顶管顶力计算表
顶管顶力计算
总顶力标准值
管道外径
管道设计顶进长度 管道外壁和土的平均摩阻
力 顶管机的迎面阻力
3414
KN m m kN/m2 kN
计算公式 F0 D1Lf k NF
式中: F0 D1 L fk NF
总顶力标准值 管道外径
管道设计顶进长度 管道外壁和土的平均摩阻力
顶管机的迎面阻力
11623
KN m m kN/m2 kN
Φ3 0.85 γQd
Φ5 0.79 1.3
39387657
N 0.9 1.05 0.85 0.79 pa mm2 1.3
fc 32.4
Fde= 39387.66 KN
= 3938.77 t
顶力计算 钢筋混凝土管(d=3000mm)
计算公式 F0 D1Lf k NF
式中: F0 D1 L fk NF
11
183
F0
11622.77 KN = 1162.28 t
顶管机迎面阻力计算
钢筋混凝土管(d=3000mm)
计算公式
NF
4
Dg2 g H g
式中: NF Dg γg Hg
顶管机的迎面阻力 顶管机外径 土的重度 覆土层厚度
183.12
kN m kN/m3 m
基本数值
Dg 1.98
γg
Hg
1.8
11.37
材料脆性系数
混凝土强度标准调整系数
混凝土受压强度设计值
管道的最小有效传力面积
顶力分享系数
Φ3 0.85 γQd KN =
Φ5 0.79 1.3
1191 t
N 0.9 1.05 0.85 0.79 pa mm2 1.3
fc 32.4
顶管顶力计算
顶管顶力计算
土压平衡式顶管理论计算公式
F=F1+F2
式中F 为总推力
式中F 1为迎面阻力
F 1=p e 4
πB c 2
p e 为控制土压力
B c 为管外径
p e = p A + p w +∆p
p A 为掘进所处土层的主动土压力(kPa )
p A 一般为150-300 kPa
p w 为掘进所处土层的地下水压力(kPa )
p w =γ水H 埋深
∆p 为给土仓的预加压力(kPa )
∆p 一般为20 kPa
式中F 2为顶进阻力
F 2=πB c f k L
f k 为管外壁与土的单位面积平均摩阻力kN/m 2
其数值一般通过试验确定
如果采用触变泥浆减阻技术按下表选用 2
浆套时,f k 可直接取值3.0-5.0 kN/m 2 。
B c 为Φ2.16m, L 为顶进长度(本次顶管按150m 为一分段), f k 取值4
则:
F= p e 4
πB c 2+πB c f k L =(225+7.5×4+20)×4
14.3×(2.16)2+3.14×2.16×4.0×150 =1007.1846+4069.44= 5076.6764(kPa )=507.7(T ) 单向顶进: 75m 则: 507.7÷2=253.85(T )
顶力系数:1.25 顶进千斤顶配置: 253.85×1.25≥317.31(T )。
顶管施工工艺顶力及后背计算
顶管施工工艺顶力及后背计算Prepared on 22 November 2020顶管施工工艺顶力及后背计算:1、顶力计算D=1000mm泥水平衡机械顶管顶力计算(1)顶力计算F--顶进阻力(KN)D0--顶管外径(m),按线路管径D=1200mm,取D0=1.22 mL—管道设计最大顶进长度(m),150mfk—管道外壁与土的单位面积平均摩阻力(KN/㎡)经验值fk=6KN/㎡NF--顶管机的迎面阻力(KN),查表得:NF=π∕4Dg2P式中H0—管道覆土厚度,取最大值5mγ—土的湿密度,取18KN/m3解得:NF=(4)××5×18=则:F=××150×6+=即F=根据以上计算需要两支(型号)200t顶镐。
根据总顶力计算出顶力为,实际施工过程中选用的顶镐设备为2台200吨的顶镐,能够提供4000kN的顶力,根据现场情况与实际施工经验,采取注浆、涂蜡等减阻措施,可以不使用中继间,能够满足顶力的要求。
1.1.1.12、后背安全系数的核算:根据顶力计算取D=1200进行后背核算根据管道直径选择墙宽2.6m,高2.4m,墙厚0.8m,内衬Φ14@150双层钢筋网片,网片生根于底板钢筋,外侧以预制钢后背为模板,两侧支模,内浇混凝土,混凝土强度采用C30。
