信号与系统实验报告实验三 连续时间LTI系统的频域分析

合集下载

北京理工大学信号与系统实验报告3信号的频域分析报告

北京理工大学信号与系统实验报告3信号的频域分析报告

实验3信号的频域分析(综合型实验)一、实验目的1)深入理解信号频谱的概念,掌握信号的频域分析方法。

2)观察典型周期信号和非周期信号的频谱,掌握其频谱特性。

二、实验原理与方法1•连续周期信号的频谱分析如果周期信号满足Dirichlet条件,就可展开为傅里叶级数的形式,即1 .k.x(t) = E c k e j^0t(1)C k=T Jx(t)e J 吟dt(2)k S T o T o其中T o表示基波周期,「0=2二/T o为基波频率,.(…)表示任一个基波周期内的积T o分。

上面两式为周期信号复指数形式的傅里叶级数,系数c k成为x(t)的傅里叶系数。

周期信号的傅里叶级数还可由三角函数的线性组合来表示,即-bo -box(t)二a厂二a k cosk o t …工b k sink o t (3)k=1 k=11 2 2其中a。

x(t)dt, a k x(t)cosk ytdt,b k x(t)sink °tdt (4)T0 T o T o T o % T o(3)式中同频率的正弦、余弦项合并可以得到三角函数形式的傅里叶级数,即-box(t)= A o \ A k cos(k o t 玉)(5)km其中A o =a°, A. f 迸氐,入=-arctan& (6)a k任何满足Dirichlet条件的周期信号都可以表示成一组谐波关系的复指数函数或三角函数X =的叠加。

周期信号表示为傅里叶级数时需要无限多项才能完全逼近原信号2•连续非周期信号的频谱分析以上两式把信号的时频特性联系起来 ,确立了非周期信号x(t)和频谱X(-)之间的关利用MATLAB 可以方便地求出非周期连续时间信号的傅里叶变换 ,几种常见方法如下:1) 符号运算法MATLAB 的符号数学工具箱提供了直接求解傅里叶变换和反变换的函数,fourier函数和ifourier 函数,基本调用格式为X = fourier (x)x = ifourier (X)默认的时域变量为t ,频域变量为「。

《信号与系统》实验三

《信号与系统》实验三
实验记录及个人小结(包括:实验源程序、注释、结果分析与讨论等)
三:
源程序:
(1):τ/T=1/4时的周期矩形脉冲的幅度谱和相位谱:
n=-20:20;
F=zeros(size(n));
forii=-20:20
F(ii+21)= sin(ii*pi/4)/(ii*pi+eps);
end
F(21)=1/4;
实验
内容
1.求图1所示周期信号( , )的傅里叶级数,用Matlab做出其前3、9、21、45项谐波的合成波形与原信号作比较,并做出其单边幅度谱和相位谱。
图1 周期为2的三角脉冲信号
2. 求图2所示的单个三角脉冲( )的傅里叶变换,并做出其幅度谱和相位谱。
图2 单个三角脉冲
3. 求不同占空比下周期矩形脉冲的幅度谱和相位谱,例如 、 。
y=1/4;
forn=1:m
y=y+4/(n*n*pi*pi)*(1-cos(n*pi/2)).*cos(n*pi.*t);
end
源代码:
t=-6:0.01:6;
d=-6:2:6;
fxx=pulstran(t,d,'tripuls');
f1=fourierseries(3,t);
f2=fourierseries(9,t);
n=1:10;
a=zeros(size(n));
fori=1:10
a(i)=angle(4/(i*i*pi*pi)*(1-cos(i*pi/2)))
end
n=0:pi:9*pi
stem(n,a,'fill','linewidth',2);
axis([0,9*pi,-0.2,0.2])

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。

本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。

2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。

傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。

具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。

3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。

频率响应是系统对不同频率输入信号的响应情况。

通过系统函数H(ω)可以计算系统的频率响应。

系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。

4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。

通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。

常用的频域分析方法包括功率谱密度估计、谱线估计等。

5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。

通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。

6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。

通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。

进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。

7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。

频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。

总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。

频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。

实验三 连续时间系统的频域分析

实验三 连续时间系统的频域分析
(s ) 0
2 2
e
t
1 s
e
t
co s 0 t
s (s ) 0
2 2
t
te
n
n! s
n 1
t s in 0 t
2 0 s (s 0 )
2 2 2
t
1
s
2
13
t co s 0t
s 0
2 2
2 2
(s 0 )
在线性时不变系统分析和研究中,Laplace 变换是一
种很常用的变换域分析方法。它把时域中求解响应的问题
通过 Laplace 变换转换成复频域中的问题进行分析;在复
频域中求解后再通过 Laplace 逆变换还原为时间原函数。
它把时域中输入输出之间的卷积运算转化为变换域中的乘
法运算,使运算变得方便、快捷。
2
拉普拉斯变换的性质
序号 名称 结论
a1 f 1 t a 2 f 2 t a 1 F1 s a 2 F 2 s
1
2 3 4 5
线性性质
时移性质 尺度变换性质 频移性质 时域微分性质
f t t0 t t0 F s e
j t
dt


F ( j )e
j t
d
傅立叶变换函数
fourier函数
功能:实现信号f(t)的傅立叶变换。 调用格式: F=fourier(f):是符号函数f的傅立叶变换,默认返回 函数F是关于w的函数。 F=fourier(f,v):是符号函数f的傅立叶变换,默认返回
函数F是关于v的函数。
常用拉氏变换表 序号 1 2 3 4 5 6 f(t) t>0

