专题09 动态几何(解析版)
动态几何问题
动态几何问题
(2)当直线MN绕着点C顺时针旋转到 MN与AB相交于点F(AF>BF)的位 置(如图2所示)时,请直接写出下列 问题的答案: ①请你判断△ADC和△CEB还具有 (1)中①的关系吗? ②猜想DE、AD、BE三者之间具有怎 样的数量关系.
动态几何问题
训练题2
如图1,在Rt△ABC中,∠A=90°,AB=AC,BC=4 √2, 另有一等腰梯形DEFG(GF∥DE)的底边DE与BC重合, 两腰分别落在AB、AC上,且G、F分别是AB、AC的中 点. (1)求等腰梯形DEFG的面积;
②探究2:设在运动过程中△ABC与等腰梯形 DEFG重叠部分的面积为y,求y与x的函数关系式.
动态几何问题
参考提示:
1、△ABC是等腰直角三角形,BC=,4√2,BC上的高为 2√2,梯形的底DE=4√2,GF=2√2,高为√2.。梯形面积 (4√2+2√2)*√2/2=6。 2、函数的定义域为0≤x≤4√2, 函数式分两个区间分析。
动态几何问题
动态几何问题
动态几何问题
动态几何问题
动态几何问题
Байду номын сангаас
动态几何问题
动态几何问题
解:(1)∵G、F分别是AB、AC的中点, ∴GF=1/2 BC=1/2×4√2 =2√2 , 过G点作GM⊥BC于M, ∵AB=AC,∠BAC=90°,BC=4√2 ,G 为AB中点 ∴GM=√2 又∵G,F分别为AB,AC的中点 ∴GF=1/2 BC=2√2 ∴S梯形DEFG=1/2 (2√2 +4√2 )×√2 =6, ∴等腰梯形DEFG的面积为6 .
动态几何问题
2)能为菱形
由BG∥DG′,GG′∥BC ∴四边形BDG′G是平行四边形 又AB=AC,∠BAC=90°,BC=4√2 , ∴AB=AC=4, 当BD=BG=1 2 AB=2时,四边形BDG′G为 菱形 此时可求得x=2, ∴当x=2秒时,四边形BDG′G为菱形
中考几何-动态试题解法(解析版)
中考几何动态试题解法专题知识点概述一、动态问题概述1.就运动类型而言,有函数中的动点问题有图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
2.就运动对象而言,几何图形中的动点问题有点动、线动、面动三大类。
3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。
4.动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,属于初中数学难点,综合性强,只有完全掌握才能拿高分。
二、动点与函数图象问题常见的四种类型1.三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
2.四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
3.圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。
4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。
三、图形运动与函数图象问题常见的三种类型1.线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
2.多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
3.多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
四、动点问题常见的四种类型解题思路1.三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系。
中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)
点 的坐标
为 .……
一次函数的解读式
为 .
(3) 两点在直线 上, 的坐标分别是 .
, .
过点 作 ,垂足为点 .
,
又 , 点坐标为 .
3.(1)解方程 ,得 .
由m<n,知m=1,n=5.
∴A(1,0),B(0,5).………………………1分
∴ 解之,得
所求抛物线的解读式为 ……3分
(2)由 得 故C的坐标为(-5,0).………4分
(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为_______
和位置关系为_____;
(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;
(2)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.
(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.
4、(1)如图1所示,在四边形 中, = , 与 相交于点 , 分别是 的中点,联结 ,分别交 、 于点 ,试判断 的形状,并加以证明;
(2)如图2,在四边形 中,若 , 分别是 的中点,联结FE并延长,分别与 的延长线交于点 ,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论:;
(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.
7.设点E是平行四边形ABCD的边AB的中点,F是BC边上一点,线段DE和AF相交于点P,点Q在线段DE上,且AQ∥PC.
一元二次方程的应用8类模型(增长率,与图形有关,数字,营销,动态几何,工程,行程问题)(解析版)
专题09一元二次方程的应用压轴题八种模型全攻略(传播,增长率,与图形有关,数字,营销,动态几何,工程,行程问题)【考点导航】目录【典型例题】 (1)【题型一一元二次方程的应用--传播问题】 (1)【题型二一元二次方程的应用--增长率问题】 (3)【题型三一元二次方程的应用--与图形有关的问题】 (4)【题型四一元二次方程的应用--数字问题】 (6)【题型五一元二次方程的应用--营销问题】 (8)【题型六一元二次方程的应用--动态几何问题】 (10)【题型七一元二次方程的应用--工程问题】 (13)【题型八一元二次方程的应用--行程问题】 (14)【过关检测】 (17)【典型例题】【题型一一元二次方程的应用--传播问题】例题:(2023春·广东汕头·九年级统考阶段练习)有一人感染了某种病毒,经过两轮传染后,共有256人感染了该种病毒,求每轮传染中平均每人传染了多少个人.【答案】15人【分析】有一人感染了某种病毒,经过两轮传染后,共有256人感染了该种病毒,设每轮传染中平均每人传染了x 人,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】设每轮传染中平均每人传染了x 人,依题意,得1(1)256x x x +++=,即2(1)256x +=,解方程,得115x =,217x =-(舍去).【题型二一元二次方程的应用--增长率问题】【分析】(1)设这两个月藏书的月平均增长率为x ,利用该校“阅读公园”5月底的藏书量=该校“阅读公园”3月的藏书量×21+月(藏书的平均增长率),即可得出关于x 的一元二次方程,解之,取其正值即可得出结论;(2)利用该校“阅读公园”6月的藏书量=该校“阅读公园”5月的藏书量×(1+藏书的月平均增长率),即可求出该校“阅读公园”6月的藏书量.【详解】(1)解:设该校这两个月藏书的月均增长率为x ,根据题意,得()2500017200x +=解得10.220%x ==,2 2.2x =-(不合题意,舍去)该校这两个月藏书的月均增长率为20%;(2)()7200120%8640⨯+=(册),所以,预测到6月该校“阅读公园”的藏书量是8640册.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.【题型三一元二次方程的应用--与图形有关的问题】例题:(2023春·北京石景山·八年级统考期末)如图,矩形草地ABCD 中,16AB =m ,10AD =m ,点O 为边AB 中点,草地内铺了一条长和宽分别相等直角折线甬路(PO PQ =,OM QN =),若草地总面积(两部分阴影之和)为2132m ,求甬路的宽.【答案】2m【分析】设甬路的宽为x m ,先得出8PQ OB ==,即8MB OB OM x =-=-,再据题意列一元二次方程,解方程即可求解.【详解】解:设甬路的宽为x m ,∵矩形ABCD 中,PO PQ =,OM QN =,∴四边形OPQB 是正方形,∵点O 为边AB 中点,16AB =m ,【答案】()()20218x x --=【分析】由花园的长、宽及雨道的宽,可得出种植花卉的部分可合成长为形,结合花卉种植面积共为【详解】解:∵花园长20直于墙的木栏隔开,分成面积相等的两个区域,并在两个区域中各留1米宽的门(门不用木栏),修建所用木栏总长28米,设矩形ABCD 的一边长CD 为x 米.(1)求矩形ABCD 的另一边长BC 是多少米?(用含x 的代数式表示)(2)矩矩形ABCD 的面积能否为272m ?若能,求出CD 的长;若不能,请说明理由.【答案】(1)(30﹣3x )米(2)能,6m【分析】(1)根据题中条件即可求出BC 的长;(2)根据矩形ABCD 的面积为272m ,列出一元二次方程,解方程,即可解决问题.【详解】(1) 修建所用木栏总长28米,且两处各留1米宽的门(门不用木栏),2283(303)BC x x ∴=+-=-米,即另一边长BC 是(303)x -米;(2)矩形ABCD 的面积能为272m ,理由如下:由题意得:(303)72x x -=,整理得:210240x x -+=,解得:14x =,26x =,当4x =时,30330341815x -=-⨯=>,不符合题意,舍去;当6x =时,30330361215x -=-⨯=<,符合题意;答:矩形ABCD 的面积能为272m ,CD 的长为6m .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.【题型四一元二次方程的应用--数字问题】例题:(2023·全国·九年级假期作业)一个两位数等于它个位数字的平方,且个位数字比十位数字大3,则这个两位数是()A .25B .36C .25或36D .64【答案】C【分析】设十位数字为x ,表示出个位数字,根据题意列出方程求解即可.【详解】设这个两位数的十位数字为x ,则个位数字为()3x +.依题意得:2103(3)x x x ++=+,解得:122,3x x ==.∴这个两位数为25或36.故选C .【点睛】本题考查一元二次方程的应用,根据题意列出一元二次方程是解题的关键.【变式训练】1.(2023秋·江苏镇江·九年级统考期末)两个连续奇数的积为323,设其中的一个奇数为x ,可得方程________.【答案】()2323x x ⋅+=或()2323x x ⋅-=【分析】已知设其中的一个奇数为x ,且设其中的一个奇数为x ,分两种情况讨论:若x 为较小的奇数,则另一个奇数为(2)x +,即可列出方程()2323x x ⋅+=;若x 为较大的奇数,则另一个奇数为(2)x -,即可列出方程()2323x x ⋅-=,即可正确解答.【详解】①若x 为较小的奇数,则另一个奇数为(2)x +,∵两个连续奇数的积为323,∴()2323x x ⋅+=;②若x 为较大的奇数,则另一个奇数为(2)x -,∴()2323x x ⋅-=;故答案为:()2323x x ⋅+=或()2323x x ⋅-=【点睛】本题主要考查由实际问题抽象出一元二次方程,正确的理解题意,找出题目中的等量关系是解题的关键.2.(2023·全国·九年级假期作业)一个两位数,个位数字比十位数字少1,且个位数字与十位数字的乘积等于72,则这个两位数是_____.【答案】98【分析】设这个两位数个位上的数字为x ,则十位上的数字为()1x +,根据“个位数字与十位数字的乘积等于72,”列出方程,即可求解.【详解】解∶设这个两位数个位上的数字为x ,则十位上的数字为()1x +,依题意,得:()172x x +=,整理,得:2720x x +-=,解得:19x =-(不合题意,舍去),28x =,∴()()1011081898x x ++=⨯++=.故答案为:98【点睛】本题主要考查了一元二次方程的应用,正确表示出这个两位数的十位数字是解题的关键.【题型五一元二次方程的应用--营销问题】例题:(2023春·安徽合肥·八年级统考期中)某水果批发商店经销一种高档水果,如果每千克盈利5元,每天可售出600千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商店要保证每天盈利5000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?【答案】每千克水果应涨价5元【分析】设每千克应涨价x 元,根据每千克盈利5元,每天可售出600千克,每天盈利5000元,列出方程,求解即可.【详解】解:设每千克应涨价x 元,由题意列方程得:(5)(60020)5000x x +-=,解得:5x =或20x =,为了使顾客得到实惠,那么每千克应涨价5元;答:每千克水果应涨价5元.【点睛】此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.【变式训练】1.(2023秋·广东惠州·九年级统考期末)某商场一种商品的进价为每件30元,售价为每件40元,每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;【详解】(1)解:由题意可把2020年新能源汽车的销售总量看作单位“1”,则设该汽车企业这两年新能源汽车销售总量的平均年增长率为x ,则有:()21196x +=+%,解得:120.4, 2.4x x ==-(不符合题意,舍去),答:该汽车企业这两年新能源汽车销售总量的平均年增长率为40%.(2)解:设下调后每辆汽车的售价为m 万元,由题意得:()()15822596m m -+-=⎡⎤⎣⎦解得:1223,21m m ==,∵尽量让利于顾客,∴21m =;答:下调后每辆汽车的售价为21万元.【点睛】本题主要考查一元二次方程的应用,熟练掌握一元二次方程的应用是解题的关键.【题型六一元二次方程的应用--动态几何问题】例题:(2023春·上海静安·八年级上海市回民中学校考期中)在ABC 中,9016cm 12cm ACB AC BC ∠=︒==,,,动点M 、N 分别从点A 和点C 同时开始移动,点M 的速度为2cm /秒,点N 的速度为3cm /秒,点M 移动到点C 后停止,点N 移动到点B 后停止.问经过几秒钟,MCN △的面积为236cm【答案】2秒【分析】设经过x 秒钟后,MCN △的面积为236cm ,则()162cm 3cm CM AC AM x CN x =-=-=,,据此利用三角形面积公式建立方程求解即可.【详解】解:设经过x 秒钟后,MCN △的面积为236cm ,【答案】4cm【分析】设cm AP x =,则形面积公式求解出AP 的值即可.【详解】设cm AP x =,则(1)若点P从点A移动到点B停止,点Q 是10cm?(2)若点P沿着AB BC CD→→移动,点探求经过多长时间PBQ的面积为12cm【答案】(1)8s5或24s5;【题型七一元二次方程的应用--工程问题】例题:(2023·重庆开州·校联考一模)某工程队采用A ,B 两种设备同时对长度为3600米的公路进行施工改造.原计划A 型设备每小时铺设路面比B 型设备的2倍多30米,则30小时恰好完成改造任务.(1)求A 型设备每小时铺设的路面长度;(2)通过勘察,此工程的实际施工里程比最初的3600米多了750米.