后背面积计算:F=V×n/Kp×r×hV:主顶推力n:安全系数,取n≥Kp:被动土压力系数,取2r:土的重度,取19h:工作井深度F:后背面积F=×2×19×6=后背墙的核算按右公式计算F≥P/[σ];F—混凝土后背面积P—计算顶力[σ]—混凝土允许承载力1000KN/m2F=P/[σ]=÷1000≈5.88m2取安全系数2,(P/[σ])’=11.76m2实际施工时采用9*4=36 m2〉30.96 m2>能够保证安全由此计算出实际顶进坑的后背可以承受顶推力的作用,能够安全施工。
顶力计算
附件:力学计算1、力学计算公式 1.1、顶管顶力F N F F p +=式中 N F —顶管机头正面挤压力F —管壁摩阻力顶管机头正面挤压力:s s g F H D N ⨯⨯⨯=γ24π 式中 Dg —顶管机外径(m)γs —土的重度(kN/m 3) H s —盖层厚度(m)管壁摩擦阻力:k f L D F ⨯⨯⨯=0π式中 D 0—顶管外径(m)L —设计顶进长度(m)f k —管道外壁与土的单位面积平均摩擦阻力(kN/ m 2),通过试验确定;对于采用触变泥浆减阻技术的按表1确定,取11.0kN/㎡。
表1、采用触变泥浆的管外壁单位面积平均摩擦阻力f k (kN/㎡)1.2、管道允许顶力p c Qd de A f F ⨯⨯⨯⨯⨯⨯=53215.0φγφφφ式中 F de —混凝土管道允许顶力设计值(N );Φ1—混凝土材料受压强度折减系数,取0.9; Φ2—偏心受压强度提高系数,取1.05; Φ3—材料脆性系数,取0.85;Φ5—混凝土强度标准调整系数,取0.79;fc —混凝土受压强度设计值(N/mm 2),Ⅲ级C50管抗压强度取32.4N/mm 2;Ap —管道的最小有效传力面积(mm2),保守计算按截面的1/4计算,D3000mm 管为3108600mm 2,D1650mm 管为940351.5mm 2;γQd —顶力分享系数,取1.3。
1.3、后背允许受力本工程采用钢筋混凝土块作为后靠背。
管节能否顺利顶进与后靠背的承载力能否满足顶力要求有很大关系,因此后靠背的承受力必须满足传递最大顶的需要。
表2、土的主动和被动土压系数值本工程后靠背承受力的设计计算如下:后靠背采用高5m ,宽5m 素混凝土,厚50cm ,配筋按照工作井第三节设计配筋执行。
⎪⎪⎭⎫ ⎝⎛⨯⨯⨯+⨯⨯⨯+⨯⨯⨯⨯=p p p K H h K h C K H b A R γγ222 式中: R —总推力的反力(一般大于顶管总推力的1.2-1.6);A —系数(1.5-2.5),此处取2; b —后座墙的宽度,5m ;γ-土的重度kN/m ³; H-后座墙的高度,5m ; Kp-被动土压力系数,3; C-土的内聚力,10kPa ;h-地面到后座墙顶部土体的高度,7m 。
顶管施工工艺顶力及后背计算
顶管施工工艺顶力及后背计算:1、顶力计算D=1000m泥水平衡机械顶管顶力计算(1)顶力计算F 7D0Lfk NfF--顶进阻力(KN)D0--顶管外径(m),按线路管径D=1200m,取D0= 1.22 mL—管道设计最大顶进长度(m), 150mfk —管道外壁与土的单位面积平均摩阻力(KN/ m2)经验值fk=6KN/ m2NF--顶管机的迎面阻力(KN),查表得:NF =n / 4Dg2P式中H0—管道覆土厚度,取最大值5m丫一土的湿密度,取18KN/m3解得:NF=( 3.14/4 ) X 1.222 X 5X 18=105.2KN则:F=3.14X 1.22 X 150X 6+105.2KN =3552.92KN即F=355.292t根据以上计算需要两支(型号)200t顶镐。
根据总顶力计算出顶力为3552.92kN,实际施工过程中选用的顶镐设备为2台200吨的顶镐,能够提供4000kN的顶力,根据现场情况与实际施工经验,采取注浆、涂蜡等减阻措施,可以不使用中继间,能够满足顶力的要求。
