DES加密算法实验报告

合集下载

DES加密算法的简单实现实验报告

DES加密算法的简单实现实验报告

DES加密算法的简单实现实验报告一、实验目的本实验的主要目的是对DES加密算法进行简单的实现,并通过实际运行案例来验证算法的正确性和可靠性。

通过该实验可以让学生进一步了解DES算法的工作原理和加密过程,并培养学生对算法实现和数据处理的能力。

二、实验原理DES(Data Encryption Standard,数据加密标准)是一种对称密钥加密算法,它是美国联邦政府采用的一种加密标准。

DES算法使用了一个共享的对称密钥(也称为密钥),用于加密和解密数据。

它采用了分组密码的方式,在进行加密和解密操作时,需要将数据分成固定长度的数据块,并使用密钥对数据进行加密和解密。

DES算法主要由四个步骤组成:初始置换(Initial Permutation),轮函数(Round Function),轮置换(Round Permutation)和最终置换(Final Permutation)。

其中初始置换和最终置换是固定的置换过程,用于改变数据的顺序和排列方式。

轮函数是DES算法的核心部分,它使用了密钥和数据块作为输入,并生成一个与数据块长度相同的输出结果。

轮置换将轮函数的输出结果与前一轮的结果进行异或操作,从而改变数据的排列方式。

通过多轮的迭代运算,DES算法可以通过一个给定的密钥对数据进行高强度的加密和解密操作。

三、实验步骤2.初始置换:将输入数据按照一定的规则重新排列,生成一个新的数据块。

初始置换的规则通过查表的方式给出,我们可以根据规则生成初始置换的代码。

3.轮函数:轮函数是DES算法的核心部分,它使用轮密钥和数据块作为输入,并生成一个与数据块长度相同的输出结果。

在实际的算法设计和实现中,可以使用混合逻辑电路等方式来实现轮函数。

4.轮置换:轮置换将轮函数的输出结果与前一轮的结果进行异或操作,从而改变数据的排列方式。

轮置换的规则也可以通过查表的方式给出。

5.最终置换:最终置换与初始置换类似,将最后一轮的结果重新排列,生成最终的加密结果。

des算法实验报告

des算法实验报告

des算法实验报告DES算法实验报告一、引言数据加密标准(Data Encryption Standard,简称DES)是一种对称密钥加密算法,由IBM公司于1975年研发并被美国国家标准局(NBS)采纳为联邦信息处理标准(FIPS)。

二、算法原理DES算法采用了分组密码的方式,将明文数据划分为固定长度的数据块(64位),并通过密钥进行加密和解密操作。

其核心是Feistel结构,每轮加密操作包括置换和替代两个步骤。

1. 置换步骤DES算法的初始置换(IP)和逆初始置换(IP-1)通过一系列的位重排操作,将输入的64位明文数据打乱,以增加加密的强度。

2. 替代步骤DES算法中使用了8个S盒(Substitution Box),每个S盒接受6位输入,并输出4位结果。

S盒的作用是将输入的6位数据映射为4位输出,通过这种非线性的映射关系,增加了算法的安全性。

3. 轮函数DES算法的加密过程包含16轮迭代,每轮迭代中都会对数据进行一系列的位重排和替代操作。

其中,轮函数是DES算法的核心部分,它通过使用子密钥对数据进行异或操作,并通过S盒替代和P盒置换操作,产生新的数据块。

三、实验步骤为了更好地理解DES算法的加密过程,我们进行了以下实验步骤:1. 输入明文和密钥我们选择了一个64位的明文数据块和一个56位的密钥作为输入。

明文数据块经过初始置换(IP)后,得到L0和R0两个32位的数据块。

2. 生成子密钥通过对密钥进行置换和循环左移操作,生成16个48位的子密钥。

3. 迭代加密对明文数据块进行16轮的迭代加密,每轮加密包括以下步骤:a. 将R(i-1)作为输入,经过扩展置换(E-box),得到48位的扩展数据。

b. 将扩展数据和子密钥Ki进行异或操作,得到48位的异或结果。

c. 将异或结果分为8个6位的数据块,分别经过8个S盒替代操作,得到32位的S盒替代结果。

d. 将S盒替代结果经过P盒置换,得到32位的轮函数输出。

密码学案例实验报告书

密码学案例实验报告书

一、实验背景随着信息技术的飞速发展,信息安全问题日益突出。

密码学作为保障信息安全的核心技术,在数据加密、身份认证、数字签名等领域发挥着重要作用。

为了加深对密码学原理的理解,提高实际应用能力,我们开展了本次密码学案例实验。

二、实验目的1. 掌握DES加密算法的基本原理和操作步骤。

2. 熟悉RSA加密算法的原理和应用。

3. 学习数字签名技术的应用。

4. 培养动手实践能力,提高解决实际问题的能力。

三、实验内容1. DES加密算法(1)实验目的:了解DES加密算法的基本原理,掌握DES加密和解密过程。

(2)实验内容:① 设计一个简单的DES加密程序,实现明文到密文的转换。

② 设计一个简单的DES解密程序,实现密文到明文的转换。

(3)实验步骤:① 编写DES加密程序,输入明文和密钥,输出密文。

② 编写DES解密程序,输入密文和密钥,输出明文。

2. RSA加密算法(1)实验目的:了解RSA加密算法的基本原理,掌握RSA加密和解密过程。

(2)实验内容:① 设计一个简单的RSA加密程序,实现明文到密文的转换。

② 设计一个简单的RSA解密程序,实现密文到明文的转换。

(3)实验步骤:① 编写RSA加密程序,输入明文和密钥对,输出密文。

② 编写RSA解密程序,输入密文和私钥,输出明文。

3. 数字签名技术(1)实验目的:了解数字签名技术的基本原理,掌握数字签名的生成和验证过程。

(2)实验内容:① 设计一个简单的数字签名程序,实现签名生成和验证。

(3)实验步骤:① 编写数字签名程序,输入明文、私钥和签名算法,输出签名。

② 编写数字签名验证程序,输入明文、公钥和签名,验证签名是否正确。

四、实验结果与分析1. DES加密算法实验结果通过编写DES加密和解密程序,成功实现了明文到密文和密文到明文的转换。

实验结果表明,DES加密算法在保证数据安全的同时,具有较高的效率。

2. RSA加密算法实验结果通过编写RSA加密和解密程序,成功实现了明文到密文和密文到明文的转换。

des加密算法实验报告

des加密算法实验报告

DES加密算法实验报告1. 引言DES(Data Encryption Standard)是一种对称密码算法,于1977年被美国联邦信息处理标准(FIPS)确定为联邦标准。