在实际施工中,B 型设备在铺路效率不变的情况下,时间比原计划增加了()25m +小时,同时,A 型设备的铺路速度比原计划每小时下降了3m 米,而使用时间增加了m 小时,求m 的值.【答案】(1)A 型设备每小时铺设的路面长度为90米(2)m 的值为10【分析】(1)设B 型设备每小时铺设路面x 米,则A 型设备每小时铺设路面()230x +米,根据题意列出方程求解即可;(2)根据“A 型设备铺设的路面长度B +型设备铺设的路面长度3600750=+”列出方程,求解即可.【详解】(1)解:设B 型设备每小时铺设路面x 米,则A 型设备每小时铺设路面()230x +米,根据题意得,()30302303600x x ++=,解得:30x =,则23090x +=,答:A 型设备每小时铺设的路面长度为90米;(2)根据题意得,()()()303025903303600750m m m +++-+=+,整理得,2100m m -=,解得:110m =,20m =(舍去),∴m 的值为10.【点睛】本题主要考查一元一次方程、一元二次方程的应用,解题关键是读懂题意,找准等量关系并列出方程.【变式训练】1.(2023春·八年级课时练习)全球疫情爆发时,口罩极度匮乏,中国许多企业都积极地生产口罩以应对疫情,经调查发现:1条口罩生产线最大产能是78000个/天,每增加1条生产线,每条生产线减少1625个/天,工厂的产线共x 条(1)该工厂最大产能是_____个/天(用含x 的代数式表示).(2)若该工厂引进的生产线每天恰好能生产口702000个,该工厂引进了多少条生产线?【答案】(1)2780001625x x -;(2)12或36【分析】(1)根据题意,根据代数式的性质计算,即可得到答案;(2)结合(1)的结论,列一元二次方程并求解,即可得到答案.【详解】(1)根据题意,得该工厂最大产能是:()2780001625780001625x x x x -=-个/天故答案为:2780001625x x -;(2)根据题意,得:2780001625702000x x -=12x =或36x =∴即该工厂引进了12或36条生产线.【点睛】本题考查了一元二次方程、代数式的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.【题型八一元二次方程的应用--行程问题】例题:(2023春·浙江·八年级专题练习)《九章算术》中有一题:“今有二人同立,甲行率六,乙行率四,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“甲、乙二人同时从同一地点出发,甲的速度为6,乙的速度为4,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇,甲、乙各走了多少步?”请问乙走的步数是()【过关检测】一、单选题1.(2023春·安徽淮北·八年级统考期末)要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,则应邀请()个球队参加比赛.A .6B .7C .8D .9【答案】C【分析】设应邀请x 个球队参加比赛,则总共需安排()112x x -场比赛,根据计划安排28场比赛建立方程,解方程即可得.【详解】解:设应邀请x 个球队参加比赛,则总共需安排()112x x -场比赛,由题意得:()11282x x -=,解得8x =或70x =-<(不符合题意,舍去),故选:C .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确建立方程是解题关键.2.(2023秋·辽宁葫芦岛·九年级统考期末)电影《长津湖之水门桥》以抗美援朝战争第二次战役中的长津湖战役的一部分为背景,上演了一段可歌可泣的历史,一上映就获得全国人民的追捧,第一天票房约6亿元,以后每天票房按相同的增长率增长;三天后累计票房收入达14.7亿元,若设平均每天票房的增长率为x ,则可以列方程为()A .()6114.7x +=B .26(1)14.7x +=C .266(1)14.7x ++=D .()26616(1)14.7x x ++++=【答案】D【分析】设平均每天票房的增长率为x ,根据一元二次方程增长率问题,列出方程即可求解.【详解】设平均每天票房的增长率为x ,则可以列方程为()()26616114.7x x ++++=,故选:D .【点睛】本题考查了一元二次方程的应用,根据题意列出方程是解题的关键.3.(2023春·河南驻马店·七年级校考阶段练习)小明在某书店购买数学课外读物《几何原本》,已知每本《几何原本》的定价为40元,若按八折出售,该书店仍可获利10元,则每本《几何原本》的进价为()A .22元B .24元C .26元D .28元【答案】A 【分析】根据题意可知:标价⨯(折数÷10)-成本=利润,可以列出相应方程,然后求解即可;【详解】设每本《几何原本》的进价为x 元,则:由题意可得:400.810x ⨯-=,解得:22x =;故选:A .【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程;对于本题运用到的公式:标价⨯(折数÷10)-成本=利润,一定要熟记并能够在题目中合理运用.4.(2023秋·山西阳泉·九年级统考期末)如图,某景区计划在一个长为72m ,宽为40m 的矩形空地上修建一个停车场,停车场中修建三块相同的矩形停车区域,它们的面积之和为21792m ,三块停车区域之间以及周边留有宽度相等的行车通道,问行车通道的宽度是多少m ?设行车通道的宽度是m x ,则可列方程为()A .()()72401792x x --=B .()()7244021792x x --=C .()()7234021792x x --=D .()()724401792x x --=【答案】B 【分析】设行车通道的宽度为m x ,再根据停车区域面积之和为21792m 列出一元二次方程,然后求解即可.【详解】解:设行车通道的宽度为m x .根据题意,得()()7244021792x x --=.故选:B .【点睛】本题主要考查了一元二次方程的应用,根据题意列出一元二次方程是解答本题的关键.5.(2023春·浙江·八年级专题练习)《九章算术》中有一题:“今有二人同立,甲行率六,乙行率四,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“甲、乙二人同时从同一地点出发,甲的速度为6,乙的速度为4,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇,甲、乙各走了多少步?”请问乙走的步数是()A .36B .26C .24D .10【答案】C【分析】设甲、乙两人相遇的时间为t ,则乙走了4t 步,甲斜向北偏东方向走了(610)t -步,利用勾股定理即可得出关于t 的一元二次方程,解之即可得出t 值,将其值代入4t 中即可求出结论.【详解】解:设甲、乙两人相遇的时间为t ,则乙走了4t 步,甲斜向北偏东方向走了(610)t -步,依题意得:22210(4)(610)t t +=-,整理得:2201200t t -=,解得:126,0t t ==(不合题意,舍去),∴44624t =⨯=.故乙走的步数是24.故选:C .【点睛】本题考查了一元二次方程的应用以及勾股定理,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题(1)BC=三、解答题11.(2023春·安徽六安·八年级校联考期中)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?【答案】若病毒得不到有效控制,3轮感染后,被感染的电脑会超过700台.【分析】本题可设每轮感染中平均一台会感染x 台电脑,则第一轮后共有(1)x +台被感染,第二轮后共有(1)(1)x x x +++即2(1)x +台被感染,利用方程即可求出x 的值,并且3轮后共有3(1)x +台被感染,比较该数同700的大小,即可作出判断.【详解】解:设每轮感染中平均一台电脑会感染x 台电脑,则经过1轮后有()1x +台被染上病毒,2轮后就有()21x +台被感染病毒,依题意,得()2181x +=,解得18x =,210x =-(舍去).所以每轮感染中平均一台电脑会感染8台电脑.由此规律,经过3轮后,有()()33118729x +=+=台电脑被感染.由于729700>,所以若病毒得不到有效控制,3轮感染后,被感染的电脑会超过700台.【点睛】本题只需仔细分析题意,利用方程即可解决问题.找到关键描述语,找到等量关系准确地列出方程是解决问题的关键.12.(2023秋·河南驻马店·九年级统考期末)2022年北京冬季奥运会于2月4日至2月20日在北京市和河北省张家口市联合举行,冬奥会吉祥物为“冰墩墩”.(1)据市场调研发现,某工厂今年二月份共生产500个“冰墩墩”,该工厂连续两个月增加生产量后四月份生产720个“冰墩墩”,求平均每月的增长率是多少?(2)已知某商店“冰墩墩”平均每天可销售20个,每个盈利20元,在每个降价幅度不超过8元的情况下,每下降2元,则每天可多售10件.如果每天要盈利700元,则每个“冰墩墩”应降价多少元?【答案】(1)20%(2)6元【分析】(1)设该工厂平均每月生产量增长率为x ,利用该工厂四月份生产“冰墩墩”的数量=该工厂二月份生产“冰墩墩”的数量⨯(1+该工厂平均每月生产量的增长率)的平方,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)设每个“冰墩墩”降价y 元,则每个盈利()20y -元,平均每天可售出(20)5y +个,利用该商店每天销售“冰墩墩”获得的利润=每个的销售利润⨯平均每天的销售量,即可得出关于y 的一元二次方程,解之取其符合(1)DC=___________米(用含(2)若长方形围栏ABCD(3)长方形围栏ABCD面积是否有可能达到(1)用含t 的式子表示线段的长:CQ =__________;PB =__________.(2)当t 为何值时,P 、Q 两点间的距离为13cm ?(3)当t 为何值时,四边形APQD 的形状可能为矩形吗?若可能,求出t 的值;若不可能,请说明理由.【答案】(1)2cm t ,()153cmt -(2)P 、Q 出发0.6和5.4秒时,P ,Q 间的距离是13cm(3)P 、Q 出发3秒时四边形APQD 为矩形【分析】(1)根据题意可直接进行求解;(2)可通过构建直角三角形来求解.过Q 作QM AB ⊥于M ,如果设出发t 秒后,13cm QP =.那么可根据路程=速度⨯时间,用未知数表示出PM 的值,然后在直角三角形PMQ 中,求出未知数的值.(3)利用矩形的性质得出当AP DQ =时,四边形APQD 为矩形求出即可【详解】(1)解:由题意得:2cm,3cm CQ t AP t ==,∵15cm AB =,∴()153cm PB t =-;故答案为2cm t ,()153cm t -;(2)解:设出发t 秒后P 、Q 两点间的距离是13cm .则3AP t =,2CQ t =,作QM AB ⊥于M ,∵四边形ABCD 是矩形,。
动点问题动态几何问题专题详解
动点问题、动态几何问题专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.【专题一:建立动点问题的函数解析式】函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式例1(2000上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P ,PH ⊥OA ,垂足为H ,△OPH 的重心为G .(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变的线段,这条线段是GH =32NH =2132⋅OP =2. (2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.∴y =GP =32MP =233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况:①GP =PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP =GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意. ③PH =GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2. 二、应用比例式建立函数解析式例2(2006山东)如图2,在△ABC 中,AB =AC =1,点D ,E 在直线BC 上运动.设BD =,x CE =y . (1)如果∠BAC =30°,∠DAE =105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB =AC ,∠BAC =30°, ∴∠ABC =∠ACB =75°, ∴∠ABD =∠ACE =105°. ∵∠BAC =30°,∠DAE =105°, ∴∠DAB +∠CAE =75°, 又∠DAB +∠ADB =∠ABC =75°, ∴∠CAE =∠ADB ,∴△ADB ∽△EAC , ∴ACBD CE AB =,2222233621419x x x MH PH MP +=-+=+=AEDCB 图2HM NG POAB图1x y∴11xy =, ∴x y 1=.(2)由于∠DAB +∠CAE =αβ-,又∠DAB +∠ADB =∠ABC =290α-︒,且函数关系式成立,∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005上海)如图3(1),在△ABC 中,∠ABC =90°,AB =4,BC =3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D ,交线段OC 于点E .作EP ⊥ED ,交射线AB 于点P ,交射线CB 于点F .(1)求证: △ADE ∽△AEP .(2)设OA =x ,AP =y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF =1时,求线段AP 的长. 解:(1)连结OD .根据题意,得OD ⊥AB ,∴∠ODA =90°,∠ODA =∠DEP .又由OD =OE ,得∠ODE =∠OED .∴∠ADE =∠AEP , ∴△ADE ∽△AEP .(2)∵∠ABC =90°,AB =4,BC =3, ∴AC =5. ∵∠ABC =∠ADO =90°, ∴OD ∥BC , ∴53x OD =,54xAD =, ∴OD =x 53,AD =x 54. ∴AE =x x 53+=x 58. ∵△ADE ∽△AEP , ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF =1时,①若EP 交线段CB 的延长线于点F ,如图3(1),则CF =4.∵∠ADE =∠AEP , ∴∠PDE =∠PEC . ∵∠FBP =∠DEP =90°, ∠FPB =∠DPE , ∴∠F =∠PDE , ∴∠F =∠FEC , ∴CF =CE . ∴5-x 58=4,得85=x .可求得2=y ,即AP =2.A3(2)3(1)②若EP 交线段CB 于点F ,如图3(2), 则CF =2. 类似①,可得CF =CE . ∴5-x 58=2,得815=x . 可求得6=y ,即AP =6.综上所述, 当BF =1时,线段AP 的长为2或6. 三、应用求图形面积的方法建立函数关系式例4(2004上海)如图,在△ABC 中,∠BAC =90°,AB =AC =22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO =x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O ,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC ,垂足为H . ∵∠BAC =90°,AB =AC =22, ∴BC =4,AH =21BC =2. ∴OC =4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA =1+x ,OH =x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA =1-x ,OH =2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21. 【专题二:动态几何型压轴题】动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
