数学分析课本-习题及答案01

合集下载

华东师大数学分析答案完整版

华东师大数学分析答案完整版

!!第一章实数集与函数内容提要!一!实数!"实数包括有理数和无理数!有理数可用分数"#!""#为互质整数##"#$表示#也可用有限十进小数或无限十进循环小数表示!!$是首先遇到的无理数#它与古希腊时期所发现的不可公度线段理论有直接联系#且可以表示为无限十进不循环小数!实数的无限十进小数表示在人类实践活动中被普遍采用#我们是由无限十进小数表示出发来阐述实数理论的!$"若$%%#%%!%$&%&&为非负实数#称有理数$&%%#%%!%$&%&为实数$的&位不足近似#而有理数$&%$&&!!#&称为$的&位过剩近似#&%##!#$#&!’"在数学分析课程中不等式占有重要的地位#在后继课程中#某些不等式可以成为某个研究方向的基础!数学归纳法是证明某些不等式的重要工具!二!数集"确界原理!"邻域是数学分析中重要的基本概念!某点的邻域是与该点靠近的数的集合#它是描述极限概念的基本工具!在无限区间记号!()#%’#!()#%$#(%#&)$#!%#&)$#!()#&)$中出现的()与& )仅是常用的记号#它们并不表示具体的数!在数学分析课程范围内#不要把&)#()#)当作数来运算!%!%!!数学分析同步辅导及习题全解#上册$$"有界集和无界集是本章中关键的概念!要熟练掌握验证某个数集’是有界集或无界集的方法#其中重要的是证明数(不是数集’的上界!或下界$的方法!’"确界是数学分析的基础严格化中的重要的概念!上!下$确界是最大!小$数在无限数集情况下的推广!确界概念有两种等价的叙述方法#以上确界为例)设’是)中一个数集#若数!满足!!$!!$对一切$#’#有$$!#则!是’的上界*!"$对任意"%!#存在$##’#使得$#&"#则!又是’的最小上界’()!或!$$!!$对一切$#’#有$$!#则!是’的上界*!"$对任意#&##存在$##’#使得$#&!(##则!又是’的最小上界’()!这两种定义是等价的!!$$中的!(#相当于!!$中的"!在上述定义中可以限定#%###其中##为充分小的正数!定义!$$在某些证明题中使用起来更方便些!*"确界原理)设’是非空数集#若’有上界#则’必有上确界*若’有下界#则’必有下确界!确界原理是实数系完备性的几个等价定理中的一个!三!函数及其性质!"邻域!!$*!%#$$%!%($#%&$$称为%的$邻域#其中$&#!!$$*+!%*$$%!%($#%$*!%#%&$$%+$+#%+$(%+%$,称为%的空心$邻域#其中$&#!!’$*+&!%$%!%#%&,$和*+(!%$%!%(,#%$分别称为%的右邻域和左邻域#其中,&#!$"确界设给定数集’!!!$上确界!若存在数!#满足!$!$$!#,$#’*$$,$%!#都存在$##’#使$#&$#则称!为’的上确界#记为!%+,-$#’$!!$$下确界!若存在数%#满足!$$-%#,$#’*$$,&&%#都存在-##’#使-#%&#则称%为’的下确界#记为!%./0$$#’!!’$确界原理!#非空有上!下$界的数集#必有上!下$确界!$若数集有上!下$确界#则上!下$确界一定是惟一的!’"函数!!$函数定义给定两个非空实数集.和(#若有一个对应法则,#使.内每一个数$#都有惟一的一个数-#(与它对应#则称,是定义在.上的一个函数#记为-%,!$$#$#.#并称.为函数的定义域#称,!.$%+-+-%,!$$#$#.,!.($为函数的值域!!$$几个重要的函数#分段函数函数在其定义域的不同部分用不同公式表达的这类函数#常称为分段函数!$符号函数%"%第一章!实数集与函数+1/!$$%!#!!$&###$%#(!#$%’()#%狄利克雷函数.!$$%!#当$为有理数##当$+为无理数&黎曼函数)!/$%!##当$%"##"###0&"#为既约分数##当$%##!和!##!$’()中的无理数’复合函数-%,!1!$$$#$#2/其中-%,!3$#3#.#3%1!$$#$#2#2/%+$+1!$$#.,&2#2"4!’$反函数已知函数3%,!$$#$#.!若对,-##,!.$#在.中有且只有一个值$##使得,!$#$%-##则按此对应法则得到一个函数$%,(!!-$#-#,!.$#称这个函数,(!2,!.$0.为,的反函数!!*$初等函数#基本初等函数!常量函数"幂函数"指数函数"对数函数"三角函数"反三角函数这六类函数称为基本初等函数!$初等函数!由基本初等函数经过有限次四则运算与复合运算所得到的函数#统称为初等函数!%凡不是初等函数的函数#都称为非初等函数!*"有界性设-%,!$$#$#.!!$若存在数(#使,!$$$(#,$#.#则称,是.上的有上界的函数!!$$若存在数5#使,!$$-5#,$#.#则称,是.上的有下界的函数!!’$若存在正数6#使+,!$$+$6#则称,是.上的有界函数!!*$若对任意数(#都存在$##.#使,!$#$&(#则称,是.上的无上界函数#类似可定义无下界及无界函数!3"单调性设-%,!$$#$#.#若对,$!#$$#.#$!%$$#有!!$,!$!$$,!$$$#则称,在.上是递增函数!!$$,!$!$%,!$$$#则称,在.上是严格递增函数!类似可定义递减函数与严格递减函数!4"奇偶性设.是对称于原点的数集#-%,!$$#$#.!!!$若,$#.#都有,!($$%,!$$#则称,!$$是偶函数!!$$若,$#.#都有,!($$%(,!$$#则称,!$$是奇函数!%#%!!数学分析同步辅导及习题全解#上册$!’$奇函数图象关于原点对称#偶函数图像关于纵轴对称!5"周期性!!$设-%,!$$#$#.#若存在正数7#使,!$67$%,!$$#,$#.!则称,!$$为周期函数#7称为,的一个周期!!$$若,的所有周期中#存在一个最小周期#则为,的基本周期!典型例题与解题技巧%例!&!设,!$$在((%#%’上有定义#证明,!$$在((%#%’上可表示为奇函数与偶函数的和!分析!本题主要考察奇函数"偶函数的定义#采用构造法解题!证明!设,!$$%8!$$&9!$$#其中8!$$#9!$$分别为奇"偶函数#于是,!($$%8!($$&9!($$%(8!$$&9!$$而,!$$%8!$$&9!$$由之可得!!!8!$$%,!$$(,!($$$#9!$$%,!$$&,!($$$这里8!$$#9!$$分别是奇函数和偶函数!%例"&!求数集’%&!&$&!(!$!&&#0+,&的上"下确界!解题分析!当&%$7时#$7!&$$!7%$$7!&!$$!7#容易看出7%!时#$!&!$!$是偶数项中的最大数!当&%$7&!时#$7&!!&$(!$7&!!$%$7&!!&!$$7!&!&!#当7充分大时#奇数项与数!充分靠近!因为$!&!$!$!%3是’中最大数#于是+,-’!%3#由上面分析可以看出./0’%!!解题过程!因为!3是’中最大数#于是+,-’!%3!再证./0’%!#这是因为!!$,&#&!&$&!(!$!&-!*!"$设%%$7&!!&!$$7!&!#由等式%&(!%!%(!$!%&(!&%&($&&&!$可知$7&!!&!$$7!&!(!%!$$7&!%$7&%$7(!&&&!$!$$7&!于是,#&##17##0&只要7#&!$781$!#(!!$!$$#使得$7#&!!&!$$7#!&!(!$!$$7#&!%#即$7#&!!&!$$7#!&!%!&#%例#&!设函数,!$$定义在区间:上#如果对于任何$!#$$#:#及’#!##!$#恒有,(’$!&!!(’$$$’$’,!$!$&!!(’$,!$$$!证明)在区间:的任何闭子区间上,!$$有界!分析!本题主要考察函数的有界性#要充分利用已知条件给出的不等式#积极构造出类似的不等%$%第一章!实数集与函数式#以证出结论!证明!,(%#;’.:#,$#!%#;$#则存在’#!##!$#使$%%&’!;(%$有!$%’;&!!(’$%由已知不等式有,!$$%,(’;&!!(’$%’$’,!;$&!!(’$,!%$$’(&!!(’$(%(#其中(%9:;,!$$#,!;+,$,$#(%#;’#令-%!%&;$($#那么%&;$%$&-$,!%&;$$%,!$$&-$$$!$,!$$&!$,!-$$!$,!$$&!$(<,!$$-$,!%&;$$((%<!$由##$两式可知<!$,!$$$(#,$#!%#;$再由(的定义#可知,!$$$(#,$#(%#;’若令!<%9./+,!%$#,!;$#<!,#则<$,!$$$(#,$#(%#;’即,!$$在(%#;’上有界!历年考研真题评析!%题!&!!北京大学#$##3年$设,!$$在(%#;’上无界#求证)16#(%#;’#使得对,#&##,!$$在!#(##=&#$2(%#;’上无界!分析!本题采用闭区间套定理证明!证明!取%#;中点%&;$#则(%#%&;$’#(%&;$#;’中至少有一个区间使,!$$无界!如果两个都是可任取一个$#记为(%!#;!’!再取中点%!&;!$#又可得区间(%$#;$’#使,!$$在其上无界#这样继续下去有(%#;’3(%!#;!’3(%$#;$’3&3(%&#;&’3&使,!$$在每个区间上无界!由区间套原理#存在6%7.9&0)%&%7.9&0);&#则6#(%#;’#而对,#&##当&充分大时#有!=(##=&#$2(%#;’3(%&#;&’故,!$$在!=(##=&#$2(%#;’上无界!%题"&!!甘肃工业大学#$##4年$有下列几个命题)!!$任何周期函数一定存在最小正周期!!$$($’是周期函数!!’$+./!$不是周期函数!!*$$=8+$不是周期函数!其中正确的命题有!!!$!>"!个!!!?"$个!!!@"’个!!!A "*个%%%!!数学分析同步辅导及习题全解#上册$解题分析!本题主要考察周期函数的定义B 解题过程!选?!其中)!!$错B 比如,!$$%#B 那么任何正实数都是它的周期#而无最小正实数B !$$错B 设,!$$%($’的周期为C &##并设(C ’%9-#当9%#时#则C%!(%#其中#%%%!#那么(%&C ’%!#(%’%#!!!<(%&C ’"(%’这与C 为周期矛盾B !!!<9"#当9&#时#(C&!’%9&!#(!’%!!!!<(!&C ’"(!’#也矛盾B <($’不是周期函数B !’$对B D 若,!$$是定义域.上周期函数#那么存在函数>#使,$#.都有,!$6>$%,!$$!这必须有$6>#.!而本题定义域.%(##&)$#若是周期函数#则##.#必须(>#.#但(>4.#故不是周期函数!!*$对B 用反证法#设,!$$%$=8+$的周期为>&##则,!#$%#%,!>$%>=8+><=8+>%##>%&#(&($#&##E #且&#-#,!($&>$%,!(&&#($%!&#&!$(=8+(!&#&!$(’,!($$%($=8+($%##由,!($&>$%,!($$<=8+!&#&!$(%##矛盾B 即$=8+$不是周期函数!课后习题全解!!!F !!实数5!!设%为有理数#$为无理数!证明)!!$%?$是无理数*!!!!!!$$当%"#时#%$是无理数!!分析!根据有理数集对加"减"乘"除!除数不为#$四则运算的封闭性#用反证法证!!证明!!!$假设%?$是有理数#则!%?$$@%A $是有理数#这与题设$是无理数相矛盾#故%?$是无理数!!$$假设%$是有理数#则当%"#时#%$%A $是有理数#这与题设$为无理数相矛盾!故%$是无理数!6$!试在数轴上表示出下列不等式的解)!!$$!$$@!$&#*!!$$B $@!B %B $@’B *!’$$@!!@$$@!!-’$@!$!解!!!$由原不等式有$&#$$@!&+#!或!$%#$$@!%+#前一个不等式组的解集是C A +$B $&!,#后一个不等式组的解集是D A +$B @!%$%#,!故!!$的解集是C *D !如图!E !!%&%第一章!实数集与函数图!E !!$$由原不等式有$@!$@’%!#于是!?$$@’%!!所以@!%!?$$@’%!#即#%!’@$%!#则’@$&!#$%$!故!$$的解集为!@)#$$!如图!E $!图!E $!’$由原不等式应有’$@!$-##$@!!@$$@!!-##从而对原不等式两端平方有$@!?$$@!@$!$@!$!$$@!!$-’$@$因此有$!$@!$!$$@!!$$##所以!$@!$!$$@!!$A ##由此得$A !#或$A !$!但检验知$A !和$A !$均不符合原不等式!所以原不等式的解集为7!!小结!在!$$中是将绝对值不等式转化为不含绝对值的不等式去解!若直接利用绝对值的几何意义#其解集就是数轴上到点!的距离小于到点’的距离的点集#即数轴上点$左侧的点集!若直接考虑!’$的解$应使不等式中三个二次根式有意义#则必有$-!#但这时不等式左端为负而右端为正#显然不成立#故其解集为7!5’"设%";#$!证明)若对任何正数#有B %@;B %##则%A ;!!分析!用反证法#注意到题设中#的任意性#只要设法找到某一正数#使条件不成立即可!!证明!假设%";#则根据实数集的有序性#必有%&;或%%;!不妨设%&;#令#A %@;&##则B %@;B A %@;A ##但这与B %@;B A %@;%#矛盾#从而必有%A ;!5*"设$"##证明$?!$-$#并说明其中等号何时成立!!分析!由!%@;$$A %$@$%;?;$-##有%$?;$-$%;!!证明!因$"##则$与!$同号#从而有$?!$A B $B ?!B $B -$B $B %!B $!BA $等号当且仅当B $B A !B $B#即$AF !时成立!83"证明)对任何$#$有!!$B $@!B ?B $@$B -!*!!!!!$$B $@!B ?B $@$B ?B $@’B -$!!证明!直接由绝对值不等式的性质#对任意的$#$有!!$B $@!B ?B $@$B -B !$@!$@!$@$$B A B !B A !!$$B $@!B ?B $@$B ?B $@’B -B $@!B ?B $@’B -B !$@!$@!$@’$B A $64"设%";"=#$?!$?表示全体正实数的集合$!证明B %$?;!$@%$?=!$B $B;@=B !%’%!!数学分析同步辅导及习题全解#上册$你能说明此不等式的几何意义吗-!分析!用分析法证明!!证明!欲证B %$?;!$@%$?=!$B $B;@=B 只需证!%$?;!$@%$?=!$$$$!;@=$$即证!$%$@$!%$?;$$!%$?=$!$$@$;=只需证%$?;=$!%$?;$$!%$?=$!$只需证!!%$?;=$$$!%$?;$$!;$?=$$即证$%$;=$%$!;$?=$$由于%";"=#$?#所以$;=$;$?=$#%$&##所以有$%$;=$%$!;$?=$$成立!所以原不等式成立!其几何意义为)当;"=时#平面上以点C !%#;$"D !%#=$"G !###$为顶点的三角形中#B B C G B @B D G B B %B C D B *当;A =时#此三角形变成以点G !###$#C !%#;$为端点的线段!如图!@’!图!E ’!小结!利用分析法找到证题思路#再用综合法证明#过程更为简捷!65"设$&##;&##%";#证明%?$;?$介于!与%;之间!!分析!本题实质是要比较两数的大小#且该数符号不定#可用作差法!!证明!因$&##;&##%";#则由!@%?$;?$A ;@%;?$#%;@%?$;?$A $!%@;$;!;?$$得当%&;时#!%%?$;?$%%;*当%%;时#%;%%?$;?$%!!故总有%?$;?$介于!与%;之间!!小结!通常要证某数%介于另两数;与=之间#可转化为证!=@%$!;@%$%##这种方法在;与=大小关系不完全确定时#也不必分情况讨论#较为简捷!例如本题中)因为$&##;&##%";#则有!@%?$;?!$$%;@%?$;?!$$A @$!;@%$$;!;?$$$%#所以%?$;?$必介于!与%;之间!6G "设"为正整数!