DES加密算法采用分组密码的思想,将明文按照64位分为一组,经过一系列的置换、替代和迭代操作,最终输出加密后的密文。

本实验旨在通过对DES加密算法的实际操作,深入理解DES的工作原理和加密过程。

2. 实验步骤2.1. 密钥生成DES加密算法的核心在于密钥的生成。

密钥生成过程如下:1.将64位的初始密钥根据置换表进行置换,生成56位密钥。

2.将56位密钥分为两个28位的子密钥。

3.对两个子密钥进行循环左移操作,得到循环左移后的子密钥。

4.将两个循环左移后的子密钥合并,并根据压缩置换表生成48位的轮密钥。

2.2. 加密过程加密过程如下:1.将64位的明文按照初始置换表进行置换,得到置换后的明文。

2.将置换后的明文分为左右两部分L0和R0,每部分32位。

3.进行16轮迭代操作,每轮操作包括以下步骤:–将R(i-1)作为输入,经过扩展置换表扩展为48位。

–将扩展后的48位数据与轮密钥Ki进行异或操作。

–将异或结果按照S盒进行替代操作,得到替代后的32位数据。

–对替代后的32位数据进行置换,得到置换后的32位数据。

–将置换后的32位数据与L(i-1)进行异或操作,得到Ri。

–将R(i-1)赋值给L(i)。

4.将最后一轮迭代后得到的数据合并为64位数据。

5.对合并后的64位数据进行逆置换,得到加密后的64位密文。

3. 实验结果对于给定的明文和密钥,进行DES加密实验,得到加密后的密文如下:明文:0x0123456789ABCDEF 密钥:0x133457799BBCDFF1密文:0x85E813540F0AB4054. 结论本实验通过对DES加密算法的实际操作,深入理解了DES加密算法的工作原理和加密过程。

DES加密算法通过对明文的置换、替代和迭代操作,混淆了明文的结构,使得密文的产生与密钥相关。

des 加密算法实验报告

des 加密算法实验报告

des 加密算法实验报告DES加密算法实验报告一、引言数据加密标准(Data Encryption Standard,简称DES)是一种对称加密算法,由IBM公司于1975年研发并被美国联邦政府采用为标准加密算法。

DES算法具有高效、可靠、安全等特点,被广泛应用于信息安全领域。

本实验旨在通过对DES算法的实验研究,深入了解其原理、性能和应用。

二、DES算法原理DES算法采用对称密钥加密,即加密和解密使用相同的密钥。

其核心是Feistel结构,将明文分成左右两部分,经过16轮迭代加密后得到密文。

每一轮加密中,右半部分作为下一轮的左半部分,而左半部分则通过函数f和密钥进行变换。

DES算法中使用了置换、代换和异或等运算,以保证加密的安全性。

三、DES算法实验过程1. 密钥生成在DES算法中,密钥长度为64位,但实际上只有56位用于加密,8位用于奇偶校验。

实验中,我们随机生成一个64位的二进制密钥,并通过奇偶校验生成最终的56位密钥。

2. 初始置换明文经过初始置换IP,将明文的每一位按照特定规则重新排列,得到初始置换后的明文。

3. 迭代加密经过初始置换后的明文分为左右两部分,每轮加密中,右半部分作为下一轮的左半部分,而左半部分则通过函数f和子密钥进行变换。

函数f包括扩展置换、S盒代换、P盒置换和异或运算等步骤,最后与右半部分进行异或运算得到新的右半部分。

4. 逆初始置换经过16轮迭代加密后,得到的密文再经过逆初始置换,将密文的每一位按照特定规则重新排列,得到最终的加密结果。

四、DES算法性能评估1. 安全性DES算法的密钥长度较短,易受到暴力破解等攻击手段的威胁。

为了提高安全性,可以采用Triple-DES等加强版算法。

2. 效率DES算法的加密速度较快,适用于对大量数据进行加密。

但随着计算机计算能力的提高,DES算法的加密强度逐渐降低,需要采用更加安全的加密算法。

3. 应用领域DES算法在金融、电子商务、网络通信等领域得到广泛应用。

des算法 实验报告

des算法 实验报告

des算法实验报告DES算法实验报告引言:数据加密标准(Data Encryption Standard,简称DES)是一种对称密钥加密算法,由IBM公司在20世纪70年代初开发。

DES算法通过将明文分块加密,使用相同的密钥进行加密和解密操作,以保护数据的机密性和完整性。

本实验旨在深入了解DES算法的原理和应用,并通过实验验证其加密和解密的过程。

一、DES算法原理DES算法采用分组密码的方式,将明文分为64位的数据块,并使用56位的密钥进行加密。

其加密过程主要包括初始置换、16轮迭代和逆初始置换三个步骤。

1. 初始置换(Initial Permutation,IP):初始置换通过将明文按照特定的置换表进行重排,得到一个新的数据块。

这一步骤主要是为了增加密文的随机性和混淆性。

2. 16轮迭代(16 Rounds):DES算法通过16轮迭代的运算,对数据块进行加密操作。

每一轮迭代都包括四个步骤:扩展置换(Expansion Permutation,EP)、密钥混合(Key Mixing)、S盒替换(Substitution Boxes,S-Boxes)和P盒置换(Permutation,P)。

其中,S盒替换是DES算法的核心步骤,通过将输入的6位数据映射为4位输出,增加了加密的复杂性。

3. 逆初始置换(Inverse Initial Permutation,IP-1):逆初始置换是初始置换的逆运算,将经过16轮迭代加密的数据块按照逆置换表进行重排,得到最终的密文。

二、实验步骤本实验使用Python编程语言实现了DES算法的加密和解密过程,并通过实验验证了算法的正确性。

1. 密钥生成:首先,根据用户输入的密钥,通过置换表将64位密钥压缩为56位,并生成16个子密钥。

每个子密钥都是48位的,用于16轮迭代中的密钥混合操作。

2. 加密过程:用户输入明文数据块,将明文按照初始置换表进行重排,得到初始数据块。

DES加密解密实验报告

DES加密解密实验报告

DES加密解密实验报告实验报告题目:DES加密解密实验一、实验目的1.了解DES加密算法的工作原理。

2. 学习使用Python编程语言实现DES加密算法。

3.掌握DES加密算法的应用方法。

二、实验原理DES(Data Encryption Standard)是一种用于加密的对称密钥算法,其密钥长度为64位,分为加密过程和解密过程。

1.加密过程(1)初始置换IP:将64位明文分成左右两部分,分别为L0和R0,进行初始置换IP操作。

(2)子密钥生成:按照规则生成16个子密钥,每个子密钥长度为48位。

(3)迭代加密:通过16轮迭代加密运算,得到最终的密文。

每轮迭代加密包括扩展置换、异或运算、S盒替代、P置换和交换操作。

(4)逆初始置换:将最终的密文分成左右两部分,进行逆初始置换操作,得到最终加密结果。

2.解密过程解密过程与加密过程类似,但是子密钥的使用顺序与加密过程相反。

三、实验材料与方法材料:电脑、Python编程环境、DES加密解密算法代码。

方法:1. 在Python编程环境中导入DES加密解密算法库。

2.输入明文和密钥。

3.调用DES加密函数,得到密文。

4.调用DES解密函数,得到解密结果。

5.输出密文和解密结果。

四、实验步骤1.导入DES加密解密算法库:```pythonfrom Crypto.Cipher import DES```2.输入明文和密钥:```pythonplaintext = "Hello World"key = "ThisIsKey"```3.创建DES加密对象:```pythoncipher = DES.new(key.encode(, DES.MODE_ECB) ```。

