2.2二项分布及其应用课件
二项分布及其应用
本例 =0.85,l- =0.15,n =5,
① 至少3人有效的概率
P(X≥3)=P(3)+P(4)+P(5)
=0.138178125+0.391504688+0.443705313 =0.973388126
精选ppt
12
2.1 二项分布的性质:均数和标准差
• 若X~B(n,),则
X n
2 X
n
1
X n 1
精选ppt
13
若均数与标准差不用绝对数而用率表示时
p
p
(1)
n
sp
p(1 p) n
精选ppt
14
2.2 二项分布的性质 :累积概率
• 累计概率(cumulative probability) • 从阳性率为的总体中随机抽取n个个体,则
精选ppt
7
在医学上一些事物,其结局只有两种互相对 立的结果。如:
在毒理试验中,动物的生存与死亡;
在动物诱癌试验中,动物的发癌与不发癌;
在流行病学观察中,接触某危险因素的个体 发病与不发病;
在临床治疗中,病人的治愈与未愈;
理化检验结果的阴性与阳性等等,均表现为 两种互相对立的结果,每个个体的观察结果 只能取其中之一。对这类事物常用二项分布 (binomial distribution)进行描述。
1.000
死亡数 生存数
X
nX
0
3
1
2
2
1
3
0
不同死亡数的概率 0.008 0.096
0.384 0.512 1.000
二项分布教学课件ppt
0.4
0.3
0.2
0.1
0.0
0
1
2
3
x
(0.2+0.8)3 二项分布示意图
构成成-败型实验序列的n次实验中,事件A出现 的次数X的概率分布为:
P X CnX X 1 nX
其中X=0,1,2…,n。 n,π是二项分布的两个参数 。
对于任何二项分布,总有
中国福利彩票
发行量1500万元,特等奖100个,金额5万元; 每张彩票面值2元,中奖概率1/75000。
投入金额 未中概率 中奖概率
100元 1000元 1万元 10万元 100万元 0.99933 0.99336 0.93551 0.51341 0.00127 0.00067 0.00664 0.06449 0.48659 0.99873
例4-2 临床上用针灸治疗某型头疼,有效的概率为60% 现以该疗法治疗3例,其中2例有效的概率是多大?
B(X;n,π)或B(n,π)。
二项分布的概率函数
• 任意一次试验中,只有事件A发生和不发生
两种结果,发生的概率分别是: 和1-
• 若在相同的条件下,进行n次独立重复试验,
用X表示这n次试验中事件A发生的次数,那 么X服从二项分布,记做 XB(n,) 或 B(X;n,π) 。
举例 设实验白鼠共3只,要求它们同种属、同 性别、体重相近,且他们有相同的死亡概率, 即事件“白鼠用药后死亡”为A,相应死亡概率 为π。记事件“白鼠用药后不死亡”为 ,相 应不死亡概率为1-π。设实验后3只白鼠中死亡 的白鼠数为X,则X的可能取值为0,1,2和3,
例 实验白鼠3只,白鼠用药后死亡的死亡概率 π=0.6,则3只白鼠中死亡鼠数X的总体均数为
二项分布及其应用 (2)ppt课件
2、总体率的区间估计
三、二项分布的应用
(2)正态近似法
当样本含量足够大,且样本率p和 1-p均不太小,一般 np与 n(1-p)均大于5时,样本率的抽样分布近似正态分布,即
p
~
N
(
,
1
)
n
此时, 总体率的可信区间可按下式进行估计:
p u s p , p u s p
死 死 生 0.8 0.8 0.2 0.128
1
死 生 死 0.8 0.2 0.8 0.128
生 死 死 0.2 0.8 0.8 0.128
0
死 死 死 0.8 0.8 0.8 0.512
P(x) (5)
0.008
0.096
0.384 0.512 1.000
概率的乘法原理:几个相互独立的事件同时发生的概率等于各 事件发生概率的乘积。
B( , n )。
例 抛硬币(正/反),患者治疗后的结局(治愈/未愈),实验 动物染毒后结局(生存/死亡),……。
一、二项分布的概念及应用条件
2、应用条件:
① n次试验相互独立 ( n 个观察单位相互独立)。 ② 每次试验只有两种可能结果中的某一种(适用
于二分类资料)。
③ 每次试验发生某一种结果的概率 固定不变
n
304
(3) 确定P值 , 做出推断结论。查表得, P<0.0005, 按 = 0.05
水准拒绝H0, 接受H1, 认为老年胃溃疡患者较一般患者更易发 生胃出血。
☺小贴士:注意事项
以上各例均为单侧检验, 若需进行双侧检验, 则P值为从H0
规定的总体中抽到现有样本以及更极端(即概率小于等于现有 样本概率)情形的累计概率。
【数学】2.2《 二项分布及其应用课件(新人教A版选修2-3)
独立事件一定不互斥. 独立事件一定不互斥 互斥事件一定不独立. 互斥事件一定不独立 明确事件中的关键词, 明确事件中的关键词,如,“至少有一个发生”“至 至少有一个发生”“至 ”“ 多有一个发生” 恰有一个发生” 多有一个发生”,“恰有一个发生”,“都发 ”“都不发生 都不发生” 不都发生” 生”“都不发生”,“不都发生”。
此时称随机变量X服从二项分布,记作X~B(n,p), 此时称随机变量 服从二项分布,记作 服从二项分布 并称p为成功概率 为成功概率。 并称 为成功概率。
复习回顾
二项分布 3、
在一次试验中某事件发生的概率是p,那么在n次 在一次试验中某事件发生的概率是 ,那么在 次 独立重复试验中这个事件恰发生 恰发生ξ 显然 显然ξ 独立重复试验中这个事件恰发生ξ次,显然ξ是一个随机 变量. 变量. 于是得到随机变量ξ的概率分布如下: 于是得到随机变量 的概率分布如下: 的概率分布如下 ξ p
例 1 考虑恰有三个小孩的家庭 (假定生男生女为 考虑恰有三个小孩的家庭.