1.1.1.1 2、后背安全系数的核算:根据顶力计算取D=1200进行后背核算根据管道直径选择墙宽2.6m,高2.4m,墙厚0.8m,内衬①14@15双层钢筋网片,网片生根于底板钢筋,外侧以预制钢后背为模板,两侧支模,内浇混凝土,混凝土强度采用C3O后背面积计算:F=V X n/Kp X r X hV :主顶推力n: 安全系数,取n》1.5Kp :被动土压力系数,取2r :土的重度,取19h:工作井深度F:后背面积F=3552.9X 1.5/2 X 19 X 6=30.93后背墙的核算按右公式计算F A P/[ (T ];F—混凝土后背面积P—计算顶力5877.21KN[(T ]—混凝土允许承载力1000 KN/m2F=P/[(T ]= 5877.2 - 1000~ 5.88m2取安全系数2,( P/[(T ] )' =11.76韦-.. 2实际施工时采用9*4=36 m〉30.96 m2 >11.76 能够保证安全由此计算出实际顶进坑的后背可以承受顶推力的作用,能够安全施工5.4.2顶管平面布置图(详见附图《顶管工作井平面布置图》:5050。
顶力计算
附件:力学计算1、力学计算公式 1.1、顶管顶力F N F F p +=式中 N F —顶管机头正面挤压力F —管壁摩阻力顶管机头正面挤压力:s s g F H D N ⨯⨯⨯=γ24π 式中 Dg —顶管机外径(m)γs —土的重度(kN/m 3) H s —盖层厚度(m)管壁摩擦阻力:k f L D F ⨯⨯⨯=0π式中 D 0—顶管外径(m)L —设计顶进长度(m)f k —管道外壁与土的单位面积平均摩擦阻力(kN/ m 2),通过试验确定;对于采用触变泥浆减阻技术的按表1确定,取11.0kN/㎡。
表1、采用触变泥浆的管外壁单位面积平均摩擦阻力f k (kN/㎡)1.2、管道允许顶力p c Qd de A f F ⨯⨯⨯⨯⨯⨯=53215.0φγφφφ式中 F de —混凝土管道允许顶力设计值(N );Φ1—混凝土材料受压强度折减系数,取0.9; Φ2—偏心受压强度提高系数,取1.05; Φ3—材料脆性系数,取0.85;Φ5—混凝土强度标准调整系数,取0.79;fc —混凝土受压强度设计值(N/mm 2),Ⅲ级C50管抗压强度取32.4N/mm 2;Ap —管道的最小有效传力面积(mm2),保守计算按截面的1/4计算,D3000mm 管为3108600mm 2,D1650mm 管为940351.5mm 2;γQd —顶力分享系数,取1.3。
1.3、后背允许受力本工程采用钢筋混凝土块作为后靠背。
管节能否顺利顶进与后靠背的承载力能否满足顶力要求有很大关系,因此后靠背的承受力必须满足传递最大顶的需要。
表2、土的主动和被动土压系数值本工程后靠背承受力的设计计算如下:后靠背采用高5m ,宽5m 素混凝土,厚50cm ,配筋按照工作井第三节设计配筋执行。
⎪⎪⎭⎫ ⎝⎛⨯⨯⨯+⨯⨯⨯+⨯⨯⨯⨯=p p p K H h K h C K H b A R γγ222 式中: R —总推力的反力(一般大于顶管总推力的1.2-1.6);A —系数(1.5-2.5),此处取2; b —后座墙的宽度,5m ;γ-土的重度kN/m ³; H-后座墙的高度,5m ; Kp-被动土压力系数,3; C-土的内聚力,10kPa ;h-地面到后座墙顶部土体的高度,7m 。
顶管施工工艺顶力及后背计算
顶管施工工艺顶力及后背计算:1、顶力计算D=1000mm泥水平衡机械顶管顶力计算(1)顶力计算πF+=DLfkNfF--顶进阻力(KN)D0--顶管外径(m),按线路管径D=1200mm,取D0=1.22 mL—管道设计最大顶进长度(m),150mfk—管道外壁与土的单位面积平均摩阻力(KN/㎡)经验值fk=6KN/㎡NF--顶管机的迎面阻力(KN),查表得:NF=π∕4Dg2P式中H0—管道覆土厚度,取最大值5mγ—土的湿密度,取18KN/m3解得:NF=(3.14/4)×1.222×5×18=105.2KN则:F=3.14×1.22×150×6+105.2KN =3552.92KN即F=355.292t根据以上计算需要两支(型号)200t顶镐。