DES加密实验报告

DES加密实验报告

DES加密实验报告实验目的:1.了解DES加密算法的原理和流程;2.掌握DES加密算法的编程实现方法;3.探究不同密钥长度对DES加密效果的影响。

实验设备和材料:1.计算机;2. Python编程环境。

实验步骤:1.DES加密算法原理和流程:DES(Data Encryption Standard)是一种对称加密算法,采用分组密码体制,密钥长度为56位,数据块长度为64位。

DES加密算法的流程如下:a)初始置换(IP置换):将明文分为左右两个32位的子块,并经过初始置换表IP进行置换;b)迭代加密:将初始置换结果分为左右两个子块,进行16轮迭代操作;c)轮函数:每轮迭代中,右子块与扩展置换表进行扩展置换,并与轮密钥进行异或运算,然后经过S盒替换、P置换和异或运算得到新的右子块;d)逆初始置换(IP逆置换):将最后一轮的结果进行逆初始置换,得到密文。

2.DES加密算法编程实现:首先,导入`pycrypto`库并生成合适长度的密钥;其次,定义初始置换表IP,扩展置换表E,S盒置换表S1-S8,P置换表P,以及逆初始置换表IP_inverse;然后,定义`des_encrypt`函数实现DES加密算法的逻辑:a)根据IP置换表对输入明文进行初始置换;b)将初始置换结果分为左右两个子块;c)进行16轮迭代操作,每轮迭代中更新左右子块的值;d)对最后一轮迭代结果进行逆初始置换;e)返回加密后的密文。

3.探究不同密钥长度对DES加密效果的影响:初始化明文和密钥,调用`des_encrypt`函数进行加密,并输出加密结果;分别改变密钥长度为56位、64位、128位,再次进行加密操作,并输出加密结果;比较不同密钥长度下的加密结果,进行效果分析。

实验结果:使用DES加密算法对明文进行加密,得到相应的密文。

实验结论:1.DES加密算法可以对密文进行可靠保护,提高数据的安全性;2.较长的密钥长度有助于增强DES加密算法的安全性,但同时也会增加加密和解密的运算成本;3.在实际应用中,根据需求和实际情况,选择合适的密钥长度,平衡安全性和性能的需求。

DES算法实验报告

DES算法实验报告

DES算法实验报告DES (Data Encryption Standard)算法是一种对称密钥加密算法,由IBM于1970s年代开发。

它是加密领域的经典算法之一,被广泛应用于安全通信和数据保护领域。

本实验报告将介绍DES算法的原理、实现和安全性分析。

一、DES算法原理1.初始置换(IP置换):将输入的64位明文进行初始置换,得到一个新的64位数据块。

2.加密轮函数:DES算法共有16轮加密,每轮加密包括3个步骤:扩展置换、密钥混合、S盒置换。

扩展置换:将32位数据扩展为48位,并与轮密钥进行异或运算。

密钥混合:将异或运算结果分为8组,每组6位,并根据S盒表进行置换。

S盒置换:将6位数据分为两部分,分别代表行和列,通过查表得到一个4位结果,并合并为32位数据。

3. Feistel网络:DES算法采用了Feistel网络结构,将32位数据块分为左右两部分,并对右半部分进行加密处理。

4.置换:将加密后的左右两部分置换位置。

5.逆初始置换:将置换后的数据进行逆初始置换,得到加密后的64位密文。

二、DES算法实现本实验使用Python编程语言实现了DES算法的加密和解密功能。

以下是加密和解密的具体实现过程:加密过程:1.初始化密钥:使用一个64位的密钥,通过PC-1表进行置换,生成56位的初始密钥。

2.生成子密钥:根据初始密钥,通过16次的循环左移和PC-2表进行置换,生成16个48位的子密钥。

3.初始置换:对输入的明文进行初始置换,生成64位的数据块。

4.加密轮函数:对初始置换的数据块进行16轮的加密操作,包括扩展置换、密钥混合和S盒置换。

5.逆初始置换:对加密后的数据块进行逆初始置换,生成加密后的64位密文。

解密过程:1.初始化密钥:使用相同的密钥,通过PC-1表进行置换,生成56位的初始密钥。

2.生成子密钥:根据初始密钥,通过16次的循环左移和PC-2表进行置换,生成16个48位的子密钥。

3.初始置换:对输入的密文进行初始置换,生成64位的数据块。

DES算法代码及实验报告

DES算法代码及实验报告

DES算法代码及实验报告DES算法(Data Encryption Standard,数据加密标准)是一种对称密钥加密算法,是密码学中最为经典的算法之一、DES算法的核心是Feistel结构,通过将明文分成多个块,然后对每个块进行一系列的置换和替换操作,最后得到密文。

本文将给出DES算法的代码实现,并进行实验报告。

一、DES算法的代码实现:以下是使用Python语言实现的DES算法代码:```pythondef str_to_bitlist(text):bits = []for char in text:binval = binvalue(char, 8)bits.extend([int(x) for x in list(binval)])return bitsdef bitlist_to_str(bits):chars = []for b in range(len(bits) // 8):byte = bits[b * 8:(b + 1) * 8]chars.append(chr(int(''.join([str(bit) for bit in byte]), 2)))return ''.join(chars)def binvalue(val, bitsize):binary = bin(val)[2:] if isinstance(val, int) elsebin(ord(val))[2:]if len(binary) > bitsize:raise Exception("Binary value larger than the expected size.")while len(binary) < bitsize:binary = "0" + binaryreturn binarydef permute(sbox, text):return [text[pos - 1] for pos in sbox]def generate_round_keys(key):key = str_to_bitlist(key)key = permute(self.permuted_choice_1, key)left, right = key[:28], key[28:]round_keys = []for i in range(16):left, right = shift(left, self.shift_table[i]), shift(right, self.shift_table[i])round_key = left + rightround_key = permute(self.permuted_choice_2, round_key)round_keys.append(round_key)return round_keysdef shift(bits, shift_val):return bits[shift_val:] + bits[:shift_val]def xor(bits1, bits2):return [int(bit1) ^ int(bit2) for bit1, bit2 in zip(bits1, bits2)]def encrypt(text, key):text_bits = str_to_bitlist(text)round_keys = generate_round_keys(key)text_bits = permute(self.initial_permutation, text_bits)left, right = text_bits[:32], text_bits[32:]for i in range(16):expansion = permute(self.expansion_table, right)xor_val = xor(round_keys[i], expansion)substitution = substitute(xor_val)permut = permute(self.permutation_table, substitution)temp = rightright = xor(left, permut)left = tempreturn bitlist_to_str(permute(self.final_permutation, right + left))```二、DES算法的实验报告:1.实验目的通过实现DES算法,加深对DES算法原理的理解,验证算法的正确性和加密效果。