实验三 连续信号与系统的频域分析

实验三 连续信号与系统的频域分析
郑慧乐
学号
0174280
同组人:无
实验项目
实验三连续信号与系统的频域分析
☑必修□选修
□演示性实验☑验证性实验□操作性实验□综合性实验
实验地点
H113
实验仪器台号
F0
指导教师
蒋娜
实验日期及节次
week14->2-12
一、实验目的及要求:
1、目的
1.掌握非周期信号的傅里叶变换:fourier函数和ifourier函数;
四、实验结果与数据处理:
1.利用fourier函数求下列信号的傅里叶变换F(jω),并用ezplot函数绘出其幅度谱和相位谱。
(1)
syms t v w phase im re;%定义变量t,v,w,phase,im re
f=sym('Heaviside(t)-Heaviside(t-2)');%
Fw=fourier(f);
plot([07.0711],[0.7070.707],':');
axis([04001.1]);
grid;
xlabel('角频率(\omega)');
ylabel('幅度');
title('H(j\omega)的幅频特性');
subplot(212);
plot(w,h2*180/pi);
axis([0400200]);
(2)
syms t v w phase im re;%定义变量t,v,w,phase,im re
f=exp(-1*t)*sym('Heaviside(t)');%
Fw=fourier(f);
subplot(311);

实验三 连续时间LTI系统的时域分析实验报告

实验三 连续时间LTI系统的时域分析实验报告

实验三连续时间L TI系统的时域分析实验报告实验三连续时间LTI系统的时域分析一、实验目的1、学会使用符号法求解连续系统的零输入响应和零状态响应2、学会使用数值法求解连续系统的零状态响应3、学会求解连续系统的冲激响应和阶跃响应二、实验原理及实例分析1、连续时间系统零输入响应和零状态响应的符号求解连续时间系统可以使用常系数微分方程来描述,其完全响应由零输入响应和零状态响应组成。

MATLAB符号工具箱提供了dsolve函数,可以实现对常系数微分方程的符号求解,其调用格式为:dsolve(‘eq1,eq2…’,’cond1,cond2,…’,’v’)其中参数eq表示各个微分方程,它与MATLAB符号表达式的输入基本相同,微分和导数的输入是使用Dy,D2y,D3y来表示y的一价导数,二阶导数,三阶导数;参数cond表示初始条件或者起始条件;参数v表示自变量,默认是变量t。

通过使用dsolve函数可以求出系统微分方程的零输入响应和零状态响应,进而求出完全响应。

2、连续时间系统零状态响应的数值求解在实际工程中使用较多的是数值求解微分方程。

对于零输入响应来说,其数值解可以通过函数initial来实现,而该函数中的参量必须是状态变量所描述的系统模型,由于现在还没有学习状态变量相关内容,所以此处不做说明。

对于零状态响应,MATLAB控制系统工具箱提供了对LTI系统的零状态响应进行数值仿真的函数lsim,利用该函数可以求解零初始条件下的微分方程的数值解。

其调用格式为:y=lsim(sys,f,t),其中t表示系统响应的时间抽样点向量,f是系统的输入向量;sys表示LTI系统模型,用来表示微分方程、差分方程或状态方程。

在求解微分方程时,sys是有tf函数根据微分方程系数生成的系统函数对象,其语句格式为:sys=tf(a,b)。

其中,a和b分别为微分方程右端和左端的系数向量。

例如,对于微分方程a3y'''(t)?a2y''(t)?a1y'(t)?a0y(t)?b3f'''(f)?b2f''(t)?b1f'(t)?b0f(t) 可以使用a?[a3,a2,a1,a0];b?[b3,b2,b1,b0];sys?tf(b,a)获得其LTI模型。

实验连续信号频域分析报告

实验连续信号频域分析报告

实验三连续信号的频域分析一、实验目的掌握周期信号的频谱分析方法一-傅里叶级数及其物理意义。

深人理解信号频谱的概念,掌握典型信号的频谱以及Fourier变换的主要性质。

二、实验原理及方法在“信号与系统”课程中详细讨论了信号的Fourier分析方法,包括周期信号的频谱分析一-Fourier级数和非周期信号的频谱分析—Fourier变换的理论。

1.周期信号的三角形式的傅里叶级数由Fourier级数的理论可知:任何周期信号只要满足Dirichlet条件就可以分解成许多指数分量之和(指数Fourie:级数)或直流分量及许多正弦、余弦分量之和,即其中,为直流分量,是信号f(t)在一个周期内的平均值;Ancos ( n,(n +n)为n次谐波。

一般来说,任意周期信号表示为Fourier级数时需要无限多项才能完全逼近原信号。

但在实际应用中,经常采用有限项级数来代替无限项级数,即用式(3-2)来逼近f( t)显然,所选项数越多,有限项级数越逼近原信号,其方均误差越小、对一定的周期T,实验图3-2说明取不同项数(即谐波次数)时,有限项级数fN(t)逼近信号f( t)的情况。

实验图3一中的4幅图分别是3项、9项、21项和45项傅里叶级数逼近的结果。

由此可见,当选取傅里叶级数的项数越多,所合成的波形fN(t)中的峰起越靠近.f( })的不连续点。

从理论上讲,当所选取的项数N越大时,该峰极值趋于一个常数,大约等于跳变值的9%,并从不连续点开始以起伏振荡的形式逐渐衰减下去,此即Gibbs现象。

2.周期信号的指数形式的傅里叶级数利用欧拉公式有式(3-1)可表示为将式(3-5)第3项中的n用-n代换,并考虑An是n(或nΩo)的偶信号,An =A-n 是n(或Ωo)的奇信号,。