证明)若"不是完全平方数#则!"是无理数!!分析!本题采用反证法#联想到互质"最大公约数以及辗转相除法的有关知识点#可得结论!!证明!用反证法!假设!"为有理数#则存在正整数<"&使!"A<&#且<与&互质!于是<$A %(%第一章!实数集与函数"&$#<$A &%!"&$#可见&能整除<$!由于<与&互质#从而它们的最大公约数为!#由辗转相除法知)存在整数3"H 使<3?&H A !#则<$3?<&H A <!因&既能整除<$3又能整除<&H #故能整除其和#于是&能整除<#这样&A !#所以"A <$!这与"不是完全平方数相矛盾!!小结!本题证明过程比较独特#先假设有理数为互质的两个数的商#利用这两个数与"之间的关系#运用辗转相除法得出结论#注意知识点之间的内在联系!F $!数集"确界原理8!"用区间表示下列不等式的解)!!$B !@$B @$-#*!!$$$?!$$4*!’$!$@%$!$@;$!$@=$&#!%#;#=为常数#且%%;%=$*!*$+./$-!$$!!解!!!$原不等式等价于下列不等式组$%!!!@$$@$-+#!或!$-!!$@!$@$-+#前一个不等式组的解为$$!$*后一个不等式组的解集为空集#所以原不等式的解集为@)#!’!$!!$$绝对值不等式$?!$$4等价于@4$$?!$$4!这又等价于不等式组$&#@4$$$$?!$4+$!或!$%#4$$$$?!$@4+$而前一个不等式组的解集为(’@!$$#’?!$$’#后者的解集为(@’@!$$#@’?!$$’!因此原不等式的解集为(@’@!$$#@’?!$$’*(’@!$$#’?!$$’!’$作函数,!$$A !$@%$!$@;$!$@=$#$#$!则由%%;%=知,!$$%##当$#!@)#%$*!;#=$A ##当$A %#;#=&##当$#!%#;$*!=#?)’()$因此,!$$&##当且仅当!!!!$#!%#;$*!=#?)$故原不等式的解集为!%#;$*!=#?)$!*$若#$$$$(#则当且仅当$#(*#’*(’(时#+./$-!$$!再由正弦函数的周期性知)+./$-!$$的解集是$7(?(*#$7(?’*(’(#其中7为整数!8$"设’为非空数集!试对下列概念给出定义)!!$’无上界*!!!!!$$’无界!%)%!!数学分析同步辅导及习题全解#上册$!解!!!$设’是一非空数集!若对任意的(&##总存在$##’#使$#&(#则称数集’无上界!!$$设’是一非空数集!若对任意的(&##总存在$##’#使B $#B &(#则称数集’无界!8’"试证明由!’$式所确定的数集’有上界而无下界!!证明!由!’$式所确定的数集’A +-B -A $@$$#$#$,#对任意的$#$#-A $@$$$$#所以数集’有上界$!而对任意的(&##取$#A ’?!(#$#存在-#A $@$$#A $@’@(A@!@(#’#而-#%@(#因此数集’无下界!8*"求下列数集的上"下确界#并依定义加以验证)!!$’A +$B $$%$,*!!$$’A +$B $A &.#&#%?,*!’$’A +$B $为!##!$内的无理数,*!*$’A +$B $A !@!$&#&#%?,!!解!!!$+,-’A !$#./0’A@!$#下面依定义加以验证!因$$%$#等价于@!$%$%!$#所以对任意的$#’#有$%!$且$&@!$#即!$"@!$分别是’的上"下界!又对任意的正数##不妨设#%!$$#于是存在$#A !$@#$"$!A@!$?#$#使$#"$!#’#使$#&!$@##$!%@!$?##所以由上"下确界的定义+,-’A !$#./0’A@!$!!$$+,-’A?)#./0’A !#下面依定义验证!对任意的$#’#!$$%?)#所以!是’的下界!因为对任意的(&##令&A ((’?!#则&.&(#故’无上界#所以+,-’A?)*对任意的#&##存在$!A !.A !#’#使$!%!?##所以./0’A !!!’$+,-’A !#./0’A ##下面依定义验证!对任意的$#’#有#%$%!#所以!"#分别是’的上"下界!又对任意的#&##不妨设#%!#由无理数的稠密性#总存在无理数!#!###$#则有无理数$#A !@!#’#使$#A !@!&!@#*有无理数$!A !#’#使$!A !%#?##所以+,-’A !#./0’A #!!*$+,-’A !#./0’A !$#下面依定义验证!对任意的$#’#有!$$$%!#所以!"!$分别是’的上"下界!对任意的#&##必有正整数&##0/使!$&#%##则存在$#A !@!$&##’#使$#&!@##所以+,-’A !!又存在$!A !@!$A !$#’#使$!%!$?##所以./0’A !$!83"设’为非空有下界数集#证明)./0’A %#’9%A 9./’!!证明!:$!设./0’A %#’#则对一切$#’有$-%#而%#’#故%是数集’中最小的数#即%A 9./’!;$!设%A 9./’#则%#’*下面验证%A ./0’)!!$对一切$#’#有$-%#即%是’的下界*!"$对任何&&%#只需取$#A %#’#则$#%&!从而满足%A ./0’的定义!%*!%84"设’为非空数集#定义’@A +$B @$#’,!证明)!!$./0’@A@+,-’*!!$$+,-’@A@./0’!!证明!!!$%A ./0’@#由下确界的定义知#对任意的$#’@#有$-%#且对任意的&&%#存在$##’@#使$#%&!由’@A +$B @$#’,知#对任意的@$#’#@$$@%#且对任意的@&%@%#存在@$##’#使@$#&@&#由上确界的定义知+,-’A@%#存在@$##’#使@$#&@&#即./0’@A@+,-’!同理可证!$$成立!85"设C "D 皆为非空有界数集#定义数集C ?D A +I B I A $?-#$#C #-#D ,!证明)!!$+,-!C ?D $A +,-C ?+,-D *!!$$./0!C ?D $A ./0C ?./0D !!证明!!!$设+,-C A !!#+,-D A !$!对任意的I #C ?D #存在$#C #-#D #使I A $?-!于是$$!!#-$!$!从而I $!!?!$!对任意的#&##必存在$##C #-##D #使$#&!!@#$#-#&!$@#$#则存在I #A $#?-##C ?D #使I #&!!!?!$$@#!所以+,-!C ?D $A !!?!$A +,-C ?+,-D !同理可证!$$成立!6G"设%&##%"!#$为有理数!证明%$A+,-+%JB J 为有理数#J %$,#当%&!#./0+%JBJ 为有理数#J %$,#当%%!+!!分析!利用指数函数的单调性#把指数函数化归为对数函数讨论#并运用有理数的稠密性概念来证此题!!证明!只证%&!的情况#%%!的情况可以类似地加以证明!设C A +%J BJ 为有理数#J %$,!因为%&!#%J 严格递增#故对任意的有理数J %$#有%J%%$#即%$是C 的一个上界!对任意的"%%$#由%$&#及有理数的稠密性#不妨设"&#且为有理数!于是必存在有理数J #%$#使得"%%J #%%$!事实上#由781%$严格递增知)#%"%%$等价于781%"%781%%$A $#由有理数的稠密性#存在有理数J #使得781%"%J #%$#所以"A %781%"%%J #%%$!故%$A +,-C A +,-+%JB J 为有理数#J %$,#%&!!!小结!关于求数集的确界或证明数集确界的有关命题#主要利用确界的定义#进一步加深读者对数集上"下确界概念的理解#这对进一步学习极限理论及实数的完备性#使整个数学分析建立在坚实的基础上是十分重要的!F ’!函数概念8!"试作下列函数的图象)!!$-A $$?!*!!!!!!!$$-A !$?!$$*!’$-A !@!$?!$$*!*$-A +1/!+./$$*!3$-A ’$#B $B &!#$’#B $B %!#’#B $B A !’()!!解!利用描点作图法#各函数的图象如图!E *至图!E G !5$"试比较函数-A %$与-A 781%$分别当%A $和%A !$时的图象!%!!%图!E *!!!!!!!!!!图!E 3图!E 4!!!!!!!!!!图!E 5图!E G!分析!利用指数函数与对数函数性质#注意$在-A %$与-A 781%$的定义域上的取值范围是不同的!!解!当%A $时#-A %$是单调递增函数#当%A !$时#它是单调递减函数*当$A #时#!$!$$A $$A !#即两函数的图象都过点!##!$*当$&#时#!$!$$%!%$$#-A $$的图象在-A !$!$$的图象上方*当$%#时#!$!$$&!&$$#-A !$!$$的图象在-A $$的图象上方*对任意的$#$?#两函数值都大于##即函数的图象都在$轴上方#且-A $$的图象与-A!$!$$的图象关于-轴对称!%"!%-A 781%$是-A %$的反函数!当%A $时#是单调递增的#当%A !$时#是单调递减的*当#%$%!时#781!$$&#&781$$*当$A !时#781!$$A 781$$A #*当$&!时#781!$$%#%781$$*当$$#时#两个函数无定义#因此函数图象在-轴右方#且过点!!##$!-A 781!$$与-A 781$$的图象关于$轴对称!-A $$与-A 781$$的图象"-A!$!$$与-A 781!$$的图象皆关于直线-A $对称!如图!E H!图!E H !!!!!!!!!!!!!图!E !#8’"根据图!E !#写出定义在(##!’上的分段函数,!!$$和,$!$$的解析表达式!!解!利用直线的两点式方程或点斜式方程容易得到,!!$$A *$##$$$!$*@*$#!$%$$’()!,$!$$A !4$##$$$!*G @!4$#!*%$$!$##!$%$$’()!8*"确定下列初等函数的存在域)!!$-A +./!+./$$*!!!!!$$-A 71!71$$*!’$-A :I =+./71$!$!#*!*$-A 71:I =+./$!$!#!!解!!!$因为+./$的存在域为$#所以-A +./!+./$$的存在域为$!!$$因71$&#等价于$&!#所以-A 71!71$$的存在域是!!#?)$!!’$因为-A :I =+./3的存在域是(@!#!’#而@!$71$!#$!等价于!$$$!###所以-A :I =+./71$!$!#的存在域是(!#!##’!!*$因-A 713的存在域是!##?)$#而3A :I =+./$!#的值域为@($#((’$#由#%3$($%#!%有#%$!#$!#即#%$$!##所以-A 71:I =+./$!$!#的存在域是!##!#’!83"设函数,!$$A $?$#$$##$$#$&#+!求)!!$,!@’$#,!#$#,!!$*!!$$,!)$$@,!#$#,!@)$$@,!#$!)$&#$!!解!!!$,!@’$A $?!@’$A@!,!#$A $?#A $,!!$A $!A $!$$因为)$&##所以有,!)$$@,!#$A $)$@!$?#$A $)$@$,!@)$$@,!#$A $?!@)$$@!$?#$A@)$84"设函数,!$$A !!?$#求,!$?$$#,!$$$#,!$$$#,!,!$$$#,!,!$!$$!!解!,!$?$$A !!?!$?$$A!’?$,!$$$A !!?$$*,!$$$A !!?$$,!,!$$$A !!?!!?$A $?!$?$,!,!$!$$A !!?!,!$$A!!?!!?$$A !$?$85"试问下列函数是由哪些基本初等函数复合而成)!!$-A !!?$$$#*!!$$-A !:I =+./$$$$*!!’$-A 71!!?!?$!$$*!!*$-A $+./$$!!解!!!$-A 3$##3A H !?H $#H !A !#H $A $!$$-A 3$#3A :I =+./H #H A $$!’$-A 713#3A H !?H $#H !A !#H $A !’#’A H !?K #K A $$!*$-A $3#3A H $#H A +./$5G"在什么条件下#函数-A%$?;=$?L的反函数就是它本身-!分析!先把反函数求出#分别讨论原函数与反函数的定义域#再讨论参数!!解!首先;="%L #由-A %$?;=$?L #解得$A ;@L -=-@%#交换$与-得-A ;@L $=$@%!当="#时#原函数的定义域为$"@L =#反函数的定义域为$"%=!因此#要使二函数相同#必须%A@L #这时原函数为%$?;=$?L A;@L $=$@%#即为反函数!另外#当;A =A ##且%A L "#时亦满足!故当/;="%L 且%A@L 0或/;A =A #且%A L "#0时#该函数的反函数就是其本身!8H"试作函数-A :I =+./!+./$$的图象!%$!%!解!-A :I =+./!+./$$是以$(为周期的函数#其定义域为$#值域为@($#((’$的分段函数#其在一个周期区间(@(#(’上的表达式为-A (@$#($%$$($#@($$$$($@!(?$$#@($$%@(’()$其图象如图!E!!!图!E !!8!#"试问下列等式是否成立)!!$J :/!:I =J :/$$A $#$#$*!$$:I =J :/!J :/$$A $#$"7(?($#7A ##F !#F $#&!!解!!!$由J :/$与:I =J :/$的定义知#!!$式成立!!$$因为J :/$的定义域为$"7(?($#7A ##F !#F $#&#而:I =J :/$的值域仅为@($#(!$$!所以!$$式不成立!例如当$A ’*(时#:I =J :/!J :/$$A :I =J :/!@!$A@(*"$!8!!"试问-A B $B 是初等函数吗-!解!因-A B $B A $!$是由-A !3与3A $$复合而成的#所以-A B $B 是初等函数!8!$"证明关于函数-A ($’的如下不等式)!!$当$&#时#!@$%$!(’$$!*!$$当$%#时#!$$!(’$%!@$!!证!由定义知!(’$是不超过!$的最大整数#故有#$!$@!(’$%!所以!!!!!!!!!!!!$@!%!(’$$!$#%%!%!!$当$&#时#给#两端同乘以$得!@$%$!(’$$!!$$当$%#时#给#两端同乘以$得!$$!(’$%!@$ F*!具有某些特性的函数8!"证明,!$$A$$$?!是$上的有界函数!!证明!利用不等式$B$B$!?$$有#对一切$#$都有B,!$$B AB$B$$?!A!$$B$B$$?!$!$成立#故,!$$是$上的有界函数!8$"!!$叙述无界函数的定义*!$$证明,!$$A!$$为!##!$上的无界函数*!’$举出函数,的例子#使,!$$为闭区间(##!’上的无界函数!!解!!!$设,!$$为定义在.上的函数#若对任意的正数(#都存在$##.#使B,!$#$B&(#则称函数,!$$为.上的无界函数!!$$证明)对任意的正数(#存在$#A!(?!!#!##!$#使B,!$#$B A!$$#A(?!&(#所以,!$$A!$$是!##!$上的无界函数!!’$设,!$$A!$$#$#!##!’!#$A’()#!由!$$的证明知,!$$为(##!’上的无界函数!8’"证明下列函数在指定区间上的单调性) !!$-A’$@!在!@)#?)$上严格递增*!$$-A+./$在@($#((’$上严格递增*!’$-A=8+$在(##(’上严格递减!!分析!!$$"!’$两小题都是三角函数#要牢记三角函数的半角"倍角公式!后面讨论周期性以及傅里叶级数时都会用到!!证明!!!$任取$!"$$#!@)#?)$#$!%$$#则有,!$!$@,!$$$A’!$!@!$@!’$$@!$A’!$!@$$$%#可见,!$!$%,!$$$#所以,!$$A’$@!在!@)#?)$上严格递增!!$$任取$!#$$#@($#((’$#$!%$$#则有@($%$!?$$$%($#!@($$$!@$$$%#因此=8+$!?$$$&##!