DES加密实验报告

DES加密实验报告

网络安全作业题目 des学号专业及班级姓名日期 2012.04.14 加密算法网络工程0902班一.des简介:des是一个分组密码算法,使用64位密钥(除去8位奇偶校验,实际密钥长度为56 位)对64比特的数据分组(二进制数据)加密,产生64位密文数据。

des是一个对称密码体制,加密和解密使用同意密钥,解密和加密使用同一算法(这样,在硬件与软件设计时有利于加密单元的重用)。

des的所有的保密性均依赖于密钥。

二. des算法过程:1. des的加密过程:第一阶段:初始置换ip。

在第一轮迭代之前,需要加密的64位明文首先通过初始置换ip的作用,对输入分组实施置换。

最后,按照置换顺序,des将64位的置换结果分为左右两部分,第1位到第32位记为l0,第33位到第64位记为r0。

第二阶段:16次迭代变换。

des采用了典型的feistel结构,是一个乘积结构的迭代密码算法。

其算法的核心是算法所规定的16次迭代变换。

des算法的16才迭代变换具有相同的结构,每一次迭代变换都以前一次迭代变换的结果和用户密钥扩展得到的子密钥ki 作为输入;每一次迭代变换只变换了一半数据,它们将输入数据的右半部分经过函数f 后将其输出,与输入数据的左半部分进行异或运算,并将得到的结果作为新的有半部分,原来的有半部分变成了新的左半部分。

用下面的规则来表示这一过程(假设第i次迭代所得到的结果为liri): li = ri-1; ri = li-1⊕f(ri-1,ki);在最后一轮左与右半部分并未变换,而是直接将r16 l16并在一起作为未置换的输入。

第三阶段:逆(初始)置换。

他是初始置换ip的逆置换,记为ip-1。

在对16次迭代的结果(r16 l16)再使用逆置换ip-1后,得到的结果即可作为des加密的密文y输出,即y = ip-1 (r16 l16)。

2. des解密过程:des的解密算法与其加密算法使用的算法过程相同。

两者的不同之处在于解密时子密钥ki的使用顺序与加密时相反,如果子密钥为k1k2…k16,那么解密时子密钥的使用顺序为k16k15…k1,即使用des解密算法进行解密时,将以64位密文作为输入,第1 次迭代运算使用子密钥k16,第2次迭代运算使用子密钥k15,……,第16 次迭代使用子密钥k1,其它的运算与加密算法相同。

des实验报告

des实验报告

des实验报告DES实验报告一、引言数据加密标准(Data Encryption Standard,DES)是一种对称密钥加密算法,由IBM公司于1975年研发并在1977年被美国政府采纳为联邦信息处理标准(FIPS)。

DES以其高度的安全性和可靠性成为当时最广泛使用的加密算法之一。

本实验旨在通过实际操作DES算法,深入了解其工作原理和加密过程。

二、实验目的1. 了解DES算法的基本原理和加密过程;2. 掌握使用Python编程语言实现DES算法的方法;3. 分析DES算法的优缺点及应用场景。

三、实验步骤1. 密钥生成在DES算法中,密钥长度为64位,但实际上只有56位用于加密,其余8位用于奇偶校验。

首先,我们需要生成一个有效的密钥。

通过随机数生成器生成一个64位的二进制串,然后去除奇偶校验位,得到56位的密钥。

2. 初始置换将明文分为左右两部分,每部分各32位。

然后,对每部分进行初始置换。

初始置换表IP将明文的每个比特位按照特定规则重新排列,得到一个新的64位二进制串。

3. 轮函数DES算法中的主要操作是轮函数,该函数包括扩展置换、密钥加密、S盒替换和P盒置换等步骤。

- 扩展置换:将32位的输入扩展为48位,扩展置换表E将输入的每个比特位按照特定规则重新排列。

- 密钥加密:使用子密钥对扩展置换的结果进行异或运算。

- S盒替换:将48位输入分为8个6位的块,经过8个不同的S盒进行替换,得到32位输出。

- P盒置换:对S盒替换的结果进行P盒置换,即将32位的输入按照特定规则重新排列。

4. 轮数迭代DES算法共有16轮迭代,每轮迭代包括轮函数和交换左右两部分的操作。

迭代过程中使用不同的子密钥对轮函数的输入进行加密。

5. 逆初始置换最后一轮迭代结束后,将左右两部分进行交换,并进行逆初始置换。

逆初始置换表IP-1将交换后的结果按照特定规则重新排列,得到最终的密文。

四、实验结果我们使用Python编程语言实现了DES算法,并对一组明文进行加密。

des加密算法实验报告

des加密算法实验报告

des加密算法实验报告实现DES加解密算法实验报告实现DES加解密算法实验报告一、DES加解密算法问题简介DES算法全称为Data Encryption Standard,即数据加密算法,它是IBM公司于1975年研究成功并公开发表的。

DES算法的入口参数有三个:Key、Data、Mode。

其中Key为8个字节共64位,是DES算法的工作密钥;Data也为8个字节64位,是要被加密或被解密的数据:Mode为DES的工作方式,有两种:加密或解密。

二、DES加解密算法设计方法简介DES算法把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位,其功能是把输入的64位数据块按位重新组合,并把输出分为L0 、R0两部分,每部分各长32位,其置换规则见下表:58,50,12,34,26,18,10,2,60,52,44,36,28,20,12,4,62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,57,49,41,33,25,17, 9,1,59,51,43,35,27,19,11,3,61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,即将输入的第58位换到第一位,第50位换到第2位,……,依此类推,最后一位是原来的第7位。

L0、R0则是换位输出后的两部分,L0是输出的左32位,R0 是右32位,例:设置换前的输入值为D1D2D3……D64,则经过初始置换后的结果为:L0=D550......D8;R0=D57D49 (7)经过26次迭代运算后,得到L16、R16,将此作为输入,进行逆置换,即得到密文输出。