动态几何之“双动点”问题(含解析)
动态几何之“双动点”问题(含解析)1. 已知,如图,在△ABC 中,已知AB =AC =5 cm ,BC =6 cm .点P 从点B 出发,沿BA 方向匀速运动,速度为1 cm /s ;同时,直线QD 从点C 出发,沿CB 方向匀速运动,速度为1 cm /s ,且QD ⊥BC ,与AC ,BC 分别交于点D ,Q ;当直线QD 停止运动时,点P 也停止运动.连接PQ ,设运动时间为t (0<t <3)s .解答下列问题: (1)当t 为何值时,PQ//AC ?(2)设四边形APQD 的面积为y (cm 2),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使S 四边形APQD :S △ABC =23:45?若存在,求出t 的值;若不存在,请说明理由.第1题图解:(1)当t s 时,PQ//AC ,∵点P 从点B 出发,沿BA 方向匀速运动,速度为1 cm /s ;同时,直线QD 从点C 出发,沿CB 方向匀速运动,速度为1 cm /s , ∴BP =t ,BQ =6−t . ∵PQ//AC , ∴△BPQ ∽△BAC ,第1题解图∴C B Q B B A BP =,即665t t -=,解得t =1130s . ∴当t 为1130s 时,PQ//AC ;(2)过点A 、P 作AN ⊥BC ,PM ⊥BC 于点N 、M , ∵AB =AC =5cm ,BC =6cm , ∴BN =CN =3cm , ∴AN =222235-=-BN AB =4cm .∵AN ⊥BC ,PM ⊥BC , ∴△BPM ∽△BAN , ∴AN PM AB BP =,即45PM t =,解得PM =t 54, ∴S △BPQ =21BQ ·PM =21(6−t )·t 54=t t 512522+-, ∵AB =AC =5cm ,AN=4cm ,CN=3cm ,DQ//AN , ∴△CDQ ∽△CAN , ∴CN CQ AN DQ =,即34tDQ =,∴DQ=34t , ∴S △CDQ =21CQ ·DQ =32t 2. ∵S △ABC =21BC ·AN =21×6×4=12, ∴y =S 四边形APQD =S △ABC −S △CDQ −S △BPQ =12−32t 2−(t t 512522+-)=12−t t 5121542-(0<t <3); (3)存在.∵由(2)知,S 四边形APQD =S △ABC −S △CDQ −S △BPQ =12−21t 2−(t t 512522+-)=12−t t 5121542-,S △ABC =12, ∴452312512154122=-t t -,解得t 1=411412-+,t 2=411412--(舍去). ∴当t =4114123-+s 时,S 四边形APQD :S △ABC =23:45.2. 如图①,在Rt △ABC 中,∠C =90°,AB =10,BC =6,点P 从点A 出发,沿折线AB −BC 向终点C 运动,在AB 上以每秒5个单位长度的速度运动,在BC 上以每秒3个单位长度的速度运动,点Q 从点C 出发,沿CA 方向以每秒34个单位长度的速度运动,P 、Q 两点同时出发,当点P 停止时,点Q 也随之停止.设点P 运动的时间为t 秒.(1)求线段AQ 的长;(用含t 的代数式表示)(2)连接PQ ,当PQ 与△ABC 的一边平行时,求t 的值;(3)如图②,过点P 作PE ⊥AC 于点E ,以PE ,EQ 为邻边作矩形PEQF ,点D 为AC 的中点,连接DF .设矩形PEQF 与△ABC 重叠部分图形的面积为S .①当点Q 在线段CD 上运动时,求S 与t 之间的函数关系式;②直接写出DF 将矩形PEQF 分成两部分的面积比为1:2时t 的值.第2题图解:(1)在Rt △ABC 中,∵∠C =90°,AB =10,BC =6,由勾股定理得:AC =2222610-=-BC AB =8,∵点Q 在CA 上,以每秒34个单位移动, ∴CQ =34t , ∴AQ =AC -CQ =8−34t .(2)∵P 点从AB -BC 总时间36510+=4s , ∵点P 在AB 或BC 上运动,点Q 在AC 上, ∴PQ 不可能与AC 平行, ①当点P 在AB 上,则PQ//BC ,此时AC AQ AB AP =,即834810t 5t-=,解得t =s 23; ②当点P 在BC 上,此时PQ//AB ,∴CA CQ BC CP =,即46-3t 2368t-=(),解得t =3s , 综上所述,t =32s 或3s 时,PQ 与△ABC 的一边平行; (3)①∵点D 是AC 的中点, ∴CD=4,当点Q 运动到点D 时,t 34=4,解得t =3, 点Q 与点E 重合时,t 316=AC =8,得t =23,分三种情况讨论如下: (i )点Q 与点E 重合时,316t =AC =8,得t =23,当0≤t ≤23,此时矩形PEQF 在△ABC 内,如解图①所示,∵AP =5t ,易得AE =4t ,PE =3t ,∴EQ =AQ -AE =8-34t -4t =8-316t , ∴S =PE ×EQ =3t (8-316t )=-16t 2+24t ;第2题解图(ii )点P 与点B 重合时,5t =10,得t =2,当23≤t ≤2时,如解图②所示,设QF 交AB 与T ,则重叠部分是矩形PEQF 的面积减去△PFT 的面积. ∵AQ =8-34t ,∴QT =43AQ =43(8-34t )=6-t , ∴FT =PE -QT =3t -(6-t )=4t -6, EQ =AE -AQ =4t -(8-34t )=316t -8, ∴S =PE ·EQ -21EQ ·Ft =3t ·(316t -8)-21·(316t -8)(4t -6) =316t 2+8t -24; (iii )当2<t ≤3,点P 在BC 上,且点F 在△ABC 外,如解图③所示,此时点E 与点C 重合,PC =6-3(t -2)=12-3t ,QC =34t ,QT =43(8-34t )=6-t ,BP =3(t -2),PR =34·3(t -2)=4t -8,FR =FP -PR =34t -(4t -8)=8-38t ,FT =43FR =6-2t . ∴S =PT ×QC -21FR ·FT =(12-3t )·34t -21·(8-38t )·(6-2t ) =-320t 2+32t -24;第2题解图②53,56. 3. 如图,在Rt △ABC 中,∠ABC =90°,AB =3,BC =4.动点P 从点A 出发沿AC 向终点C 运动,同时动点Q 从点B 出发沿BA 向点A 运动,到达A 点后立刻以原来的速度沿AB 返回.点P ,Q 运动速度均为每秒1个单位长度,当点P 到达C 时停止运动,点Q 也同时停止.连接PQ ,设运动时间为t (0<t ≤5)秒.(1)当点Q 从B 点向A 点运动时(未到达点A )求S △APQ 与t 的函数关系式;写出t 的取值范围; (2)在(1)的条件下,四边形BQPC 的面积能否为△ABC 面积的1513?若能,求出相应的t 值;若不能,说明理由;(3)伴随点P 、Q 的运动,设线段PQ 的垂直平分线为l ,当l 经过点B 时,求t 的值.第3题图解:(1)在Rt △ABC 中,由勾股定理得:AC =222243+=+BC AB =5;如解图①,过点P 作PH ⊥AB 于点H ,AP =t ,AQ =3−t ,第3题解图①则∠AHP =∠ABC =90°,∵∠PAH =∠CAB ,∴△AHP ∽△ABC , ∴BCPHAC AP =, ∵AP =t ,AC =5,BC =4, ∴PH =54t ,∴S △APQ =21(3−t )·54t , 即S =−2t 52+t 56,t 的取值范围是:0<t <3. (2)在(1)的条件下,四边形BQPC 的面积能为△ABC 面积的1513.理由如下: 依题意得:−2t 52+t 56=21152 ×3×4,即−2t 52+t 56=54. 整理,得(t −1)(t −2)=0, 解得t 1=1,t 2=2, 又0<t <3,∴当t =1或t =2时,四边形BQPC 的面积能为△ABC 面积的1513; (3)①如解图②,当点Q 从B 向A 运动时l 经过点B ,第3题解图②BQ =BP =AP =t ,∠QBP =∠QAP , ∵∠QBP +∠PBC =90°,∠QAP +∠PCB =90° ∴∠PBC =∠PCB ,∴CP =BP =AP =t ∴CP =AP =21AC =21×5=2.5, ∴t =2.5;②如解图③,当点Q 从A 向B 运动时l 经过点B ,第3题解图③BP =BQ =3−(t −3)=6−t ,AP =t ,PC =5−t ,过点P 作PG ⊥CB 于点G , 则PG//AB , ∴△PGC ∽△ABC , ∴BCGCAB PG AC PC ==, ∴PG =AC PC ·AB =53(5−t ), CG =AC PC ·BC =54(5−t ), ∴BG =4−54(5−t )=54t , 由勾股定理得BP 2=BG 2+PG 2, 即(6−t )2=(54t )2+[53(5−t )]2, 解得t =1445. 综上所述,伴随点P 、Q 的运动,线段PQ 的垂直平分线为l ,经过点B 时,t 的值是2.5或1445. 4. 如图,在Rt △ABC 中,∠C =90°,AC =6 cm ,BC =8 cm ,D 、E 分别是AC 、AB 的中点,连接DE ,点P 从点D 出发,沿DE 方向匀速运动,速度为1cm /s ;同时,点Q 从点B 出发,沿BA 方向匀速运动,速度为2cm /s ,当点P 运动到点E 停止运动,点Q 也停止运动.连接PQ ,设运动时间为t (s )(0<t <4).解答下列问题: (1)当t 为何值时,PQ ⊥AB ?(2)当点Q 在BE 之间运动时,设五边形PQBCD 的面积为y (cm 2),求y 与t 之间的函数关系式; (3)在(2)的情况下,是否存在某一时刻t ,使PQ 分四边形BCDE 两部分的面积之比为S △PQE :S 五边形PQBCD =1:29?若存在,求出此时t 的值以及点E 到PQ 的距离h ;若不存在,请说明理由.解:(1)如解图①,在Rt △ABC 中,第4题解图AC =6,BC =8, ∴AB =2286+=10.∵D 、E 分别是AC 、AB 的中点., AD =DC =3,AE =EB =5,DE//BC 且DE =21BC =4, ∵PQ ⊥AB ,∴∠PQB =∠C =90°, 又∵DE//BC ,∴∠AED =∠B , ∴△PQE ∽△ACB ,∴BCQEAB PE =. 由题意得:PE =4−t ,QE =2t −5, 即852104-=-t t ,解得t =1441; (2)如解图②,过点P 作PM ⊥AB 于M , 由△PME ∽△ACB ,得ABPEAC PM =, ∴10t -46=PM ,得PM =53(4−t ).S △PQE =21EQ ·PM =21(5−2t )·53(4−t )=53t 2−1039t +6, S 梯形DCBE =21×(4+8)×3=18, ∴y =S 梯形DCBE -S △PQE =18−(53t 2−1039t +6)=−53t 2+1039t +12. (3)假设存在时刻t ,使S △PQE :S 五边形PQBCD =1:29, 则此时S △PQE =301S 梯形DCBE , ∴53t 2−1039t +6=301×18,即2t 2−13t +18=0, 解得t 1=2,t 2=29(舍去). 当t =2时, PM =53×(4−2)=56,ME =54×(4−2)=58, EQ =5−2×2=1,MQ =ME +EQ =58+1=513, ∴PQ =22MQ PM +=52055135622=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛.∵21PQ ·h =S △PQE =53, ∴h =56·)2056(20520562055或=. 5. 如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,CD ⊥AB 于点D .点P 从点D 出发,沿线段DC向点C 运动,点Q 从点C 出发,沿线段CA 向点A 运动,两点同时出发,速度都为每秒1个单位长度,当点P 运动到C 时,两点都停止.设运动时间为t 秒. (1)求线段CD 的长;(2)设△CPQ 的面积为S ,求S 与t 之间的函数关系式,并确定在运动过程中是否存在某一时刻t ,使得S△CPQ :S △ABC =9:100?若存在,求出t 的值;若不存在,则说明理由;(3)是否存在某一时刻t ,使得△CPQ 为等腰三角形?若存在,求出所有满足条件的t 的值;若不存在,则说明理由.解:(1)如解图①,∵∠ACB =90°,AC =8,BC =6,∴AB =10.∵CD ⊥AB ,∴S △ABC =21BC •AC =21AB •CD . ∴CD =1086⨯=⨯AB AC BC =4.8, ∴线段CD 的长为4.8;(2)①过点P 作PH ⊥AC ,垂足为H ,如解图②所示.由题可知DP =t ,CQ =t ,则CP =4.8−t .∵∠ACB =∠CDB =90°,∴∠HCP =90°−∠DCB =∠B .∵PH ⊥AC ,∴∠CHP =90°,∴∠CHP =∠ACB ,∴△CHP ∽△BCA , ∴AB PC AC PH =,∴10t 8.48-=PH , ∴PH =t 54-2596,∴S △CPQ =21CQ ·PH =21t (t 54-2596)=−52t 2+2548t ; ②存在某一时刻t ,使得S △CPQ :S △ABC =9:100.∵S △ABC =21×6×8=24,且S △CPQ :S △ABC =9:100, ∴(−52t 2+2548t ):24=9:100. 整理得:5t 2−24t +27=0.即(5t −9)(t −3)=0.解得:t =59或t =3. ∵0≤t ≤4.8,∴当t =59秒或t =3秒时,S △CPQ :S △ABC =9:100; (3)①若CQ =CP ,如解图①,则t =4.8−t ;解得:t =2.4;②若PQ =PC ,如解图②所示,∵PQ =PC ,PH ⊥QC ,∴QH =CH =21QC =21t . ∵△CHP ∽△BCA .∴ABCP BC CH =, ∴108.4621t t -=,解得:t =55144; ③若QC =QP ,过点Q 作QE ⊥CP ,垂足为E ,如解图③所示.同理可得:t =1124. 综上所述:当t 为2.4秒或55144秒或1124秒时,△CPQ 为等腰三角形.第5题解图6. 如图,在△ABC 中,AB =AC =10 cm ,BD ⊥AC 于点D ,且BD =8cm .