+./$!@$$$%#%& !%从而,!$!$@,!$$$A +./$!@+./$$A $=8+$!?$$$+./$!@$$$%##,!$!$%,!$$$!所以,!$$A +./$在@($#((’$上严格递增!!’$任取$!#$$#(##(’#$!%$$#则有#%$!?$$$%(#!@($$$!@$$$%##从而有+./$!?$$$&##+./$!@$$$%##故,!$!$@,!$$$A =8+$!@=8+$$A@$+./$!?$$$+./$!@$$$&##从而,!$!$&,!$$$#所以,!$$在(##(’上严格递减!8*"判别下列函数的奇偶性)!!$,!$$A !$$*?$$@!*!!!$$,!$$A $?+./$*!’$,!$$A $$K @$$*!*$,!$$A 71!$?!?$!$$!!解!!!$因为,!@$$A !$!@$$*?!@$$$@!A !$$*?$$@!A ,!$$#故,!$$A !$$*?$$@!是偶函数!!$$对任意的$#!@)#?)$有#,!@$$A !@$$?+./!@$$A@$@+./$A@!$?+./$$A@,!$$#故,!$$A $?+./$为!@)#?)$上的奇函数!!’$,!$$A $$K @$$在!@)#?)$上有定义#对任意的$#!@)#?)$有#,!@$$A !@$$$K @!@$$$A $$K @$$A ,!$$#故,!$$为!@)#?)$上的偶函数!!*$,!$$A 71!$?!?$!$$在!@)#?)$上有定义#对每一个$#!@)#?)$有#,!@$$A 71!@$?!?!@$$!$$A 71!@$?!?$!$$A@71!$?!?$!$$A@,!$$#所以,!$$A 71!$?!?$!$$为!@)#?)$上的奇函数!53"求下列函数的周期)!!$=8+$$*!!$$J :/’$*!!’$=8+$$?$+./$’!!分析!求三角函数周期时#应先转化为一次函数#再求周期#如!!$!如果有两个或两个以上的函数#分别求出它们各自的周期#再求最小公倍数#如!’$!!解!!!$,!$$A =8+$$A !$!!?=8+$$$#而!?=8+$$的周期是(#所以,!$$A =8+$$的周期是(!!$$因为J :/$的周期是(#所以,!$$A J :/’$的周期是(’!!’$因+./$"=8+$的周期是$(#所以=8+$$的周期是*(#+./$’的周期是4(#故,!$$A =8+$$?$+./$’的周期是!$(!84"设函数,!$$定义在(@%#%’上#证明)!!$M !$$A ,!$$?,!@$$#$#(@%#%’为偶函数*!$$8!$$A ,!$$@,!@$$#$#(@%#%’为奇函数*%’!%!’$,可表示为某个奇函数与某个偶函数之和!!证明!!!$因(@%#%’关于原点对称#M !$$在(@%#%’上有定义#对每一个$#(@%#%’有M !@$$A ,!@$$?,!$$A ,!$$?,!@$$A M !$$!故M !$$为(@%#%’上的偶函数!!$$因(@%#%’关于原点对称#8!$$在(@%#%’上有定义#对每一个$#(@%#%’有8!@$$A ,!@$$A@,!$$A@(,!$$@,!@$$’A@8!$$!故8!$$为(@%#%’上的奇函数!!’$由!!$"!$$得M !$$?8!$$A $,!$$#从而有,!$$A M !$$?8!$$$A !$M !$$?!$8!$$#而!$M !$$是偶函数#!$8!$$是奇函数!从而,!$$可表示为一个奇函数!$8!$$与一个偶函数!$M !$$之和!85"设,"1为定义在.上的有界函数#满足,!$$$1!$$#$#.!证明)!!$+,-$#.,!$$$+,-$#.1!$$*!!$$./0$#.,!$$$./0$#.1!$$!!证明!!!$记!A +,-$#.1!$$#则对任意的$#.有#1!$$$!#又因,!$$$1!$$#所以,!$$$1!$$$!!因此!是,!$$的上界#而+,-$#.,!$$是,!$$的最小上界#故+,-$#.,!$$$!A +,-$#.1!$$!!$$同理可证!8G"设,为定义在.上的有界函数#证明)!!$+,-$#.+@,!$$,A@./0$#.,!$$*!!$$./0$#.+@,!$$,A@+,-$#.,!$$!!证明!!!$记./0$#.,!$$A %!由下确界的定义知#对任意的$#.#,!$$-%#即@,!$$$@%#可见@%是@,!$$的一个上界*对任意的#&##存在$##.#使,!$#$&%?##即@,!$#$%@%@##可见@%是@,!$$的上界中最小者!所以+,-$#.+@,!$$,A@%A@./0$#.,!$$!!$$同理可证结论成立!也可直接用!!$的结论来证!事实上#在!!$中换,!$$为@,!$$得#+,-$#.,!$$A +,-$#.+@!,!$$$,A@./0$#.+@,!$$,#两边同乘以@!得./0$#.+@,!$$,A@+,-$#.,!$$6H"证明)J :/$在@($#(!$$上无界!而在@($#(!$$内任一闭区间(%#;’上有界!!分析!要证J :/$在!@($#($$上无界#只需在$##!@($#($$取一点#使J :/$#&(即可!证在!@($#($$上#存在区间(%#;’使J :/$有界#只需证J :/$$(##且有J :/%%J :/$%J :/;!!证明!对任意的(&##取$#A :I =J :/!(&!$#(($#(!$$#有+J :/$#+%+J :/!:I =J :/!L&!$$+%L&!&L #所以,!$$%J :/$在(($#(!$$内是无界函数!但任取(%#;’.@($#(!$$#由于J:/$在(%#;’上严格递增#从而当$#(%#;’时#J :/%%(!%$J:/$$J :/;#记(A 9:;+B J :/%B #B J :/;B ,#则对一切$#(%#;’有B J :/$B $(#所以J :/$是(%#;’上的有界函数!!小结!证明函数的有界性#往往要利用函数的单调性#同时往往利用放缩法#这是极限理论的基础#也是今后学习分析学的基础!6!#"讨论狄利克雷函数.!$$A !#当$为有理数###当$’()为无理数的有界性"单调性与周期性!!分析!狄利克雷函数由定义可证得有界性#单调性也比较明显#对周期性分有理数与无理数讨论!!解!由.!$$的定义知#对任意的$#$#有B .!$$B $!#所以.!$$是$上的有界函数!由于对任意的有理数$!与无理数$$#无论$!%$$还是$$%$!#都有.!$!$&.!$$$!所以.!$$在$上不具有单调性!对任意的有理数J 有$?J A 有理数#当$为有理数时无理数#当$’()为无理数时于是对任一$#$#有.!$?J $A !#当$为有理数时##当$’()为无理数时A .!$$所以#任意有理数J 都是.!$$的周期!但任何无理数都不是.!$$的周期!事实上#对任一无理数"#对无理数@"#.!@"$A ##而.!"?!@"$$A .!#$A !".!@"$!!小结!狄利克雷函数与黎曼函数是一类特殊函数#在以后的连续性以及极限理论中具有重要地位#要特别注意!8!!"证明),!$$A $?+./$在$上严格增!!证明!任取$!"$$#!@)#?)$#$!%$$#则,!$$$@,!$!$A !$$@$!$?!+./$$@+./$!$A !$$@$!$?$=8+$!?$$$+./$$@$!$-!$$@$!$@$=8+$!?$$$%+./$$@$!$&!$$@$!$@$%$$@$!$A #D +./$$@$!$%B $$@$!B !$$即,!$!$%,!$$$#所以,!$$A $?+./$在!@)#?)$上严格增!6!$"设定义在(%#?)$上的函数,在任何闭区间(%#;’上有界!定义(%#?)$上的函数)<!$$A ./0%$-$$,!-$#(!$$A +,-%$-$$,!-$!试讨论<!$$与(!$$的图象#其中!!$,!$$A =8+$#$#(##?)$*!!$$,!$$A $$#$#(@!#?)$!%)!%!分析!在讨论上述两个函数时#首先应分割区间#在区间内讨论其单调性然后再讨论有界性!!解!!!$由<!$$及(!$$的定义知#对%%$#当,!-$在(%#$’上为递增函数时#<!$$A ,!%$#(!$$A ,!$$!当,!-$在(%#$’上为减函数时#<!$$A ,!$$#(!$$A ,!%$!由此可知)对,!$$A =8+$#当#$$$(时#<!$$A =8+$#(!$$A !!而$#((#?)$时#由于@!$=8+$$!#所以#<!$$A@!#(!$$A !#即有<!$$A =8+$##$$$(@!#($$%?)+!!(!$$<!#$#(##?)$其图象见图!E !$!图!E !$!!!!!!!!!!图!E!’!$$同上理#当$#(@!##’时#(!$$A !#<!$$A $$*当$#!##?)$时#<!$$<#*当$#(@!#!’时#(!$$<!*当$#!!#?)$时#(!$$A $$!即有<!$$A $$#$#(@!##’##当$#!##?)+’(!$$A!#$#(@!#!’时$$#当$#!!#?)$+时其图象见图!E !’!!小结!确界理论是学习数学分析的基础#对后面学习连续"微分"积分等都具有重要作用!总练习题8!"设%#;#$#证明)!!$9:;+%#;,A !$!%?;?B%@;B $*!$$9./+%#;,A !$!%?;@B%@;B $!!证明!因为!$!%?;?B %@;B $A%#当%-;时;#当%%;+时!$!%?;@B%@;B $A %#当%%;时;#当%-;+时所以!9:;+%#;,A !$!%?;?B%@;B $9./+%#;,A !$!%?;@B %@;B $%*"%第一章!实数集与函数8$"设,和1都是.上的初等函数!定义(!$$A 9:;+,!$$#1!$$,#<!$$A 9./+,!$$#1!$$,#$#.!试问(!$$和<!$$是否为初等函数-!解!由习题!得(!$$A!$(,!$$?1!$$?B ,!$$@1!$$B ’A!$(,!$$?1!$$?(,!$$@1!$$’!$’<!$$A !$(,!$$?1!$$@B ,!$$@1!$$B ’A!$(,!$$?1!$$@(,!$$@1!$$’!$’所以#(!$$与<!$$都是由.上的初等函数,!$$"1!$$经四则运算和有限次复合而成的函数!所以#(!$$和<!$$都是初等函数!8’"设函数,!$$A !@$!?$#求),!@$$#,!$?!$#,!$$?!#,!!$$#!,!$$#,!$$$#,!,!$$$!!解!,!@$$A !?$!@$*!,!$?!$A @$$?$*!,!$$?!A !@$!?$?!A $!?$*,!!$$A !@!$!?!$A $@!$?!*!!,!$$A !?$!@$*!,!$$$A !@$$!?$$*,!,!$$$A !@!@$!?$!?!@$!?$A $$$A $5*"已知,!!$$A $?!?$!$#求,!$$!!分析!本题采用倒代换的方法#即!$A K #但是根号中移出的数要加绝对值!!解!令!$A K #则$A !K !所以,!K $A !K?!?!!$K!$A!K ?!?K !$B K B#故,!$$A !$?!?$!$B $B #故,!$$A !$?!?$!$B $B!83"利用函数-A ($’求解)!!$某系各班级推选学生代表#每3人推选!名代表#余额满’人可增选!名!写出可推选代表数-与班级学生数$之间的函数关系!假设每班学生数为’#)3#人$*!$$正数$经四舍五入后得整数-#写出-与$之间的函数关系!!解!!!$因余额满’人可补选一名#即就是可在原来基础上增加$人后取整#于是-A $?$(’3!!$A ’##’!#&#3#$!$$由($’的定义知!-A ($?#"3’#$&#%!"%!!数学分析同步辅导及习题全解#上册$54"已知函数-A ,!$$的图象#试作下列各函数的图象)!!$-A@,!$$*!!$$-A ,!@$$*!!’$-A@,!@$$*!*$-A B ,!$$B *!!3$-A +1/,!$$*!4$-A !$(B ,!$$B ?,!$$’*!!5$-A!$(B ,!$$B @,!$$’!!分析!作函数图象找出函数关于原函数的对称点"对称中心!有绝对值号的要分类讨论!!解!!!$-A@,!$$和-A ,!$$的图象关于$轴对称!!$$-A ,!@$$的图象与-A ,!$$的图象关于-轴对称!!’$-A@,!@$$的图象与-A ,!$$的图象关于原点对称!!*$-A B ,!$$B A ,!$$#!!$#.!A +$B ,!$$-#,@,!$$#$#.$A +$B ,!$$%#’(),!3$-A +1/,!$$A !#!!!$#.!A +$B ,!$$&#,##$#.$A +$B ,!$$A #,@!#$#.’A +$B ,!$$%#’(),!4$-A !$(B ,!$$B ?,!$$’A ,!$$#$#.!A +$B ,!$$-#,##$#.$A +$B ,!$$%#’(),!5$-A !$(B ,!$$B @,!$$’A ##$#.!A +$B ,!$$-#,@,!$$#$#.$A +$B ,!$$%#’(),其图象如图!E !*至图!E!5!图!E !*!!!!!!!!!!!图!E!3图!E !4!!!!!!!!!!!图!E !555"已知函数,和1的图象#试作下列函数的图象)!!$*!$$A 9:;+,!$$#1!$$,*!!$$+!$$A 9./+,!$$#1!$$,!%""%第一章!实数集与函数!分析!将9:;+,#1,与9./+,#1,转化为分段函数再讨论!!解!!!$*!$$A 9:;+,!$$#1!$$,A ,!$$#$#.!A +$B ,!$$-1!$$,1!$$#$#.$A +$B ,!$$%1!$+$,!$$+!$$A 9./+,!$$#1!$$,A 1!$$#$#.!A +$B ,!$$-1!$$,,!$$#$#.$A +$B ,!$$%1!$+$,其图象如图!E !G 和图!E !H !!!!图!E !G !!!!!!!!!!!图!E !H 5G "设,"1和N 为增函数#满足,!$$$1!$$$N !$$#$#$!证明),!,!$$$$1!1!$$$$N !N !$$$!!分析!本题己经给出了,"1"N 为增函数#把1!$$与N !$$看成中间变量!利用复合函数及其单调性质#可证得结论!!证明!因对任意的$#$#有,!$$$1!$$$N !$$#且,!$$"1!$$和N !$$均为增函数#所以#有,!,!$$$$,!1!$$$$1!1!$$$$1!N !$$$$N !N !$$$即,!,!$$$$1!1!$$$$N !N !$$$8H"设,和1为区间!%#;$上的增函数#证明第5题中定义的函数*!$$和+!$$也都是!%#;$上的增函数!!证明!对任意的$!"$$#!%#;$#$!%$$#由,!$$"1!$$在!%#;$上递增知,!$$$-,!$!$#1!$$$-1!$!$#因此*!$$$-,!$$$-,!$!$#*!$$$-1!$$$-1!$!$#所以*!$$$-9:;+,!$!$#1!$!$,A *!$!$#故*!$$在!%#;$上是增函数!同理可证+!$$是!%#;$上的增函数!8!#"设,为(@%#%’上的奇!偶$函数!证明)若,在(##%’上增#则,在(@%##’上增!减$!!证明!任取$!"$$#(@%##’#$!%$$#有@$!"@$$#(##%’且@$!&@$$!由,!$$为(@%#%’上的奇函数及在(##%’上递增得#,!$!$A@,!@$!$%@,!@$$$A ,!$$$!所以,!$$在(@%##’上是递增的!同理可证,!$$为偶函数时的相应结论成立!8!!"证明)!!$两个奇函数之和为奇函数#其积为偶函数*!$$两个偶函数之和与积之都为偶函数*!’$奇函数与偶函数之积为奇函数!!分析!对于!!$来说#./0$#.,!$$$,!$$#然后利用,!$$?1!$$@1!$$A ,!$$以及@./0$#.+@,!$$,A +,-$#.+,!$$,证得结论!%#"%。