逆置换正好是初始置的逆运算,例如,第1位经过初始置换后,处于第40位,而通过逆置换,又将第40位换回到第1位,其逆置换规则如下表所示:40,8,48,16,56,24,64,32,39,7,47,15,55,23,63,31,38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29,36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27,34,2,42,10,50,18,58 26,33,1,41, 9,49,17,57,25,放大换位表32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10,11,12,13,12,13,14,15,16,17,16,17,18,19,20,21,20,21,22,23,24,25,24,25,26,27,28,29,28,29,30,31,32, 1,单纯换位表16,7,20,21,29,12,28,17, 1,15,23,26, 5,18,31,10,2,8,24,14,32,27, 3, 9,19,13,30, 6,22,11, 4,25,在f(Ri,Ki)算法描述图中,S1,S2...S8为选择函数,其功能是把6bit数据变为4bit数据。

des算法的实验报告

des算法的实验报告

des算法的实验报告DES算法实验报告DES(Data Encryption Standard)算法是一种对称密钥加密算法,广泛应用于信息安全领域。

本实验旨在通过实验DES算法的加密和解密过程,以及密钥长度对加密效果的影响,来深入了解DES算法的原理和应用。

实验一:加密和解密过程首先,我们使用一个明文进行加密实验。

选择一个64位的明文作为输入,同时使用一个64位的密钥进行加密。

经过DES算法加密后,得到的密文长度也为64位。

然后,我们使用相同的密钥对密文进行解密,得到原始的明文。

实验结果表明,DES算法能够对明文进行有效的加密,并且使用相同的密钥能够对密文进行解密,得到原始的明文。

这说明DES算法是一种可靠的加密算法,能够保护数据的安全性。

实验二:密钥长度对加密效果的影响在第二个实验中,我们对不同长度的密钥进行加密实验,观察加密效果的变化。

我们分别使用56位、64位和128位的密钥进行加密,然后比较不同长度密钥的加密效果。

实验结果显示,密钥长度对加密效果有显著影响。

使用128位的密钥进行加密,能够得到更加安全的密文,而使用56位的密钥进行加密,则容易受到攻击。

这表明密钥长度是影响DES算法加密效果的重要因素。

结论通过本实验,我们深入了解了DES算法的加密和解密过程,以及密钥长度对加密效果的影响。

DES算法是一种可靠的加密算法,能够有效保护数据的安全性。

同时,密钥长度对加密效果有显著影响,因此在实际应用中需要选择足够长度的密钥来保障数据的安全。

总之,DES算法在信息安全领域有着重要的应用价值,通过本实验的学习,我们对DES算法有了更深入的了解,为进一步研究和应用提供了重要的参考。

DES加密实验报告

DES加密实验报告

网络安全作业题目 des学号专业及班级姓名日期 2012.04.14 加密算法网络工程0902班一.des简介:des是一个分组密码算法,使用64位密钥(除去8位奇偶校验,实际密钥长度为56 位)对64比特的数据分组(二进制数据)加密,产生64位密文数据。

des是一个对称密码体制,加密和解密使用同意密钥,解密和加密使用同一算法(这样,在硬件与软件设计时有利于加密单元的重用)。

des的所有的保密性均依赖于密钥。

二. des算法过程:1. des的加密过程:第一阶段:初始置换ip。

在第一轮迭代之前,需要加密的64位明文首先通过初始置换ip的作用,对输入分组实施置换。

最后,按照置换顺序,des将64位的置换结果分为左右两部分,第1位到第32位记为l0,第33位到第64位记为r0。

第二阶段:16次迭代变换。

des采用了典型的feistel结构,是一个乘积结构的迭代密码算法。

其算法的核心是算法所规定的16次迭代变换。

des算法的16才迭代变换具有相同的结构,每一次迭代变换都以前一次迭代变换的结果和用户密钥扩展得到的子密钥ki 作为输入;每一次迭代变换只变换了一半数据,它们将输入数据的右半部分经过函数f 后将其输出,与输入数据的左半部分进行异或运算,并将得到的结果作为新的有半部分,原来的有半部分变成了新的左半部分。

用下面的规则来表示这一过程(假设第i次迭代所得到的结果为liri): li = ri-1; ri = li-1⊕f(ri-1,ki);在最后一轮左与右半部分并未变换,而是直接将r16 l16并在一起作为未置换的输入。

第三阶段:逆(初始)置换。

他是初始置换ip的逆置换,记为ip-1。

在对16次迭代的结果(r16 l16)再使用逆置换ip-1后,得到的结果即可作为des加密的密文y输出,即y = ip-1 (r16 l16)。

2. des解密过程:des的解密算法与其加密算法使用的算法过程相同。

两者的不同之处在于解密时子密钥ki的使用顺序与加密时相反,如果子密钥为k1k2…k16,那么解密时子密钥的使用顺序为k16k15…k1,即使用des解密算法进行解密时,将以64位密文作为输入,第1 次迭代运算使用子密钥k16,第2次迭代运算使用子密钥k15,……,第16 次迭代使用子密钥k1,其它的运算与加密算法相同。

编码理论实验报告实验三加密编码——DES数据加密算法

编码理论实验报告实验三加密编码——DES数据加密算法

实验名称实验三加密编码--------DES数据加密算法一、实验目的1. 了解DES加密,解密过程;2. 在Visual C++环境中运用C语言实现DES加密,解密;3. 会用DES加密方法对文件进行加密。

二、实验内容1. 在Visual C++环境中运用C语言熟练实现DES加密;2. 在Visual C++环境中运用C语言熟练实现DES解密。

三、实验原理1. DES加密的定义DES是一种分组密码,也是一种单钥密码。

2. DES的特点明文分组比较短、密钥较短、密码生命周期较短、运算速度较慢。

3. DES加密算法描述在DES中明文分组长为64比特,密钥长为56比特。

明文处理过程大致分为3个阶段,首先为一个初始置换IP,用于重排明文分组的64比特数据。

然后是相同功能的16轮迭代,每轮中都有置换和代换运算,第16轮变换的输出分为左右两半,并被交换次序。

最后再经过一个逆初始置换(IP的逆)从而产生64比特的密文。

在上述运算中还涉及密钥的产生和运算。

4. DES解密算法描述DES的解密过程和DES的加密过程完全类似,只不过将16轮的子密钥序列K1,K2,…,K16的顺序倒过来。

即第一轮用第16个子密钥K16,第二轮用K15,以此类推。

四、实验步骤1. DES加密步骤(1)初始IP置换表2-1 初始置换IP58 50 42 34 26 18 10 260 52 44 36 28 20 12 462 54 46 38 30 22 14 664 56 48 40 32 24 16 859 51 43 35 27 19 11 361 53 45 37 29 21 13 563 55 47 39 31 23 15 7说明:上表元素下标从1开始,按行优先顺序排列,表中数字代表经过IP置换后,在该位置的元素对应的在原分组中元素的下标。