点M 从点A 出发,沿AC 的方向匀速运动,速度为2 cm /s ;同时直线PQ 由点B 出发,沿BA 的方向匀速运动,速度为1cm /s ,运动过程中始终保持PQ//AC ,直线PQ 交AB 于点P 、交BC 于点Q 、交BD 于点F .连接PM ,设运动时间为t (0<t <5).(1)当t 为何值时,PM//BC ?(2)设四边形PQCM 的面积为y cm 2,求y 与t 之间的函数关系式; (3)已知某一时刻t ,有S 四边形PQCM =43S △ABC 成立,请你求出此时t 的值.第6题图解:(1)∵当PM//BC 时,△APM ∽△ABC , ∴AP =AM ,∴10−t =2t ,∴t =310; (2)∵四边形PQCM 为梯形,y =21(PQ +MC )DF , ∵PQ =PB =t ,MC =10−2t ,BF :BD =BP :AB ,∴BF =54108 t t , ∴DF =8−t 54, ∴y =21(t +10−2t )·(8−t 54)=252t −8t +40; (3)由(2)知,252t −8t +40=40×43, 解得t =10±53,又∵0<t<5,∴当t =10-53s 时,使S 四边形PQCM =43S △ABC 成立.7. 如图,在四边形ABCD 中,AD//BC ,AD =6 cm ,CD =4 cm ,BC =BD =10 cm ,点P 由B 出发沿BD方向匀速运动,速度为1cm /s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm /s ,交BD 于Q ,连接PE .若设运动时间为t (s )(0<t <5).解答下列问题:(1)当t 为何值时,PE//AB ;(2)设△PEQ 的面积为y (cm 2),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使S △PEQ =252S △BCD ?若存在,求出此时t 的值;若不存在,说明理由; (4)连接PF ,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.第7题图解:(1)当PE//AB 时,∴DBDP DA DE =. 而DE =t ,DP =10−t ,∴10106t t -=, ∴t =415, ∴当t =415s 时,PE//AB ; (2)∵AD//BC ,线段EF 由DC 出发沿DA 方向匀速运动,∴EF//CD ,∴四边形CDEF 是平行四边形,∴∠DEQ =∠C ,∠DQE =∠BDC .∵BC =BD =10,∴△DEQ ∽△BCD ,∴CD EQ BC DE =,410EQ t =, ∴EQ =52t , 如解图,过B 作BM ⊥CD 交CD 于M ,过P 作PN ⊥EF 交EF 于N ,∵BC =BD ,BM ⊥CD ,CD =4cm ,∴CM =21CD =2cm , ∴BM =6496410021022==-=-cm ,∵EF//CD ,∴∠BQF =∠BDC ,∠BFG =∠BCD ,又∵BD =BC ,∴∠BDC =∠BCD ,∴∠BQF =∠BFG ,∵ED//BC ,∴∠DEQ =∠QFB ,又∵∠EQD =∠BQF ,∴∠DEQ =∠DQE ,∴DE =DQ ,∴ED =DQ =BP =t ,∴PQ =10−2t .又∵△PNQ ∽△BMD , ∴BM PN BD PQ =,∴6410210PN t =-,∴PN =)5t -,∴S △PEQ =21EQ ·PN =⨯⨯t 5221)5t -=2255-+;第7题解图(3)存在.此时t 的值为1s 或4s .S △BCD =21CD ·BM =21×4×46=86, 若S △PEQ =252S △BCD , 则有2646255-+=252×86, 解得t 1=1,t 2=4,∴当t=1或4时,S △PEQ =252S △BCD ; (4)五边形PFCDE 的面积不发生变化.理由如下:在△PDE 和△FBP 中,∵DE =BP =t ,PD =BF =10−t ,∠PDE =∠FBP ,∴△PDE ≌△FBP (SAS ).∴S 五边形PFCDE =S △PDE +S 四边形PFCD =S △FBP +S 四边形PFCD =S △BCD =86,∴在运动过程中,五边形PFCDE 的面积不变.8. 如图.在△ABC 中.AB =AC =5 cm ,BC =6 cm ,AD 是BC 边上的高.点P 由C 出发沿CA 方向匀速运动.速度为1 cm /s .同时,直线EF 由BC 出发沿DA 方向匀速运动,速度为1 cm /s ,EF//BC ,并且EF 分别交AB 、AD 、AC 于点E ,Q ,F ,连接PQ .若设运动时间为t (s )(0<t <4),解答下列问题:(1)当t 为何值时,四边形BDFE 是平行四边形?(2)设四边形QDCP 的面积为y (cm 2),求出y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使S 四边形QDCP :S △ABC =9:20?若存在,求出此时t 的值;若不存在,说明理由;(4)是否存在某一时刻t ,使点Q 在线段AP 的垂直平分线上?若存在,求出此时点F 到直线PQ 的距离h ;若不存在,请说明理由.第8题图解:(1)如解图①中,连接DF ,第8题解图①∵AB =AC =5,BC =6,AD ⊥BC ,∴BD =CD =3,在Rt △ABD 中,AD =223-5=4,∵EF//BC ,∴△AEF ∽△ABC , ∴ADAQ BC EF =, ∴446t EF -=, ∴EF =23(4−t ), ∵EF//BD ,∴EF =BD 时,四边形EFDB 是平行四边形, ∴23(4−t )=3, ∴t =2,∴t =2s 时,四边形EFDB 是平行四边形;(2)如解图②中,作PN ⊥AD 于N ,第8题解图②∵PN //DC , ∴AC AP DC PN =, ∴553t PN -=, ∴PN =53(5-t ), ∴y =21DC ·AD −21AQ ·PN =6−21(4−t ) ·53(5−t )=6−(t t 10271032-+6)=t t 10271032+-(0<t <4); (3)存在.理由:由题意(t t 10271032+-):12=9:20, 解得t =3或6(舍去);∴当t =3s 时,S 四边形QDCP :S △ABC =9:20;(4)存在.理由如下:如解图③,作QN ⊥AC 于N ,作FH ⊥PQ 于H .第8题解图③∵QA =QP ,QN ⊥AP ,∴AN =NP =21AP =21(5−t ),由题意cos ∠CAD =AQ AN C A AD =, ∴()544521=--t t , ∴t =37, ∴t =37s 时,点Q 在线段AP 的垂直平分线上. ∵sin ∠FPH =53=PF FH , ∵PA =5−37=38,AF =AQ ÷122554=, ∴PF =127, ∴FH =207. ∴点F 到直线PQ 的距离h =207.9. 如图,BD 是正方形ABCD 的对角线,BC =2,动点P 从点B 出发,以每秒1个单位长度的速度沿射线BC 运动,同时动点Q 从点C 出发,以相同的速度沿射线BC 运动,当点P 出发后,过点Q 作QE ⊥BD ,交直线BD 于点E ,连接AP 、AE 、PE 、QE ,设运动时间为t (秒).(1)请直接写出动点P 运动过程中,四边形APQD 是什么四边形?(2)请判断AE ,PE 之间的数量关系和位置关系,并加以证明;(3)设△EPB 的面积为y ,求y 与t 之间的函数关系式;(4)直接写出△EPQ 的面积是△EDQ 面积的2倍时t 的值.第9题图解:(1)四边形APQD 是平行四边形;【解法提示】∵四边形ABCD 是正方形,P 、Q 速度相同, ∴∠ABE =∠EBQ =45°,AD ∥BQ ,AD =BC =2,BP =CQ , ∴BC =AD =PQ ,∴四边形APQD 是平行四边形.(2)AE =PE ,AE ⊥PE ;理由如下:∵EQ ⊥BD ,∴∠PQE =90°−45°=45°,∴∠ABE =∠EBQ =∠PQE =45°,∴BE =QE ,在△AEB 和△EPQ 中,AB PQ ABE PQE BE QE =⎧⎪∠=∠⎨⎪=⎩,∴△AEB ≌△EPQ (SAS ),∴AE =PE ,∠AEB =∠PEQ ,∴∠AEP =∠BEQ =90°,∴AE ⊥PE ;(3)过点E 作EF ⊥BC 于点F ,如解图①所示:BQ =t +2,EF =22+t , ∴y =21×22+t ×t ,即y =t t 41212+;第9题解图①(4)△EPQ 面积是△EDQ 面积的2倍时t 的值为1或3.【解法提示】分两种情况:① 当P 在BC 延长线上时,作PM ⊥QE 于M ,如解图②所示:第10题解图②∵PQ =2,∠BQE =45°,∴PM =22PQ =2,BE =QE =22BQ =22(t +2), ∴DE =BE −BD =22(t +2)−22=22t -2, ∵△EPQ 的面积是△EDQ 面积的2倍, ∴21×22(t +2)×2=2×21(22t −2)×22(t +2), 解得t =3或t =−2(舍去),∴t =3;②当P 在BC 边上时,解法同①,此时DE =2-22t , ∵△EPQ 的面积是△EDQ 面积的2倍, ∴21×22(t +2)×2=2×21(2-22t )×22(t +2), 解得:t =1或t =−2(舍去),∴t =1;综上所述,△EPQ 的面积是△EDQ 面积的2倍时t 的值为:1或3.。
专题09动态几何定值问题(解析版)
专题九动态几何定值问题【考题研究】数学因运动而充满活力,数学因变化而精彩纷呈。
动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。
以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。
【解题攻略】动态几何形成的定值和恒等问题是动态几何中的常见问题,其考点包括线段(和差)为定值问题;角度(和差)为定值问题;面积(和差)为定值问题;其它定值问题。
解答动态几何定值问题的方法,一般有两种:第一种是分两步完成:先探求定值. 它要用题中固有的几何量表示.再证明它能成立.探求的方法,常用特殊位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明.第二种是采用综合法,直接写出证明.【解题类型及其思路】在中考中,动态几何形成的定值和恒等问题命题形式主要为解答题。
在中考压轴题中,动态几何之定值(恒等)问题的重点是线段(和差)为定值问题,问题的难点在于准确应用适当的定理和方法进行探究。
【典例指引】类型一【线段及线段的和差为定值】【典例指引1】已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.①写出旋转角α的度数;②求证:EA′+EC=EF;(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接P A,PF,若AB=2,求线段P A+PF 的最小值.(结果保留根号)【答案】(1)①105°,②见解析;(2)626+【解析】(1)①解直角三角形求出∠A′CD即可解决问题,②连接A′F,设EF交CA′于点O,在EF时截取EM=EC,连接CM.首先证明△CF A′是等边三角形,再证明△FCM≌△A′CE(SAS),即可解决问题.(2)如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.证明△A′EF≌△A′EB′,推出EF=EB′,推出B′,F关于A′E对称,推出PF=PB′,推出P A+PF=P A+PB′≥AB′,求出AB′即可解决问题.【详解】①解:由∠CA′D=15°,可知∠A′CD=90°-15°=75°,所以∠A′CA=180°-75°=105°即旋转角α为105°.②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,∴∠CEA′=120°,∵FE平分∠CEA′,∴∠CEF=∠FEA′=60°,∵∠FCO=180°﹣45°﹣75°=60°,∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,∴△FOC∽△A′OE,∴OFA O'=OCOE,∴OFOC=A OOE',∵∠COE=∠FOA′,∴△COE∽△FOA′,∴∠F A′O=∠OEC=60°,∴△A′CF是等边三角形,∴CF=CA′=A′F,∵EM=EC,∠CEM=60°,∴△CEM是等边三角形,∠ECM=60°,CM=CE,∵∠FCA′=∠MCE=60°,∴∠FCM=∠A′CE,∴△FCM≌△A′CE(SAS),∴FM=A′E,∴CE+A′E=EM+FM=EF.(2)解:如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′,∴△A′EF≌△A′EB′,∴EF=EB′,∴B′,F关于A′E对称,∴PF=PB′,∴P A+PF=P A+PB′≥AB′,在Rt△CB′M中,CB′=BC2AB=2,∠MCB′=30°,∴B′M=12CB′=1,CM3∴AB ′=22AM B M '+=22(23)1++=626+. ∴P A +PF 的最小值为626+. 【名师点睛】本题属于四边形综合题,考查旋转变换相关,全等三角形的判定和性质,相似三角形的判定和性质以及三角形的三边关系等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题,难度较大. 【举一反三】如图(1),已知∠=90MON o ,点P 为射线ON 上一点,且=4OP ,B 、C 为射线OM 和ON 上的两个动点(OC OP >),过点P 作PA ⊥BC ,垂足为点A ,且=2PA ,联结BP .(1)若12PAC ABOPS S ∆=四边形时,求tan BPO ∠的值; (2)设PC x =,ABy BC=求y 与x 之间的函数解析式,并写出定义域; (3)如图(2),过点A 作BP 的垂线,垂足为点H ,交射线ON 于点Q ,点B 、C 在射线OM 和ON 上运动时,探索线段OQ 的长是否发生变化?若不发生变化,求出它的值。
中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)
(2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么?
(3)当t为何值时,△EDQ为直角三角形.
答案:
1、解:1)PD=PE。以图②为例,连接PC
∵△ABC是等腰直角三角形,P为斜边AB的中点,
∴PC=PB,CP⊥AB,∠DCP=∠B=45°,
(3)如图3,BD是正方形ABCD的对角线,L在BD上,且BL=BC,连结CL,点E是CL上任一点,EF⊥BD于点F,EG⊥BC于点G,猜想EF、EG、BD之间具有怎样的数量关系,直接写出你的猜想;
3.在 中,AC=BC, ,点D为AC的中点.
(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作 ,交直线AB于点H.判断FH与FC的数量关系并加以证明.
动态几何问题的解题技巧
解这类问题的基本策略是:
1.动中觅静:这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.
2.动静互化:“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.
3.以动制动:以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.