则上式可写成式(3-6)表明,任意周期信号.f(t)可分解为无穷多项不同频率的复指数,的加权和,其各分量的复数幅度或相量(或称为复加权系数)为计算机不能计算无穷多个系数,假设需要计算的谐波次数为N,则总的系数个数为2NTA。

信号与系统实验报告实验三 连续时间LTI系统的频域分析

信号与系统实验报告实验三   连续时间LTI系统的频域分析

实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法与特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习与掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。

基本要求:掌握LTI 连续与离散时间系统的频域数学模型与频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波与滤波器的概念,掌握利用MATLAB 计算与绘制LTI 系统频率响应特性曲线中的编程。

二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response),就是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况与响应的相位随频率的变化情况两个方面。

上图中x(t)、y(t)分别为系统的时域激励信号与响应信号,h(t)就是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3、1或者: )()()(ωωωj X j Y j H =3、2)(ωj H 为系统的频域数学模型,它实际上就就是系统的单位冲激响应h(t)的傅里叶变换。

即⎰∞∞--=dt e t h j H tj ωω)()( 3、3由于H(j ω)实际上就是系统单位冲激响应h(t)的傅里叶变换,如果h(t)就是收敛的,或者说就是绝对可积(Absolutly integrabel)的话,那么H(j ω)一定存在,而且H(j ω)通常就是复数,因此,也可以表示成复数的不同表达形式。

在研究系统的频率响应时,更多的就是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3、4上式中,)j (ωH 称为幅度频率相应(Magnitude response),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。

实验三 连续信号及系统的时频域分析

实验三 连续信号及系统的时频域分析

实验三 连续信号、系统的频域分析、复频域分析一、实验目的1、理解频域分析的MA TLAB 实现方法。

2、求解系统的频率响应。

3、理解函数的拉氏变换,并进行复频域 二、实验时数: 2学时三、实验相关知识:(一)连续信号的频谱分析 1、周期信号的傅里叶级数计算设周期信号x(t)的基本周期为T 1,且满足狄里克利条件,则其指数形式的傅里叶级数系数Fn 为:1112211()T jn tn T F f t ed t T ω--=⎰其中n 为-∞,∞之间的整数;角频率ω1=2π/T 1。

因为计算机不能计算无穷多个系数,所以我们假设需要计算的谐波次数为N ,则总的系数个数为2N+1个。

在确定了信号的周期T 1和时间步长dt 之后,对某一个系数,上述系数的积分公式可以近似为:[]111111121211112111()()()()()/kMMT jn t jn tn k T k Tjn t jn t jn t M F f t ed t f t ed tT T f t f t f t eeed t T ωωωωω---=---==⎡⎤=⋅⋅⎣⎦∑⎰对于全部需要的2N+1个系数,上面的计算可以按照矩阵运算实现。

需要强调的是,时间变量的变化步长dt 的大小对傅里叶级数系数的计算精度的影响非常大,dt 越小,精度越高,但是,计算机计算所花的时间越长。

例3-1:求如图所示方波信号的幅度谱,并画出频谱图。

(A=1,τ=0.5,T 1=2)MATLAB 实现傅里叶级数计算的程序如下: dt = 0.01;T1 = 2;w1 = 2*pi/T1; t = -T1/2:dt:T1/2; tau = 0.5; A = 1;f = A*(u(t + tau/2) - u(t - tau/2)); subplot(2,1,1) plot(t,f)axis([-T1/2, T1/2, -0.1, 1.1]) title('f(t)时域波形') N = 10; n = -N:N;Fn = f*exp(-j*t'*w1*n)*dt/T1; subplot(2,1,2) stem(n,Fn) hold on dw = 0.01;w = -N*w1:dw:N*w1;F = A*tau/T1 * sinc(w*tau/2/pi); plot(w/w1,F,'--')title('傅里叶级数F_n')2、周期信号的合成以及Gibbs 现象从傅里叶级数的合成式(Synthesis equation )1()jn tn n f t F eω∞=-∞=∑可以看出,用无穷多个不同频率和不同振幅的周期复指数信号可以合成一个周期信号。

实验三连续时间LTI系统的时域分析报告

实验三连续时间LTI系统的时域分析报告

实验三 连续时间LTI 系统的时域分析一、实验目的1.学会用MATLAB 求解连续系统的零状态响应; 2. 学会用MATLAB 求解冲激响应及阶跃响应; 3.学会用MATLAB 实现连续信号卷积的方法;二、实验原理1.连续时间系统零状态响应的数值计算我们知道,LTI 连续系统可用如下所示的线性常系数微分方程来描述,()()0()()NMi j i j i j a yt b f t ===∑∑在MATLAB 中,控制系统工具箱提供了一个用于求解零初始条件微分方程数值解的函数lsim 。

其调用格式y=lsim(sys,f,t)式中,t 表示计算系统响应的抽样点向量,f 是系统输入信号向量,sys 是LTI 系统模型,用来表示微分方程,差分方程或状态方程。

其调用格式sys=tf(b,a)式中,b 和a 分别是微分方程的右端和左端系数向量。

例如,对于以下方程:''''''''''''32103210()()()()()()()()a y t a y t a y t a y t b f t b f t b f t b f t +++=+++可用32103210[,,,];[,,,];a a a a a b b b b b == (,)sys tf b a = 获得其LTI 模型。