根据总顶力计算出顶力为3552.92kN,实际施工过程中选用的顶镐设备为2台200吨的顶镐,能够提供4000kN的顶力,根据现场情况与实际施工经验,采取注浆、涂蜡等减阻措施,可以不使用中继间,能够满足顶力的要求。
1.1.1.12、后背安全系数的核算:根据顶力计算取D=1200进行后背核算根据管道直径选择墙宽2.6m,高2.4m,墙厚0.8m,内衬Φ14@150双层钢筋网片,网片生根于底板钢筋,外侧以预制钢后背为模板,两侧支模,内浇混凝土,混凝土强度采用C30。
后背面积计算:F=V×n/Kp×r×hV:主顶推力n: 安全系数,取n≥1.5Kp :被动土压力系数,取2r:土的重度,取19h:工作井深度F:后背面积F=3552.9×1.5/2×19×6=30.93后背墙的核算按右公式计算F≥P/[σ];F—混凝土后背面积P—计算顶力5877.21KN[σ]—混凝土允许承载力1000 KN/m2F=P/[σ]= 5877.2÷1000≈5.88m2取安全系数2,(P/[σ])’=11.76m2实际施工时采用9*4=36 m2〉30.96 m2 >11.76 能够保证安全由此计算出实际顶进坑的后背可以承受顶推力的作用,能够安全施工。
顶力计算
附件:力学计算1、力学计算公式 1.1、顶管顶力F N F F p +=式中 N F —顶管机头正面挤压力F —管壁摩阻力顶管机头正面挤压力:s s g F H D N ⨯⨯⨯=γ24π 式中 Dg —顶管机外径(m)γs —土的重度(kN/m 3) H s —盖层厚度(m)管壁摩擦阻力:k f L D F ⨯⨯⨯=0π式中 D 0—顶管外径(m)L —设计顶进长度(m)f k —管道外壁与土的单位面积平均摩擦阻力(kN/ m 2),通过试验确定;对于采用触变泥浆减阻技术的按表1确定,取11.0kN/㎡。
表1、采用触变泥浆的管外壁单位面积平均摩擦阻力f k (kN/㎡)管材 粉、细砂土 中、粗砂土 钢筋混凝土管 8.0-11.011.0-16.01.2、管道允许顶力p c Qd de A f F ⨯⨯⨯⨯⨯⨯=53215.0φγφφφ式中 F de —混凝土管道允许顶力设计值(N );Φ1—混凝土材料受压强度折减系数,取0.9; Φ2—偏心受压强度提高系数,取1.05; Φ3—材料脆性系数,取0.85;Φ5—混凝土强度标准调整系数,取0.79;fc —混凝土受压强度设计值(N/mm 2),Ⅲ级C50管抗压强度取32.4N/mm 2;Ap —管道的最小有效传力面积(mm2),保守计算按截面的1/4计算,D3000mm 管为3108600mm 2,D1650mm 管为940351.5mm 2;γQd —顶力分享系数,取1.3。
1.3、后背允许受力本工程采用钢筋混凝土块作为后靠背。
管节能否顺利顶进与后靠背的承载力能否满足顶力要求有很大关系,因此后靠背的承受力必须满足传递最大顶的需要。
表2、土的主动和被动土压系数值本工程后靠背承受力的设计计算如下:后靠背采用高5m ,宽5m 素混凝土,厚50cm ,配筋按照工作井第三节设计配筋执行。
⎪⎪⎭⎫ ⎝⎛⨯⨯⨯+⨯⨯⨯+⨯⨯⨯⨯=p p p K H h K h C K H b A R γγ222 式中: R —总推力的反力(一般大于顶管总推力的1.2-1.6);A —系数(1.5-2.5),此处取2; b —后座墙的宽度,5m ;γ-土的重度kN/m ³; H-后座墙的高度,5m ; Kp-被动土压力系数,3; C-土的内聚力,10kPa ;h-地面到后座墙顶部土体的高度,7m 。
顶管顶力技术计算