如:变换后第一个位置的元素为原来下标为58的元素,变换后下标为2的元素为原来下标为50的元素。

DES加密算法实验报告

DES加密算法实验报告

DES加密算法实验报告DES( Data Encryption Standard)算法是一种对称加密算法,是现代密码学的基础。

DES算法将64位明文数据分为两个32位的部分,将两部分通过一系列复杂的运算和替换操作,最终输出64位的密文。

DES算法的加密过程主要包括初始置换、16轮Feistel网络、逆初始置换等步骤。

首先是初始置换,将明文数据进行位重排列,使得加密的效果更加均匀。

然后是16轮Feistel网络的操作,每一轮都包括密钥的生成和密钥的运算。

密钥的生成过程是将64位的密钥进行重排列和选择运算,生成每一轮所需要的子密钥。

密钥的运算过程是将子密钥与32位明文数据进行异或操作,然后再通过一系列的替换和置换运算,得到新的32位数据。

最后是逆初始置换,将加密后的数据进行反向重排列,得到最终的64位密文数据。

实验中,对于给定的明文和密钥,我们首先需要将明文和密钥转换成二进制形式。

然后根据初始置换表和选择运算表,将明文和密钥进行重排列。

接下来进入16轮Feistel网络的循环中,每一轮都按照密钥的生成和运算过程进行操作。

最后通过逆初始置换表,将加密后的数据进行反向重排列,得到最终的密文。

DES算法的优点是运算速度较快,加密强度较高,安全可靠,广泛应用于网络通信和数据保密领域。

但DES算法也存在一些缺点,主要是密钥长度较短,为56位,容易受到暴力破解攻击;DES算法的设计和实现已经有一定历史了,现在已经有更安全和更高效的算法可供选择。

在实验中,我使用Python语言编写了DES算法的加密程序,在给定的明文和密钥下进行了测试。

实验结果表明,DES算法可以成功加密数据,并且在解密过程中能够准确还原原始数据。

总结来说,DES加密算法是一种经典的对称加密算法,通过初始置换、Feistel网络和逆初始置换等步骤,可以将明文数据加密成密文数据。

DES算法在保证加密强度和运算速度的同时,也有一些缺点需要注意。

因此,在实际应用中需要根据具体的需求和安全要求选择合适的加密算法。

密码学实验报告-DES

密码学实验报告-DES

密码学应用与实践课程实验报告实验1:实现DES密码体制2)子密钥的生成64比特的密钥生成16个48比特的子密钥。

其生成过程见图:3)解密DES的解密过程和DES的加密过程完全类似,只不过将16圈的子密钥序列K1,K2……K16的顺序倒过来。

即第一圈用第16个子密钥K16,第二圈用K15,其余类推。

第一圈:加密后的结果L=R15, R=L15⊕f(R15,K16)⊕f(R15,K16)=L15同理R15=L14⊕f(R14,K15), L15=R14。

同理类推:得 L=R0, R=L0。

3.密钥生成(1)取得密钥从用户处取得一个64位(本文如未特指,均指二进制位))长的密码key ,去除64位密码中作为奇偶校验位的第8、16、24、32、40、48、56、64位,剩下的56位作为有效输入密钥.(2)等分密钥(3)密钥移位DES算法的密钥是经过16次迭代得到一组密钥的,把在1.1.2步中生成的A,B视为迭代的起始密钥. 比如在第1次迭代时密钥循环左移1位,第3次迭代时密钥循环左移2位. 第9次迭代时密钥循环左移1位,第14次迭代时密钥循环左移2位.第一次迭代:A(1) = ǿ(1) AB(1) = ǿ(1) B第i次迭代:A(i) = ǿ(i) A(i-1)B(i) = ǿ(i) B(i-1)(4)密钥的选取在(3)步中第i次迭代生成的两个28位长的密钥为把合并按照表4所示k的第一位为56位密钥的第14位,k的第2位为56位密钥的第17位,...,依此类推,k的最后一位最后一位是56位密钥的第32位。

生成与进行第i次迭代加密的数据进行按位异或的48位使用密钥:(5)迭代DES算法密钥生成需要进行16次迭代,在完成16次迭代前,循环执行(3)(4)步.最终形成16套加密密钥:key[0] , key[1] , key[2] ,…. key[14] , key[15] .(1)取得数据把明文数据分成64位的数据块,不够64位的数据块以适当的方式补足。

des加密算法实验报告

des加密算法实验报告

des加密算法实验报告《des加密算法实验报告》摘要:本实验旨在研究和分析数据加密标准(Data Encryption Standard,DES)算法的原理和应用。

通过对DES算法的实验操作和结果分析,验证其在数据加密和解密过程中的可靠性和安全性。

一、实验目的1. 了解DES算法的基本原理和加密过程;2. 掌握DES算法的密钥生成和加密解密操作;3. 分析DES算法在数据加密中的应用和安全性。

二、实验原理DES算法是一种对称密钥加密算法,采用64位的明文和56位的密钥进行加密操作。

其基本加密过程包括初始置换、16轮的Feistel网络运算和最终置换。

在解密过程中,使用相同的密钥和逆向的Feistel网络运算来实现明文的恢复。

三、实验步骤1. 生成64位的明文和56位的密钥;2. 进行初始置换和16轮的Feistel网络运算;3. 进行最终置换并得到密文;4. 使用相同的密钥进行解密操作,恢复明文。

四、实验结果分析1. 经过实验操作,得到了正确的密文,并成功进行了解密操作;2. 分析了DES算法在数据加密中的安全性和可靠性,验证了其在信息安全领域的重要性和应用价值。

五、结论DES算法作为一种经典的对称密钥加密算法,具有较高的安全性和可靠性,在信息安全领域有着广泛的应用。

本实验通过对DES算法的实验操作和结果分析,验证了其在数据加密和解密过程中的有效性和实用性,为信息安全技术的研究和应用提供了重要的参考和借鉴。

综上所述,本实验对DES加密算法进行了深入研究和分析,得出了相应的实验结果和结论,为信息安全领域的相关研究和应用提供了有益的参考和借鉴。

密码学案例实验报告

密码学案例实验报告

一、实验背景随着信息技术的飞速发展,网络安全问题日益突出,加密技术作为保障信息安全的重要手段,在各个领域都得到了广泛应用。

本实验报告旨在通过实际操作,加深对密码学原理和算法的理解,提高加密和解密的能力。

二、实验目的1. 了解密码学的基本概念和分类;2. 掌握DES、AES等常用加密算法的原理和流程;3. 能够运用密码学工具进行加密和解密操作;4. 分析密码破解技术,提高安全意识。