等可能) 等可能)
(1)若已知某一家有一个是女孩,求这家另两个是男孩的概率 )若已知某一家有一个是女孩, (2)若已知某一家第一个是女孩,求这家另两个是男孩的概率 )若已知某一家第一个是女孩,
(女、女、女); (女、女、男); (女、男、女);(女、男、男); ( 男、女、女) ; ( 男、女、男) ; ( 男、男、女) ; ( 男、男、男) ;
B
A
复习回顾
1、事件的相互独立性 、 为两个事件, 设A,B为两个事件,如果 P(AB)=P(A)P(B),则称事 , 为两个事件 则称事 与事件B相互独立 件A与事件 相互独立。 与事件 相互独立。 即事件A( 对事件B( 即事件 (或B)是否发生 对事件 (或A)发生的 )是否发生,对事件 ) 概率没有影响,这样两个事件叫做相互独立事件。 概率没有影响,
2.2.2二项分布及其应用-事件的相互独立性(高中数学人教A版选修2-3)
练习2、若甲以10发8中,乙以10发7中的命中率打靶, 两人各射击一次,则他们都中靶的概率是( D )
(A)
3 5
(B)
3 4
(C)
12 25
(D)
14 25
如P(B)>0时,有P(AB)=P(A|B)P(B), P(A)>0时,有P(AB)=P(B|A)P(A).
2.P(A|B)与P(AB)的区别
P(A|B) 是在事件 B 发生的条件下,事件 A 发生的概率, P(AB)是事件A与B同时发生的概率,无附加条件. 3.条件概率的性质 (1)0≤P(A|B)≤1.
跟踪练习 1.判断下列各题中给出的事件是否是相互独立事件: (1)甲盒中有6个白球、4个黑球,乙盒中有3个白球、5个 黑球.从甲盒中摸出一个球称为甲试验,从乙盒中摸出一个 球称为乙试验,事件A1表示“从甲盒中取出的是白球”,事 件B1表示“从乙盒中取出的是白球”. (2)盒中有4个白球、3个黑球,从盒中陆续取出两个球, 用A2表示事件“第一次取出的是白球”,把取出的球放回盒 中,事件B2表示事件“第二次取出的是白球”. (3)盒中有4个白球、3个黑球,从盒中陆续取出两个球, 用A3表示“第一次取出的是白球”,取出的球不放回,用B3 表示“第二次取出的是白球”.
P(A1· A2……An)=P(A1)· P(A2)……P(An)
互斥事件与独立事件
互斥事件
概 念 不可能同时发生的两个 事件叫做互斥事件
相互独立事件 如果事件A(或B)是否发 生对事件B(或A)发生的 概率没有影响,这样的 两个事件叫做相互独立 事件
相互独立事件A,B同时 发生记作A·B P(A·B)=P(A)·P(B)
《二项分布及其应》课件
• 改进方向: a. 引入其他分布:对于样本量较小的情况,可以考虑使用泊松分布等其他分布来近似二项分布。 b. 利 用贝叶斯推断:贝叶斯推断可以用于估计未知的分布参数,提高二项分布在实际应用中的精确度。 c. 考虑其他模型: 对于某些特定问题,可以考虑使用其他模型来描述实际数据,如正态分布、泊松分布等。
贝叶斯估计法的定义和原理 贝叶斯估计法在二项分布参数估计中的应用 贝叶斯估计法的优缺点分析 贝叶斯估计法与其他参数估计方法的比较
最小二乘估计法
定义:最小二乘法是一种数学统计方法,通过最小化误差的平方和来估计参数
原理:最小二乘法通过最小化预测值与实际值之间的误差平方和来估计参数,从而得到最佳的 参数估计值
假设检验的步骤和实例
提出假设
构造检验统计量
确定临界值
做出推断
实例演示
06
二项分布在实际应用中的案例分析
实验设计和数据分析
实验设计:确 定实验目的、 设计实验方案、 选择实验样本
数据分析:对 实验数据进行 整理、分析和 解释,得出结
论
实验结果:展 示实验结果, 包括数据表格、
图表等
结论与讨论: 对实验结果进 行讨论,提出 改进意见和建
议
二项分布在实际应用中的案例介绍
案例一:医学研究计学中的 二项分布
案例四:计算机科学中的 二项分布
二项分布在实际应用中的优缺点分析
优点:适用于独立 重复试验,可以快 速准确地计算概率
缺点:不适用于连 续性随机变量,需 要满足独立同分布 的条件
数学:2.2.2《二项分布及其应用-事件的相互独立性》PPT课件(新人教A版-选修2-3)
1 P( A B C ) 1 0.5 0.55 0.6 0.835
0.8 P ( D)
所以,合三个臭皮匠之力把握就大过诸葛亮.
学习小结:
(1)列表比较 互斥事件 不可能同时发 定义 生的两个事件
相互独立事件 事件A是否发生对事件B 发生的概率没有影响
概率公式 P(A+B)=P(A)+P(B) P( A B) P( A) P( B) (2)解决概率问题的一个关键:分解复杂问题为基本 的互斥事件与相互独立事件. 选做作业: 研究性题:在力量不是十分悬殊的情况下我们解释 了“三个臭皮匠顶个诸葛亮”的说法.那么你能否用概 率的知识解释我们常说的“真理往往掌握在少数人手 里的”?