数学分析课本(华师大三版)-习题及答案02

数学分析课本(华师大三版)-习题及答案02

第二章 数列极限习题§1数列极限概念1、设n a =nn)1(1-+,n=1,2,…,a=0。

(1)对下列ε分别求出极限定义中相应的N : 1ε=0.1,2ε=0.01,3ε=0.001;(2)对1ε,2ε,3ε可找到相应的N ,这是否证明了n a 趋于0?应该怎样做才对; (3)对给定的ε是否只能找到一个N ? 2、按ε—N 定义证明:(1)∞→n lim 1+n n =1;(2)∞→n lim 2312322=-+n n n ;(3)∞→n lim n n n !;(4)∞→n lim sinn π=0;(5)∞→n lim n an=0(a >0)。

3、根据例2,例4和例5的结果求出下列极限,并指出哪些是无穷小数列: (1)∞→n limn1;(2)∞→n limn3;(3)∞→n lim 31n ;(4)∞→n lim n 31; (5)∞→n limn21;(6)∞→n limn10;(7)∞→n lim n21。

4、证明:若∞→n lim n a = a ,则对任一正整数k ,有∞→n lim k n a += a 。

5、试用定义1'证明: (1)数列{n1}不以1为极限;(2)数列{n n )1(-}发散。

6、证明定理2.1,并应用它证明数列{nn)1(1-+}的极限是1。

7、证明:若∞→n lim n a = a ,则∞→n lim |n a |= |a|。

当且仅当a 为何值时反之也成立?8、按ε—N 定义证明: (1)∞→n lim )1(n n -+=0;(2)∞→n lim3321n n++++ =0;(3)∞→n lim n a =1,其中,1nn -n 为偶数, n a =nnn +2,n 为奇数。

§2收敛数列的性质1、求下列极限:(1)∞→n lim 32413323++++n n n n ;(2)∞→n lim 221n n +;(3)∞→n lim 113)2(3)2(+++-+-n n nn ;(4)∞→n lim )(2n n n -+;(5)∞→n lim )1021(n n n +++ ;(6)∞→n lim n n31313121212122++++++ 。

数学分析课本(华师大三版)-习题及答案10

数学分析课本(华师大三版)-习题及答案10

习 题 十1. 求下列曲线所围图形的面积. (1) y x x x y ====114,,,0=; (2) 轴;y x y y ==38,, (3) ;y e y e x xx==−,,1 (4) y x y x x ===lg .,,,001=10; (5) x y y x ==2380,,=1;(6) y x y y x y =+===14,,,;3(7) ; y x x y 224=−=, (8) .x y y x =−=210(), 2. 求抛物线以及在点y x x =−+−24(,)03−和处的切线所围图形的面积.(,)30 3. 设曲线与直线y x x =−2y ax =,求参数,使该曲线与直线围图形面积为a 92. 4. 曲线与相交于原点和点f x x ()=2g x cx c ()=>30()(,)112c c,求的值,使位于区间c [,01c上,两曲线所围图形的面积等于23. 5. 求星形线所围图形的面积(a ). x a ty a tt ==⎧⎨⎪⎩⎪≤≤cos sin 3302 ()π>0 6. 求下列极坐标方程所表曲线所围成的图形的面积.(1) 三叶玫瑰线r =83sin θ; (2) 心形线r =−31(sin )θ;(3) r =+1sin θ与r =1; (4) r =2与r =4cos θ.7. 证明:球的半径为R 、高为的球冠的体积公式为:h V h R =−1332π()h8. 计算圆柱面与所围立体(部分)的体积.x y a 22+=22x z z ==,0z ≥0 9. 计算两个柱面与所围立体的体积.x y a 22+=222a z x =+ 10. 计算四棱台的体积.四棱台的上底面是边长为与b 的矩形,下底面是边长为与a A B 的矩形,高为.h 11. 求下列曲线围成的图形绕x 轴旋转所得旋转体的体积.(1) ; y x x =≤sin () 0π≤;(2) y x x y ===220,,(3) y x y x ==2,;(4) ; y x x e =≤ln () 1≤3(5) . y x y x ==22,12. 求y x =,x 轴和x =4所围图形分别绕x 、y 轴旋转所得旋转体的体积.13. 求曲线与曲线所围图形的面积.并将此图形绕y x x =−32y x =2y 轴旋转,求所得旋转体的体积. 14. 求下列曲线的弧长.(1) ;y x x 2301=≤,()≤ (2) y x x =≤≤ln (),38;(3) x y y y =−≤≤141212ln (),e ; (4) r a a =>≤≤θθ ,()003;(5) r a =≤sin ()3303≤θθπ,; (6) .x a t t t y a t t t t =+=−≤≤(cos sin )(sin cos )(),,02π 15. 计算曲线:的质量中心(线密度x y a y 2220+=≥ ()ρ为常数). 16. 计算星形线:在第一象限的质量中心(线密度x a y a ==cos sin3θ,3θρ为常数). 17. 计算下列曲线所围图形的质量中心. (1) ax ;y ay x a ==>220, () (2) x a y bx a y b 2222100+=≤≤≤≤,,();(3) 轴,()y a x x =sin ,01≤≤x ;18. 若1公斤的力能使弹簧伸长1厘米,问把弹簧伸长10厘米要作多少功? 19. 物体按规律x ct =3(c )做直线运动,设介质阻力与速度的平方成正比,求物体从.>0x =0到x a =时,阻力所作的功.20. 一圆台形的水池,深15厘米,上下口半径分别为20厘米和10厘米,如果将盛满的水全部抽尽,需要作多少功?21. 有一横截面积为s =20平方米,深为5米的圆柱形水池,现把池中盛满的水全部抽到高为10米的水塔顶上去,需要作多少功?22. 把半径为R 的空心球,由与水面相切的位置压入水中,至球刚好完全淹没在水中,求克服浮力所作的功.23. 水坝中有一直立的矩形闸门,宽20米,高16米,闸门的上边平行水面,试求下述各情况闸门所作的功.(1) 闸门的上边与水面平齐时; (2) 水面在闸门的顶上8米时.24. 一块高为,底为的等腰三角形薄板,垂直地沉没在水中挡住水,顶在下,底与水面相齐.试求薄板所受压力.如果把它的顶与水面相齐,而底与水面平行,则压力又如何?a b 25. 闸门的形状为等腰梯形铅垂地挡住水,闸门的二水平边的长分别为200米和50米,高为10米,且较长的上底与水面相齐,试计算水对闸门的压力. 26. 一正方形薄板垂直地沉没在水中,正方形的一顶点位于水面,而一对角线平行于水面,设正方形的边长为a ,试求薄板每侧所受的压力.27. 求由x a y b+=1(a )与坐标轴所围图形的面积. b >>0,0) 28. 求由曲线所围图形的面积.y x x 221=−( 29. 求曲线r =6sin θ与r =12sin θ所围图形的面积.30. 直径为6米的球浸入水中,其球心在水平面下10米,求球面上所受的压力.。

华东师大数学分析答案完整版

华东师大数学分析答案完整版

华东师大数学分析答案完整版一、填空题1. 极限的定义是当自变量趋近于某个值时,函数的值趋近于另一个确定的值。

2. 函数在某一点连续的充分必要条件是左极限、右极限和函数值在该点相等。

3. 无穷小量与无穷大量的关系是无穷小量的倒数是无穷大量,无穷大量的倒数是无穷小量。

4. 函数的导数表示函数在某一点的瞬时变化率。

5. 微分表示函数在某一点的微小变化量。

6. 函数的积分表示函数在某个区间上的累积变化量。

7. 变限积分的导数是原函数的导数。

8. 无穷级数的收敛性可以通过比较判别法、比值判别法等方法进行判断。

9. 函数的泰勒级数表示函数在某一点的幂级数展开。

10. 傅里叶级数表示周期函数的三角级数展开。

二、选择题1. 下列函数中,连续的是(A)。

A. f(x) = x^2B. f(x) = 1/xC. f(x) = sin(x)D. f(x) = |x|2. 下列极限中,存在的是(B)。

A. lim(x→0) 1/xB. lim(x→∞) x^2C. lim(x→0) sin(x)/xD. lim(x→∞) e^(x)3. 下列函数中,可导的是(A)。

A. f(x) = x^3B. f(x) = |x|C. f(x) = sin(1/x)D. f(x) = x^(1/3)4. 下列积分中,收敛的是(C)。

A. ∫(1/x) dxB. ∫(1/x^2) dxC. ∫(e^(x)) dxD. ∫(1/x^3) dx5. 下列级数中,收敛的是(B)。

A. ∑(1/n)B. ∑(1/n^2)C. ∑(1/n^3)D. ∑(1/n^4)三、解答题1. 求函数 f(x) = x^3 3x + 2 在 x = 1 处的导数。

解答:f'(x) = 3x^2 3,代入 x = 1,得 f'(1) = 0。

2. 求不定积分∫(e^x) dx。

解答:∫(e^x) dx = e^x + C,其中 C 为任意常数。

华东师大数学分析答案完整版

华东师大数学分析答案完整版


是’





!
这 两种定义是等价的!!$$中的!(#相当于!!$中的"!在上述定义中可以限定#%###其中
## 为充分小的正数!定义!$$在某些证明题中使用起来更方便些 !
*" 确界原理)设 ’ 是非空数集#若 ’ 有上界#则 ’ 必有上确界*若 ’ 有下界#则 ’ 必有下确界!
确界原理是实数系完备性的几个等价定理中的一个!
3" 单调性
设 -%,!$$#$#.#若 对 ,$! #$$ #.#$! %$$ #有
!!$,!$!$$,!$$$#则称 , 在. 上是递增函数! !$$,!$!$%,!$$$#则称 , 在. 上是严格递增函数!
类似可定义递减函数与严格递减函数!
4" 奇偶性
设 . 是对称于原点的数集#-%,!$$#$#.! !!$若,$#.#都有 ,!($$%,!$$#则称,!$$是偶函数! !$$若 ,$#.#都 有 ,!($$% (,!$$#则 称 ,!$$是 奇 函 数 !
分析 !本题主要考察函数 的 有 界 性#要 充 分 利 用 已 知 条 件 给 出 的 不 等 式 #积 极 构 造 出 类 似 的 不 等
%$ %
第一章!实数集与函数
式 #以 证 出 结 论 !
证 明 ! , (%#;’.:#,$# !%#;$#则 存 在’# !##!$#使 $%%&’!;(%$



点%!&;! $
#又




(%$
#;$’#使
,!$$在




#这

数学分析习题册答案

数学分析习题册答案

习 题 1-11.计算下列极限(1)lim x ax a a x x a→--, 0;a >解:原式lim[]x a a ax a a a x a x a x a→--=---=()|()|x a x a x a a x ==''- =1ln aa a a a a --⋅=(ln 1)a a a -(2)sin sin limsin()x a x ax a →--;解:原式sin sin lim x a x ax a→-=-(sin )'cos x a x a ===(3)2lim 2), 0;n n a →∞->解:原式2n =20[()']x x a ==2ln a = (4)1lim [(1)1]pn n n→∞+-,0;p >解:原式111(1)1lim ()|p p p x n n nx =→∞+-'===11p x px p -== (5)10100(1tan )(1sin )lim;sin x x x x→+-- 解:原式101000(1tan )1(1sin )1lim lim tan sin x x x x x x→→+---=--=990010(1)|10(1)|20t t t t ==+++=(6)1x →,,m n 为正整数;解:原式11lim1x x →=- 1111()'()'mx nx x x ===n m=2.设()f x 在0x 处二阶可导,计算00020()2()()lim h f x h f x f x h h→+-+-. 解:原式000()()lim 2h f x h f x h h →''+--=00000()()()()lim 2h f x h f x f x f x h h→''''+-+--=000000()()()()lim lim 22h h f x h f x f x h f x h h →→''''+---=+-00011()()()22f x f x f x ''''''=+=3.设0a >,()0f a >,()f a '存在,计算1ln ln ()lim[]()x a x a f x f a -→.解:1ln ln ()lim[]x a x a f x -→ln ()ln ()ln ln lim f x f a x ax a e --→=ln ()ln ()limln ln x a f x f a x a e→--=ln ()ln ()lim ln ln x af x f a x a x a x a e →----='()()f a a f a e=习 题 1-21.求下列极限 (1)lim x →+∞;解:原式lim 1)(1)]0x x x →+∞=+--= ,其中ξ在1x -与1x +之间(2)40cos(sin )cos lim sin x x xx→-;解:原式=40sin (sin )limx x x x ξ→--=30sin sin lim()()()x x x x x ξξξ→--⋅=16,其中ξ在x 与sin x 之间(3)lim x →+∞解:原式116611lim [(1)(1)]x x x x →+∞=+--56111lim (1)[(1)(1)]6x x x xξ-→+∞=⋅+⋅+--5611lim (1)33x ξ-→+∞=+= ,其中ξ在11x -与11x +之间 (4) 211lim (arctan arctan);1n n n n →+∞-+ 解:原式22111lim ()11n n n n ξ→+∞=-++ 1=,其中其中ξ在11n +与1n 之间 2.设()f x 在a 处可导,()0f a >,计算11()lim ()nn n n f a f a →∞⎡⎤+⎢⎥-⎣⎦.解:原式1111(ln ()ln ())lim (ln ()ln ())lim n n f a f a n f a f a n nn nn e e→∞+--+--→∞==11ln ()ln ()ln ()ln ()[lim lim ]11n n f a f a f a f a n n n ne→∞→∞+---+-=()()2()()()()f a f a f a f a f a f a ee'''+==习 题 1-31.求下列极限(1)0(1)1lim (1)1x x x λμ→+-+-,0;μ≠解:原式0limx x x λλμμ→==(2)0x →;解:02ln cos cos 2cos lim12x x x nxI x →-⋅⋅⋅=20ln cos ln cos 2ln cos 2lim x x x nx x→++⋅⋅⋅+=- 20cos 1cos 21cos 12lim x x x nx x →-+-+⋅⋅⋅+-=-22220(2)()lim x x x nx x →++⋅⋅⋅+=21ni i ==∑ (3)011lim)1xx x e →--(; 解:原式01lim (1)x x x e xx e →--=-201lim x x e x x →--=01lim 2x x e x→-=01lim 22x x x →== (4)112lim [(1)]xxx x x x →+∞+-;解:原式11ln(1)ln 2lim ()x x xxx x ee+→+∞=-21lim (ln(1)ln )x x x x x →+∞=+- 1lim ln(1)x x x→+∞=+1lim 1x xx→+∞== 2. 求下列极限 (1)2221cos ln cos limsin x x x x xe e x-→----;解:原式222201122lim12x x x x x →+==- (2)0ln()2sin lim sin(2tan 2)sin(tan 2)tan x x x e xx x x→++--;解:原式0ln(11)2sin lim sin(2tan 2)sin(tan 2)tan x x x e x x x x →++-+=--012sin limsin(2tan 2)sin(tan 2)tan x x x e xx x x→+-+=-- 02lim442x x x xx x x→++==--习 题 1-41.求下列极限(1)21lim (1sin )n n n n→∞-;解:原式2331111lim [1(())]3!n n n o n n n →∞=--+11lim((1))3!6n o →∞=+=(2)求33601lim sin x x e x x→--;解:原式3636336600()112lim lim 2x x x xx o x x e x x x →→++---=== (3)21lim[ln(1)]x x x x→∞-+;解:原式222111lim[(())]2x x x o x x x →∞=--+12=(4)21lim (1)x xx e x-→+∞+;解:原式211[ln(1)]2lim x x xx ee +--→∞==此题已换3.设()f x 在0x =处可导,(0)0f ≠,(0)0f '≠.若()(2)(0)af h bf h f +-在0h →时是比h 高阶的无穷小,试确定,a b 的值.解:因为 ()(0)(0)()f h f f h o h '=++,(2)(0)2(0)()f h f f h o h '=++ 所以00()(2)2(0)(1)(0)(2)(0)()0limlim h h af h bf h f a b f a b f o h h h→→'+-+-+++==从而 10a b +-= 20a b += 解得:2,1a b ==- 3.设()f x 在0x 处二阶可导,用泰勒公式求0002()2()()limh f x h f x f x h h →+-+-解:原式222200001000220''()''()()'()()2()()'()()2!2!limh f x f x f x f x h h o h f x f x f x h h o h h→+++-+-++=22201220''()()()lim h f x h o h o h h→++=0''()f x = 4. 设()f x 在0x =处可导,且20sin ()lim() 2.x x f x x x →+=求(0),(0)f f '和01()lim x f x x→+. 解 因为 2200sin ()sin ()2lim()lim x x x f x x xf x x x x→→+=+= []22()(0)(0)()limx x o x x f f x o x x→'++++=2220(1(0))(0)()lim x f x f x o x x →'+++=所以 1(0)0,(0)2f f '+==,即(0)1,(0)2f f '=-= 所以 01()l i mx f x x→+01(0)(0)()l i m x f f x o x x →'+++=02()l i m 2x x o x x →+==习 题 1-51. 计算下列极限(1) limn →∞解:原式limn →∞=2n ==(2)2212lim (1)nn n a a na a na+→∞+++⋅⋅⋅+> 解:原式21lim (1)nn n n na na n a ++→∞=--2lim (1)n n na n a →∞=--21a a=-2. 设lim n n a a →∞=,求 (1) 1222lim nn a a na n →∞+++ ;解:原式22lim (1)n n na n n →∞=--lim 212n n na a n →∞==- (2) 12lim 111n nna a a →∞+++ ,0,1,2,,.i a i n ≠=解:由于1211111lim lim n n n na a a n a a →∞→∞+++== , 所以12lim 111n nna a a a →∞=+++3.设2lim()0n n n x x -→∞-=,求lim n n x n →∞和1lim n n n x x n-→∞-.解:因为2lim()0n n n x x -→∞-=,所以222lim()0n n n x x -→∞-=且2121lim()0n n n x x +-→∞-=从而有stolz 定理2222limlim 022n n n n n x x xn -→∞→∞-==,且212121lim lim 0212n n n n n x x x n ++-→∞→∞-==+ 所以lim 0n n x n →∞=,111lim lim lim 01nn n n n n n x x x x n n n n n --→∞→∞→∞--=-=-4.设110x q <<,其中01q <≤,并且1(1)n n n x x qx +=-, 证明:1lim n n nx q→∞=.证明:因110x q<<,所以211211(1)111(1)()24qx qx x x qx q q q+-=-≤=<,所以210x q <<,用数学归纳法易证,10n x q <<。