南水北调济南市市区续建配套工程东湖水库输水工程(三标段)济广高速顶管技术指标计算批准:王海滨审核:左兆杰编制:姚中瑞青岛瑞源工程集团有限公司东湖水库输水工程输水管线施工Ⅲ标项目部2016年10月10日目录一、工程简介.................................................... - 1 -二、施工方案.................................................... - 3 -三、顶力计算.................................................... - 4 -四、结论........................................................ - 7 -一、工程简介1、位置现状济广高速为双向4车道高速路,现在正在实施拓宽工程,加宽至双向8车道,路面高程约为28.40m。
工程位置处道路两侧现状为农田,路基高度约为3.3m。
济广高速顶管段管道桩号范围为16+558-16+708,顶管长度为150m。
管线与济广高速中心线交角为81.4°。
顶管段管道中心线高程为18.20m。
2、水文根据地勘资料,工程位置处勘查期间地下水位为19.86—20.07m,设计管顶高程为18.71m,位于地下水位以下。
工程位置处现状有现状雨水管道等市政管线,但因该处为顶管施工,埋深较大,其他管线不影响顶管施工。
3、地质情况济广高速顶管穿越地层主要为⑤层壤土和⑥1层粘土,局部涉及到①1层壤土、②层轻壤土、②1层(裂隙)粘土、④层壤土和④1层粘土,地质情况良好。
①1层壤土(Q4al):黄褐色,稍湿,可塑,局部硬塑,局部粉粒含量较高,干强度、韧性中等,切面稍有光泽,摇震反应无;该土层仅在ZK17、ZK35、ZK36、ZK37以及青银高速、济广高速顶管钻孔中揭露,层厚1.2~3.8m,平均层厚2.75m,层顶标高19.39~25.72m。
顶管所需顶力计算
顶进方法:
Fk=3117.388kN
γ=18kN/m*3
土的重度,地下水位以下取浮容重D1= 1.02m
管道的外径H= 4.6m
管道顶部以上覆盖层的厚度ψk=20°
管道所处土层的内摩擦角标准值L=185m
管道的计算顶进长度NF=153.2957kN 计算NF
R1=187.603kN/m*2R2=0kN/m*2局部气压的标准值
α=
1网格截面参数,可取0.6~1.0153.2957kN
计算Fk
3117.388kN 顶进时,工具管的迎面阻力标准值,宜按不同的顶进方法计
算确定
手工推进顶管法的工具管迎面阻力,或挤压、网格挤压顶管
法的挤压阻力;前者可采用500kN/m*2,后者可按工具管前端
中心处被动土压力的标准值计算
顶管所需顶力计算
本计算公式见上海市工程建设规范《地基基础设计规范》(DGJ08-11-1999)第141页
计算顶力标准值=+=22112141
4R D R D N F ππα
=+=F k N Lf D F '1π。
管道顶力计算
F de Φ1Φ2Φ3Φ5f c A p Y QdΦ1Φ2Φ3Φ5f cA pY Qd0.91.050.850.7923.11990454.401.3F 0D 1Lf k N F 顶管机的迎面阻力(KN)Dg γg钢筋混凝土管(D=2400)管道允许顶力计算基本数值混凝土受压强度设计值管道的最小有效传力面积(外径面积πr 12—内径面积πr 22)顶力分项系数,可取1.3计算公式式中:混凝土管道允许顶力设计值混凝土受压强度折减系数,可取0.9偏心受压强提高系数,可取1.05混凝土材料脆性系数,可取0.85混凝土强度标准调整系数,可取0.79管道外壁和土的平均摩阻力(KN/m 2)管道外径(m)管道外径(m)管道顶进长度(m)顶力计算土的重量(KN/m 3)钢筋混凝土管(D=2400)计算公式式中:总顶力标准值H gD 1Lf kN FD gγgH g2.861358703.052.8619.205.7覆土层的厚度(m)基本数值r 1=1440r 2=1200F de =K N=17981.030.7917981027.5923.11.317981027.590.85面积πr 22)8703.05顶力N 0.91.05顶力KN 2.8613519.22.8610406.805.7F0=10406.80。