又∵∠DPC+∠CPE=90°,∠CPE+∠EPB=90°
∴∠DPC=∠EPB
∴△DPC≌△EPB(AAS)
∴PD=PE
2)能,①当EP=EB时,CE= BC=1
②当EP=PB时,点E在BC上,则点E和C重合,CE=0
③当BE=BP时,若点E在BC上,则CE=
武汉市中考数学复习专题——动态几何问题(含答案)
武汉市中考数学复习专题——动态几何问题(含答案)春去秋来,花开花落,物转星移,世间万物每时每刻都处于运动变化、相互联系、相互转化中,事物的本质特征只有在运动中方能凸现出来.动态几何问题,是指以几何知识和图形为背景,渗入运动变化观点的一类问题,常见的形式是:点在线段或弧线上运动、图形的翻折、平移、旋转等,解这类问题的基本策略是:1.动中觅静这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.2.动静互化“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.3.以动制动以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.注:几何动态既是一类问题,也是一种观点与思维方法,运用几何动态的观点,可以把表面看来不同的定理统一起来,可以找到探求几何中的最值、定值等问题的方法;更一般情况是,对于一个数学问题,努力去发掘更多结论,不同解法,通过弱化或强化条件来探讨结论的状况等,这就是常说的“动态思维”.第二十七讲动态几何问题透视春去秋来,花开花落,物转星移,世间万物每时每刻都处于运动变化、相互联系、相互转化中,事物的本质特征只有在运动中方能凸现出来.动态几何问题,是指以几何知识和图形为背景,渗入运动变化观点的一类问题,常见的形式是:点在线段或弧线上运动、图形的翻折、平移、旋转等,解这类问题的基本策略是:1.动中觅静这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.2.动静互化“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.3.以动制动以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.注:几何动态既是一类问题,也是一种观点与思维方法,运用几何动态的观点,可以把表面看来不同的定理统一起来,可以找到探求几何中的最值、定值等问题的方法;更一般情况是,对于一个数学问题,努力去发掘更多结论,不同解法,通过弱化或强化条件来探讨结论的状况等,这就是常说的“动态思维”.【例题求解】【例1】如图,把直角三角形ABC 的斜边AB 放在定直线上,按顺时针方向在l 上转动两次,使它转到A ″B ″C ″的位置,设BC=1,AC=3,则顶点A 运动到点A ″的位置时,点A 经过的路线与直线l 所围成的面积是.(黄冈市中考题)思路点拨解题的关键是将转动的图形准确分割.Rt ΔABC 的两次转动,顶点A 所经过的路线是两段圆弧,其中圆心角分别为120°和90°,半径分别为2和3,但该路线与直线l 所围成的面积不只是两个扇形面积之和.【例2】如图,在⊙O 中,P 是直径AB 上一动点,在AB 同侧作AA ′⊥AB ,BB′⊥AB ,且AA ′=AP ,BB ′=BP ,连结A ′B ′,当点P 从点A 移到点B 时,A ′B ′的中点的位置()A .在平分AB 的某直线上移动B .在垂直AB 的某直线上移动C .在AmB 上移动D .保持固定不移动(荆州市中考题)⌒动态几何问题透视春去秋来,花开花落,物转星移,世间万物每时每刻都处于运动变化、相互联系、相互转化中,事物的本质特征只有在运动中方能凸现出来.动态几何问题,是指以几何知识和图形为背景,渗入运动变化观点的一类问题,常见的形式是:点在线段或弧线上运动、图形的翻折、平移、旋转等,解这类问题的基本策略是: 1.动中觅静这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.2.动静互化“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系. 3.以动制动以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.注:几何动态既是一类问题,也是一种观点与思维方法,运用几何动态的观点,可以把表面看来不同的定理统一起来,可以找到探求几何中的最值、定值等问题的方法;更一般情况是,对于一个数学问题,努力去发掘更多结论,不同解法,通过弱化或强化条件来探讨结论的状况等,这就是常说的“动态思维”. 【例题求解】【例1】 如图,把直角三角形ABC 的斜边AB 放在定直线上,按顺时针方向在l 上转动两次,使它转到A ″B ″C ″的位置,设BC=1,AC=3,则顶点A 运动到点A ″的位置时,点A 经过的路线与直线l 所围成的面积是 .(黄冈市中考题)思路点拨 解题的关键是将转动的图形准确分割.Rt ΔABC 的两次转动,顶点A 所经过 的路线是两段圆弧,其中圆心角分别为120°和90°,半径分别为2和3,但该路线与直线l 所围成的面积不只是两个扇形面积之和.【例2】如图,在⊙O 中,P 是直径AB 上一动点,在AB 同侧作AA ′⊥AB ,BB ′⊥AB ,且AA ′=AP ,BB ′=BP ,连结A ′B ′,当点P 从点A 移到点B 时,A ′B ′的中点的位置( ) A .在平分AB 的某直线上移动 B .在垂直AB 的某直线上移动C .在AmB 上移动D .保持固定不移动(荆州市中考题)⌒思路点拨画图、操作、实验,从中发现规律.【例3】如图,菱形OABC的长为4厘米,∠AOC=60°,动点P从O出发,以每秒1厘米的速度沿O→A→B路线运动,点P出发2秒后,动点Q从O出发,在OA上以每秒1厘米的速度,在AB上以每秒2厘米的速度沿O→A→B路线运动,过P、Q两点分别作对角线AC的平行线.设P点运动的时间为x秒,这两条平行线在菱形上截出的图形(图中的阴影部分)的周长为y厘米,请你回答下列问题:(1)当x=3时,y的值是多少?(2)就下列各种情形:①0≤x≤2;②2≤x≤4;③4≤x≤6;④6≤x≤8.求y与x之间的函数关系式.(3)在给出的直角坐标系中,用图象表示(2)中的各种情形下y与x的关系.(吉林省中考题)思路点拨本例是一个动态几何问题,又是一个“分段函数”问题,需运用动态的观点,将各段分别讨论、画图、计算.注:动与静是对立的,又是统:一的,无论图形运动变化的哪一类问题,都真实地反映了现实世界中数与形的变与不变两个方面,从辩证的角度去观察、探索、研究此类问题,是一种重要的解题策略.建立运动函数关系就更一般地、整体-地把握了问题,许多相关问题就转化为求函数值或自变量的值.【例4】 如图,正方形ABCD 中,有一直径为BC 的半圆,BC=2cm ,现有两点E 、F ,分别从点B 、点A 同时出发,点E 沿线段BA 以1m /秒的速度向点A 运动,点F 沿折线A —D —C 以2cm /秒的速度向点C 运动,设点E 离开点B 的时间为2 (秒). (1)当t 为何值时,线段EF 与BC 平行?(2)设1<t <2,当t 为何值时,EF 与半圆相切?(3)当1≤t <2时,设EF 与AC 相交于点P ,问点E 、F 运动时,点P 的位置是否发生变化?若发生变化,请说明理由;若不发生变化,请给予证明,并求AP :PC 的值. (江西省中考题)思路点拨 动中取静,根据题意画出不同位置的图形,然后分别求解,这是解本例的基本策略,对于(1)、(2),运用相关几何性质建立关于t 的方程;对于(3),点P 的位置是否发生变化,只需看PCAP是否为一定值.注:动态几何问题常通过观察、比较、分析、归纳等方法寻求图形中某些结论不变或变化规律,而把特定的运动状态,通过代数化来定量刻画描述也是解这类问题的重要思想.【例5】 ⊙O 1与⊙O 2相交于A 、B 两点;如图(1),连结O 2 O 1并延长交⊙O 1于P 点,连结PA 、PB 并分别延长交⊙O 2于C 、D 两点,连结C O 2并延长交⊙O 2于E 点.已知⊙O 2的半径为R ,设∠CAD=α.(1)求:CD 的长(用含R 、α的式子表示);(2)试判断CD 与PO 1的位置关系,并说明理由;(3)设点P ′为⊙O 1上(⊙O 2外)的动点,连结P ′A 、P ′B 并分别延长交⊙O 2于C ′、D ′,请你探究∠C ′AD ′是否等于α? C ′D ′与P ′O l 的位置关系如何?并说明理由.(济南市中考题)思路点拨 对于(1)、(2),作出圆中常见辅助线;对于(3),P 点虽为OO l 上的一个动点,但⊙O 1、⊙O 2一些量(如半径、AB)都是定值或定弧,运用圆的性质,把角与孤联系起来.⌒学力训练1.如图, ΔABC 中,∠C=90°,AB=12cm ,∠ABC=60°,将ΔABC 以点B 为中心顺时针旋转,使点C 旋转到AB 延长线上的D 处,则AC 边扫过的图形的面积是 cm (π=3.14159…,最后结果保留三个有效数字). (济南市中考题) 2.如图,在Rt Δ ABC 中,∠C=90°,∠A=60°,AC=3 cm ,将ΔABC 绕点B 旋转至ΔA'BC'的位置,且使A 、B 、C'三点在同一条直线上,则点A 经过的最短路线的长度是 cm .(黄冈市中考题)3.一块等边三角形的木板,边长为l ,现将木板沿水平线翻滚,那么B 点从开始至结束走过的路径长度为( ) A .23π B .34πC .4D .232π+(烟台市中考题)4.把ΔABC 沿AB 边平移到ΔA'B'C'的位置,它们的重叠部分的面积是ΔABC 的面积的一半,若AB=2,则此三角形移动的距离AA'是( )A .12-B .22C .1D .21(荆门市中考题)5.如图,正三角形ABC 的边长为63厘米,⊙O 的半径为r 厘米,当圆心O 从点A 出发,沿着线路AB —BC —CA 运动,回到点A 时,⊙O 随着点O 的运动而移动. (1)若r=3厘米,求⊙O 首次与BC 边相切时AO 的长;(2)在O 移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同的情况下,r 的取值范围及相应的切点个数;(3)设O 在整个移动过程中,在ΔABC 内部,⊙O 未经过的部分的面积为S ,在S>0时,求关于r 的函数解析式,并写出自变量r 的取值范围.(江西省中考题)6.已知:如图,⊙O 韵直径为10,弦AC=8,点B 在圆周上运动(与A 、C 两点不重合),连结BC 、BA ,过点C 作CD ⊥AB 于D .设CB 的长为x ,CD 的长为y . (1)求y 关于x 的函数关系式;当以BC 为直径的圆与AC 相切时,求y 的值; (2)在点B 运动的过程中,以CD 为直径的圆与⊙O 有几种位置关系,并求出不同位置时y 的取值范围;(3)在点B 运动的过程中,如果过B 作BE ⊥AC 于E ,那么以BE 为直径的圆与⊙O 能内切吗?若不能,说明理由;若能,求出BE 的长.(太原市中考题)7.如图,已知A 为∠POQ 的边OQ 上一点,以A 为顶点的∠MAN 的两边分别交射线OP 于M 、N 两点,且∠MAN=∠POQ=α(α为锐角).当∠MAN 以点A 为旋转中心,AM 边从与AO 重合的位置开始,按逆时针方向旋转(∠MAN 保持不变)时,M 、N 两点在射线OP 上同时以不同的速度向右平移移动.设OM=x ,ON= (y >x ≥0),ΔAOM 的面积为S ,若cos α、OA 是方程02522=+-z z 的两个根.(1)当∠MAN 旋转30°(即∠OAM=30°)时,求点N 移动的距离; (2)求证:AN 2=ON ·MN ;(3)求y 与x 之间的函数关系式及自变量x 的取值范围; (4)试写出S 随x 变化的函数关系式,并确定S 的取值范围.(河北省中考题)8.已知:如图,梯形ABCD 中,AD ∥BC ,AB=CD=3cm ,∠C =60°,BD ⊥CD . (1)求BC 、AD 的长度;(2)若点P 从点B 开始沿BC 边向点C 以2cm /s 的速度运动,点Q 从点C 开始沿CD 边向点D 以1cm /s 的速度运动,当P 、Q 分别从B 、C 同时出发时,写出五边形ABPQD 的面积S 与运动时间t 之间的函数关系式,并写出自变量t 的取值范围(不包含点P 在B 、C 两点的情况);(3)在(2)的前提下,是否存在某一时刻t ,使线段PQ 把梯形ABCD 分成两部分的面积比为1:5?若存在,求出t 的值;若不存在,请说明理由.(青岛市中考)9.已知:如图①,E 、F 、G 、H 按照AE=CG ,BF=DH ,BF =nAE(n 是正整数)的关系,分别在两邻边长a 、na 的矩形ABCD 各边上运动. 设AE=x ,四边形EFGH 的面积为S .(1)当n=l 、2时,如图②、③,观察运动情况,写出四边形EFGH 各顶点运动到何位置,使?(2)当n=3时,如图④,求S 与x 之间的函数关系式(写出自变量x 的取值范围),探索S 随x 增大而变化的规律;猜想四边形EFGH 各顶点运动到何位置,使ABCD S S 矩形21; (3)当n=k (k ≥1)时,你所得到的规律和猜想是否成立?请说明理由.(福建省三明市中考题)10.如图1,在直角坐标系中,点E 从O 点出发,以1个单位/秒的速度沿x 轴正方向运动,点F 从O 点出发,以2个单位/秒的速度沿y 轴正方向运动,B(4,2),以BE 为直径作⊙O 1.(1)若点E 、F 同时出发,设线段EF 与线段OB 交于点G ,试判断点G 与⊙O 1的位置关系,并证明你的结论;(2)在(1)的条件下,连结FB ,几秒时FB 与⊙O 1相切?(3)如图2,若E 点提前2秒出发,点F 再出发,当点F 出发后,E 点在A 点左侧时,设BA ⊥x 轴于A 点,连结AF 交⊙O 1于点P ,试问PA ·FA 的值是否会发生变化?若不变,请说明理由,并求其值;若变化,请求其值的变化范围.(武汉市中考题)参考答案。
几何动态型问题(解析版)
几何动态型问题(解析版)专题诠释:几何图形动态变化型问题是中考的热点问题。
对于图形运动与变化型试题,要用运动的眼光去观察和研究图形,把握图形运动与变化的全过程,抓住其中的等量关系,并特别关注一些特别的量,不变的关系或特殊关系,善于化动为静。
有特殊情形(特殊点、特殊位置、特殊值、特殊图形)逐步过渡到一般情形,再综合运用各种相关的数学知识,以及数形结合、分类讨论、转化等数学思想加以解决。