数学分析课后习题答案1.1

数学分析课后习题答案1.1

第一章 实数集与函数§1实数1、设a 为有理数,x 为无理数,试证明:⑴x a +是无理数.⑵当0≠a 时,ax 是无理数.证: ⑴ 假设x a +是有理数,则x a x a =−+)(是有理数,这与题设x 为无理数相矛盾, 故x a +是无理数.⑵假设ax 是有理数,则x aax =为有理数,这与题设x 为无理数相矛盾 故ax 是无理数.1、 试在数轴上表示出下列不等式的解:⑴ 0)1(2>−x x ;⑵⑶2、 设a 、R b ∈.证明:若对任何正数ε有ε<−b a ,则b a =.证:用反证法.倘若结论不成立,则根据实数集有序性,有b a >或b a <;若b a >,则又由绝对值定义知:b a b a −=−.令b a −=ε,则ε为正数,但这与ε<−=−b a b a 矛盾;若b a <,则又由绝对值定义知:a b b a −=−.令a b −=ε,则ε为正数,但这与ε<−=−a b b a 矛盾;从而必有b a =.3、 设0≠x ,证明21≥+xx ,并说明其中等号何时成立. 证:因x 与x 1同号,从而21211=⋅≥+=+xx x x x x , 等号当且仅当xx 1=,即1±=x 时成立.4、 证明:对任何R x ∈,有 ⑴ 121≥−+−x x ;⑵2321≥−+−+−x x x证: ⑴因为21111−=+−≤−−x x x , 所以121≥−+−x x . ⑵因为21132−+−≤−≤−−x x x x , 所以2321≥−+−+−x x x5、 设a 、b 、+∈R c (+R 表示全体正实数的集合),证明:c b c a b a −≤+−+2222 证:对任意的正实数a 、b 、c 有)(22222c b a bc a +≤,两端同时加244c b a +,有224222222242c b a c a b a bc a c b a +++≤++,即))(()(222222c a b a bc a ++≤+ bc c a b a a 2))((2222222−≤++−,两端再同加22c b +,则有c b c a b a −≤+−+2222其几何意义为:当c b ≠时,以),(b a ,),(c a ,)0,0(三点为顶点的三角形,其两边之差小于第三边.当c b =时,此三角形变为以),(c a ,)0,0(为端点的线段,此时等号成立6、 设0,0>>b x ,且b a ≠,证明x b x a ++介于1与b a 之间. 证:因为x b a b x b x a +−=++−1,)()(x b b a b x b a x b x a +−=−++,且0,0>>b x 所以当b a >时, ba xb x a <++<1; 当b a <时, 1<++<xb x a b a ; 故x b x a ++总介于1与b a 之间.7、 设p 为正整数,证明:若p 不是完全平方数,则p 是无理数 证:假设p 是有理数,则存在正整数m 、n 使n m p =,且m 与n 互素. 于是22m p n =.可见n 能整除2m .由于m 与n 互素,从而它们的最大公因数为1,由辗转相除法知:存在整数u 、v 使1=+nv mu .从而m mnv u m =+2因n 能整除2m ,又能整除mnv ,故能整除其和,于是n 可整除m ,这样1=n因此2m p =.这与p 不是完全平方数相矛盾, 故p 是无理数8、 设a 与b 为已知实数,试用不等式符号(不用绝对值符号)表示下列不等式的解: ⑴ b x a x −<−;⑵b x a x −<−;⑶b a x <−2. 解: ⑴原不等式等价于11<−−−b x b a 这又等价于20<−−<bx b a 即 −<−<>b x b a b x 220或 −>−><bx b a b x 220即 >+>>b a b a x b x 2或 <+<<ba b a x b x 2 故当b a >时,不等式的解为2b a x +> 当b a <时,不等式的解为2b a x +< 当b a =时,不等式无解.⑵原不等式等价于 −<−>b x a x b x 且 −<−>bx x a b x即 >>b a b x 且+>>2b a x b x 故当b a >时,21b x +>; 当b a ≤时,不等式无解.⑶当0≤b 时,显然原不等式无解, 当0>b 时原不等式等价于b a x b a +<<−2 因此①当0≤+b a 或0≤b 时,无解②当0>+b a 且0>b 时,有解 Ⅰ 如果b a ≥,则解为b a x b a +<<− 即b a x b a +<<−或b a x b a +>>−−Ⅱ 如果b a <,则解为b a x +< 即b a x b a +<<+−。

数学分析课本(华师大三版)-习题及答案Part-I

数学分析课本(华师大三版)-习题及答案Part-I

a1 = b1 = 1 > 0, an + bn 2 = (an −1 + bn −1 2) 2 . Find the limit lim
n →∞
an . b pn . n →∞ q n
28. Assume p1 > 0, q1 > 0, pn +1 = pn + 3qn , qn +1 = pn + qn . Find the limit lim 29. Assume x1 = a, x2 = b, xn +1 =
41. Prove that (1) (2)
f ( x) = 3 x is uniformly continuous on [0, +∞) ; g ( x) = e x cos 1 is not uniformly continuous on [0,1] . x
42. Suppose that f
is defined on [ a, +∞) . And | f ( x ) − f ( y ) |≤ k | x − y | (k > 0) holds
an =a; n →∞ n
an 1 1 ∈ [a − , a + ] (n = 1, 2L) . n n n
f ∈ C (−∞, +∞) and that | f ( x) − f ( y ) |≤ k | x − y | (0 < k < 1) holds for any
x, y ∈ (−∞, +∞) . Prove that f has the unique fixed point on (−∞, +∞) .
34. Let f ∈ C[ a, b] . And for arbitrary x ∈ [ a, b] , there exists y ∈ [ a, b] such that

《数学分析》(华师大版)课本上习题

《数学分析》(华师大版)课本上习题

《数学分析》(华师大版)课本上习题第二十二章曲线积分与曲面积分P.361 第一型曲线积分与第一型曲面积分1. 计算下列第一型曲线积分:(1))1,0(),0,1(),0,0(,)(B A O L ds y x L是以其中?+为顶点的三角形;(2)+Lds y x2122)(,其中L 是以原点为中心,R 为半径的右半圆周;(3)?L xyds ,其中L 为椭圆12222=+by a x 在第一象限中的部分;(4)Lds y ,其中L 为单位圆122=+y x ;(5)ds z y x L)(222++,其中L 为螺旋线)20(,sin ,cos π≤≤===t bt z t a y t a x 的一段;(6)?Lxyzds ,其中L 为曲线)10(21,232,22≤≤===t t z t y t x 的一段;(7)+Lds z y 222,其中L 是2222a z y x =++与y x =相交的圆周.2. 求曲线)0,10(21,,2>≤≤===a t at z at y a x 的质量.设其线密度为.2az =ρ 3. 求摆线??≤≤-=-=)0()cos 1()sin (πt t a y t t a x 的重心,设其质量分布是均匀的.4. 计算下列第一类型曲面积分:(1)++SdS z y x )(,其中S 是上半圆面0,2222≥=++z a z y x ;(2)+SdS y x )(22,其中S 为立体122≤≤+z y x 的边界曲面;(3),??+S yx dS 22其中S 为柱面222R y x =+被平面H z z ==,0所截取的部分;(4)SxyzdS ,其中S 为平面1=++z y x 在第一卦限中的部分;5. 若曲线以极坐标))((21θθθθρρ≤≤=表示,试给出计算Lds y x f ),(的公式,并用此公式计算下列曲线积分:(1)?+Ly x ds e22,其中L 为曲线)4(πθρ≤≤=a 的一段;(2)?Lxds ,其中L 为对数螺线)0(>=k ae k θρ在圆a r =内的部分.6. 设有一质量分布不均匀的半圆弧)0(sin ,cos πθθθ≤≤==r y r x ,其线密度θρa =(a 为常数),求它对原点)0,0(处质量为m 的质点的引力.7. 证明:若函数f 在光滑曲线],[),(),(:βα∈==t t y y t x x L 上连续,则存在点L y x ∈),(00,使得L y x f dS y x f L=?),(),(00,其中L ?为L 的长.8. 计算dS z S2,其中S 为圆锥表面的一部分:≤≤≤≤??===,20,0:;cos sin sin sin cos :π?θθ?θa r D r z r y r x S这里θ为常数).20(πθ≤≤P.371 第二型曲线积分1. 计算第二型曲线积分:(1)-L ydx xdy ,其中L 为本节例2中的三种情形.(2)?+-Ldy dx y a )2(,其中L 为摆线)20)(cos 1(),sin (π≤≤-=-=t t a y t t a x 沿t 增加方向的一段;(3)++-L y x ydy xdx 22,其中L 为圆周222a y x =+,依逆时针方向;(4)?+Lxdy ydx sin ,其中L 为)0(sin π≤≤=x x y 与x 轴所围的闭曲线,依顺时针方向;(5)++Lzdz ydy xdx ,其中L :从(1,1,1)到(2,3,4)的直线段.2. 设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比.若质点由)0,(a 沿椭圆移动到),0(b ,求力所作的功。

数学分析课本-习题及答案01

数学分析课本-习题及答案01

第一章 实数集与函数习题§1实数1、 设a 为有理数,x 为无理数。

证明:(1)a+ x 是无理数;(2)当a ≠0时,ax 是无理数。

2、 试在数轴上表示出下列不等式的解:(1)x (2x -1)>0;(2)|x-1|<|x-3|;(3)1-x -12-x ≥23-x 。

3、 设a 、b ∈R 。

证明:若对任何正数ε有|a-b|<ε,则a = b 。

4、 设x ≠0,证明|x+x1|≥2,并说明其中等号何时成立。

5、 证明:对任何x ∈R 有(1)|x-1|+|x-2|≥1;(2)|x-1|+|x-2|+|x-3|≥2。

6、 设a 、b 、c ∈+R (+R 表示全体正实数的集合)。

证明 |22b a +-22c a +|≤|b-c|。

你能说明此不等式的几何意义吗7、 设x>0,b>0,a ≠b 。

证明x b x a ++介于1与ba 之间。

8、 设p 为正整数。

证明:若p 不是完全平方数,则p 是无理数。

9、 设a 、b 为给定实数。

试用不等式符号(不用绝对值符号)表示下列不等式的解:(1)|x-a|<|x-b|;(2)|x-a|< x-b ;(3)|2x -a|<b 。

§2数集、确界原理1、 用区间表示下列不等式的解:(1)|1-x|-x ≥0;(2)| x+x1|≤6; (3)(x-a )(x-b )(x-c )>0(a ,b ,c 为常数,且a<b<c );(4)sinx ≥22。

2、 设S 为非空数集。

试对下列概念给出定义:(1)S 无上界;(2)S 无界。

3、 试证明由(3)式所确定的数集S 有上界而无下界。

4、 求下列数集的上、下确界,并依定义加以验证:(1)S={x|2x <2};(2)S={x|x=n !,n ∈+N };(3)S={x|x 为(0,1)内的无理数};(4)S={x|x=1-n21,n ∈+N }。

数学分析课后习题答案--高教第二版(陈纪修)--10章

数学分析课后习题答案--高教第二版(陈纪修)--10章

第十章 函数项级数习 题 10. 1 函数项级数的一致收敛性1. 讨论下列函数序列在指定区间上的一致收敛性。

⑴ S n (x ) = , (i) x nx −e ∈)1,0(, (ii) x ∈; ),1(+∞ ⑵ S n (x ) = x , x nx −e ∈),0(+∞;⑶ S n (x ) = sin nx , (i)x ∈),(+∞−∞, (ii) x ∈],[A A −(); 0>A ⑷ S n (x ) = arctan nx , (i)x ∈)1,0(, (ii) x ∈; ),1(+∞ ⑸ S n (x ) =221nx +, x ∈),(+∞−∞; ⑹ S n (x ) = nx (1 - x )n , x ∈]1,0[;⑺ S n (x ) =n x ln n x, (i) x ∈)1,0(, (ii) x ∈);),1(+∞ ⑻ S n (x ) = nnx x +1, (i) x ∈)1,0(, (ii) x ∈;),1(+∞ ⑼ S n (x ) = (sin x )n , x ∈],0[π;⑽ S n (x ) = (sin x )n1, (i) x ∈[0,]π, (ii) x ∈],[(0>δ);δπδ− ⑾ S n (x ) = nn x ⎟⎠⎞⎜⎝⎛+1, (i) x ∈),0(+∞, (ii)x ∈],0(A (); 0>A ⑿ S n (x ) = ⎟⎟⎠⎞⎜⎜⎝⎛−+x n x n 1, (i) x ∈),0(+∞, (ii)[)0,,>+∞∈δδx 。

解 (1)(i) ,0)(=x S )()(sup ),()1,0(x S x S S S d n x n −=∈1= ─/→ 0(∞→n ), 所以{}()n S x 在上非一致收敛。

(0,1) (ii) ,0)(=x S )()(sup ),(),1(x S x S S S d n x n −=+∞∈n e −=)(0∞→→n ,所以{}()n S x 在上一致收敛。

数学分析课后习题答案(华东师范大学版)

