化工热力学讲义

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化工热力学补充讲义

沈阳工业大学

化工热力学补充讲义说明

化工热力学目前尚没有公开出版的高职高专教材,我们选用了中国石化出版社(原烃加工出版社)出版的石油化工大专院校统编教材“化工基础热力学”作为主要教学参考书。根据高等职业教育的特点,以加强教学内容的针对性和实用性为目的,编写了化工热力学补充讲义。

利用状态方程计算热力学性质的计算公式推导比较困难,我们将从文献中查到的一些常用的公式补充到讲义中,要求学生能够正确使用这些公式以及能够从文献中查到所需要的公式。

化工基础热力学中的许多内容是参考美国Smith教授等人编写的,1975年出版的化工热力学导论第三版一书。现在化工热力学导论已经出版了第六版。我们本着便于应用的原则,参照化工热力学导论的英文教材,将新版教材中对第三版改动较大的部分内容补充到讲义中。

第一章绪论

一化工热力学课程发展的主要历史沿革

热力学是一门研究能量、能量传递和转换以及能量与物质物性之间普遍关系的科学。热力学(thermodynamics)一词的意思是热(thermo)和动力(dynamics),既由热产生动力,反映了热力学起源于对热机的研究。从十八世纪末到十九世纪初开始,随着蒸汽机在生产中的广泛使用,如何充分利用热能来推动机器作功成为重要的研究课题。

1798年,英国物理学家和政治家 Benjamin Thompson (1753-1814) 通过炮膛钻孔实验开始对功转换为热进行研究。他在1798年的一篇论文中指出,制造枪炮所切下的铁屑温度很高,而且不断切削,高温铁屑就不断产生。既然可以不断产生热,热就非是一种运动不可。1799年,英国化学家 Humphry Davy (1778-1829)通过冰的摩擦实验研究功转换为热。当时,他们的工作并未引起物理界的重视,原因在于还没有找到热功转换的数量关系。

1842年,德国医生Julius Robert Mayer (1814 - 1878) 主要受病人血液颜色在热带和欧洲的差异及海水温度与暴风雨的启发,提出了热与机械运动之间相互转化的思想,并从空气的比定压热容和比定容热容之差算出热的功当量。1847年,德国物理学家和生物学家 Hermann Ludwig von Helmholtz (1821 - 1894)发表了“论力的守衡”一文,全面论证了能量守衡和转化定律。1843-1848年,英国酿酒商 James Prescott Joule (1818 - 1889) 以确凿无疑的定量实验结果为基础,论述了能量受恒和转化定律。焦耳的热功当量实验是热力学第一定律的实验基础。

1824年,法国陆军工程师Nicholas Léonard Sadi Carnot发表了“关于火的动力研究”的论文。他通过对自己构想的理想热机的分析得出结论:热机必须在两个热源之间工作,理想热机的效率只取决与两个热源的温度,工作在两个一定热源之间的所有热机,其效率都超不过可逆热机,热机在理想状态下也不可能达到百分之百。这就是卡诺定理。卡诺的论文发表后,没有马上引起人们的注意。过了十年,法国工程师Benôlt Paul Emile Clapeyron (1799 - 1864)把卡诺循环以解析图的形式表示出来,并用卡诺原理研究了汽液平衡,导出了克拉佩隆方程。

根据热力学第一定律热功可以按当量转化,而根据卡诺原理热却不能全部变为功,当时不少人认为二者之间存在着根本性的矛盾。1850年,德国物理学家Rudolf J. Clausius (1822 - 1888) 进一步研究了热力学第一定律和克拉佩隆转述的卡诺原理,发现二者并不矛盾。他指出,热不可能独自地、不付任何代价地从冷物体转向热物体,并将这个结论称为热力学第二定律。克劳胥斯在1854年给出了热力学第二定律的数学表达式, 1865年提出“墒”的概念。1851年,英国物理学家 Lord Kelvin (1824-l907)指出,不可能从单一热源取热使之完全变为有用功而不产生其他影响。这是热力学第二定律的另一种说法。1853年,他把能量转化与物系的内能联系起来,给出了热力学第一定律的数学表达式。热力学第一定律和第二定律奠定了热力学的理论基础。