练习5
(1 0.7) (1 0.7) (1 0.7) 0.027
2
(4)
P2=1-(1-r)2
1 1 2 2
P3=1-(1-r2)2
P4=[1-(1-r)2]2
答案
附1:用数学符号语言表示下列关系:
若A、B、C为相互独立事件,则 B· ① A、B、C同时发生; ①A· C B· ② A、B、C都不发生; ② A· C ③ A、B、C中恰有一个发生; B·+A· C+A· C ③A· C B· B· ④ A、B、C中至少有一个发生的概率; -P( A· C ) ④1 B· ⑤ A、B、C中至多有一个发生. B· ⑤A· C + A· C + A· C+ A· C B· B· B·
高三总复习数学课件 二项分布及其应用、正态分布
解析:根据n重伯努利试验公式得,该同学通过测试的概率为C×0.62×0.4+ 0.63=0.648.
答案:A
2.第六届世界互联网大会发布了 15 项“世界互联网领先科技成果”,其中有 5
项成果均属于芯片领域.现有 3 名学生从这 15 项“世界互联网领先科技成
果”中分别任选 1 项进行了解,且学生之间的选择互不影响,则恰好有 1 名
答案:B
2.(人教A版选择性必修第三册P77·T2改编)鸡接种一种疫苗后,有90%不会感
染某种病毒,如果有5只鸡接种了疫苗,则恰好有4只鸡没有感染病毒的概率
约为
()
A.0.33 B.0.66 C.0.5 D.0.45
答案:A
3.(湘教版选择性必修第二册 P130 ·例 4 改编)甲、乙两人进行乒乓球比赛,比
赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜
的概率均为23,则甲以 3∶1 的比分获胜的三册P87·习题T1改编)某学校高二年级数学学业质量 检测考试成绩X~N(80,25),如果规定大于或等于85分为A等,那么在参加考 试的学生中随机选择一名,他的成绩为A等的概率是________.(附:若X~ N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.682 7) 解析:P(X≥85)=12[1-P(75≤ X< 85)]≈1-02.682 7≈0.158 7.
n重伯努利试验 ②特征:同一个伯努利试验重复做n次;各次试验的结
果_相__互__独__立___
2.二项分布 (1)二项分布的定义: 一般地,在 n 重伯努利试验中,设每次试验中事件 A 发生的概率为 p(0<p<1), 用 X 表示事件 A 发生的次数,则 X 的分布列为 P(X=k)=_C_kn_p_k_(_1_-__p_)n_-_k_,k= 0,1,2,…,n.如果随机变量 X 的分布列具有上式的形式,则称随机变量 X 服从 二项分布,记作 X~B(n,p) . (2)二项分布的均值与方差: 如果 X~B(n,p),那么 E(X)= np ,D(X)= np(1-p) .
高中数学第二章2.2二项分布及其应用2.2.2事件的相互独立性讲义新人教A版选修2_3
2.2.2 事件的相互独立性知识点 相互独立的概念 (1)相互独立的定义设A ,B 为两个事件,如果P (AB )=□01P (A )P (B ),则称事件A 与事件B 相互独立. (2)相互独立事件事件A (或B )发生对事件B (或A )发生的概率□02没有影响,这样的两个事件叫做相互独立事件.知识点 相互独立的性质若事件A 与B 相互独立,则□01A 与□02B -,□03A -与□04B ,□05A -与□06B -也相互独立.1.若A ,B 为相互独立事件,则P (AB )=P (A )P (B ),该性质可推广为:若A 1,A 2,A 3,…,A n 相互独立,那么这n 个事件同时发生的概率等于各个事件发生概率的积,即P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ).2.在解题中要注意区分事件A 与B 相互独立、事件A 与B 互斥,两个事件互斥是指两个事件不可能同时发生,两个事件相互独立是指一个事件的发生与否对另一个事件发生的概率没有影响,相互独立的事件可以同时发生,且同时发生的概率P (AB )=P (A )P (B ),而互斥的两个事件A ,B 满足P (A +B )=P (A )+P (B ).1.判一判(正确的打“√”,错误的打“×”) (1)不可能事件与任何一个事件相互独立.( ) (2)必然事件与任何一个事件相互独立.( )(3)如果事件A 与事件B 相互独立,则P (B |A )=P (B ).( )(4)“P (AB )=P (A )·P (B )”是“事件A ,B 相互独立”的充要条件.( ) 答案 (1)√ (2)√ (3)√ (4)√ 2.做一做(1)甲、乙两水文站同时作水文预报,如果甲站、乙站各自预报的准确率为0.8和0.7.那么,在一次预报中,甲、乙两站预报都准确的概率为________.(2)一件产品要经过两道独立的工序,第一道工序的次品率为a ,第二道工序的次品率为b ,则该产品的正品率为________.(3)已知A ,B 是相互独立事件,且P (A )=12,P (B )=23,则P (A B -)=________;P (A -B -)=________.答案 (1)0.56 (2)(1-a )(1-b ) (3)16 16解析 (1)甲、乙两站水文预报相互独立,则P =0.8×0.7=0.56.(2)由于经过两道工序才能生产出一件产品,当两道工序都合格时才能生产出正品,又由于两道工序相互独立,则该产品的正品率为(1-a )(1-b ).(3)因为P (A )=12,P (B )=23,所以P (A -)=12,P (B -)=13.所以P (A B -)=P (A )P (B -)=12×13=16,P (A -B -)=P (A -)P (B -)=12×13=16.