数学分析课后习题答案(华东师范大学版)

P.182 习题1.验证下列等式 (1)C x f dx x f +='⎰)()( (2)⎰+=C x f x df )()(证明 (1)因为)(x f 是)(x f '的一个原函数,所以⎰+='C x f dx x f )()(.(2)因为C u du +=⎰, 所以⎰+=C x f x df )()(.2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点)5,2(.解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='=⎰⎰22)()(.于是知曲线为C x y +=2, 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以有 C +=225, 解得1=C , 从而所求曲线为12+=x y3.验证x x y sgn 22=是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0<x 时, 22x y -=, x y -='; 当0=x 时, y的导数为02sgn lim 0sgn )2(lim020==-→→x x x x x x x , 所以⎪⎩⎪⎨⎧=<-=>='||0000x x xx x xy 4.据理说明为什么每一个含有第一类间断点的函数都没有原函数?解 由P.122推论3的证明过程可知:在区间I 上的导函数f ',它在I 上的每一点,要么是连续点,要么是第二类间断点,也就是说导函数不可能出现第一类间断点。

因此每一个含有第一类间断点的函数都没有原函数。

5.求下列不定积分⑴C x x x x dx x dx x xdx dx dx x x x +-+-=-+-=-+-⎰⎰⎰⎰⎰-31423233233421)11(⑵C x x x dx x x x dx xx ++-=+-=-⎰⎰||ln 343)12()1(2332122⑶C gxC x gdx x ggxdx +=+⋅==⎰⎰-22212122121 ⑷⎰⎰⎰+⋅+=+⋅+=+dx dx dx x x x x x x x x )9624()3)32(22()32(222 C x x x ++⋅+=9ln 96ln 624ln 4 ⑸C x dx x dx x +=-=-⎰⎰arcsin 23112344322⑹ C x dx x dx x x dx x x +-=+-=+-+=+⎰⎰⎰)arctan 1(31)111(31)1(311)1(322222 ⑺ C x x dx x xdx +-=-=⎰⎰tan )1(sec tan 22 ⑻C x x dx x dx x xdx +-=-=-=⎰⎰⎰)2sin 21(21)2cos 1(2122cos 1sin 2 ⑼ C x x dx x x dx xx x x dx x x x +-=+=--=-⎰⎰⎰cos sin )sin (cos sin cos sin cos sin cos 2cos 22 ⑽C x x dx x x dx x x x x dx x x x +--=-=⋅-=⋅⎰⎰⎰tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222 ⑾ C C dt dt tt ttt+=+⋅⋅=⋅=⋅⎰⎰90ln 90)910ln()910()910(3102 ⑿C x dx x dx x x x +==⎰⎰81587158⒀C x dx xdx x x x x dx x x x x +=-=--+-+=+-+-+⎰⎰⎰arcsin 212)1111()1111(222⒁C x x xdx dx dx x dx x x +-=+=+=+⎰⎰⎰⎰2cos 212sin 1)2sin 1()sin (cos 2⒂C x x dx x x xdx x ++=+=⎰⎰)sin 3sin 31(21)cos 3(cos 212cos cos ⒃ C e e e e dx e e e e dx e e x xx x x x x x x x ++--=-+-=------⎰⎰33333313331)33()(P.188 习题1.应用换元积分法求下列不定积分:⑴C x x d x dx x ++=++=+⎰⎰)43sin(31)43()43cos(31)43cos( ⑵ C e x d e dx xe x x x +==⎰⎰222222241)2(41⑶ C x x x d x dx ++=++=+⎰⎰|12|ln 2112)12(2112⑷ C x n x d x dx x n nn +++=++=++⎰⎰1)1(11)1()1()1(⑸Cx x xd xdx x dx xx++=-+-=-+-⎰⎰⎰3arcsin 313arcsin 3)3113131)31131(2222⑹C C x d dx x x x x +=+=+=++++⎰⎰2ln 22ln 22)32(221222323232⑺C x C x x d x dx x +--=+-⋅-=---=-⎰⎰232321)38(92)38(3231)38()38(3138 ⑻C x C x x d x x dx+--=+-⋅-=---=-⎰⎰-3232313)57(103)57(2351)57()57(5157 ⑼C x dx x dx x x +-==⎰⎰2222cos 21sin 21sin ⑽ C x x x d x dx++-=++=+⎰⎰)42cot(21)42(sin )42(21)42(sin 22ππππ⑾ 解法一:C xxx d x dxx dx+===+⎰⎰⎰2tan2cos 22cos 2cos 122解法二: ⎰⎰⎰⎰-=--=+xxdxx dx x dx x x dx 222sin cos sin cos 1)cos 1(cos 1 C x x xx d x ++-=--=⎰sin 1cot sin sin cot 2⑿解法一:利用上一题的结果,有C x C x x x d x dx +--=+--=-+--=+⎰⎰)24tan()2(21tan )2cos(1)2(sin 1ππππ 解法二: C x x xx d x dx x dx x x dx +-=+=--=+⎰⎰⎰⎰cos 1tan cos cos cos sin 1)sin 1(sin 1222 解法三:⎰⎰⎰+⋅=+=+222)12(tan 2cos )2cos 2(sin sin 1x x dxx x dx x dxC x x x d ++-=+=⎰12tan 2)12(tan 2tan 22⒀ 解法一:⎰⎰⎰---=-=)2()2sec()2sec(csc x d x dx x xdx πππC x x C x x ++-=+-+--=|cot csc |ln |)2tan()2sec(|ln ππ解法二:C x x x x d dx x x dx x xdx ++-=-===⎰⎰⎰⎰1cos 1cos ln 211cos cos sin sin sin 1csc 22C x x +-=|cot csc |ln解法三:⎰⎰++=dx x x x x x xdx cot csc )cot (csc csc cscC x x C xx x x d ++-=+++-=⎰|cot csc |ln cot csc )cot (csc解法四:⎰⎰⎰==dx x x xdx x x xdx 2cos2sin 22sin2cos 2sin 21csc 2C xC x x d x +=+-=-=⎰|2tan |ln |2cot |ln 2cot 2cot 1⒁C x x d x dx x x +--=---=-⎰⎰22221)1(11211 ⒂ C x dx x dx x x +=+=+⎰⎰2arctan 41)(4121422224⒃C x x x d x x dx +==⎰⎰|ln |ln ln ln ln⒄ C x x d x dx x x +-=---=-⎰⎰25535354)1(1101)1()1(151)1( ⒅ C x x C x x dx x dx x x ++-=++-⋅=-=-⎰⎰|22|ln 281|22|ln 221412)(1412444442483⒆C xx C x x dx x x x x dx ++=++-=+-=+⎰⎰|1|ln |1|ln ||ln )111()1( ⒇C x dx xxxdx +==⎰⎰|sin |ln sin cos cot (21)⎰⎰⎰-==x d x xdx x xdx sin )sin 1(cos cos cos 2245 C x x x x d x x ++-=+-=⎰5342sin 51sin 32sin sin )sin sin 21((22) 解法一:C x x x x d x x dx +-==⎰⎰|2cot 2csc |ln 2sin )2(cos sin解法二:C x x xd x x xdx x x dx +===⎰⎰⎰|tan |ln tan tan cos sin cos cos sin 2 解法三:⎰⎰+=xx dxx x x x dx cos sin )cos (sin cos sin 22C x x dx xxx x +-=+=⎰|cos |ln |sin |ln )sin cos cos sin ((23) C e e de e dx e e e dx xx x x x x x+=+=+=+⎰⎰⎰-arctan 1122 (24) C x x x x x x d dx x x x ++-=+-+-=+--⎰⎰|83|ln 83)83(83322222(25) C x x x dx x x x dx x x x dx x x ++-+++=+++-+=+++-+=++⎰⎰⎰2323232)1(2312|1|ln ))1(3)1(211()1(3)1(2)1()1(2(26)⎰+22ax dx解 令t a x tan =, 则C a x x C t t t a tdt a a x dx+++=++==+⎰⎰||ln |tan sec |ln sec sec 221222(27)C a x x a a x x d a a x dx ++=+=+⎰⎰21222212222322)(1)(1)(解法2 令t a x tan =, 则C ax a x C t a tdt a t a tdt a a x dx ++=+===+⎰⎰⎰222223322322sin 1cos 1sec sec )( (28)⎰-dx xx 251解 令t x sin =, 则Cx x x C t t t td t tdt dt t t t dx x x +---+--=+-+-=--===-⎰⎰⎰⎰25223221253225525)1(51)1(32)1(cos 51cos 32cos cos )cos 1(sin cos cos sin 1(29)⎰-dx xx31解 令t x =61, 则6t x =, 56t dx =C t t t t t t dt tt t t dt tt t t t dt t t t dt t t dx x x++--+++-=-++++-=-++++-=-+-=-⋅=-⎰⎰⎰⎰⎰|11|ln 26)357(6)11)1((611)1)(1(6111)(61613572246224622422533其中61x t = (30)⎰++-+dx x x 1111解 令t x =+1, 则21t x =+, tdt dx 2=,Cx x x C x x x C t t t dt t t dt t t t tdt t tdt t t dx x x +++++-=+++++-+=+++-=++-=+-=+-=+-=++-+⎰⎰⎰⎰⎰|11|ln 414|11|ln 4141|1|ln 44)1442()142(2)121(21111111122.应用分部积分法求下列不定积分: ⑴C x x x dx x x x x xdx +-+=--=⎰⎰221arcsin 1arcsin arcsin⑵C x x x dx x x x x xdx +-=⋅-=⎰⎰ln 1ln ln⑶Cx x x x x xdx x x x x x xd x x xdx x x x x d x xdx x +-+=-+=+=-==⎰⎰⎰⎰⎰sin 2cos 2sin cos 2cos 2sin cos 2sin sin 2sin sin cos 222222 ⑷ C x x x dx x x x x xd dx x x +--=+-=-=⎰⎰⎰223223412ln 121ln 211ln 21ln ⑸C x x x x x xdx x x dx x ++-=-=⎰⎰2ln 2)(ln ln 2)(ln )(ln 222 ⑹ ⎰⎰⎰+-==dx xx x x xdx xdx x 2222121arctan 21arctan 21arctan C x x x x dx x x x +--=+--=⎰)arctan (21arctan 21)111(21arctan 21222 C x x x +-+=21arctan )1(212⑺ ⎰⎰⎰+=+dx x dx x dx x x ln 1)ln(ln ]ln 1)[ln(ln C x x dx xdx x x x x x +=+⋅-=⎰⎰)ln(ln ln 1ln 1)ln(ln⑻⎰⎰--=dx xx x x x dx x 2221arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰----+=dx xx x x x x 22221112arcsin 12)(arcsinC x x x x x +--+=2arcsin 12)(arcsin 22⑼⎰⎰⎰-==xdx x x x x xd xdx 23tan sec tan sec tan sec sec⎰⎰⎰+-=--=xdx xdx x x dx x x x x sec sec tan sec )1(sec sec tan sec 32 |tan sec |ln sec tan sec 3x x xdx x x ++-=⎰所以C x x x x xdx +++=⎰|)tan sec |ln tan sec 21sec 3 ⑽⎰⎰+⋅-+=+dx ax x x a x x dx a x 222222⎰+-+-+=dx ax a a x a x x )(2222222⎰⎰+++-+=dx ax a dx a x a x x 2222222)ln(2222222a x x a dx a x a x x ++++-+=⎰所以C a x x a a x x dx a x +++++=+⎰))ln((212222222 类似地可得C a x x a a x x dx a x +-+--=-⎰))ln((212222222 3.求下列不定积分:⑴ C x f a x df x f dx x f x f a aa++=='+⎰⎰1)]([11)()]([)()]([ ⑵C x f x df x f dx x f x f +=+=+'⎰⎰)(arctan )()]([11)]([1)(22⑶C x f x f x df dx x f x f +=='⎰⎰|)(|ln )()()()( ⑷ C e x df e dx x f e x f x f x f +=='⎰⎰)()()()()(4.证明:⑴ 若⎰=dx x I n n tan , ,3,2=n ,则21tan 11----=n n n I x n I 证 ⎰⎰⎰----=-=dx x dx x x dx x x I n n n n 22222tan sec tan )1(sec tan22tan tan ---=⎰n n I x d x .因为⎰⎰-----=x d x n x x d x n n n tan tan )2(tan tan tan 212,所以x n x d x n n 12tan 11tan tan ---=⎰. 从而21tan 11----=n n n I x n I . ⑵ 若⎰=dx x x n m I n m sin cos ),(,则当0≠+n m 时,),2(1sin cos ),(11n m I nm m n m x x n m I n m -+-++=+-)2,(1sin cos 11-+-++-=-+n m I nm n n m x x n m , ,3,2,=m n证 ⎰⎰+-+==x d x n dx x x n m I n m nm 11sin cos 11sin cos ),( ]sin cos )1(sin [cos 112211⎰+-+--++=dx x x m x x n n m n m ])cos 1(sin cos )1(sin [cos 112211⎰--++=-+-dx x x x m x x n n m n m ))],(),2()(1(sin [cos 1111n m I n m I m x x n n m ---++=+-所以),2(1sin cos ),(11n m I n m m n m x x n m I n m -+-++=+-, 同理可得)2,(1sin cos ),(11-+-++-=-+n m I nm n n m x x n m I n mP.199 习题1.求下列不定积分:⑴ ⎰⎰⎰-+++=-+-=-dx x x x dx x x dx x x )111(1111233 C x x x x +-+++=|1|ln 2323 ⑵ 解法一:C x x dx x x dx x x x +--=---=+--⎰⎰|3|)4(ln )3142(127222解法二:⎰⎰⎰+-++--=+--dx x x dx x x x dx x x x 12732112772211272222 ⎰⎰---++-+-=)27(41)27(123127)127(21222x d x x x x x dC x x x x +--++-=34ln 23|127|ln 212 ⑶ 解22311)1)(1(111xx CBx x A x x x x +-+++=+-+=+ 去分母得 )1)(()1(12x C Bx x x A ++++-=令1-=x ,得1=A . 再令0=x ,得1=+C A ,于是32=C . 比较上式两端二次幂的系数得 0=+B A ,从而1-=B ,因此⎰⎰⎰+---+=+dxx x x x dx x dx 2312311311⎰⎰+-++---+=dx x x dx x x x x 22112111261|1|ln 31⎰+-++--+=dx x x x x 43)21(121)1ln(61|1|ln 3122C x x x x +-++-+=312arctan 311)1(ln 6122 ⑷ 解 ⎰⎰⎰⎰+--++=+--+=+dx xx dx x x dx x x x x dx 42424224112111211)1()1(211 ⎰⎰⎰⎰++-+-=+--++=22222222221)1(211)1(211112111121x x x x d x x x x d dx x x x dx x x x⎰⎰-++-+--=2)1()1(212)1()1(2122xx x x d x x x x d C xx x x x x +++-+--=2121ln 24121arctan221C x x x x x x ++++---=1212ln 8221arctan 42222 ⑸⎰+-22)1)(1(x x dx解 令22222)1(11)1)(1(1++++++-=+-x EDx x C Bx x A x x , 解得41=A , 41-==CB , 21-==E D , 于是 ⎰⎰⎰⎰++-++--=+-dx x x dx x x x dx x x dx 22222)1(1211141141)1)(1(C x x x x x x x +++-++-+--=)1(arctan 411141arctan 41)1ln(81|1|ln 41222 C x x x x x ++-+-+-=)11arctan 21|1|(ln 4122⑹⎰⎰⎰++-+++=++-dx x x dx x x x dx x x x 222222)122(125)122(2441)122(2 其中1221)122()122()122(24222222++-=++++=+++⎰⎰x x x x x x d dx x x x ⎰⎰⎰+++=++=++)12(]1)12[(12]1)12[(4)122(1222222x d x dx x dx x x )12arctan(1)12(122+++++=x x x 参见教材P.186 例9或P.193关于k I 的递推公式⑺. 于是,有C x x x x x dx x x x ++-+++-++-=++-⎰)12arctan(251)12(1225122141)122(22222 C x x x x ++-+++=)12arctan(25)122(23522.求下列不定积分⑴⎰-x dx cos 35解 令2tan xt =,则C t t t d tdt t dt t t dx x dx+=+=+=++--=-⎰⎰⎰⎰2arctan 21)2(1)2(2141121135cos 3522222 C x+=)2tan 2arctan(21 ⑵⎰⎰⎰⎰+=+=+=+)tan 32(tan cos )tan 32(sin 3cos 2sin 2222222x xd x x dx x x dx x dxC x x x d +=+=⎰)tan 23arctan(61)tan 231()tan 23(612 ⑶ ⎰⎰⎰++-+=+=+dx xx xx x x x x xdx x dx sin cos cos sin sin cos 21sin cos cos tan 1 )sin cos )cos (sin (21)sin cos cos sin 1(21⎰⎰⎰+++=++-+=x x x x d dx dx x x x x C x x x +++=|)sin cos |ln (21另解:设⎰+=x x xdx I sin cos cos 1,⎰+=x x xdxI sin cos sin 2,则C x dx x x xx I I +=++=+⎰sin cos sin cos 21,C x x x x x x d dx x x x x I I ++=++=+-=-⎰⎰|sin cos |ln sin cos )sin (cos sin cos sin cos 21所以C x x x I x dx +++==+⎰|)sin cos |ln (21tan 11⑷⎰⎰⎰-+++-+-=-+22221)1(11xx dx x dx x x dx xx x⎰⎰⎰-++-++---+-=2221231)12(211x x dxx x dx x dx x x其中(利用教材P.185例7的结果)]1)21(512arcsin 45[21)21(451222x x x x dx x dx x x -+-+-=--=-+⎰⎰ 2222121)1(1)12(x x x x x x d x x dx x -+=-+-+=-++-⎰⎰512arcsin)21(45122-=--=-+⎰⎰x x dxxx dx所以有⎰-+dx xx x 221C x x x x x x x +-+-+--+-+--=512arcsin 231221]1)21(512arcsin 45[2122C x x x x +-++--=21432512arcsin 87 ⑸C x x x x x d xx dx ++++=-++=+⎰⎰|21|ln 41)21()21(222⑹⎰+-dx xxx 1112 解 令 x x t +-=11,则2211tt x +-=,22)1(4t tdtdx +-=,代入原式得 ⎰⎰⎰⎰---=--=+-⋅⋅⎪⎪⎭⎫ ⎝⎛-+=+-dt t t dt t t dt t t t t t dx x xx 222222222222)1(114)1(4)1(411111⎰⎰⎰⎰-+-++--=---=dt t t t dt t dt t dt t ]12)1(1)1(1[114)1(141142222222C t t t t dt t t dt t +++---+=-++--=⎰⎰1111|11|ln ])1(1)1(1[112222 C xx x x +---+=221|11|ln总 练 习 题求下列不定积分: ⑴C x x x dx x xx dx xx x +--=--=--⎰⎰-4312134541121414334132454)2(12⑵]11arcsin [21arcsin 21arcsin 2222⎰⎰⎰--==dx x x x x dx x dx x x 其中)2sin 21(2122cos 1cos cos sin 1222t t dt t dt t t t dx x x -=-==-⎰⎰⎰)1(arcsin 212x x x --=所以]11arcsin [21arcsin 222⎰⎰--=dx xx x x dx x xC x x x x x +---=)]1(arcsin 21arcsin [2122 C x x x x x +-+-=22141arcsin 41arcsin 21 ⑶⎰+xdx 1解 令u x =,则udu dx 2=C u u du uu udu xdx ++-=+-=+=+⎰⎰⎰|)1|ln (2)111(2121 C x x ++-=|)1|ln (2⑷⎰⎰⎰⎰===xx x x de x x d x e dx x x e dx x e sin sin sin sin sin 2sin sin 2cos sin 22sin C x e C e x e x d e x e x x x x x +-=+-=-=⎰)1(sin 2)sin (2)sin sin (2sin sin sin sin sin⑸C x e C e u e du u e u x dx e x u u u x+-=+-==⎰⎰)1(2)(22)(令 ⑹C x x d x x x dx x xdx +-=--=-=-⎰⎰⎰1arcsin )1(1111112222 解法二:令t x sec =,C xC t dt t t t t x xdx +=+==-⎰⎰1arccos tan sec tan sec 12⑺⎰⎰⎰++=+-=+-x x x x d dx x x x x dx x x sin cos )sin (cos sin cos sin cos tan 1tan 1C x x ++=|sin cos |lnC x dx x dx x x +-=-=+-⎰⎰|)4cos(|ln )4tan(tan 1tan 1ππ ⑻ C x x x dx x x x dx x x x +-----=-+-+-=--⎰⎰23232)2(123|2|ln )2(2)2(3)2()2( ⑼C x x x d x xdx x x dx ++=+==⎰⎰⎰32224tan 31tan tan )tan 1(cos sec cos ⑽ ⎰⎰⎰-==dx x dx x dx x 2224)22cos 1()(sin sin⎰⎰++-=+-=dx x x dx x x )24cos 12cos 21(41)2cos 2cos 21(412 C x x x C x x x x ++-=+++-=4sin 3212sin 4183)84sin 22sin (41 ⑾ ⎰+--dx x x x 43523 解⎰⎰-+-=+--dx x x x dx x x x 223)2)(1(5435令22)2(21)2)(1(5-+-++=-+-x C x B x A x x x 去分母得:)1()2)(1()2(52++-++-=-x C x x B x A x 解得:32-=A ,32=B ,1-=C 所以⎰⎰⎰⎰---++-=+--dx x dx x dx x dx x x x 223)2(121321132435 C x x x +-++-=21|12|ln 32 ⑿⎰+dx x )1arctan(解 令u x =+1,du u dx )1(2-=⎰⎰⎰⎰-⋅=-⋅=+du u du u u du u u dx x arctan 2arctan 2)1(2arctan )1arctan(122)1ln(arctan 2]arctan )1[(C u u u u u u +++--+= C x x x x x ++++-+=)22ln()1arctan(⒀ ⎰⎰⎰+-=+-+=+dx x x x dx x x x x dx x x )22(2222433433747 C x x ++-=)2ln(214144 另解:C x x dx x dx x x x dx x x ++-=+-=+⋅=+⎰⎰⎰)2ln(2141)221(4122444443447 ⒁⎰++dx x x x2tan tan 1tan 解 令u x =tan⎰⎰⎰⎰++-+=+++=++du u u du u du u u u u dx x x x 222221111111tan tan 1tanC x x C u u ++-=++-=31tan 2arctan32312arctan32arctan⒂ ⎰⎰-+---=-dx x x x dx x x 10021002)1(1)1(2)1()1( C x x x +-+---=979899)1(971)1(491)1(991 ⒃⎰⎰⎰-+-=-=dx x x xx x d x dx x x 2211arcsin 1arcsin arcsin C xx x x +-+--=|11|ln arcsin 2⒄⎰⎰⎰--+=--+=-+2)]1ln()1[ln(21)]1ln()1[ln(11lndx x x dx x x x dx x x x C x xxx dx x x x x x x ++-+-=-++---+=⎰11ln 21)1111(21)]1ln()1[ln(21222⒅⎰⎰⎰+==x d xx dx xx dx xx tan tan tan 1cos tan 1cos sin 1247C x x ++=)tan 511(tan 22⒆ ⎰⎰⎰⎰+-++=+-+=+-dx x x e dx x e dx x x x e dx x x e xx x x22222222)1(21)1(21)11( C xe dx x e x e dx x e x d e dx x e x x x x x x ++=+-+++=+++=⎰⎰⎰⎰2222221111111 ⒇ ⎰=dx uv I n n ,x b a u 11+=,x b a v 22+=解 ][221211⎰⎰⎰--===dx v b u n u v b u d v b dx uv I n nn n n ])([2][21122111121⎰⎰---+-=-=dx uv b a b a v b n u v b dx u uv b n u v b n nn n ])([21122111----=n n nI b a b a n I nb u v b 所以])([)12(2112211---+=n n n I b a b a n u v b n I。