注意,如果微分方程的左端或右端表达式中有缺项,则其向量a 或b 中的对应元素应为零,不能省略不写,否则出错。

例3-1 已知某LTI 系统的微分方程为 y’’(t)+ 2y’(t)+100y(t)=f(t)其中,'(0)(0)0,()10sin(2)y y f t t π===,求系统的输出y(t). 解:显然,这是一个求系统零状态响应的问题。

其MATLAB 计算程序如下: ts=0;te=5;dt=0.01; sys=tf([1],[1,2,100]); t=ts:dt:te; f=10*sin(2*pi*t); y=lsim(sys,f,t); plot(t,y);xlabel('Time(sec)'); ylabel('y(t)');2.连续时间系统冲激响应和阶跃响应的求解在MATLAB 中,对于连续LTI 系统的冲激响应和阶跃响应,可分别用控制系统工具箱提供的函数impluse 和step 来求解。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告在现代科学与工程领域中,信号与系统是一个至关重要的研究方向。

信号与系统研究的是信号的产生、传输和处理,以及系统对信号的响应和影响。

在这个实验报告中,我们将讨论一些关于信号与系统实验的内容,以及实验结果的分析和讨论。

实验一:信号的采集与展示在这个实验中,我们学习了信号的采集与展示。

信号是通过传感器或其他仪器采集的电压或电流的变化,可以是连续的或离散的。

我们使用示波器和数据采集卡来采集信号,并在计算机上进行展示和分析。

实验二:线性时不变系统的特性线性时不变系统是信号与系统中的重要概念。

在这个实验中,我们通过观察系统对不同的输入信号作出的响应来研究系统的特性。

我们使用信号发生器产生不同的输入信号,并观察输出信号的变化。

通过比较输入信号和输出信号的频谱以及幅度响应,我们可以了解系统的频率响应和幅频特性。

实验三:系统的时域特性分析在这个实验中,我们将研究系统的时域特性。

我们使用了冲击信号和阶跃信号作为输入信号,观察输出信号的变化。

通过测量系统的冲击响应和阶跃响应,我们可以了解系统的单位冲激响应和单位阶跃响应。

实验四:卷积与系统的频域特性在这个实验中,我们学习了卷积的概念和系统的频域特性。

卷积是信号与系统中的重要运算,用于计算系统对输入信号的响应。

我们通过使用傅里叶变换来分析系统的频域特性,观察输入信号和输出信号的频谱变化。

实验五:信号的采样与重构在这个实验中,我们研究了信号的采样与重构技术。

信号的采样是将连续时间的信号转换为离散时间的过程,而信号的重构是将离散时间的信号恢复为连续时间的过程。

我们使用数据采集卡来对信号进行采样,并使用数字滤波器来进行信号的重构。

通过观察信号的采样和重构结果,我们可以了解采样率对信号质量的影响。

实验六:系统的稳定性与性能在这个实验中,我们研究了系统的稳定性与性能。

系统的稳定性是指系统对输入信号的响应是否有界,而系统的性能是指系统对不同频率信号的响应如何。

我们使用极坐标图和Nyquist图来分析系统的稳定性和性能,通过观察图形的变化来评估系统的性能。

连续时间信号与系统的频域分析实验报告

连续时间信号与系统的频域分析实验报告

实验四连续时间信号与系统的频域分析一、实验目的掌握连续时间信号的傅里叶变换及傅里叶逆变换的实现方法,掌握连续时间系统的频域分析方法,熟悉MATLAB 相应函数的调用格式和作用,掌握使用MATLAB 来分析连续时间信号与系统的频域特性及绘制信号频谱图的方法。

二、实验原理(一)连续时间信号与系统的频域分析原理1、连续时间信号的额频域分析 连续时间信号的傅里叶变换为:()()dt e t f j F t j ωω-∞∞-⎰=傅里叶逆变换为:()()ωωπωd e j F t f t j ⎰∞∞-=21()ωj F 称为频谱密度函数,简称频谱。

一般是复函数,可记为:()()()ωϕωωj e j F j F =()ωj F 反映信号各频率分量的幅度随频率ω的变化情况,称为信号幅度频谱。

()ωϕ反映信号各频率分量的相位随频率ω的变化情况,称为信号相位频谱。

2、连续时间系统的频域分析 在n 阶系统情况下,数学模型为:()()()()()()()()t f b dtt df b dt t f d b dt t f d b t y a dtt dy a dt t y d a dt t y d a o m m n m m n o n n n n n n ++++=++++------11111111 令初始条件为零,两端取傅里叶变换,得:()()[]()()()[]()ωωωωωωωωj F b j b j b j b j Y a j a j a j a m n m n n n nn01110111++++=++++----表示为()()()()ωωωωj F j b j Y j a kmk kkn k k∑∑===0则 ()()()()()()()()()∑∑==----=++++++++==nk kk mk kk n n n n m m mm j a j b a j a j a j a b j b j b j b j F j Y j H 0001110111ωωωωωωωωωωω3、系统传递函数 系统传递函数定义为:()()()ωωωj H j Y j H =系统传递函数反映了系统内在的固有的特性,它取决于系统自身的结构及参数,与外部 激励无关,是描述系统特性的一个重要参数。