第一部分典例剖析+针对练习类型一动点问题典例1(2021•铜仁市模拟)如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x 的函数关系图象如图②所示,则对角线BD的长为()A.3B.4C.5D.6思路引领:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为3,得到AB与BC的积为12;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,得到AB与BC的和为7,构造关于AB的一元二方程可求解.解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP面积最大为3.∴12AB•12BC=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7﹣AB,代入AB•BC=12,得AB2﹣7AB+12=0,解得AB=4或3,∵AB<AD,即AB<BC,∴AB=3,BC=4.∴AD=BC=4,∴BD=5.故选:C.点睛:本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.针对训练11.(2019•本溪)如图,点P是以AB为直径的半圆上的动点,CA⊥AB,PD⊥AC于点D,连接AP,设AP=x,P A﹣PD=y,则下列函数图象能反映y与x之间关系的是()A.B.C.D.思路引领:设圆的半径为R,连接PB,则sin∠ABP=AP2R=12R x,则PD=AP sinα=x×12R x=12R x2,即可求解.设:圆的半径为R,连接PB,则sin∠ABP=AP2R=12R x,∵CA⊥AB,即AC是圆的切线,则∠P AD=∠PBA=α,则PD=AP sinα=x×12Rx=12R x2,则y=P A﹣PD=−12R x2+x,图象为开口向下的抛物线,故选:C.点睛:本题考查的动点的函数图象,涉及到解直角三角形、圆的切线的性质、二次函数基本性质等,关键是找出相应线段的数量关系,列出函数表达式.典例2(2021•中原区校级四模)如图,已知A、B两点的坐标分别为(﹣8,0)、(0,8),点C、F分别是直线x=5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE的面积取得最小值时,tan∠BAD=.思路引领:如图,设直线x=5交x轴于K.由题意KD=12CF=5,推出点D的运动轨迹是以K为圆心,5为半径的圆,推出当直线AD与⊙K相切时,△ABE的面积最小,作EH⊥AB于H.求出EH,AH即可解决问题.解:如图,设直线x=5交x轴于K,连接DK,由题意KD=12CF=5,∴点D的运动轨迹是以K为圆心,5为半径的圆,∴当直线AD与⊙K相切时,△ABE的面积最小,∵AD是切线,点D是切点,∴AD⊥KD,∵AK=13,DK=5,∴AD=12,∵tan∠EAO=OEOA=DKAD,∴OE8=512,∴OE=10 3,∴AE=√OE2+OA2=26 3,作EH⊥AB于H.∵S△ABE=12•AB•EH=S△AOB﹣S△AOE,∴EH=7√2 3,∴AH=√AE2−EH2=17√2 3,∴tan∠BAD=EHAH=7√2317√23=717.点睛:本题考查解直角三角形,坐标与图形的性质,直线与圆的位置关系,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.针对练习22.如图,△ABC中,∠C=90°,∠A=30°,BC=1.动点D在边AC上,以BD为边作等边△BDE (点E、A在BD的同侧).在点D从点A移动至点C的过程中,点E移动的路径长为√3.思路引领:取特殊点寻找点E的运动轨迹,利用等边三角形的性质即可解决问题;解:当点D与C重合时,点E与AB的中点M重合,当点D与A重合时,点E与等边三角形△ABN的顶点N重合,所以点E的运动轨迹是△ABN的中线MN,在Rt△ABC中,∵∠C=90°,∠A=30°,BC=1,∴AB=2BC=2,∴MN=√3,故答案为√3.点睛:本题考查轨迹、等边三角形的性质、解直角三角形等知识,解题的关键是学会取特殊点寻找点的运动轨迹,所以中考常考题型.类型二动图问题典例3 (2021秋•高州市期末)在平面直角坐标系中,O为坐标原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°,矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(1)如图,求点E的坐标;(2)将矩形CODE沿x轴向右平移,得到矩形C'O'D'E',点D,O,C,E的对应点分别为C',O',D',E'.设OO'=t,矩形C'O'D'E'与△ABO重叠部分的面积为s.如图,当矩形C'O'D'E'与△ABO 重叠部分为五边形时,C'E'、D'E'分别与AB相交于点M,F,试用含有t的式子表示s,并直接写出t的范围.思路引领:(1)由已知得出AD=OA﹣OD=4,再由含30°角的直角三角形的性质得AE=2AD=8,由勾股定理得出ED=4√3,即可得出答案;(2)由平移的性质得:O′D′=2,E′D′=4√3,ME′=OO′=t,D′E′∥O′C′∥OB,则∠E′FM=∠ABO=30°,再由含30°角的直角三角形的性质得MF=2ME′=2t,FE′=√3t,求出S△MFE′=12√3t2,S矩形C′O′D′E′=8√3,即可得出答案.解:(1)由点A(6,0)得OA=6,又OD=2,∴AD=OA﹣OD=4,在矩形CODE中,由DE∥CO,得∠AED=∠ABO=30°,∴在Rt△AED中,AE=2AD=8,由勾股定理得:ED=√AE2−AD2=4√3,又CO=4√3,∴点E的坐标为(2,4√3);(2)由平移可知,O'D'=OD=2,E'D'=ED=4√3,ME'=OO'=t.由E'D'∥BO,得∠E'FM=∠ABO=30°,在Rt△MFE'中,MF=2ME'=2t.∴由勾股定理得FE′=√MF2−ME′2=√3t,∴S△MFE′=12ME′⋅FE′=12t⋅√3t=√32t2,S矩形C′O′D′E′=O′D′⋅E′D′=8√3,∴s=−√32t2+8√3(0<t<2).点睛:本题考查了矩形的性质、坐标与图形性质、勾股定理、平移的性质、含30°角的直角三角形的性质、三角形面积等知识;熟练掌握矩形的性质和直角三角形的性质是解题的关键.针对训练33.(2019•宁夏)将直角三角板ABC按如图1放置,直角顶点C与坐标原点重合,直角边AC、BC 分别与x轴和y轴重合,其中∠ABC=30°.将此三角板沿y轴向下平移,当点B平移到原点O 时运动停止.设平移的距离为m,平移过程中三角板落在第一象限部分的面积为s,s关于m的函数图象(如图2所示)与m轴相交于点P(√3,0),与s轴相交于点Q.(1)试确定三角板ABC的面积;(2)求平移前AB边所在直线的解析式;(3)求s关于m的函数关系式,并写出Q点的坐标.思路引领:(1)与m轴相交于点P(√3,0),可知OB=√3,OA=1;(2)设AB 的解析式y =kx +b ,将点B (0,√3),A (1,0)代入即可; (3)在移动过程中OB =√3−m ,则OA =tan30°×OB =√33×(√3−m )=1−√33m ,所以s =12×(√3−m )×(1−√33m )=√36m 2−m +√32,(0≤m ≤√3);当m =0时,s =√32,即可求Q (0,√32). 解:(1)∵与m 轴相交于点P (√3,0), ∴OB =√3, ∵∠ABC =30°, ∴OA =1, ∴S =12×1×√3=√32; (2)∵B (0,√3),A (1,0), 设AB 的解析式y =kx +b , ∴{b =√3k +b =0, ∴{k =−√3b =√3, ∴y =−√3x +√3;(3)在移动过程中OB =√3−m ,则OA =tan30°×OB =√33×(√3−m )=1−√33m ,∴s =12×(√3−m )×(1−√33m )=√36m 2−m +√32,(0≤m ≤√3) 当m =0时,s =√32,∴Q (0,√32). 点睛:本题考查直角三角形平移,一次函数的性质;能够通过函数图象得到B (0,√3)是解题的关键.典例4 如图,等边△ABC 边长为2,四边形DEFG 是平行四边形,DG =2,DE =3,∠GDE =60°,BC 和DE 在同一条直线上,且点C 与点D 重合,现将△ABC 沿D →E 的方向以每秒1个单位的速度匀速运动,当点B 与点E 重合时停止,则在这个运动过程中,△ABC 与四边形DEFG 的重合部分的面积S 与运动时间t 之间的函数关系图象大致是( )A.B.C.D.思路引领:分三种情况:①0≤t≤2时,由重叠部分为边长为t的等边三角形可得S=√34t2;②2<t≤3时,由重叠部分即为△ABC得S=√34×22=√3;③3<t≤5时由重叠部分是S△ABC﹣S△HEC且△HEC边长为t﹣3可得S=−√34t2+3√32t−5√34,据此可得答案.解:①当0≤t≤2时,如图1,由题意知CD=t,∠HDC=∠HCD=60°,∴△CDH是等边三角形,则S=√34t2;②当2<t≤3时,如图2,S=√34×22=√3;③当3<t≤5时,如图3,根据题意可得CE=CD﹣DE=t﹣3,∠C=∠HEC=60°,∴△CEH为等边三角形,则S=S△ABC﹣S△HEC=√34×22−√34(t﹣3)2=−√34t2+3√32t−5√34;综上,0≤t≤2时函数图象是开口向上的抛物线的一部分,2<t≤3时函数图象是平行于x轴的一部分,当3<t≤5时函数图象是开口向下的抛物线的一部分;故选:B.点睛:本题主要考查动点问题的函数图象,根据重叠部分形状的变化情况分类讨论是解题的关键.针对训练44.(2020•滁州模拟)在△EFG中,∠G=90°,EG=FG=2√2,正方形ABCD的边长为1,将正方形ABCD和△EFG如图放置,AD与EF在一条直线上,点A与点E重合.现将正方形ABCD沿EF方向以每秒1个单位的速度匀速运动,当点A与点F重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A.B.C.D.思路引领:分0≤t≤1、1<t≤2、2<t≤3、3<t≤4分别求出函数表达式即可求解.解:EG=FG=2√2,则EF=4,①当0≤t≤1时,如图1,设AB交EG于点H,则AE=t=AH,S=12×AE×AH=12t2,函数为开口向上的抛物线,当t=1时,y=12;②当1<t≤2时,如图2,设直线EG交BC于点G,交CD于点H,则ED=AE﹣AD=t﹣1=HD,则CH=CD﹣HD=2﹣t=CG,S=S正方形ABCD﹣S△CGH=1−12×CH×CG=1−12(2﹣t)2,函数为开口向下的抛物线,当t=2时,y=1;③当2<t≤3时,S=S正方形ABCD=1,④当3<t≤4时,同理可得:S=1−12(t﹣3)2,为开口向下的抛物线;故选:C.点睛:本题考查动点问题的函数过图象,解答本题的关键是明确题意,利用数形结合的思想解答.第二部分专题提优练习1.(2021•罗湖区校级模拟)如图,▱ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则PB+√32PD的最小值等于()A.√3B.3C.3√3D.2+2√3思路引领:过点P作PE⊥AD,交AD的延长线于点E,有锐角三角函数可得EP=√32PD,即PB+√32PD=PB+PE,则当点B,点P,点E三点共线且BE⊥AD时,PB+PE有最小值,即最小值为BE.解:如图,过点P作PE⊥AD,交AD的延长线于点E,∵AB∥CD,∴∠EDP=∠DAB=60°,∴sin∠EDP=EPDP=√32,∴EP=√32PD∴PB+√32PD=PB+PE∴当点B,点P,点E三点共线且BE⊥AD时,PB+PE有最小值,即最小值为BE,∵sin∠A=BEAB=√32,∴BE=3√3,故选:C.点睛:本题考查了平行四边形的性质,垂线段最短,解直角三角形等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.2.(2019•泰安)如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2B.4C.√2D.2√2思路引领:根据中位线定理可得出点P的运动轨迹是线段P1P2,再根据垂线段最短可得当BP⊥P1P2时,PB取得最小值;由矩形的性质以及已知的数据即可知BP1⊥P1P2,故BP的最小值为BP1的长,由勾股定理求解即可.解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=12CE,当点F在EC上除点C、E的位置处时,有DP=FP,由中位线定理可知:P1P∥CE且P1P=12CF,∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值,∵矩形ABCD中,AB=4,AD=2,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=2,∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°,∴∠DP2P1=90°,∴∠DP1P2=45°,∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长,在等腰直角△BCP1中,CP1=BC=2,∴BP1=2√2,∴PB的最小值是2√2.故选:D.点睛:本题考查轨迹问题、矩形的性质等知识,解题的关键是学会利用特殊位置解决问题,有难度.3.(2019•潍坊)如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB的周长最小时,S△P AB=125.思路引领:根据轴对称,可以求得使得△P AB 的周长最小时点P 的坐标,然后求出点P 到直线AB 的距离和AB 的长度,即可求得△P AB 的面积,本题得以解决. 