探究1 事件独立性的判断例1 判断下列各对事件是不是相互独立事件:(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”;(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”;(3)掷一颗骰子一次,“出现偶数点”与“出现3点或6点”.[解] (1)“从甲组中选出1名男生”这一事件是否发生,对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件.(2)“从8个球中任意取出1个,取出的是白球”的概率为58,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为47,若前一事件没有发生,则后一事件发生的概率为57.可见,前一事件是否发生,对后一事件发生的概率有影响,所以两者不是相互独立事件.(3)记A :出现偶数点,B :出现3点或6点,则A ={2,4,6},B ={3,6},AB ={6},∴P (A )=36=12,P (B )=26=13,P (AB )=16, ∴P (AB )=P (A )·P (B ), ∴事件A 与B 相互独立. 拓展提升(1)利用相互独立事件的定义(即P (AB )=P (A )·P (B ))可以准确地判定两个事件是否相互独立,这是用定量计算方法,较准确,因此我们必须熟练掌握.(2)判别两个事件是否为相互独立事件也可以从定性的角度进行分析,即看一个事件的发生对另一个事件的发生是否有影响.没有影响就是相互独立事件,有影响就不是相互独立事件.[跟踪训练1] 一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令A ={一个家庭中既有男孩又有女孩},B ={一个家庭中最多有一个女孩}.对下述两种情形,讨论A 与B 的独立性:(1)家庭中有两个小孩; (2)家庭中有三个小孩.解 (1)有两个小孩的家庭,小孩为男孩、女孩的所有可能情形为Ω={(男,男),(男,女),(女,男),(女,女)}包含4个基本事件,由等可能性知每个基本事件的概率均为14.这时A ={(男,女),(女,男)},B ={(男,男),(男,女),(女,男)}, AB ={(男,女),(女,男)},于是P (A )=12,P (B )=34,P (AB )=12.由此可知P (AB )≠P (A )P (B ),所以事件A ,B 不相互独立.(2)有三个小孩的家庭,小孩为男孩、女孩的所有可能情形为Ω={(男,男,男),(男,男,女),(男,女,男),(女,男,男),(男,女,女),(女,男,女),(女,女,男),(女,女,女)}包含8个基本事件,由等可能性知每个基本事件的概率均为18.这时A 包含6个基本事件,B 包含4个基本事件,AB 包含3个基本事件.于是P (A )=68=34,P (B )=48=12,P (AB )=38,显然有P (AB )=P (A )P (B )成立.从而事件A 与B 是相互独立的. 探究2 相互独立事件概率的计算例2 甲、乙两人在罚球线投球命中的概率分别为12与25.(1)甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;(2)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率.[解] (1)记“甲投一次命中”为事件A ,“乙投一次命中”为事件B ,则P (A )=12,P (B )=25,P (A -)=12,P (B -)=35. ∴恰好命中一次的概率为P =P (A B -)+P (A -B )=P (A )P (B -)+P (A -)P (B ) =12×35+12×25 =510=12. (2)设事件“甲、乙两人在罚球线各投球二次均不命中”的概率为P 1,则 P 1=P (A -∩A -∩B -∩B -) =P (A -)P (A -)P (B -)P (B -)=⎝ ⎛⎭⎪⎫1-122×⎝ ⎛⎭⎪⎫1-252 =9100. ∴甲、乙两人在罚球线各投球二次,至少一次命中的概率为P =1-P 1=91100.拓展提升(1)求相互独立事件同时发生的概率的步骤是: ①首先确定各事件之间是相互独立的; ②确定这些事件可以同时发生; ③求出每个事件的概率,再求积.(2)使用相互独立事件同时发生的概率计算公式时,要掌握公式的适用条件,即各个事件是相互独立的,而且它们同时发生.[跟踪训练2] 小王某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率; (2)这三列火车至少有一列正点到达的概率.解 用A ,B ,C 分别表示这三列火车正点到达的事件,则P (A )=0.8,P (B )=0.7,P (C )=0.9,所以P (A -)=0.2,P (B -)=0.3,P (C -)=0.1.(1)由题意得A ,B ,C 之间互相独立,所以恰好有两列正点到达的概率为 P 1=P (A -BC )+P (A B -C )+P (AB C -)=P (A -)P (B )P (C )+P (A )P (B -)P (C )+P (A )P (B )P (C -) =0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398.(2)三列火车至少有一列正点到达的概率为 P 2=1-P (A -B -C -) =1-P (A -)P (B -)P (C -) =1-0.2×0.3×0.1=0.994. 探究3 相互独立事件的综合应用例3 甲、乙两人各射击一次,击中目标的概率分别是23和34.假设两人射击是否击中目标相互之间没有影响,每人每次射击是否击中目标相互之间也没有影响.