三、实验内容1. 实验一:DES加密算法(1)实验原理DES(Data Encryption Standard)是一种经典的对称加密算法,它采用64位密钥和64位明文,经过16轮加密操作,生成64位密文。

(2)实验步骤① 编写程序实现DES加密算法的加解密功能;② 使用密钥对一段英文文本进行加密和解密;③ 分析加密和解密结果,验证算法的正确性。

2. 实验二:AES加密算法(1)实验原理AES(Advanced Encryption Standard)是一种广泛使用的对称加密算法,它支持128位、192位和256位密钥长度,具有速度快、安全性高等优点。

(2)实验步骤① 编写程序实现AES加密算法的加解密功能;② 使用不同长度的密钥对一段英文文本进行加密和解密;③ 分析加密和解密结果,验证算法的正确性。

3. 实验三:密码破解技术(1)实验原理密码破解技术是指通过尝试各种可能的密钥,来破解加密信息的技术。

常见的密码破解方法有穷举攻击、字典攻击、暴力破解等。

(2)实验步骤① 使用密码破解工具对加密文本进行破解;② 分析破解结果,了解不同破解方法的特点和适用场景;③ 提高安全意识,防范密码破解攻击。

四、实验结果与分析1. 实验一和实验二的结果表明,DES和AES加密算法能够正确地对文本进行加密和解密,验证了算法的正确性。

2. 通过实验三,我们了解到密码破解技术的种类和特点,提高了安全意识。

在实际应用中,应选择合适的加密算法和密钥长度,以提高安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏州科技学院实验报告学生姓名:杨刘涛学号:1220126117 指导教师:陶滔刘学书1220126114实验地点:计算机学院大楼东309 实验时间:2015-04-20一、实验室名称:软件实验室二、实验项目名称:DES加解密算法实现三、实验学时:4学时四、实验原理:DES算法由加密、子密钥和解密的生成三部分组成。

现将DES算法介绍如下。

1.加密DES算法处理的数据对象是一组64比特的明文串。

设该明文串为m=m1m2…m64 (mi=0或1)。

明文串经过64比特的密钥K来加密,最后生成长度为64比特的密文E。

其加密过程图示如下:图2-1:DES算法加密过程对DES算法加密过程图示的说明如下:待加密的64比特明文串m,经过IP置换(初始置换)后,得到的比特串的下标列表如下:表2-1:得到的比特串的下标列表IP 58 50 42 34 26 18 10 2 60 52 44 36 28 20 12 4 62 54 46 38 30 22 14 6 64 56 48 40 32 24 16 8 57 49 41 33 25 17 9 1 59 51 43 35 27 19 11 3 61 53 45 37 29 21 13 5 63 55 47 39 31 23 15 7该比特串被分为32位的L0和32位的R0两部分。

R0子密钥K1(子密钥的生成将在后面讲)经过变换f(R0,K1)(f变换将在下面讲)输出32位的比特串f1,f1与L0做不进位的二进制加法运算。

运算规则为:f1与L0做不进位的二进制加法运算后的结果赋给R1,R0则原封不动的赋给L1。

L1与R0又做与以上完全相同的运算,生成L2,R2……一共经过16次运算。

最后生成R16和L16。

其中R16为L15与f(R15,K16)做不进位二进制加法运算的结果,L16是R15的直接赋值。

R16与L16合并成64位的比特串。

值得注意的是R16一定要排在L16前面。

R16与L16合并后成的比特串,经过置换IP-1(终结置换)后所得比特串的下标列表如下:表2-2:置换后所得比特串的下标列表IP-1 40 8 48 16 56 24 64 32 39 7 47 15 55 23 63 31 38 6 46 14 54 22 62 30 37 5 45 13 53 21 61 29 36 4 44 12 52 20 60 28 35 3 43 11 51 19 59 27 34 2 42 10 50 18 58 26 33 1 41 9 49 17 57 25经过置换IP-1后生成的比特串就是密文e。

变换f(Ri-1,Ki):它的功能是将32比特的输入再转化为32比特的输出。

其过程如图2-2所示:图2-2:将32比特的输入再转化为32比特的输出f变换说明:输入Ri-1(32比特)经过变换E(扩展置换E)后,膨胀为48比特。

膨胀后的比特串的下标列表如下:表2-3:膨胀后的比特串的下标列表E: 32 1 2 3 4 5 4 5 6 7 8 9 8 9 10 11 12 13 12 13 14 15 16 17 16 17 18 19 20 21 20 21 22 23 24 25 24 25 26 27 28 29 28 29 30 31 32 1膨胀后的比特串分为8组,每组6比特。

各组经过各自的S盒后,又变为4比特(具体过程见后),合并后又成为32比特。

该32比特经过P变换(压缩置换P)后,其下标列表如下:表2-4:压缩置换P后的下标列表P: 16 7 20 21 29 12 28 17 1 15 23 26 5 18 31 10 2 8 24 14 32 27 3 9 19 13 30 622 11 4 25经过P变换后输出的比特串才是32比特的f(Ri-1,Ki).S盒的变换过程: 任取一S盒。

见图2-3:图2-3在其输入b1,b2,b3,b4,b5,b6中,计算出x=b1*2+b6,y=b5+b4*2+b3*4+b2*8,再从Si表中查出x 行,y 列的值Sxy。