解:{y =x +1y =x 2−4x +5,解得,{x =1y =2或{x =4y =5,∴点A 的坐标为(1,2),点B 的坐标为(4,5), ∴AB =√(5−2)2+(4−1)2=3√2,作点A 关于y 轴的对称点A ′,连接A ′B 与y 轴的交于P ,则此时△P AB 的周长最小, 点A ′的坐标为(﹣1,2),点B 的坐标为(4,5), 设直线A ′B 的函数解析式为y =kx +b , {−k +b =24k +b =5,得{k =35b =135, ∴直线A ′B 的函数解析式为y =35x +135, 当x =0时,y =135, 即点P 的坐标为(0,135),将x =0代入直线y =x +1中,得y =1, ∵直线y =x +1与y 轴的夹角是45°, ∴点P 到直线AB 的距离是:(135−1)×sin45°=85×√22=4√25, ∴△P AB 的面积是:3√2×4√252=125,故答案为:125.点睛:本题考查二次函数的性质、一次函数的性质、轴对称﹣最短路径问题,解答本题的关键是明确题意,利用数形结合的思想解答.4.(2020•长春一模)如图,直线y =x +1与抛物线y =x 2﹣4x +5交于A ,B 两点,点P 是y 轴上的一个动点,当△P AB 的周长最小时,点P 的坐标为 .思路引领:首先确定点A 和点B 的坐标,然后根据轴对称,可以求得使得△P AB 的周长最小时点P 的坐标.解:{y =x +1y =x 2−4x +5,解得,{x =1y =2或{x =4y =5,∴点A 的坐标为(1,2),点B 的坐标为(4,5), ∴AB =√(5−2)2+(4−1)2=3√2,作点A 关于y 轴的对称点A ′,连接A ′B 与y 轴的交于P ,则此时△P AB 的周长最小, 点A ′的坐标为(﹣1,2),点B 的坐标为(4,5), 设直线A ′B 的函数解析式为y =kx +b , {−k +b =24k +b =5,得{k =35b =135,∴直线A ′B 的函数解析式为y =35x +135, 当x =0时,y =135, 即点P 的坐标为(0,135),故答案为:(0,135).点睛:本题考查二次函数的性质、一次函数的性质、轴对称﹣最短路径问题,解答本题的关键是明确题意,利用数形结合的思想解答.5.(2021春•汉阴县月考)如图,在三角形ABC 中,∠ABC =90°,BC =11,把三角形ABC 向下平移至三角形DEF 后,AD =CG =6,则图中阴影部分的面积为 .思路引领:先根据平移的性质得到AD =BE =6,EF =BC =11,S △ABC =S △DEF ,则BG =5,由于S阴影部分=S 梯形BEFG ,所以利用梯形的面积公式计算即可.解:∵三角形ABC 向下平移至三角形DEF , ∴AD =BE =6,EF =BC =11,S △ABC =S △DEF , ∵BG =BC ﹣CG =11﹣6=5, ∴S 梯形BEFG =12(5+11)×6=48, ∵S 阴影部分+S △DBG =S △DBG +S 梯形BEFG , ∴S 阴影部分=S 梯形BEFG =48. 故答案为48.点睛:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.6.(2021•仪征市二模)如图,Rt △ABC ≌Rt △FDE ,∠ABC =∠FDE =90°,∠BAC =30°,AC =4,将Rt △FDE 沿直线l 向右平移,连接BD 、BE ,则BD +BE 的最小值为 .思路引领:根据平面直角坐标系,可以假设E(m,√3),则D(m+1,2√3),则BD+BE=√(m+1)2+(2√3)2+√m2+(√3)2,欲求BD+BE的最小值,相当于在x轴上找一点R(m,0),使得R到M(﹣1,2√3),N(0,√3)的距离和的最小值,如图1中,作点N关于x轴的对称点N′,连接MN′交x轴题意R,连接RN,此时RM+RN的值最小,最小值=MN′的长.解:建立如图坐标系,在Rt△ABC中,∠ABC=90°,AC=4,∠BAC=30°,∴BC=12AC=2,AB=√3BC=2√3,∴斜边AC上的高=2×2√34=√3,∵△ABC≌△FDE,∴EF=AC=4,斜边EF上的高为√3,∴可以假设E(m,√3),则D(m+1,2√3),∴BD+BE=√(m+1)2+(2√3)2+√m2+(√3)2,欲求BD+BE的最小值,相当于在x轴上找一点R(m,0),使得R到M(﹣1,2√3),N(0,√3)的距离和的最小值,如图1中,作点N关于x轴的对称点N′,连接MN′交x轴题意R,连接RN,此时RM+RN的值最小,最小值=MN′=√12+(3√3)2=2√7,∴BD+BE的最小值为2√7,故答案为:2√7.点睛:本题考查轴对称最短问题,平面直角坐标系,勾股定理等知识,解题的关键是学会用转化的思想思考问题,属于中考填空题中的压轴题.7.(2019•乐山)如图1,在四边形ABCD中,AD∥BC,∠B=30°,直线l⊥AB.当直线l沿射线BC方向,从点B开始向右平移时,直线l与四边形ABCD的边分别相交于点E、F.设直线l向右平移的距离为x,线段EF的长为y,且y与x的函数关系如图2所示,则四边形ABCD的周长是.思路引领:根据题意和函数图象中的数据,可以得到AB、BC、AD的长,再根据平行线的性质和图形中的数据可以得到CD的长,从而可以求得四边形ABCD的周长.解:∵∠B=30°,直线l⊥AB,∴BE=2EF,由图可得,AB=4cos30°=4×√32=2√3,BC=5,AD=7﹣4=3,由图象可得,AN=5﹣4=1,ND=CM=7﹣5=2,DM=2,∵∠B=30°,EF⊥AB,∴∠M=60°,又∵DM=MC=2,∴△DMC是等边三角形,∴DC=DM=2,∴四边形ABCD的周长是:AB+BC+AD+CD=2√3+5+3+2=10+2√3,故答案为:10+2√3.点睛:本题考查动点问题的函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.8.(2019•大庆)如图,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若动点D从B出发,沿线段BA运动到点A为止(不考虑D与B,A重合的情况),运动速度为2cm/s,过点D作DE∥BC交AC于点E,连接BE,设动点D运动的时间为x(s),AE的长为y(cm).(1)求y关于x的函数表达式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值?最大值为多少?思路引领:(1)由平行线得△ABC∽△ADE,根据相似形的性质得关系式;(2)由S=12•BD•AE;得到函数解析式,然后运用函数性质求解.解:(1)动点D运动x秒后,BD=2x.又∵AB=8,∴AD=8﹣2x.∵DE∥BC,∴ADAB=AEAC,∴AE=6(8−2x)8=6−32x,∴y关于x的函数关系式为y=−32x+6(0<x<4).(2)解:S△BDE=12⋅BD⋅AE=12×2x(−32x+6)=−32x2+6x(0<x<4).当x=−62×(−32)=2时,S△BDE最大,最大值为6cm2.点睛:本题主要考查相似三角形的判定、三角形的面积及涉及到二次函数的最值问题,找到等量比是解题的关键.9.已知,大正方形的边长为4厘米,小正方形的边长为2厘米,状态如图所示.大正方形固定不动,把小正方形以1厘米/秒的速度向大正方形的内部沿直线平移,设平移的时间为t秒,两个正方形重叠部分的面积为S厘米2,完成下列问题:(1)平移到1.5秒时,重叠部分的面积为厘米2.(2)求小正方形在平移过程中,S与t的关系式.思路引领:(1)1.5秒时,小正方形向右移动1.5厘米,即可计算出重叠部分的面积;(2)分情况讨论:当0≤t<2时,当2≤t≤4时,当4<t≤6时,当t>6时,分别用t表示出S即可.解:(1)1.5秒时,小正方形向右移动1.5厘米,S=2×1.5=3(厘米2);故答案为:3;(2)分情况讨论:当0≤t<2时,小正方形未完全进入大正方形,此时S=2t;当2≤t≤4时,小正方形完全在大正方形内,此时S=2×2=4;当4<t≤6时,小正方形逐渐离开大正方形,此时S=2×2﹣2(t﹣4)=12﹣2t;当t>6时,无重叠部分,此时S=0.综上所述:小正方形在平移过程中,当0≤t<2时,S=2t;当2≤t≤4时,S=4;当4<t≤6时,S=12﹣2t;当t>6时,S=0.点睛:本题考查了正方形的性质,平移的性质,解决本题的关键是计算各个阶段S随t的变化规律.10.(2021•南通一模)如图1,△ABC中,∠ACB=90°,AC=4cm,BC=6cm,D是BC的中点.点E从A出发,以acm/s(a>0)的速度沿AC匀速向点C运动,点F同时以1cm/s的速度从C出发,沿CB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,过点E作AC的垂线,交AD于点G,连接EF,FG.设它们运动的时间为t秒(t>0).(1)当t=2时,△ECF∽△BCA,求a的值;(2)当a=12时,以点E、F、D、G为顶点的四边形是平行四边形,求t的值;(3)当a=2时,是否存在某个时间t,使△DFG是直角三角形?若存在,请求出t的值;若不存在,请说明理由.思路引领:(1)先表示出CF ,AE ,EC ,由相似三角形的性质得出比例式建立方程求解即可得出结论;(2)先判断出△AEG ∽△ACD ,得出EG ,再判断出EG =DF ,最后分两种情况讨论,建立方程求解即可得出结论;(3)先表示出AG =52t 厘米,EG =32t ,DF =3﹣t 厘米,DG =5−52t (厘米),再分两种情况讨论,建立方程求解即可得出结论. 解:(1)∵t =2,∴CF =2厘米,AE =2a 厘米, ∴EC =(4﹣2a ) 厘米, ∵△ECF ∽△BCA . ∴EC CB =CF AC.(2分)∴4−2a6=24.∴a =12.(2)由题意,AE =12t 厘米,CD =3厘米,CF =t 厘米. ∵EG ∥CD , ∴△AEG ∽△ACD . ∴EG CD=AEAC ,EG3=12t 4.∴EG =38t .∵以点E 、F 、D 、G 为顶点的四边形是平行四边形, ∴EG =DF .当0≤t <3时,38t =3−t ,∴t =2411.(7分)当3<t ≤6时,38t =t −3,21 ∴t =245. 综上,t =2411或245 (3)∵点D 是BC 中点,∴CD =12BC =3,在Rt △ACD 中,根据勾股定理得,AD =5,由题意,AE =2t 厘米,CF =t 厘米,由(2)知,△AEG ∽△ACD ,∴AE AC =AG AD =EG CD , ∴2t 4=AG 5=EG 3∴AG =52t 厘米,EG =32t ,DF =3﹣t 厘米,DG =5−52t (厘米).若∠GFD =90°,则EG =CF ,32t =t . ∴t =0,(舍去)若∠FGD =90°,则△ACD ∽△FGD .∴AD CD=FD GD , ∴53=3−t 5−52t . ∴t =3219. 综上:t =3219,△DFG 是直角三角形.点睛:此题是相似形综合题,主要考查了相似三角形的判定和性质,平行四边形的性质,勾股定理,直角三角形的性质,分类讨论是解本题的关键.。
微重点 立体几何中的动态问题 解析版-2024年高考数学重难点攻略
微重点 立体几何中的动态问题“动态”问题是高考立体几何问题最具创新意识的题型,它渗透了一些“动态”的点、线、面等元素,给静态的立体几何题赋予了活力,题型更新颖.同时,由于“动态”的存在,也使立体几何题更趋多元化,将立体几何问题与平面几何中的解三角形问题、多边形面积问题以及解析几何问题之间建立桥梁,使得它们之间灵活转化.知识导图考点一:动点轨迹问题考点二:折叠、展开问题考点三:最值、范围问题考点分类讲解考点一:动点轨迹问题规律方法 解决与几何体有关的动点轨迹问题的方法(1)几何法:根据平面的性质进行判定.(2)定义法:转化为平面轨迹问题,用圆锥曲线的定义判定或用代数法进行计算.(3)特殊值法:根据空间图形线段长度关系取特殊值或位置进行排除.1(2024·浙江温州·一模)如图,所有棱长都为1的正三棱柱ABC -A 1B 1C 1,BE =2EC,点F 是侧棱AA 1上的动点,且AF =2CG,H 为线段FB 上的动点,直线CH ∩平面AEG =M ,则点M 的轨迹为()A.三角形(含内部)B.矩形(含内部)C.圆柱面的一部分D.球面的一部分【答案】A【分析】根据题意首先保持H 在线段FB 上不动(与F 重合),研究当点F 运动时M 的轨迹为线段MN ,再根据H 点在线段FB 上运动的轨迹即可得出点M 的轨迹为△MNE 及其内部的所有点的集合.【详解】如下图所示:首先保持H 在线段FB 上不动,假设H 与F 重合根据题意可知当F 点在侧棱AA 1上运动时,若F 点在A 1点处时,G 为CC 1的中点,此时由AF =2CG 可得满足FM =2MC,当F 点运动到图中F 1位置时,易知AF 1 =2CG 1,取AG 1∩CF 1=P ,可得F 1P =2PC ,取棱AC 上的点N ,满足AN =2NC,根据三角形相似可得M ,N ,P 三点共线,当点F 在侧棱AA 1上从A 1点运动到A 点时,M 点轨迹即为线段MN ;再研究当点H 在线段FB 上运动,当点H 在线段FB 上从点F 运动到点B 时,M 点的轨迹是线段ME ,当点H 在线段F 1B 上从点F 1运动到点B 时,M 点的轨迹是线段PE ,因此可得,当点F 是侧棱AA 1上运动时,H 在线段FB 上运动时,点M 的轨迹为△MNE 及其内部的所有点的集合;即可得M 的轨迹为三角形(含内部).故选:A2(多选)(23-24高三上·贵州安顺·期末)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点E 、F 、G 、H 分别为棱CC 1、C 1D 1、A 1D 1、AB 的中点,点M 为棱A 1B 1上动点,则()A.点E 、F 、G 、H 共面B.GM +MH 的最小值为1+5C.点B 到平面AB 1C 的距离为233D.DE ⊥A 1H【答案】ACD【分析】根据题意建立空间之间坐标系,利用平面向量基本定理可对A 判断,利用向量的垂直表示可对D 判断;利用正方体面展开图可对B 判断;利用等体积法可对C 判断.【详解】如图,以D 为原点,建立空间直角坐标系,则D 0,0,0 ,E 0,2,1 ,F 0,1,2 ,G 1,0,2 ,H 2,1,0 ,对A :EF =0,-1,1 ,EG =1,-2,1 ,EH =2,-1,-1 ,设EF =λEG +μEH ,即0,-1,1 =λ1,-2,1 +μ2,-1,-1 ,解得λ=23,μ=-13,所以EF ,EG ,EH共面,故A 正确.