信号与系统matlab实验3连续时间LTI分析报告

信号与系统matlab实验3连续时间LTI分析报告

实验三连续时间LTI系统分析姓名学号班级通信一班一、实验目的(一)掌握使用Matlab进行连续系统时域分析的方法1、学会使用符号法求解连续系统的零输入响应和零状态响应2、学会使用数值法求解连续系统的零状态响应3、学会求解连续系统的冲激响应和阶跃响应(二)掌握使用Matlab进行连续时间LTI系统的频率特性及频域分析方法1、学会运用MATLAB分析连续系统地频率特性2、学会运用MATLAB进行连续系统的频域分析(三)掌握使用Matlab进行连续时间LTI系统s域分析的方法1、学会运用MATLAB求拉普拉斯变换(LT)2、学会运用MATLAB求拉普拉斯反变换(ILT)3、学会在MATLAB环境下进行连续时间LTI系统s域分析二、实验原理及实例分析(一)连续系统时域分析(详细请参见实验指导第二部分的第5章相关部分)(二)连续时间LTI系统的频率特性及频域分析(详细请参见实验指导第二部分的第8章相关部分)(三)拉普拉斯变换及连续时间系统的s域分析(详细请参见实验指导第二部分的第10、11章相关部分)三、实验过程(一)熟悉三部分相关内容原理(二)完成作业已知某系统的微分方程如下:)(3)()(2)(3)(t e t e t r t r t r +'=+'+''其中,)(t e 为激励,)(t r 为响应。

1、用MATLAB 命令求出并画出2)0(,1)0(),()(3='==---r r t u e t e t 时系统的零状态响应和零输入响应(零状态响应分别使用符号法和数值法求解,零输入响应只使用符号法求解);>> eq='D2y+3*Dy+2*y=0';>> cond='y(0)=1,Dy(0)=2';>> yzi = dsolve(eq,cond);yzi = simplify(yzi);>> eq1 = 'D2y+3*Dy+2*y=Dx+3*x';eq2 = 'x= exp(-3*t)*Heaviside(t)';cond = 'y(-0.01)=0,Dy(-0.001)=0';yzs = dsolve(eq1,eq2,cond);yzs = simplify(yzs.y)yzs =heaviside(t)*(-exp(-2*t)+exp(-t))>> yt = simplify(yzi+yzs)yt =-3*exp(-2*t)+4*exp(-t)-exp(-2*t)*heaviside(t)+exp(-t)*heaviside(t)>> subplot(3,1,1);>> ezplot(yzi,[0,8]);grid on;>> title ('rzi');>> subplot(3,1,2);>> ezplot(yzs,[0,8]);>> grid on;>> title('rzs');>> subplot(3,1,3);>> ezplot(yt,[0,8]);grid on;>> title('完全响应')sys = tf([1,3],[1,3,2]);t = ts:dt:te;f = exp(-3*t).*uCT(t);y = lsim(sys,f,t);plot(t,y),grid on;axis([0,8,-0.02,0.27]);xlable('Time(sec)'),ylable('y(t)'); title('零状态响应')2、)(3)()(2)(3)(t e t e t r t r t r +'=+'+''2)0(,1)0(),()(3='==---r r t u e t e t使用MATLAB 命令求出并画出系统的冲激响应和阶跃响应(数值法);用卷积积分法求系统的零状态响应并与(1)中结果进行比较;t = 0:0.001:4;sys = tf([1,3],[1,3,2]);h = impulse(sys,t);g = step(sys,t);subplot(2,1,1);plot(t,h),grid on;xlable('Time(sec)'),ylable('h(t)');title('冲激响应');subplot(2,1,2);plot(t,g),grid on;xlable('Time(sec)'),ylable('g(t)');title ('阶跃响应')_dt = 0.01;t1 = 0:dt:8;f1=exp(-3*t1);t2 = t1;sys = tf([1,3],[1,3,2]);f2 = impulse(sys,t2);[t,f]= ctsconv(f1,f2,t1,t2,dt)function[f,t] = ctsconv(f1,f2,t1,t2,dt)f = conv(f1,f2);f = f*dt;ts = min(t1)+min(t2);te = max(t1)+max(t2);t = ts:dt:te;subplot(1,1,1)plot(t,f);grid on;axis([min(t),max(t),min(f)-abs(min(f)*0.2),max(f)+abs(max(f)*0.2)]); title('卷积结果')3、)(3)()(2)(3)(t e t e t r t r t r +'=+'+''使用MATLAB 命令求出并画出此系统的幅频特性和相频特性;使用频域分析法求解系统的零状态响应并与(1)中结果进行比较;>> w = -3*pi:0.01:3*pi;b = [1,3];a = [1,3,2];H = freqs(b,a,w);subplot(2,1,1);plot(w,abs(H)),grid on;xlabel('\omega(rad/s)'),ylabel('|H(\omega)|');title ('H(w)的幅频特性');subplot(2,1,2);plot(w,angle(H)),grid on;xlabel('\omega(rad/s)'),ylabel('\phi(\omega)');title('H(w)的相频特性')H = sym('1/(i^2*w^2+3*i*w+2)'); H= simplify(ifourier(H)); subplot(3,1,1);ezplot(H,[0,8]),grid on;title('零状态响应')4、)(3)()(2)(3)(t e t e t r t r t r +'=+'+''使用MATLAB 命令求出并画出t t e 2cos )(=时系统的稳态响应;t = 0:0.1:20;w = 2;H = (j*w+3)/(j^2*w^2+3*j*w+2);f = cos(2*t);y = abs(H)*cos(w*t+angle(H));subplot(2,1,1);plot(t,f);grid on;ylabel('f(t)'),xlabel('Time(s)');title('输入信号的波形');subplot(2,1,2);plot(t,y);grid on;ylabel('y(t)'),xlabel('Time(sec)');title('稳态响应的波形')5、)(3)()(2)(3)(t e t e t r t r t r +'=+'+''若已知条件同(1),借助MATLAB 符号数学工具箱实现拉普拉斯正反变换的方法求出并画出2)0(,1)0(),()(3='==---r r t u e t e t 时系统的零状态响应和零输入响应,并与(1)的结果进行比较。

