e e x g e e x f --+=-=,则)2(x f 等于 ( ) A .)(2x f B . )]()([2x g x f + C .)(2x g D . )()(2x g x f ⋅
9. 已知221111x
x x x f +-=⎪⎭⎫ ⎝⎛+-,则)(x f 的解析式可取为( ) A .21x x + B . 212x x +- C . 212x x + D .-21x
x +
B 组 提高能力,灵活迁移
10. 若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则( )
A .a=2,b=2
B . a= 2 ,b=2
C .a=2,b=1
D .a= 2 ,b= 2
11. 若函数)(x f 满足关系式1()2()3f x f x x -=,则的表达式为__________.
12. 设函数1
1)(+=x x f 的图象为1C ,若函数)(x g 的图象2C 与1C 关于x 轴对称,则)(x g 的解析式为________________.
13.已知,sin )cos 1(2x x f =-求()2x
f 的解析式。
14.已知)(x f 是定义在R 上的函数,且)2()(+=x f x f 恒成立,当)0,2(-∈x 时,2)(x x f =,则当[]3,2∈x 时,函数)(x f 的解析式为 ( )
A .42-x
B .42
+x C .2)4(+x D . 2)4(-x
【应对高考,寻找网络节点】
15. 二次函数)(x f 满足x x f x f 2)()1(=-+,且1)0(=f 。
(1)求)(x f 的解析式;
(2)在区间]1,1[-上,)(x f y =的图象恒在m x y +=2的上方,试确定m 的范围。
16.(2010山东理)设f(x)为定义在R 上的奇函数,当x ≥0时,f(x)=2x
+2x+b(b 为常数),则f(-1)=( )
A . 3
B . 1
C . -1
D . -3
【温故知新,融会而贯通】
17.(2009广东卷理)若函数()y f x =是函数(0,1)x y a a a =>≠且的反函数,其图像
经过点)a ,则()f x =( )
A. 2log x
B. 12log x
C.
12
x D. 2x
【尝试回忆,高效贮备知识】(坚持每日睡前3m )
1.知识的再梳理:
2.题型的再回忆:
3.方法、技能与易错点重现:
4.数学思想方法:。