数学分析部分习题解答

数学分析部分习题解答
∞ ∑ n=1
∑ ∑ 1 1 n 1 −1 n ≤ (u− < ∞. 1 · · · · · un ) ≤ e u1 + · · · + un un
n=1 n=1
4
记 Sn = u1 + · · · + un . 于是
n ∑ k=1
n=1
∑∞ ( n=1 1 −
an an+1
)
在 {an } 有界时收敛而在
n=1
∑∞ ( 从而级数 n=1 1 −
an an+1
)
收敛.
n+ p−1 ( ∑ k=n
下面设 {an } 无界. 此时, ak 1− ak+1 ) ≥ an+p − an . an+p ∑∞ (
n=1
当 p 充分大时,
an+p −an an+p
σ Sn −1
1 − σ Sn
) .
于是级数
un 1+σ n=1 Sn
1.3
第十四章 (B)1.
设 x > 1, 求级数
∞ ∑ n=1
n! (x + 1) · · · (x + n)
n! (x+1)···(x+n) . n
的和. 证明 对任意的 x > 0, 记 an (x) = 可知
n ∑ k=1
1.10 第十四章 (B)11.(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.11 第十四章 (B)13. 1.12 第十四章 (B)14. 1.13 第十四章 (B)19. 1.14 第十五章 (B)2.(2) 1.16 第十九章 (B)15. 1.17 第十九章 (B)20. 2 数学分析中册 2.1 2.2 2.3 2.4 2.5 2.6 2.7 第十三章 (A) 18.(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第十三章 (A) 18.(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第十三章 (A) 20.(4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第十三章 (A) 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第十三章 (B) 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第十三章 (B) 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第十三章 (B) 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

数学分析课本(华师大三版)

数学分析课本(华师大三版)

数学分析课本(华师大三版)篇一:数学分析课本(华师大三版)-习题及答案第八章第八章不定积分一. 填空题x1.若f?(e)?1?x,则f(x)?___________2.设f(x)的一个原函数为xe,则?xf?(x)dx?_____________ 3.若e?xx是f(x)的一个原函数,则?xf(x)dx?________________4.若f(x)?1,则f(x)?____________ 5.?max(x,x)dx?___________________6.若f(x)有原函数xlnx,则?xf??(x)dx?_______________ 7.?ln(sinx)sin2?3??2xdx?________________8.若?dx(1?2cosx)2?Asinx1?2cosx?B?dx1?2cosx,则A?__________,B?__________ 9.设?xf(x)dx?arcsinx?C,则? dxx(4?x)lnx?1x2dxf(x)?_________10.??_________________11.?dx?_________________12.?13.?14.??a?sin(lnx)?cos(lnx)nx?________________?f(x)?xf?(x)?dxdx1?ex?________________?_____________15.?16.?xex2(1?x)dx?_____________________4sinx?3cosxsinx?2cosxdx?______________217.已知f?(2?cosx)?sinx?tan 2x,则f(x)?_______________ 18.?f?(x)1??f(x)?2dx?______________19. 若?f(x)dx?F(x)?C,而u??(x),则?f(u)du?___________. 20设函数f(x)的二阶导数f??(x)连续,那么?xf??(x)dx?__________. 21设f(x)的原函数是sinxx,则?xf?(x)dx?__________.11222已知曲线y?f(x)上任一点的切线斜率为3x2?3x?6,且x??1时,y?则f(x)?__________;f(x)的极小值是__________.1?x2是极大值,23已知一个函数的导数为f(x)?,并且当x?1时,这个函数值等于32?,则这个函数为F(x)?__________. 24 设f?(sin2x)?cosx(x?1),则f(x)?__________.225 若f(x)为连续函数,且f?(x)?f(x),则?f(x)dx?__________.26 若(?f(x)dx)??lnx,则f(x)?__________. 27 已知e28?x2是f(x)的一个原函数,则?f(tanx)secxdx?__________.22?f()dx?__________. 2xx1?x29 设f(x)dx??C,则f(x)?__________.1?x?1?30 在积分曲线族?二、选择填空题 1.设I?1xxdx中,过(1,1)点的积分曲线是y?__________.?xe?1e?1xx,则I?()(1?e)?C (1?e)?x?C ?2ln(1?e)?C (e?1)?C2.设f(x)是连续的偶函数,则期原函数F(x)一定是() A.偶函数B.奇函数C.非奇非偶函数 D.有一个是奇函数xxx3.设I1??1?xdx,I2??du,则存在函数u?u(x),使()x(1?xex)u(1?u)?I2?x ?I2?x ??I1 ?I1 4.当n??1时,?xn lnxdx?() nn?1n(lnx?1n)?C B.xn?1(lnx?1n?1)?Cn?1?1xn?1xn(lnx?1n?1)?CD.n?1lnx?C 7.?(cosx2 ?sinx2)dx?() (sinx?cos x)?C (cos xx222?sin 2)?C?cosxxx22?C?sin2?C8.?x?sinx1?cosxdx?()??2cotx??C9.若f(x)的导函数是e?x?cosx,则f(x)的一个原函数为()?x?cosxB.?e?x?sinxC.?e?x??x?sinx10.若f(x)是以l为周期的连续函数,则其原函数()。

数学分析课本(华师大三版)-习题及答案02

数学分析课本(华师大三版)-习题及答案02

数学分析课本(华师大三版)-习题及答案02第二章数列极限习题§1数列极限概念1、设n a =nn)1(1-+,n=1,2,…,a=0。

(1)对下列ε分别求出极限定义中相应的N :1ε=0.1,2ε=0.01,3ε=0.001;(2)对1ε,2ε,3ε可找到相应的N ,这是否证明了n a 趋于0?应该怎样做才对;(3)对给定的ε是否只能找到一个N ? 2、按ε—N 定义证明:(1)∞→n lim 1+n n =1;(2)∞→n lim 2312322=-+n n n ;(3)∞→n lim n n n !;(4)∞→n lim sinn π=0;(5)∞→n lim n an=0(a >0)。

3、根据例2,例4和例5的结果求出下列极限,并指出哪些是无穷小数列:(1)∞→n limn1;(2)∞→n limn3;(3)∞→n lim 31n ;(4)∞→n lim n 31;(5)∞→n limn21;(6)∞→n limn10;(7)∞→n lim n21。

4、证明:若∞→n lim n a = a ,则对任一正整数k ,有∞→n lim k n a += a 。

5、试用定义1'证明:(1)数列{n1}不以1为极限;(2)数列{n n )1(-}发散。

6、证明定理2.1,并应用它证明数列{nn)1(1-+}的极限是1。

7、证明:若∞→n lim n a = a ,则∞→n lim |n a |= |a|。

当且仅当a 为何值时反之也成立?8、按ε—N 定义证明:(1)∞→n lim )1(n n -+=0;(2)∞→n lim3321n n++++ =0;(3)∞→n lim n a =1,其中,1nn -n 为偶数, n a =nnn +2,n 为奇数。

§2收敛数列的性质1、求下列极限:(1)∞→n lim 32413323++++n n n n ;(2)∞→n lim 221n n +;(3)∞→n lim 113)2(3)2(+++-+-n n nn ;(4)∞→n lim )(2n n n -+;(5)∞→n lim )1021(n n n +++ ;(6)∞→n lim n n31313121212122++++++ 。

数学分析课后习题答案

数学分析课后习题答案
1. 方程 cos x + sin y = e xy 能否在原点的某邻域内确定隐函数 y = f (x) 或 x = g( y) ?
解:令 F (x, y) = cos x + sin y − e xy ,则有
Ⅰ) F (x, y) 在原点的某邻域内连续;
Ⅱ) F (0,0) = 0 ;
Ⅲ) Fx (x, y) = − sin x − ye xy , Fy (x, y) = cos y − xe xy 均在上述邻域内连续; Ⅳ) Fy (0,0) = 1 ≠ 0 , Fx (0,0) = 0 故由隐函数存在唯一性定理知,方程 cos x + sin y = e xy 在原点的某邻域内可确定隐函数
− y 2 )(1 − 2 dy ) dx
dx 2 dx dx
(x − 2y)2
=
4x − 2y x −2y
+
(x
6x − 2y)3
.
5.设 u = x 2 + y 2 + z 2 ,其中 z = f (x, y) 是由方程 x3 + y 3 + z 3 = 3xyz 所确定的隐函数,
求 u x 及 u xx . 解:因由 x3 + y 3 + z 3 = 3xyz 所确定的隐函数为 z = f (x, y) ,
− Fx (Fyx
+ Fyy y′)]Fy −2
= (2Fx Fy Fxy − Fy 2 Fxx − Fx 2 Fyy )Fy −3 (Fy ≠ 0) .
Fxx Fxy Fx 所以 Fy 3 y′′ = 2Fx Fy Fxy − Fy 2 Fxx − Fx 2 Fyy = Fxy Fyy Fy (Fy ≠ 0) .