信号与系统实验报告实验三 连续时间LTI系统的频域分析

信号与系统实验报告实验三   连续时间LTI系统的频域分析

实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法与特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习与掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。

基本要求:掌握LTI 连续与离散时间系统的频域数学模型与频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波与滤波器的概念,掌握利用MATLAB 计算与绘制LTI 系统频率响应特性曲线中的编程。

二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response),就是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况与响应的相位随频率的变化情况两个方面。

上图中x(t)、y(t)分别为系统的时域激励信号与响应信号,h(t)就是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3、1或者: )()()(ωωωj X j Y j H =3、2)(ωj H 为系统的频域数学模型,它实际上就就是系统的单位冲激响应h(t)的傅里叶变换。

即⎰∞∞--=dt e t h j H tj ωω)()( 3、3由于H(j ω)实际上就是系统单位冲激响应h(t)的傅里叶变换,如果h(t)就是收敛的,或者说就是绝对可积(Absolutly integrabel)的话,那么H(j ω)一定存在,而且H(j ω)通常就是复数,因此,也可以表示成复数的不同表达形式。

在研究系统的频率响应时,更多的就是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3、4上式中,)j (ωH 称为幅度频率相应(Magnitude response),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、实验目的信号与系统是电子信息类专业的一门重要基础课程,通过实验可以更深入地理解信号与系统的基本概念和原理,掌握信号的分析与处理方法,提高实践动手能力和解决实际问题的能力。

本次实验的目的主要包括以下几个方面:1、熟悉信号的表示与运算,包括连续时间信号和离散时间信号。

2、掌握线性时不变系统的特性和分析方法。

3、学会使用实验设备和软件工具进行信号的产生、采集、分析和处理。

4、培养观察、分析和总结实验结果的能力,以及撰写实验报告的规范和能力。

二、实验设备与软件本次实验使用的设备和软件主要有:1、计算机一台2、 MATLAB 软件三、实验内容与步骤(一)连续时间信号的表示与运算1、生成常见的连续时间信号,如正弦信号、余弦信号、方波信号、三角波信号等。

在MATLAB 中,使用`sin`、`cos`函数可以生成正弦和余弦信号,例如:`t = 0:001:10; y = sin(2pit); plot(t,y);`可以生成一个频率为 1Hz 的正弦信号。

使用`square`函数可以生成方波信号,`sawtooth`函数可以生成三角波信号。

2、对连续时间信号进行基本运算,如加法、减法、乘法和微分、积分等。

信号的加法和减法可以直接将对应的函数相加或相减,例如:`y1 = sin(2pit); y2 = cos(2pit); y = y1 + y2; plot(t,y);`实现了正弦信号和余弦信号的加法。

乘法运算可以通过相应的函数相乘实现。

微分和积分可以使用`diff`和`cumtrapz`函数来完成。

(二)离散时间信号的表示与运算1、生成常见的离散时间信号,如单位脉冲序列、单位阶跃序列、正弦序列等。

单位脉冲序列可以通过数组的定义来实现,例如:`n = 0:10; x =1,zeros(1,10); stem(n,x);`单位阶跃序列可以通过逻辑判断来生成。

正弦序列使用`sin`函数结合离散时间变量生成。

连续时间系统的复频域分析

连续时间系统的复频域分析

信号与系统实验报告实验题目: 实验三:连续时间系统的复频域分析实验仪器: 计算机,MATLAB 软件101b s b a s a ++++++称为系统的特征多项式,征根,也称为系统的固有频率(或自然频率)。

为将个特征根,这些特征根称为()F s 极点。

根据求函数21()(1)F s s s =-的拉氏逆变换。

源代码:num = [1]; 结果为:r =-1 1 1 a=conv([1 -1],[1 -1]);den = conv([1 0], a); p =1 1 0 [r,p,k] = residue(num, den); k=03.示例3:求函数2224()(4)s F s s -=+的拉氏逆变换源代码:num = [1 0 -4];den = conv([1 0 4], [1 0 4]); [r,p,k] = residue(num, den);结果为:r =-0.0000-0.0000i 0.5000+0.0000i -0.0000+0.0000i 0.5000-0.0000ip =-0.0000+2.0000i -0.0000+2.0000i -0.0000-2.0000i -0.0000-2.0000i k=04.示例4:已知系统函数为:321()221H s s s s =+++,利用Matlab 画出该系统的零极点分布图,分析系统的稳定性,并求出该系统的单位冲激响应和幅频响应。

源代码: num=[1];den=[1 2 2 1]; sys=tf(num,den); poles=roots(den); figure(1);pzmap(sys);xlabel('Re(s)');ylabel(' Im(s)');title('zero-pole map'); t=0:0.02:10;h=impulse(num,den,t); figure(2);plot(t,h);xlabel('t(s)');ylabel('h(t)');title('Impulse Response'); [H,w]=freqs(num,den);figure(3);plot(w,abs(H));xlabel('\omega(rad/s)');ylabel('|H(j\omega)|');title('Magenitude Response'); 结果为:poles =-1.0000 -0.5000 + 0.8660i -0.5000 - 0.8660i (2) 已知象函数,试调用residue 函数完成部分分式分解,并写出逆变换。

信号与系统实验报告实验三连续时间LTI系统的频域分析

信号与系统实验报告实验三连续时间LTI系统的频域分析

实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MATLAB 语言进行系统频响特性分析的方法。

基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。

二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。

上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。

即⎰∞∞--=dt et h j H tj ωω)()( 3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。