(1)求甲、乙各射击一次均击中目标的概率; (2)求甲射击4次,恰有3次连续击中目标的概率;(3)若乙在射击中出现连续2次未击中目标则会被终止射击,求乙恰好射击4次后被终止射击的概率.[解] (1)记事件A 表示“甲击中目标”,事件B 表示“乙击中目标”. 依题意知,事件A 和事件B 相互独立, 因此甲、乙各射击一次均击中目标的概率为P (AB )=P (A )P (B )=23×34=12.(2)记事件A i 表示“甲第i 次射击击中目标”(其中i =1,2,3,4),并记“甲4次射击恰有3次连续击中目标”为事件C ,则C =A 1A 2A 3A -4∪A -1A 2A 3A 4,且A 1A 2A 3A -4与A -1A 2A 3A 4是互斥事件.由于A 1,A 2,A 3,A 4之间相互独立,所以A i 与A -j (i ,j =1,2,3,4,且i ≠j )之间也相互独立. 由于P (A 1)=P (A 2)=P (A 3)=P (A 4)=23,故P (C )=P (A 1A 2A 3A -4∪A -1A 2A 3A 4)=P (A 1)P (A 2)P (A 3)P (A -4)+P (A -1)P (A 2)P (A 3)·P (A 4)=⎝ ⎛⎭⎪⎫233×13+13×⎝ ⎛⎭⎪⎫233=1681. (3)记事件B i 表示“乙第i 次射击击中目标”(其中i =1,2,3,4),并记事件D 表示“乙在第4次射击后终止射击”,则D =B 1B 2B -3B -4∪B -1B 2B -3B -4, 且B 1B 2B -3B -4与B -1B 2B -3B -4是互斥事件.由于B 1,B 2,B 3,B 4之间相互独立,所以B i 与B -j (i ,j =1,2,3,4,且i ≠j )之间也相互独立. 由于P (B i )=34(i =1,2,3,4),故P (D )=P (B 1B 2B -3B -4∪B -1B 2B -3B -4) =P (B 1B 2B -3B -4)+P (B -1B 2B -3B -4)=P (B 1)P (B 2)P (B -3)P (B -4)+P (B -1)·P (B 2)P (B -3)P (B -4)=⎝ ⎛⎭⎪⎫342×⎝ ⎛⎭⎪⎫142+34×⎝ ⎛⎭⎪⎫143=364. 拓展提升常见事件与概率间的关系已知两个事件A ,B ,它们的概率为P (A ),P (B ).将A ,B 中至少有一个发生记为事件A ∪B ,都发生记为事件AB ,都不发生记为事件A -B -,恰有一个发生记为事件A B -∪A -B ,至多有一个发生记为事件A -B -∪A -B ∪A B -,为方便同学们记忆,我们用表格的形式将其展示出来.[跟踪训练3] 甲、乙、丙三台机床各自独立加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112,甲、丙两台机床加工的零件都是一等品的概率为29. (1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙三台机床加工的零件中各取一个进行检验,求至少有一个一等品的概率. 解 (1)设A ,B ,C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件.由题意得⎩⎪⎨⎪⎧P (A B -)=14,P (B C -)=112,P (AC )=29,则⎩⎪⎨⎪⎧P (A )[1-P (B )]=14,①P (B )[1-P (C )]=112,②P (A )P (C )=29.③由①③得P (B )=1-98P (C ),代入②得27[P (C )]2-51P (C )+22=0, 解得P (C )=23或P (C )=119(舍去).将P (C )=23代入②得P (B )=14,将P (B )=14代入①得P (A )=13.故甲、乙、丙三台机床各自加工的零件是一等品的概率分别是13,14,23.(2)记D 为从甲、乙、丙三台机床加工的零件中各取一个进行检验,其中至少有一个一等品的事件,则P (D )=1-P (D -)=1-[1-P (A )][1-P (B )][1-P (C )]=1-23×34×13=56.故从甲、乙、丙加工的零件中各取一个进行检验,至少有一个一等品的概率为56.1.相互独立事件与互斥事件的区别2.相互独立事件同时发生的概率P (AB )=P (A )P (B ),就是说,两个相互独立事件同时发生的概率等于每个事件发生的概率的积.此性质还可推广到n (n >2,n ∈N *)个事件的相互独立性,即若事件A 1,A 2,…,A n 相互独立,则这n 个事件同时发生的概率P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ).3.求复杂事件概率的步骤(1)列出题中涉及的各种事件,并用适当的符号表示;(2)理清事件之间的关系(两事件是互斥、对立,还是相互独立),列出关系式; (3)根据事件之间的关系准确选取概率公式进行计算;(4)当直接计算符合条件的事件的概率较复杂时,可先间接地计算对立事件的概率,再求出符合条件的事件的概率.1.下列事件A,B是相互独立事件的是( )A.一枚硬币掷两次,A=“第一次为正面”,B=“第二次为反面”B.袋中有2个白球,2个黑球,不放回地摸球两次,每次摸一球,A=“第一次摸到白球”,B=“第二次摸到白球”C.掷一枚骰子,A=“出现点数为奇数”,B=“出现点数为偶数”D.A=“一个灯泡能用1000小时”,B=“一个灯泡能用2000小时”答案 A解析把一枚硬币掷两次,对于每次而言是相互独立的,其结果不受先后影响,故A是相互独立事件;B中是不放回地摸球,显然A事件与B事件不相互独立;对于C,其结果具有唯一性,A,B应为互斥事件;D中事件B受事件A的影响.