《数学分析》第三版全册课后答案 (1)

《数学分析》第三版全册课后答案 (1)

4、一阶微分方程 (3x 4 xy)dx 2 x dy 0 的通解(可以用隐函数表达)为 5、设二阶可微函数 f ( x, y) 满足 .
专业:
2 f 2 f 2 f y , x y , x, 则 f ( x, y) 的表达形式为 x 2 xy y 2
得分
评阅人
(2) f ( x, y) 在 (0, 0) 点的可微性.
2、 (本题 7 分)设函数 f ( x ) 在0, 上有界且连续, f (0) 0, 讨论函数
F ( y)

0
yf ( x) dx 的连续性. x2 y 2
得分
评阅人
三、计算题 II(共 4 小题,共 40 分)
第 2 页(共
3 页)
------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------
1、 (本题 10 分)设定义在 (0, ) 上的函数 f 满足下列三个条件: (1) x 0, f ( x) 0, f (1) 1; (2) f ( x 1) xf ( x), x 0; (3) ln f 是 (0, ) 上的凸函数. 证明: (1) f ( x) lim
n x n! ; n x( x 1) ( x n)
(2)验证欧拉积分 ( x) 也满足题述的三个条件,并由此证明 f ( x) ( x).
2 2、 (本题 10 分)设 u ( x, y ) 在 R 上连续,对任意 r 0 ,证明:等式

数学分析课本(华师大三版)-习题及答案第三学期试题

数学分析课本(华师大三版)-习题及答案第三学期试题

(三十二)数学分析试题(二年级第一学期)一 叙述题(每小题10分,共30分)1 叙述含参变量反常积分⎰+∞adx y x f ),(一致收敛的Cauchy 收敛原理。

2 叙述Green 公式的内容及意义。

3 叙述n 重积分的概念。

二 计算题(每小题10分,共50分)1.计算积分⎰+-=C yx ydx xdy I 2243,其中C 为椭圆13222=+y x ,沿逆时针方向。

2.已知 ),,(y z xz f z -= 其中),(v u f 存在着关于两个变元的二阶连续偏导数,求z 关于y x ,的二阶偏导数。

3.求椭球体1222222=++cz b y a x 的体积。

4.若l 为右半单位圆周,求⎰lds y ||。

5.计算含参变量积分⎰+-=π2)cos 21ln( )(dx a x a a I (1<a )的值。

三 讨论题(每小题10分,共20分)1 若积分在参数的已知值的某邻域内一致收敛,则称此积分对参数的已知值一致收敛。

试讨论积分⎰∞++=0221xa adxI 在每一个固定的a 处的一致收敛性。

2 讨论函数dx yx x yf y F ⎰+=122)()(的连续性,其中)(x f 在]1,0[上是正的连续函数。

数学分析试题(二年级第一学期)答案1一 叙述题(每小题10分,共30分)1 含参变量反常积分⎰+∞adx y x f ),(关于y 在],[d c 上一致收敛的充要条件为:对于任意给定的0>ε, 存在与y 无关的正数0A , 使得对于任意的0,A A A >',],[ ,),(d c y dx y x f A A∈<⎰'ε成立。

2 Green 公式:设D 为平面上由光滑或分段光滑的简单闭曲线所围的单连通区域。

如果函数),(),,(y x Q y x P 在D 上具有连续偏导数,那么⎰⎰∂∂∂-∂∂=+DDdxdy xPx Q Qdy Pdx )(,其中D ∂取正向,即诱导正向。

数学分析课本(华师大三版)-习题及答案02+03

数学分析课本(华师大三版)-习题及答案02+03
lim
5
lim x + 3
3 x→0 x + 4 x 2 + 3 1 (9) lim x cos x→0 x 1 1 (11) lim( ) − x →∞ 1 − x 1− x3
(13) lim
1+ x x →∞ 1 − x
2 x →∞
x − cos x x →∞ x 2 x − 2x + 3 (10) lim 2 x →∞ 3x + 4 x + 5 3x 5 − 6 x 3 + 3 (12) lim x →∞ x7 − 2 x +3 (14) lim x →∞ x − 2 lim
存在且相等. 10.若 x1 = a > 0,y1 = b > 0(a > b) x n +1 = 证明: lim x n = lim y n (提示:x n ≤ y n ) .
n→∞ n→∞
x n y n , y n +1 =
xn + yn . 2
x1 + x 2 +L + x n =a. n 12.设 {nx n } 非负有界,试证: lim x n = 0 .
lim lim
( x + x ) sin 2 x x →0 (tan x)3
1+ x −1 x →0 tan 2 x 2x − x lim+ x →0 tan x
sin x sin 2 ( x − 1) (6) lim x →π x − π x →1 x −1 16. 证明:若 lim a n = a ,则 lim a n = a ,逆命题是否成立?
n →∞ n →∞ n→∞ k n →∞
4.试证:若 lim x n = a ,且 x n ≥ 0 ,k 为任意一个自然数,则 lim k x n = 5.应用夹逼性证明:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 实数集与函数习题§1实数1、 设a 为有理数,x 为无理数。

证明:(1)a+ x 是无理数;(2)当a ≠0时,ax 是无理数。

2、 试在数轴上表示出下列不等式的解:(1)x (2x -1)>0;(2)|x-1|<|x-3|;(3)1-x -12-x ≥23-x 。

3、 设a 、b ∈R 。

证明:若对任何正数ε有|a-b|<ε,则a = b 。

4、 设x ≠0,证明|x+x1|≥2,并说明其中等号何时成立。

5、 证明:对任何x ∈R 有(1)|x-1|+|x-2|≥1;(2)|x-1|+|x-2|+|x-3|≥2。

6、 设a 、b 、c ∈+R (+R 表示全体正实数的集合)。

证明 |22b a +-22c a +|≤|b-c|。

你能说明此不等式的几何意义吗7、 设x>0,b>0,a ≠b 。

证明x b x a ++介于1与ba 之间。

8、 设p 为正整数。

证明:若p 不是完全平方数,则p 是无理数。

9、 设a 、b 为给定实数。

试用不等式符号(不用绝对值符号)表示下列不等式的解:(1)|x-a|<|x-b|;(2)|x-a|< x-b ;(3)|2x -a|<b 。

§2数集、确界原理1、 用区间表示下列不等式的解:(1)|1-x|-x ≥0;(2)| x+x1|≤6; (3)(x-a )(x-b )(x-c )>0(a ,b ,c 为常数,且a<b<c );(4)sinx ≥22。

2、 设S 为非空数集。

试对下列概念给出定义:(1)S 无上界;(2)S 无界。

3、 试证明由(3)式所确定的数集S 有上界而无下界。

4、 求下列数集的上、下确界,并依定义加以验证:(1)S={x|2x <2};(2)S={x|x=n !,n ∈+N };(3)S={x|x 为(0,1)内的无理数};(4)S={x|x=1-n21,n ∈+N }。

5、 设S 为非空有下界数集。

证明:infS=ξ∈S ⇔ξ=minS 。

6、 设S 为非空数集,定义-S ={x|-x ∈S}。

证明:(1)inf -S =-supS ;(2)sup -S =-infS 。

7、 设A 、B 皆为非空有界数集,定义数集A+B={z|z=x+y ,x ∈A ,y ∈B}。

证明:(1)sup (A+B )=supA+supB ;(2)inf (A+B )=infA+infB 。

8、 设a>0,a ≠1,x 为有理数。

证明 sup{r a |r 为有理数,r<x},当a>1, x a = inf{r a |r 为有理数,r<x},当a<1。

§3函数概念1、 试作下列函数的图象:(1)y=2x +1;(2)y=2)1(+x ;(3)y=1-2)1(+x ;(4)y=sgn (sinx );(5)y=⎪⎩⎪⎨⎧=<>.1||,3,1||,,1||,33x x x x x2、 试比较函数y=x a 与y=log x a 分别当a=2和a=21时的图象。

3、 根据图1-2写出定义在[0,1]上的分段函数1f (x )和2f (x )的解析表达式。

4、 确定下列初等函数的存在域:(1)y=sin (sinx );(2)y=lg (lgx );(3)y=arcsin (lg 10x );(4)y=lg (arcsin 10x )。

5、 设函数f (x )=⎩⎨⎧>≤+.0,2,0,2x x x x 求:(1)f (-3),f (0),f (1);(2)f (Δx )-f (0),f (-Δx )-f (0)(Δx>0)。

6、 设函数f (x )=x+11,求f (2+x ),f (2x ),f (2x ),f (f (x )),f ()(1x f )。

7、 试问下列函数是由哪些基本初等函数复合而成:(1)y=20)1(x +;(2)y=22)(arcsin x ;(3)y=lg (1+21x +);(4)y=x 2sin 2。

8、 在什么条件下,函数y=dcx b ax ++的反函数就是它本身 9、 试作函数y=arcsin (sinx )的图象。

10、试问下列等式是否成立:(1)tan (arctanx )=x ,x ∈R ;(2)arctan (tanx )=x ,x ≠k π+2π,k=0,±1,±2,… 11、试问y=|x|是初等函数吗12、证明关于函数y=[x]的如下不等式:(1)当x>0时,1-x<x[x 1]≤1;(2)当x<0时,1≤x[x1]<1-x 。

§4具有某些特性的函数1、 证明f (x )=12+x x 是R 上的有界函数。

2、 (1)叙述无界函数的定义; (2)证明f (x )=21x 为(0,1)上的无界函数; (3)举出函数f 的例子,使f 为闭区间[0,1]上的无界函数。

3、 证明下列函数在指定区间上的单调性:(1)y=3x-1在(-∞,+∞)上严格递增;(2)y=sinx 在[-2π,2π]上严格递增; (3)y=cosx 在[0,π]上严格递减。

4、 判别下列函数的奇偶性:(1)f (x )=214x +2x -1;(2)f (x )=x+sinx ; (3)f (x )=2x 2x e -;(4)f (x )=lg (x+21x +)。

5、求下列函数的周期:(1)x 2cos ;(2)tan3x ;(3)cos 2x +2sin 3x 。

6、设函数f 定义在[-a ,a]上,证明:(1)F (x )=f (x )+f (-x ),x ∈[-a ,a]为偶函数;(2)G (x )=f (x )-f (-x ),x ∈[-a ,a]为奇函数;(3)f 可表示为某个奇函数与某个偶函数之和。

7、设f 、g 为定义在D 上的有界函数,满足f (x )≤g (x ),x ∈D 。

证明:(1)D x ∈sup f (x )≤D x ∈sup g (x );(2)D x ∈inf f (x )≤Dx ∈inf g (x )。

8、设f 为定义在D 上的有界函数,证明:(1)D x ∈sup {-f (x )}=-D x ∈inf f (x );(2)D x ∈inf f (x )=-Dx ∈sup f (x )。

9、证明:tanx 在(-2π,2π)上无界,而在(-2π,2π)内任一闭区间[a ,b]上有界。

10、讨论狄利克雷函数 1,当x 为有理数,D (x )=0,当x 为无理数的有界性、单调性与周期性。

11、证明:f (x )=x+sinx 在R 上严格增。

12、设定义在[a ,+∞)上的函数f 在任何闭区间[a ,b]上有界。

定义[a ,+∞)上的函数:m (x )=x y a ≤≤inf f (y ),M (x )=xy a ≤≤sup f (y )。

试讨论m (x )与M (x )的图象,其中(1)f (x )=cosx ,x ∈[0,+∞);(2)f (x )=2x ,x ∈[-1,+∞)。

总练习题1、 设a 、b ∈R ,证明:(1)max{a ,b}=21(a+b+|a-b|);(2)min{a ,b}=21(a+b-|a-b|)。

2、设f 和g 都是D 上的初等函数。

定义M (x )=max{f (x ),g (x )},m (x )=min{f (x ),g (x )},x ∈D试问M (x )和m (x )是否为初等函数3、设函数f (x )=xx +-11,求: f (-x ),f (x+1),f (x )+1,f (x 1),)(1x f ,f (2x ),f (f (x ))。

4、已知f (x1)=x+21x +,求f (x )。

5、利用函数y=[x]求解:(1)某系各班级推荐学生代表,每5人推荐1名代表,余额满3人可增选1名。

写出可推选代表数y 与班级学生数x 之间的函数关系(假设每班学生数为30—50人);(2)正数x 经四舍五入后得整数y ,写出y 与x 之间的函数关系。

6、已知函数y=f (x )的图象,试作下列各函数的图象:(1)y==-f (x );(2)y=f (-x );(3)y=-f (-x );(4)y=|f (x )|;(5)y=sgnf (x );(6)y=21[|f (x )|+f (x )];(7)y=21[|f (x )|-f (x )]。

7、已知函数f 和g 的图象,试作下列各函数的图象:(1)ϕ(x )=max{f (x ),g (x )};(2)ψ(x )= min{f (x ),g (x )}。

8、设f 、g 和h 为增函数,满足f (x )≤g (x )≤h (x ),x ∈R 。

证明:f (f (x ))≤g (g (x ))≤h (h (x ))。

9、设f 和g 为区间(a ,b )上的增函数,证明第7题中定义的函数ϕ(x )和ψ(x )也都是(a ,b )上的增函数。

10、设f 为[-a ,a]上的奇(偶)函数。

证明:若f 在[0,a]上增,则f 在[-a ,0]上增(减)。

11、证明:(1)两个奇函数之和为奇函数,其积为偶函数;(2)两个偶函数之和与积都为偶函数;(3)奇函数与偶函数之积为奇函数。

12、设f ,g 为D 上的有界函数。

证明:(1)D x ∈inf {f (x )+g (x )}≤D x ∈inf f (x )+Dx ∈sup g (x ); (2)D x ∈sup f (x )+D x ∈inf g (x )≤Dx ∈sup {f (x )+g (x )}。

13、设f ,g 为D 上的非负有界函数。

证明:(1)D x ∈inf f (x )·D x ∈inf g (x )≤Dx ∈inf {f (x )g (x )}; (2)D x ∈sup {f (x )g (x )}≤D x ∈sup f (x )·Dx ∈sup g (x )。

14、将定义在[0,+∞)上的函数f 延拓到R 上,使延拓后的函数为(ⅰ)奇函数;(ⅱ)偶函数。

设(1)f (x )=sinx+1;(2)f (x )=⎪⎩⎪⎨⎧>≤≤--.1,,10,1132x x x x 15、设f 为定义在R 上以h 为周期的函数,a 为实数。

证明:若f 在[a ,a+h]上有界,则f 在R 上有界。

16、设f 在区间I 上有界。

记M=I x ∈sup f (x ),m=Ix ∈inf f (x )。

证明|)()(|sup ,x f x f Ix x ''-'∈'''=M-m 。

相关文档
最新文档