在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。

实验三 连续信号的频域分析报告

实验三 连续信号的频域分析报告

实验三 连续信号的频域分析一、 实验目的1.掌握周期信号的频谱—— Fourier 级数的分析方法及其物理意义。

2.深入理解信号频谱的概念,掌握典型信号的频谱以及 Fourier 变换的主要性质。

二、 实验内容及步骤1)求不同占空比下周期矩形脉冲的幅度谱和相位谱,例如4T 1=τ、81。

2) 求图3-6所示的单个三角脉冲(1=τ)的傅里叶变换,并作出其幅度谱和相位谱。

-6-4-2024600.20.40.60.81t ()f t图3-6 单个三角脉冲四、实验报告要求1.编程实现实验内容,要求附上源程序。

2.总结实验中的主要结论,你的收获和体会。

1)求不同占空比下周期矩形脉冲的幅度谱和相位谱,例如4T 1=τ、81代码t=-8:0.01:8;y=square(2*pi*t,25);T=0.01;dw=1w=-10*pi:dw:10*pi;F=y*exp(-j*t'*w)*T;F1=abs(F); %计算幅度谱phaF=angle(F); %计算相位谱subplot(3,2,1)plot(t,y);grid on;xlabel('t')ylabel('y')title('占空比为1/4的周期矩形脉冲的波形图')subplot(3,2,3)plot(w,F1)grid on;xlabel('\Omega')ylabel('幅度')title('占空比为1/4的周期矩形脉冲的幅度谱')subplot(3,2,5)plot(w,phaF)grid on;xlabel('\Omega')ylabel('相位')title('占空比为1/4的周期矩形脉冲的相位谱')y2=square(2*pi*t,12.5);F2=y2*exp(-j*t'*w)*T;F12=abs(F2); %计算幅度谱phaF2=angle(F2); %计算相位谱subplot(3,2,2)plot(t,y2);axis([-4 4 -1.5 1.5]);grid on;xlabel('t')ylabel('y2')title('占空比为1/8的周期矩形脉冲的波形图')subplot(3,2,4)plot(w,F12)grid on;xlabel('\Omega')ylabel('幅度')title('占空比为1/8的周期矩形脉冲的幅度谱')subplot(3,2,6)plot(w,phaF2)grid on;xlabel('\Omega')ylabel('相位')title('占空比为1/8的周期矩形脉冲的相位谱')2) 求图3-6所示的单个三角脉冲(1=τ)的傅里叶变换,并作出其幅度谱和相位谱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。

基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。

二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。

上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。

即⎰∞∞--=dt e t h j H tj ωω)()(3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。

在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。

)(ωj H 和)(ωϕ都是频率ω的函数。

对于一个系统,其频率响应为H(j ω),其幅度响应和相位响应分别为)(ωj H 和)(ωϕ,如果作用于系统的信号为tj et x 0)(ω=,则其响应信号为 tj e j H t y 0)()(0ωω=t j j e e j H 00)(0)(ωωϕω=))((000)(ωϕωω+=t j e j H3.5若输入信号为正弦信号,即x(t) = sin(ω0t ),则系统响应为))(sin(|)(|)sin()()(00000ωϕωωωω+==t j H t j H t y 3.6可见,系统对某一频率分量的影响表现为两个方面,一是信号的幅度要被)(ωj H 加权,二是信号的相位要被)(ωϕ移相。

由于)(ωj H 和)(ωϕ都是频率ω的函数,所以,系统对不同频率的频率分量造成的幅度和相位上的影响是不同的。

2 LTI 系统的群延时从信号频谱的观点看,信号是由无穷多个不同频率的正弦信号的加权和(Weighted sum )所组成。

正如刚才所述,信号经过LTI 系统传输与处理时,系统将会对信号中的所有频率分量造成幅度和相位上的不同影响。

从相位上来看,系统对各个频率分量造成一定的相位移(Phase shifting ),相位移实际上就是延时(Time delay )。

群延时(Group delay )的概念能够较好地反LTI 系统的群延时定义为:ωωϕωτd d )()(-= 3.7 群延时的物理意义:群延时描述的是信号中某一频率分量经过线性时不变系统传输处理后产生的响应信号在时间上造成的延时的时间。

如果系统的相位频率响应特性是线性的,则群延时为常数,也就是说,该系统对于所有的频率分量造成的延时时间都是一样的,因而,系统不会对信号产生相位失真(Phase distortion )。

反之,若系统的相位频率响应特性不是线性的,则该系统对于不同频率的频率分量造成的延时时间是不同的,因此,当信号经过系统后,必将产生相位失真。

3 用MATLAB 计算系统频率响应在本实验中,表示系统的方法仍然是用系统函数分子和分母多项式系数行向量来表示。

实验中用到的MA TLAB 函数如下:[H,w] = freqs(b,a):b,a 分别为连续时间LTI 系统的微分方程右边的和左边的系数向量(Coefficients vector ),返回的频率响应在各频率点的样点值(复数)存放在H 中,系统默认的样点数目为200点;Hm = abs(H):求模数,即进行H Hm =运算,求得系统的幅度频率响应,返回值存于Hm 之中。

real(H):求H 的实部; imag(H):求H 的虚部;phi = atan(-imag(H)./(real(H)+eps)):求相位频率相应特性,atan()用来计算反正切值;或者phi = angle(H):求相位频率相应特性;tao = grpdelay(num,den,w):计算系统的相位频率响应所对应的群延时。