故选A.2.已知A,B是两个相互独立事件,P(A),P(B)分别表示它们发生的概率,则1-P(A)P(B)是下列哪个事件的概率( )A.事件A,B同时发生B.事件A,B至少有一个发生C.事件A,B至多有一个发生D.事件A,B都不发生答案 C解析P(A)P(B)是指A,B同时发生的概率,1-P(A)P(B)是A,B不同时发生的概率,即至多有一个发生的概率.3.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是( )A.512 B.12 C.712 D.34答案 C解析 用间接法考虑,事件A ,B 一个都不发生的概率为P (A -B -)=P (A -)P (B -)=12×56=512.则事件A ,B 中至少有一件发生的概率为1-P (A -B -)=712.故C 正确.4.甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球.从每袋中任取一个球,则取得同色球的概率为________.答案 12解析 若都取到白球,P 1=812×612=13,若都取到红球,P 2=412×612=16, 则所求概率P =P 1+P 2=13+16=12.5.甲、乙两人独立地破译密码的概率分别为13,14.求:(1)两个人都译出密码的概率; (2)两个人都译不出密码的概率; (3)恰有一人译出密码的概率; (4)至多一人译出密码的概率; (5)至少一人译出密码的概率.解 记事件A 为“甲独立地译出密码”,事件B 为“乙独立地译出密码”. (1)两个人都译出密码的概率为P (AB )=P (A )P (B )=13×14=112.(2)两个人都译不出密码的概率为P (A -B -)=P (A -)P (B -)=[1-P (A )][1-P (B )] =⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-14=12. (3)恰有一人译出密码分为两类:甲译出乙译不出,乙译出甲译不出, 即A B -+A -B ,- 11 - ∴P (A B -+A -B )=P (A B -)+P (A -B )=P (A )P (B -)+P (A -)P (B )=13×⎝ ⎛⎭⎪⎫1-14+⎝⎛⎭⎪⎫1-13×14=512.(4)至多一人译出密码的对立事件是两人都译出密码,∴其概率为1-P (AB )=1-112=1112.(5)至少一人译出密码的对立事件为两人都没有译出密码,∴其概率为1-P (A -B -)=1-12=12.。
二项分布及其应用习题课公开课获奖课件省赛课一等奖课件
P(B)·P(C|B)=70%×95%+30%×80%=0.905=90.5%.
【答案】
2 (1)9
(2)90.5%
【变式训练】一批晶体管元件,其中一等品占95%,二 等品占4%,三等品占1%,它们能工作5 000小时以 上旳概率分别为90%,80%,70%,求任取一种元 件能工作5 000小时以上旳概率. 【解题指南】借助条件概率及其变形公式求解. 【解析】设Bi={取到元件为i等品}(i=1,2,3),A={取 到元件能工作5 000小时以上},则 P(A)=P(B1)P(A|B1)+P(B2)·P(A|B2)+P(B3)·P(A| B3)= 95%·90%+4%·80%+1%·70%=0.894.
措施二:
1 3( 1 )2 5 (1)3 25 . 6 6 6 27
P(A B C A B C A B C A B C)
(5)3 3 1 (5)2 25 .
6
6 6 27
故三位同学中至少有两位没有中奖旳概率为 25 .
27
系统可靠性问题
【典例训练】
1.在如图所示旳电路图中,开关a,b,c闭合与断开旳概率都 是 1 ,且是相互独立旳,则灯亮旳概率是( )
ξ旳分布列如下:
ξ0 p 0.95
1 0.5×0.94
2
3
0.1×0.93 0.01×0.92
4
4.5× 0.14
5 0.15
答案:
ξ0 p 0.95
1 0.5×0.94
2
3
0.1×0.93 0.01×0.92
4
4.5× 0.14
5 0.15
2.取到黑球数X旳可能取值为0,1,2,3.又因为每次取到黑
二项分布及应用
数量 厂别 等级
合格品
次品
合计
甲厂
475 25 500
乙厂
644 56 700
合计
1 119 81
1 200
(1)从这批产品中随意地取一件,则这件产品恰好是
次品的概率是_________; 27 400
(2)在已知取出的产品是甲厂生产的,则这件产品恰好
1 是次品的概率是_________;20
3
P(B
A)
P( AB) P( A)
10 3
1 2
5
例1、在5道题中有3道理科题和2道文科题,如果不放回 地依次抽取2道题,求: (1)第一次抽取到理科题的概率; (2)第一次和第二次都抽取到理科题的概率; (3)在第一次抽到理科题的条件下,第二次抽到理科题
的概率。
解法二:因为n(AB)=6,n(A)=12,所以
解 {(男,男), (男,女), (女,男), (女,女)}
A={已知一个是女孩}={(男,女), (女,男), (女,女)}
B {另一个也是女孩} {(女,女)}
所以所求概率为 1 . 3
4
问题 该家庭中有两个孩子,已知老大是女孩,问另一个 小孩也是女孩的概率为多大?
解 {(男,男), (男,女), (女,男), (女,女)}
2
你能算吗?
五一假期你妈妈带你到她的一个朋友家做客, 闲谈间正巧碰到她的女儿回家,这时主人介 绍说:“这是我的一个女儿,我还有一个孩 子呢。”这个家庭中有两个孩子,已知其中 有一个是女孩,问这时另一个孩子也是女孩 的概率为多大?
3
问题 该家庭中有两个孩子,已知其中有一个是女孩, 问另一个小孩也是女孩的概率为多大?