顶管施工工艺顶力及后背计算
顶管动工工艺顶力及后背估计:之阳早格格创做1、顶力估计D=1000mm泥火仄稳板滞顶管顶力估计(1)顶力估计F顶进阻力(KN)D0顶管中径(m),按线路管径D=1200mm,与D0=1.22 mL—管讲安排最大顶进少度(m),150mfk—管讲中壁与土的单位里积仄稳摩阻力(KN/㎡)体味值fk=6KN/㎡NF顶管机的迎里阻力(KN),查表得:NF=π∕4Dg2P式中 H0—管讲覆土薄度,与最大值5mγ—土的干稀度,与18KN/m3根据以上估计需要二收(型号)200t顶镐.根据总顶力估计出顶力为3552.92kN,本质动工历程中采用的顶镐设备为2台200吨的顶镐,不妨提供4000kN的顶力,根据现场情况与本质动工体味,采与注浆、涂蜡等减阻步伐,不妨没有使用中继间,不妨谦脚顶力的央供.1.1.1.12、后背仄安系数的核算:根据顶力估计与D=1200举止后背核算根据管讲曲径采用墙宽2.6m,下2.4m,墙薄0.8m,内衬Φ14@150单层钢筋网片,网片死根于底板钢筋,中侧以预造钢后背为模板,二侧收模,内浇混凝土,混凝土强度采与C30.后反里积估计:F=V×n/Kp×r×hV:主顶推力Kp :主动土压力系数,与2r:土的沉度,与19h:处事井深度F:后反里积F=3552.9×1.5/2×19×6后背墙的核算按左公式估计F≥P/[σ];F—混凝土后反里积P—估计顶力5877.21KN[σ]—混凝土允许装载力1000 KN/m2F=P/[σ]= 5877.2÷1000 本质动工时采与9*4=36 m2 〉30.96 m2 >11.76 不妨包管仄安由此估计出本质顶进坑的后背不妨启受顶推力的效率,不妨仄安动工.5.4.2顶管仄里安插图(详睹附图《顶管处事井仄里安插图》:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.600 123.100 0.880 9.600 2.300 8.000 30.000 0.022 500.000
本工程取值 本工程取值 本工程取值 本工程取值 本工程取值 本工程取值 本工程取值 本工程取值 本工程取值
顶管摩擦系数表 地层类型 砾石层 砂层 亚粘土(砂质粘土)、泥灰土 低级粘土(软的淤积土) 粘土 钢管 0.55 0.45 0.35 0.3 0.2 摩擦系数 混凝土管 0.880 0.650 0.400 0.350 0.250
项目 土方开挖
开挖半径(m) 1.8
面积(m ) 10.179
2
长度(m) 147.7
数量(m ) 1503.403
3
部位 北线 南线
进尺 115.9 109.6
数量(m ) 1179.718 1115.592
3
完成(%) 78.5 74.2
轨道高 管底到枕木高 管外径
单位(m) 0.11 0.02 3.6
项目 管正面阻力(F1) 管道摩擦阻力(F2) 垂直土压力(P1) 水平土压力(P2) F 名称 管外径(D) 管道长度(L) 摩擦系数(µ) 单位长度管子自重(W) 土的重度(γ ) 管顶覆土高度(H) 土的内摩擦角(φ ) 工具管刃角厚度(t) 挤压阻力(R)
单位 KN KN KN KN KN KN
0.3159
0.3159
0.56204982
管顶的垂直土压力 土的重力密度 管顶以上的土柱高度 管子的外径 顶进管子的总长
66.24 2.3 8 3.6 1
17174.996
1600
53.3
30.0
166.6667
完成(%) 100.00
总量 1503.403
备注 开挖长度147.7(m)ห้องสมุดไป่ตู้
轨道间距 1.124
顶进总推力(F=F1+F2) F1=π (D-t)tR 123.647 F2=ƒ2L 16913.949 ƒ2=1/2π Dµ(P1+P2)+µw 137.400 P1=γ H 18.400 P2=γ (H+D/2)*tg (45 -φ /2)
2 0
7.513 17037.596
m m t/m t/m3 m 度 m KN/m2