计算频率响应的函数freqs()的另一种形式是:H = freqs(b,a,w):在指定的频率范围内计算系统的频率响应特性。

在使用这种形式的freqs/freqz 函数时,要在前面先指定频率变量w 的范围。

例如在语句H = freqs(b,a,w)之前加上语句:w = 0:2*pi/256:2*pi 。

下面举例说明如何利用上述函数计算并绘制系统频率响应特性曲线的编程方法。

假设给定一个连续时间LTI 系统,下面的微分方程描述其输入输出之间的关系)()(2)(3)(22t x t y dtt dy dt t y d =++ 编写的MATLAB 范例程序,绘制系统的幅度响应特性、相位响应特性、频率响应的实部和频率响应的虚部。

程序如下:% Program3_1% This Program is used to compute and draw the plots of the frequency responseb = [1]; % The coefficient vector of the right side of the differential equation a = [1 3 2]; % The coefficient vector of the left side of the differential equation [H,w] = freqs(b,a); % Compute the frequency response H Hm = abs(H); % Compute the magnitude response Hm phai = angle(H); % Compute the phase response phaiHr = real(H); % Compute the real part of the frequency responseHi = imag(H); % Compute the imaginary part of the frequency response subplot(221)plot(w,Hm), grid on, title('Magnitude response'), xlabel('Frequency in rad/sec') subplot(223)plot(w,phai), grid on, title('Phase response'), xlabel('Frequency in rad/sec') subplot(222)plot(w,Hr), grid on, title('Real part of frequency response'), xlabel('Frequency in rad/sec') subplot(224)plot(w,Hi), grid on, title('Imaginary part of frequency response'), xlabel('Frequency in rad/sec')三、实验内容及步骤实验前,必须首先阅读本实验原理,了解所给的MATLAB 相关函数,读懂所给出的全部范例程序。

实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。

并结合范例程序所完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。

实验前,一定要针对下面的实验项目做好相应的实验准备工作,包括事先编写好相应的实验程序等事项。

给定三个连续时间LTI 系统,它们的微分方程分别为系统1: dt t dx t y dt t dy dt t y d )()(25)(1)(22=++ Eq.3.1系统2: )()()()(t x dtt dx t y dt t dy -=+ Eq.3.2 系统3:)(262)(262)(401)(306)(148)(48)(10)(2233445566t x t y dt t dy dtt y d dt t y d dt t y d dt t y d dt t y d =++++++ Eq.3.3 Q3-1 修改程序Program3_1,并以Q3_1存盘,使之能够能够接受键盘方式输入的微分方程系数向量。

并利用该程序计算并绘制由微分方程Eq.3.1、Eq.3.2和Eq.3.3描述的系统的幅度响应特性、相位响应特性、频率响应的实部和频率响应的虚部曲线图。

抄写程序Q3_1如下:% Q3_1b = input('请输入右边向量系数'); % The coefficient vector of the right side of the differential equationa = input('请输入左边向量系数'); % The coefficient vector of the left side of the differential equation[H,w] = freqs(b,a); % Compute the frequency response HHm = abs(H); % Compute the magnitude response Hmphai = angle(H); % Compute the phase response phaiHr = real(H); % Compute the real part of the frequency response Hi = imag(H); % Compute the imaginary part of the frequency responsesubplot(221)plot(w,Hm), grid on, title('Magnitude response'), xlabel('Frequency in rad/sec')subplot(223)plot(w,phai), grid on, title('Phase response'), xlabel('Frequency in rad/sec')subplot(222)plot(w,Hr), grid on, title('Real part of frequency response'),xlabel('Frequency in rad/sec')subplot(224)plot(w,Hi), grid on, title('Imaginary part of frequency response'), xlabel('Frequency in rad/sec')执行程序Q3_1,绘制的系统1的频率响应特性曲线如下:51000.10.20.30.4Frequency in rad/sec 0510-4-3-2-10Phase responseFrequency in rad/sec510-0.100.10.20.3Frequency in rad/sec510-0.3-0.2-0.1Imaginary part of frequency response Frequency in rad/sec从系统1的幅度频率响应曲线看,系统1是低通、高通、全通、带通还是带阻滤波器? 答:执行程序Q3_1,绘制的系统2的频率响应特性曲线如下:5101111Frequency in rad/sec 051001234Phase responseFrequency in rad/sec510-1-0.500.51Frequency in rad/sec5100.51Imaginary part of frequency response Frequency in rad/sec从系统2的幅度频率响应曲线看,系统2低通、高通、全通、带通还是带阻滤波器? 答:执行程序Q3_1,绘制的系统3的频率响应特性曲线如下:51000.51Frequency in rad/sec 0510-4-2024Phase responseFrequency in rad/sec510-1-0.500.51Frequency in rad/sec510-1-0.500.51Imaginary part of frequency response Frequency in rad/sec从系统3的幅度频率响应曲线看,系统3是低通、高通、全通、带通还是带阻滤波器? 答:这三个系统的幅度频率响应、相位频率相应、频率响应的实部以及频率响应的虚部分别具有何种对称关系?请根据傅里叶变换的性质说明为什么会具有这些对称关系?答:Q3-2 编写程序Q3_2,使之能够能够接受键盘方式输入的输入信号x(t)的数学表达式,系统微分方程的系数向量,计算输入信号的幅度频谱,系统的幅度频率响应,系统输出信号y(t)的幅度频谱,系统的单位冲激响应h(t),并按照下面的图Q3-2的布局,绘制出各个信号的时域和频域图形。

相关文档
最新文档