二项分布剖析课件
公式:$PGF(z) = E(z^X) = sum_{k=0}^n C_n^k p^k (1p)^{n-k} z^k$。
特征函数(CF)
特征函数(CF)是二项分布在离散概率空间上的特征函数 ,表示在n次独立重复的伯努利试验中成功的次数的特征函 数的和。
公式:$CF(t) = E(e^{itX}) = sum_{k=0}^n C_n^k p^k (1-p)^{n-k} e^{itk}$。
二项分布剖析课件
目录
• 二项分布的概述 • 二项分布的性质 • 二项分布的参数 • 二项分布的计算方法 • 二项分布在统计学中的运用 • 二项分布的假设检验 • 二项分布的实例分析
01
二项分布的概述
二项分布的定义
总结词
二项分布是一种离散概率分布,描述 了在n次独立重复的伯努利试验中成 功的次数。
详细描述
二项分布适用于描述具有两种对立结 果的事件,其中每次试验只有两种可 能的结果,即成功或失败,且每次试 验的成功概率是相同的。
二项分布在现实生活中的应用
总结词
二项分布在金融、生物统计学、可靠性工程等领域有广泛应 用。
详细描述
在金融领域,二项分布用于评估投资风险和预期回报;在生 物统计学中,二项分布用于研究遗传学和流行病学中的事件 ;在可靠性工程中,二项分布用于分析产品的寿命和故障率 。
置信区间的确定
要点一
置信区间的概念
在统计学中,置信区间是指在一定置信水平下,样本统计 量可能取值的一个范围。这个范围越小,置信水平越高。
要点二
置信区间计算方法
在二项分布中,置信区间的计算方法通常采用正态近似法 或精确法。正态近似法适用于样本数量较大时,而精确法 适用于样本数量较小时。通过这些方法,可以计算出在一 定置信水平下,成功的次数可能取值的一个范围。
2.2.二项分布及其应用
P(B|A)表示事件A发生条件下,B发生的概率
寓言故事新编:“一个和尚挑水吃,两个和尚抬水吃,三个和 尚没水吃” ,现在他们学会了团结与合作,为提高效率,三人 决定依次抽签选一人去扛水。 (1)第三个人去扛水的概率为 1/3 ; P(B)=1/3
(2)已知第一个人抽签结果不用扛水,则第三 1/2 P(B|A)=1/2 个人去扛水的概率为 .
符号
互斥事件A、B中 有一个发生,记作
相互独立事件A、B同 时发生记作 AB
A + B或(A∪B)) P(A∪B)=P(A)+P(B) P(AB)= P(A)P(B)
计算公式
题型一、事件相互独立性的判断
判断事件下列事件是否为互斥, 互独事件? (1)袋中有4个白球, 3个黑球, 从袋中依次取2球. 事件A:“第一次取出的是白球”.把取出的球放回盒中, 事件B:“第二次取出的是白球” (2)袋中有4个白球, 3个黑球, 从袋中依次取2球. 事件A:“第一次取出的是白球”. 取出的球不放回盒中, 事件B:“第二次取出的是白球”
比赛采用五局三胜制,即哪个球队先胜三场即可获得总
冠军,已知每一场比赛中甲队获胜的概率是0.6,乙对获
胜的概率是0.4。
(1)甲队以3:0获胜的概率;
(2)甲队以3:1获胜的概率;
(3)甲队以3:2获胜的概率;
(4)甲队获得总冠军的概率.
题型三、独立重复试验的分布列
例4、一名学生骑自行车上学,从他家道学校的途中有6个交通岗,
4 例3 某班甲、乙、丙三名同学竞选班委,甲当选的概率为 , 5 7 3 乙当选的概率为 ,丙当选的概率为 10 5
(1)求恰有一名同学当选的概率;
(2)求至多有一名同学当选的概率。
课件2:二项分布及其应用
2 9
1 9
作 业
能
所以 Eξ=1×23+2×29+3×19=193.
菜单
91淘课网 ——淘出优秀的你
自
1.解答本题关键是把所求事件包含的各种情况找出
高 考
主
体
落 实
来,从而把所求事件表示为几个事件的和事件.
验 ·
·
明
固 基
2.求相互独立事件同时发生的概率的方法主要有
考 情
础
(1)利用相互独立事件的概率乘法公式直接求解.
1
由条件概率计算公式,得 P(B|A)=P(P(A∩A)B)=140=14.
典
例
探
究 ·
【答案】 B
提
知
能
10
课 后 作 业
菜单
91淘课网 ——淘出优秀的你
高
自
主
1.利用定义,分别求P(A)和P(AB),得
考 体
落 实 · 固
P(B|A)=PP((AAB)).这是通用的求条件概率的方法.
验 · 明 考
体 验
实 · 固
篮投中,则 P(Ak)=13,P(Bk)=12(k=1,2,3).
· 明 考
基 础
(1)记“甲获胜”为事件 C,由互斥事件有一个发生的概 情
率与相互独立事件同时发生的概率计算公式知
P(C)=P(A1)+P(A1 B1A2)+P(A1 B1 A2 B2A3) =P(A1)+P(A1 )P(B1 )P(A2)+
典
S△SEOH=π2=21π.故 P(B|A)=PP((AAB))=22π=14.
例 探
π
课
后
究 · 提
【答案】 (1)π2 (2)14
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)取后放回,直到红球出现一次时停止,设停止时共取了Y次球, 求P(Y=4)的概率。
运用n次独立重复试验模型解题
例3 假定人在一年365天中的任一天出生的概率是一
样的,某班级有50名同学,其中有两个以上的同 学生于元旦的概率是多少?(保留四位小数)
复习回顾
1、 n次 独 立 重 复 试 验 : 一 般 地 ,在 相 同 条 件 下 , 重 复 做 的 n次 试 验 称
为 n次 独 立 重 复 试 验 .
2、二项分布:
一般地,在n次独立重复试验中,设事件A发生的 次数为X,在每次试验中事件A发生的概率为p
P ( X k ) C n k p k ( 1 p ) n k ,k 0 ,1 ,2 ,...,n .