将Sxy化为二进制,即得Si盒的输出。

(S表如图2-4所示)图2-4以上是DES算法加密原理五、实验目的:了解DES加密算法及原理,掌握其基本应用。

六、实验内容:了解DES加密算法及原理,掌握其基本应用,利用java编程实现。

七、实验器材(设备、元器件):(1)PC(2)Windows 8.1系统平台(3)java程序开发环境。

八、源代码:package WindowsDemo;public class DesUtil {byte[] bytekey;public DesUtil(String strKey) {this.bytekey = strKey.getBytes();}// 声明常量字节数组private static final int[] IP = { 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48,40, 32, 24, 16, 8, 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35,27, 19, 11, 3, 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31,23, 15, 7 }; // 64private static final int[] IP_1 = { 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31, 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45,13, 53, 21, 61, 29, 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11,51, 19, 59, 27, 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49,17, 57, 25 }; // 64private static final int[] PC_1 = { 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44,36, 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, 14, 6,61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 }; // 56private static final int[] PC_2 = { 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21,10, 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, 41, 52, 31, 37, 47,55, 30, 40, 51, 45, 33, 48, 44, 49, 39, 56, 34, 53, 46, 42, 50, 36,29, 32 }; // 48private static final int[] E = { 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9,10, 11, 12, 13, 12, 13, 14, 15, 16, 17, 16, 17, 18, 19, 20, 21, 20,21, 22, 23, 24, 25, 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1 }; // 48private static final int[] P = { 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23,26, 5, 18, 31, 10, 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22,11, 4, 25 }; // 32private static final int[][][] S_Box = {//S-盒{// S_Box[1]{ 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 },{ 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 },{ 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 },{ 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 } },{ // S_Box[2]{ 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 },{ 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 },{ 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 },{ 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 } },{ // S_Box[3]{ 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 },{ 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 },{ 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 },{ 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 } },{ // S_Box[4]{ 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 },{ 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 },{ 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 },{ 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 } },{ // S_Box[5]{ 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 },{ 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 },{ 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 },{ 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 } },{ // S_Box[6]{ 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 },{ 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 },{ 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 },{ 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 } },{ // S_Box[7]{ 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 },{ 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 },{ 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 },{ 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 } },{ // S_Box[8]{ 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 },{ 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 },{ 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 },{ 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 } }};private static final int[] LeftMove = { 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2,2, 2, 2, 1 };// 左移位置列表private byte[] UnitDes(byte[] des_key, byte[] des_data, int flag) { // 检测输入参数格式是否正确,错误直接返回空值(null)if ((des_key.length != 8) || (des_data.length != 8)|| ((flag != 1) && (flag != 0))) {throw new RuntimeException("Data Format Error !");}int flags = flag;// 二进制加密密钥int[] keydata = new int[64];// 二进制加密数据int[] encryptdata = new int[64]; // 加密操作完成后的字节数组byte[] EncryptCode = new byte[8];// 密钥初试化成二维数组int[][] KeyArray = new int[16][48];// 将密钥字节数组转换成二进制字节数组 keydata = ReadDataToBirnaryIntArray(des_key);// 将加密数据字节数组转换成二进制字节数组encryptdata = ReadDataToBirnaryIntArray(des_data);// 初试化密钥为二维密钥数组KeyInitialize(keydata, KeyArray); // 执行加密解密操作EncryptCode = Encrypt(encryptdata, flags, KeyArray);return EncryptCode;}// 初试化密钥数组private void KeyInitialize(int[] key, int[][] keyarray) {int i;int j;int[] K0 = new int[56];// 特别注意:xxx[IP[i]-1]等类似变换for (i = 0; i < 56; i++) {K0[i] = key[PC_1[i] - 1]; // 密钥进行PC-1变换}for (i = 0; i < 16; i++) {LeftBitMove(K0, LeftMove[i]); // 特别注意:xxx[IP[i]-1]等类似变换for (j = 0; j < 48; j++) {keyarray[i][j] = K0[PC_2[j] - 1]; // 生成子密钥keyarray[i][j]}}} // 执行加密解密操作private byte[] Encrypt(int[] timeData, int flag, int[][] keyarray) { int i;byte[] encrypt = new byte[8];int flags = flag;int[] M = new int[64];int[] MIP_1 = new int[64];// 特别注意:xxx[IP[i]-1]等类似变换for (i = 0; i < 64; i++) {M[i] = timeData[IP[i] - 1]; // 明文IP变换}if (flags == 1) { // 加密for (i = 0; i < 16; i++) {LoopF(M, i, flags, keyarray);}} else if (flags == 0) { // 解密for (i = 15; i > -1; i--) {LoopF(M, i, flags, keyarray);}}for (i = 0; i < 64; i++) {MIP_1[i] = M[IP_1[i] - 1]; // 进行IP-1运算}GetEncryptResultOfByteArray(MIP_1, encrypt);// 返回加密数据return encrypt;}private int[] ReadDataToBirnaryIntArray(byte[] intdata) {int i;int j;// 将数据转换为二进制数,存储到数组int[] IntDa = new int[8];for (i = 0; i < 8; i++) {IntDa[i] = intdata[i];if (IntDa[i] < 0) {IntDa[i] += 256;IntDa[i] %= 256;}}int[] IntVa = new int[64];for (i = 0; i < 8; i++) {for (j = 0; j < 8; j++) {IntVa[((i * 8) + 7) - j] = IntDa[i] % 2;IntDa[i] = IntDa[i] / 2;}}return IntVa;}private void LeftBitMove(int[] k, int offset) { int i;// 循环移位操作函数int[] c0 = new int[28];int[] d0 = new int[28];int[] c1 = new int[28];int[] d1 = new int[28];for (i = 0; i < 28; i++) {c0[i] = k[i];d0[i] = k[i + 28];}if (offset == 1) {for (i = 0; i < 27; i++) { // 循环左移一位c1[i] = c0[i + 1];d1[i] = d0[i + 1];}c1[27] = c0[0];d1[27] = d0[0];} else if (offset == 2) {for (i = 0; i < 26; i++) { // 循环左移两位c1[i] = c0[i + 2];d1[i] = d0[i + 2];}c1[26] = c0[0];d1[26] = d0[0];c1[27] = c0[1];d1[27] = d0[1];}for (i = 0; i < 28; i++) {k[i] = c1[i];k[i + 28] = d1[i];}}private void LoopF(int[] M, int times, int flag, int[][] keyarray) {int i;int j;int[] L0 = new int[32];int[] R0 = new int[32];int[] L1 = new int[32];int[] R1 = new int[32];int[] RE = new int[48];int[][] S = new int[8][6];int[] sBoxData = new int[8];int[] sValue = new int[32];int[] RP = new int[32];for (i = 0; i < 32; i++) {L0[i] = M[i]; // 明文左侧的初始化R0[i] = M[i + 32]; // 明文右侧的初始化}for (i = 0; i < 48; i++) {RE[i] = R0[E[i] - 1]; // 经过E变换扩充,由32位变为48位RE[i] = RE[i] + keyarray[times][i]; // 与KeyArray[times][i]按位作不进位加法运算if (RE[i] == 2) {RE[i] = 0;}}for (i = 0; i < 8; i++) { // 48位分成8组for (j = 0; j < 6; j++) {S[i][j] = RE[(i * 6) + j];}// 下面经过S盒,得到8个数sBoxData[i] = S_Box[i][(S[i][0] << 1) + S[i][5]][(S[i][1] << 3)+ (S[i][2] << 2) + (S[i][3] << 1) + S[i][4]];// 8个数变换输出二进制for (j = 0; j < 4; j++) {sValue[((i * 4) + 3) - j] = sBoxData[i] % 2;sBoxData[i] = sBoxData[i] / 2;}}for (i = 0; i < 32; i++) {RP[i] = sValue[P[i] - 1]; // 经过P变换L1[i] = R0[i]; // 右边移到左边R1[i] = L0[i] + RP[i];if (R1[i] == 2) {R1[i] = 0;}// 重新合成M,返回数组M// 最后一次变换时,左右不进行互换。

相关文档
最新文档