1906年,能斯特(Walter Nernst,1969-1941)根据低温下化学反应的大量实验事实归纳出了新的规律,并与1912年将之表述为绝对零度不能达到的原理,

即热力学第三定律。热力学第三定律的建立使经典热力学理论更趋完善。

热力学基本定律反映了自然界的客观规律,以这些定律为基础进行演绎、逻辑推理而得到的热力学关系与结论,显然具有高度的普遍性、可靠性与实用性,可以应用于机械工程、化学、化工等各个领域,由此形成了化学热力学、工程热力学、化工热力学等重要的分支。

1875年,美国耶鲁大学数学物理学教授吉布斯(Josiah Willard Gibbs)发表了“论多相物质之平衡” 的论文。他在熵函数的基础上,引出了平衡的判据;提出热力学势的重要概念,用以处理多组分的多相平衡问题;导出相律,得到一般条件下多相平衡的规律。吉布斯的工作,把热力学和化学在理论上紧密结合起来,奠定了化学热力学的重要基础。

化学热力学主要讨论热化学、相平衡和化学平衡理论。工程热力学主要研究热能动力装置中工作介质的基本热力学性质、各种装置的工作过程以及提高能量转化效率的途径。化工热力学是以化学热力学和工程热力学为基础,结合化工实际过程逐步形成的学科。

化工热力学是化学工程学科的基础学科,它和单元操作、传递过程、化学反应工程和化工系统工程等构成的化学工程学科体系。经典热力学理论的建立和发展,为化工热力学奠定了理论重要基础。化学工业生产规模的不断扩大、生产技术的不断发展,是化工热力学学科的建立和发展的强大动力。

二、三十年代.在美国麻省理工学院的化学及有关工程教育改革中,产生了化工单元操作的概念。任何化工生产过程,无论其规模大小都可以用一系列称为单元操作的技术来解决。将纷杂众多的生产过程分解为构成它们的单元操作进行研究与设计,对于解决过程工业技术问题是普遍适用的。

1922年在W. H. Walker等阐述单元操作的原理时,W. H. Walker等曾利用了热力学的成果。麻省理工学院的H.C. Weber教授等人提出了利用气体临界性质的计算方法。1939年Weber写出了第一本化工热力学教科书《化学工程师用热力学》。1944年耶鲁大学的B. F. Dodge教授写的第一本取名为《化工热力学》的著作。

在第二次世界大战后,相关研究提出动量传递、热量传递、质量传递和反应工程的概念。50年代中期,随着电子计算机开始进入化工领域,化工过程的数学模拟迅速发展,形成了又一个新领域—一化工系统工程。至此,化学工程形成了比较完善的学科体系。计算机的应用同时给化学工程各学科都带来了新的活力。其中,高压过程的普遍采用和传质分离过程设计计算方法的改进,推动了化工热力学关于状态方程和多组分气液平衡.液液平衡等相平衡关联方法的研究,提出了一批至今仍获得广泛应用的状态方程和活度系数方程。

此后,随着化学工业的规模不断扩大,并且面临着环境污染和能源紧缺的挑战,化学工程的各分支学科继续生气勃勃地向前发展。其中,化工热力学的研究依然活跃。例如,关于状态方程和相平衡的研究,又有足够精确度的新状态方程提出;全球石油危机引发的节能迫切要求,使过程热力学分析获得了很大的发展;化工热力学平衡数据系统的支撑性作用,使化工系统工程在换热器网络和分离流程的合成方面取得有实用价值的成果……。尤其是80年代初以ASPEN为代表的大型化工模拟系统推出,而进人90年代以来又以Aspen Plus、Pro-Ⅱ等为代表的,许多功能更强的模拟系统又陆续提出,为化学工业及其相关技术的现代化发挥了巨大的作用。

目前,在化工热力学基础数据方面,已积累大量的热化学数据、PVT关系

相关文档
最新文档