3.甲,乙二人单独解一道题, 若甲,乙能解对该题的概率 分别是m, n . 则此题被解对的概率是_m_+_n_-_m_n_
P(A+B)=P(A·B)+P(A·B) +P(A·B)=1- P(A·B)
4.有一谜语, 甲,乙,丙猜对的概率分别是1/5, 1/3 , 1/4 . 则三人中恰有一人猜对该谜语的概率是__1_3__
变式引申
某人参加一次考试,若5道题中解对4道则为及 格,已知他解一道题的正确率为0.6,是求他能及格 的概率。
例4在6道题中有4道理科题和2道文科题,如果不放回
的依次抽取2道题 (1)第一次抽到理科题的概率 (2)第一次与第二次都抽到理科题的概率 (3)第一次抽到理科题的条件下,第二次抽到理科 题的概率.
P(A·B)= P(A) ·P (B)
( 互独事件)
对立事件的概率
独立事件一定不互斥. 互斥事件一定不独立.
明确事件中的关键词,如,“至少有一个发生”“至 多有一个发生”,“恰有一个发生”,“都发 生”“都不发生”,“不都发生”。
例 1 考虑恰有三个小孩的家庭. (假定生男生女为
等可能)
(1)若已知某一家有一个是女孩,求这家另两个是男孩的概率
30
(1-a)(1-b)
5.加工某产品须经两道工序, 这两道工序的次品率分别 为a, b. 且这两道工序互相独立.产品的合格的概率是__.
6.某系统由A,B,C三个元件组成,
A
B
每个元件正常工作概率为P.
则系统正常工作的概率为____
PP2P3 C
7.在100件产品中有4件次品.
C42
①从中抽2件, 则2件都是次品概率为_C_10_02
⑴如果是有放回地取,则x B(n, M )
N ⑵如果是不放回地取, 则x 服从超几何分布.
P(x
k)
C C k nk M NM
C
n N
(k
0,1, 2,
, m) (其中 m min(M , n)
复习回顾
求
较
正向
复
杂
事
件
概 率
反向
分类 分步
( 互斥事件)
P(A+B)= P(A) + P (B)
①区别:互斥事件和相互独立事件是两个不同概念:
两个事件互斥是指这两个事件不可能同时发生; 两个事件相互独立是指一个事件的发生与否对另一个事件 发生的概率没有影响。
②如果事件A与B相互独立,那么A与B,A与B,A与B是不是 相互独立的 相互独立
复习回顾
1.如果事件A,B独立,则 P(AB)= P(A)P(B)
高二数学 选修2-3
2.2.1条件概率(一)
复习回顾
1.条件概率
对任意事件A和事件B,在已知事件A发生的 条件下事件B发生的概率,叫做条件概率. 记作
P(B |A).
2.条件概率计算公式: P(B|A)nnAABPP((AAB))
注 :⑴0≤P(B|A)≤ 1; ⑵ 几 何 解 释 : ⑶ 可 加 性 :
练习 抛掷两颗均匀的骰子,已知第一颗骰子掷
出6点,问:掷出点数之和大于等于10的概率。
变式 :抛掷两颗均匀的骰子,已知点数不同,求至少
有一个是6点的概率?
1.射击时, 甲射10次可射中8次;乙射10次可射中7次. 则甲,乙同时射中同一目标的概率为____1245___
2.甲袋中有5球 (3红,2白), 乙袋中有3球 (2红,1白). 从每袋中任取1球,则至少取到1个白球的概率是__35_
.
推广: 一般地,如果事件A1,A2……,An相互独立,那么
P(A1·A2……An)=P(A1)·P(A2)……P(An)
2.如果事件A、B互斥,则P(A+B)= P(A)+P(B) .
推广:一般地,如果事件 A1、A2、...An 彼此互斥,那么
P ( A 1 A 2 + . . . + A n ) P ( A 1 ) P ( A 2 ) . . . P ( A n )
BA
如|A)P(C|A)
复习回顾
1、事件的相互独立性 设A,B为两个事件,如果 P(AB)=P(A)P(B),则称事 件A与事件B相互独立。
即事件A(或B)是否发生,对事件B(或A)发生的
概率没有影响,这样两个事件叫做相互独立事件。 注:
C41·C31
②从中抽两次,每次1件则两次都抽出次品的概率是C_1_00_1·C991
(不放回抽取)
C41·C41
③从中抽两次,每次1件则两次都抽出次品的概率是C_10_01_·C1001
(放回抽取)
Cnk pkqnk
C
n n
p
n
q
0
我们称这样的随机变量ξ服从二项分布,记作 x ~B(n, p,)
其中n,p为参数
复习回顾
二项分布与两点分布、超几何分布有什么区别和联系? 1.两点分布是特殊的二项分布x (1 p)
2.一个袋中放有 M 个红球,( N M )个白球,依次从袋中 取 n 个球,记下红球的个数x .
此时称随机变量X服从二项分布,记作X~B(n,p), 并称p为成功概率。
复习回顾
3、 二项分布
在一次试验中某事件发生的概率是p,那么在n次 独立重复试验中这个事件恰发生x次,显然x是一个随机 变量.
于是得到随机变量ξ的概率分布如下:
ξ
0 1… k … n
p
… … C
0 n
p
0
q
n
Cn1 p1qn1
(2)若已知某一家第一个是女孩,求这家另两个是男孩的概率
(女、女、女); (女、女、男); (女、男、女);(女、男、男); (男、女、女); (男、女、男); (男、男、女); (男、男、男);
例2一袋中有5个白球,3个红球,现从袋中往外取球,每次取一
球
(1)取后不放回,求第3次才取到红球的概率;