对B :将正方体沿AB 剪开展开如下图,连接GH 交A 1B 1于一点,此点为M 点,此时GM +MH 为最小值32+22=13,故B 错误;对C :由等体积法可知V B -AB 1C =V B 1-ABC ,即13·S △AB 1C ·d =13·S △ABC ·BB 1 ,由S △AB 1C =12×2×2×sin π3=32,S △ABC =12×2×2=2,求解得d =233,故C 正确.对D :D 0,0,0 ,A 12,0,2 ,DE =0,2,1 ,A 1H=0,1,-2 DE ·A 1H =2-2=0,则DE ⊥A 1H ,所以DE ⊥A 1H ,故D 正确.故选:ACD .3(2023·贵州·一模)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M ,N ,P 分别为棱AA 1,CC 1,AD 的中点,Q 为该正方体表面上的点,若M ,N ,P ,Q 四点共面,则点Q 的轨迹围成图形的面积为.【答案】33【分析】根据题意找出点Q 的轨迹围成图形为正六边形PENFGM 即可求解.【详解】如图,取CD ,B 1C 1,A 1B 1的中点分别为EFG ,则点Q 的轨迹围成图形为正六边形PENFGM ,且边长为面对角线的一半,即2,所以点Q 的轨迹围成图形的面积为6×122×2 2-222=33,故答案为:3 3.4(2023·宁波联考)正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 满足BP =λBC+μ-→BB 1(λ,μ∈R ),则下列说法正确的有()A.若λ+μ=1,则A 1P ⊥AD 1B.若λ+μ=1,则三棱锥A 1-PDC 1的体积为定值C.若点P 总满足PA ⊥BD 1,则动点P 的轨迹是一条直线D.若点P 到点A 的距离为3,则动点P 的轨迹是一个面积为π的圆【答案】ABC【解析】对于A ,因为BP =λBC +μ-→BB 1(λ,μ∈R )且λ+μ=1,由向量基本定理可知,点B 1,C ,P 共线,如图,连接AD1,A 1C ,BC 1,B 1C ,在正方体ABCD -A 1B 1C 1D 1中,B 1C ⊥BC 1,A 1B 1⊥平面BB 1C 1C ,因为BC 1⊂平面BB 1C 1C ,所以A 1B 1⊥BC 1,又B 1C ∩A 1B 1=B 1,所以BC 1⊥平面A 1B 1C ,在BC 1上任取一点P ,连接A 1P ,则A 1P ⊂平面A 1B 1C ,所以BC 1⊥A 1P ,在正方体ABCD -A 1B 1C 1D 1中,因为AB ∥D1C 1,且AB =D 1C 1,所以四边形ABC 1D 1为平行四边形,所以AD 1∥BC 1,则AD 1⊥A 1P ,故选项A 正确;对于B ,如图,连接A 1C 1,C 1D ,A 1D ,B 1C ,因为BP =λBC+μ-→BB 1(λ,μ∈R )且λ+μ=1,由向量基本定理可知点B 1,C ,P 共线,即点P 在直线B 1C 上,在正方体ABCD -A 1B 1C 1D 1中,因为A 1B 1∥DC ,且A 1B 1=DC ,所以四边形A 1B 1CD 为平行四边形,所以A 1D ∥B 1C ,A 1D ⊂平面A 1C 1D ,BC 1⊄平面A 1C 1D ,所以B 1C ∥平面A 1C 1D ,则直线B 1C 上任意一点到平面A 1C 1D 的距离相等,又因为△A 1C 1D 的面积为一定值,所以三棱锥A 1-PDC 1的体积为定值,故选项B 正确;对于C ,如图,连接AC ,BD ,AB1,BD 1,B 1C ,B 1D 1,在正方体ABCD -A 1B 1C 1D 1中,AC ⊥BD ,BB 1⊥平面ABCD ,因为AC ⊂平面ABCD ,所以BB 1⊥AC ,又BB 1∩BD =B ,所以AC ⊥平面BB 1D 1D ,BD 1⊂平面BB 1D 1D ,所以AC ⊥BD 1,同理AB 1⊥BD 1,又AB 1∩AC =A ,所以BD 1⊥平面AB 1C ,因为点P 满足BP =λBC +μ-→BB 1(λ,μ∈R ),所以点P 在侧面BB 1C 1C 所在的平面上运动,且PA ⊥BD 1,所以动点P 的轨迹就是直线B 1C ,故选项C 正确;对于D ,因为点P 到点A 的距离为3,所以点P 的轨迹是以A 为球心,3为半径的球面与平面BB 1C 1C 的交线,即点P 的轨迹为小圆,设小圆半径为r ,因为球心A 到平面BB 1C 1C 的距离为1,则r =(3)2-1=2,所以小圆的面积S =πr 2=2π,故选项D 错误考点二:折叠、展开问题规律方法 画好折叠、展开前后的平面图形与立体图形,抓住两个关键点:不变的线线关系、不变的数量关系.1(2024·河南·模拟预测)为体现市民参与城市建设、共建共享公园城市的热情,同时搭建城市共建共享平台,彰显城市的发展温度,某市在中心公园开放长椅赠送点位,接受市民赠送的休闲长椅.其中观景草坪上一架长椅因其造型简单别致,颇受人们喜欢(如图1).已知AB 和CD 是圆O 的两条互相垂直的直径,将平面ABC 沿AB 翻折至平面ABC ,使得平面ABC ⊥平面ABD (如图2)此时直线AB 与平面C BD 所成角的正弦值为()A.13B.33C.22D.32【答案】B【分析】根据给定条件,建立空间直角坐标系,利用空间向量求出线面角的正弦值.【详解】依题意,OC ⊥AB ,OD ⊥AB ,而平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,又OC ⊂平面ABC ,OD ⊂平面ABD ,则OC ⊥平面ABD ,OD ⊥OC ,因此直线OD ,OB ,OC 两两垂直,以点O 为原点,直线OD ,OB ,OC 分别为x ,y ,z 轴建立空间直角坐标系,令圆半径OD =1,则O (0,0,0),D (1,0,0),B (0,1,0),C (0,0,1),OB =(0,1,0),BC=(0,-1,1),BD =(1,-1,0),设平面C BD 的一个法向量n =(x ,y ,z ),则n ⋅BC=-y +z =0n ⋅BD=x -y =0,令y =1,得n =(1,1,1),设直线AB 与平面C BD 所成的角为θ,则sin θ=|cos ‹n ,OB ›|=|n ⋅OB ||n ||OB |=11×3=33,所以直线AB 与平面C BD 所成角的正弦值为33.故选:B2(22-23高三上·浙江·开学考试)如图,矩形ABCD 中,AD =2,AB =3,AE =2EB,将△ADE 沿直线DE 翻折成△A 1DE ,若M 为线段A 1C 的点,满足CM =2MA 1,则在△ADE 翻折过程中(点A 1不在平面DEBC 内),下面四个选项中正确的是()A.BM ⎳平面A 1DEB.点M 在某个圆上运动C.存在某个位置,使DE ⊥A 1CD.线段BA 1的长的取值范围是5,3【答案】ABD【分析】由已知,选项A ,在DC 上取一点N ,令CN =2ND ,可通过面面平行的判定定理证明平面BMN ∥平面ADE ,从而证明BM ∥平面A 1DE ;选项B ,可通过∠A 1DE =∠MNB =π4,NM =43,EB =22,借助余弦定理可知BM 为定值,从而确定M 点的轨迹;选项C ,可先假设DE ⊥A 1C 成立,然后借助线面垂直的判定定理和性质定理得到DE ⊥CH ,然后在△DHC 中,利用勾股定理验证是否满足,即可做出判断;选项D ,可通过点A 1运行轨迹,分别找出最大值和最小值点,然后求解即可做出判断.【详解】如上图所示,在DC 上取一点N ,令CN =2ND,连接NB ,在矩形ABCD 中,AB =CD 且AB ∥CD ,又因为AE =2EB ,CN =2ND,所以EB =ND 且EB ∥ND ,所以四边形EBND 为平行四边形,所以NB ∥ED ,又因为NB ⊄平面ADE ,DE ⊂平面ADE ,所以NB ∥平面ADE ,又因为CN =2ND ,CM =2MA 1,所以NM ∥A 1D ,又因为NM ⊄平面ADE ,DA 1⊂平面ADE ,所以NM ∥平面ADE ,又因为NM ∩NB =N 且NM 、NB ⊂平面BMN ,所以平面BMN ∥平面ADE ,又因为MB ⊂平面BMN ,所以BM ∥平面A 1DE ,选项A 正确;由NB ∥ED ,NM ∥A 1D ,AD =AE =2,可得∠A 1DE =∠MNB =π4,由CN =2ND ,CM =2MA 1 可知,NM =23A 1D =43,而EB =ND =22,由余弦定理可知,BM 为定值,而B 为定点,故M 在以B 为圆心,BM 为半径的圆上运动,故选项B 正确;取ED 的中点H ,连接HA 1、HC ,在△A 1DE 中,AD =AE =2,所以DE ⊥A 1H ,假设DE ⊥A 1C 成立,A 1H 、A 1C ⊂平面A 1HC ,所以DE ⊥平面A 1HC ,又因为CH ⊂平面A 1HC ,所以DE ⊥CH ,而,在△DHC 中,DH =2,DC =3,CH =5,所以∠DHC ≠π2,故DE ⊥CH 不成立,所以假设不成立,该选项C 错误;在DC 上取一点A 2,令DA 2 =2A 2C,在△ADE 翻折过程中, 线段BA 1的最大值是A 1与A 点重合,此时BA 1=3,线段BA 1的最小值是A 1与A 2点重合,此时BA 1=5,又因为点A 1不在平面DEBC 内,所以线段BA 1的长的取值范围是5,3 ,选项D 正确;故选:ABD3(2024高三·全国·专题练习)如图1,在等边△ABC 中,点D 、E 分别为边AB 、AC 上的动点且满足DE ⎳BC ,记DEBC=λ.将△ADE 沿DE 翻折到△MDE 的位置,使得平面MDE ⊥平面DECB ,连接MB ,MC ,如图2,N 为MC 的中点.(1)当EN ⎳平面MBD 时,求λ的值.(2)随着λ的值的变化,二面角B -MD -E 的大小是否改变?若是,请说明理由;若不是,请求出二面角B -MD -E 的正弦值.【答案】(1)λ=12(2)不是,255【分析】(1)取MB 的中点为P ,连接DP ,PN ,推出NP ∥BC ,证明NEDP 为平行四边形,利用比例关系求解即可.(2)取DE 的中点O ,如图建立空间直角坐标系,求出平面BMD 的法向量,平面EMD 的法向量,利用空间向量的数量积求解二面角的余弦函数值然后求解即可.【详解】(1)如图,取MB 的中点P ,连接DP ,PN .因为N 为MC 的中点,所以NP ⎳BC ,NP =12BC .又DE ⎳BC ,所以NP ⎳DE ,即N ,P ,D ,E 四点共面.因为EN ⎳平面MBD ,EN ⊂平面NEDP ,平面NEDP ∩平面MBD =DP ,所以EN ⎳DP ,即四边形NEDP 为平行四边形,所以NP =DE ,即DE =12BC ,所以λ=12.(2)取ED 的中点O ,连接MO ,则MO ⊥DE .因为平面MDE ⊥平面DECB ,平面MDE ∩平面DECB =DE ,MO ⊂平面MDE ,所以MO ⊥平面DECB .如图,建立空间直角坐标系,不妨设BC =2,则M 0,0,3λ ,D λ,0,0 ,B 1,31-λ ,0 ,所以MD =λ,0,-3λ ,DB =1-λ,31-λ ,0 .设平面MBD 的一个法向量为m=(x ,y ,z ),则MD ⋅m=λx -3λz =0,DB ⋅m =1-λ x +31-λ y =0,即x =3z ,x =-3y , 令x =3,所以m =3,-1,1 .由题意可知n=(0,1,0)为平面MDE 的一个法向量.设二面角B -MD -E 的平面角为θ,则cos θ =cos m ,n =m ⋅n m n =55,因此sin θ=1-cos 2θ=255,所以二面角B -MD -E 的正弦值为255.4(2023·邵阳模拟)如图所示,在矩形ABCD 中,AB =3,AD =1,AF ⊥平面ABCD ,且AF =3,点E 为线段CD (除端点外)上的动点,沿直线AE 将△DAE 翻折到△D ′AE ,则下列说法中正确的是()A.当点E 固定在线段CD 的某位置时,点D ′的运动轨迹为球面B.存在点E ,使AB ⊥平面D ′AEC.点A 到平面BCF 的距离为32D.异面直线EF 与BC 所成角的余弦值的取值范围是1313,1010【答案】 D【解析】选项A ,当点E 固定在线段CD 的某位置时,线段AE 的长度为定值,AD ′⊥D ′E ,过D ′作D ′H ⊥AE 于点H ,H 为定点,D ′H 的长度为定值,且D ′H 在过点H 与AE 垂直的平面内,故D ′的轨迹是以H 为圆心,D ′H 为半径的圆,故A 错误;选项B ,无论E 在CD (端点除外)的哪个位置,AB 均不与AE 垂直,故AB 不与平面AD ′E 垂直,故B 错误;选项C ,以AB ,AD ,AF分别为x ,y ,z 轴的方向建立如图所示的空间直角坐标系,则A (0,0,0),F (0,0,3),B (3,0,0),C (3,1,0).BC =(0,1,0),BF =(-3,0,3),AB =(3,0,0),设平面BCF 的法向量为n =(x ,y ,z ),则n ·BC=y =0,n ·BF =-3x +3z =0, 取n =(3,0,1),则点A 到平面BCF 的距离d =n ·ABn=32,故C 错误;选项D ,设E (3λ,1,0),λ∈(0,1),BC=(0,1,0),EF=-3λ,-1,3 ,设EF 与BC 所成的角为θ,则cos θ=EF ·BCEF BC=13λ2+10∈1313,1010 ,故D 正确.考点三:最值、范围问题规律方法 在动态变化过程中产生的体积最大、距离最大(小)、角的范围等问题,常用的解题思路是(1)直观判断:在变化过程中判断点、线、面在何位置时,所求的量有相应最大、最小值.(2)函数思想:通过建系或引入变量,把这类动态问题转化为目标函数,从而利用代数方法求目标函数的最值.1(多选)(2023·鞍山模拟)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,P 是线段BC 1上的动点,则下列结论正确的是()A.四面体PA 1D 1A 的体积为定值B.AP +PC 的最小值为22C.A 1P ∥平面ACD 1D.直线A 1P 与AC 所成的角的取值范围是0,π3【答案】ACD【解析】对于A ,由正方体可得平面DAA 1D 1∥平面BCC 1B 1,且B ,P ∈平面BCC 1B 1,所以点B 到平面DAA 1D 1的距离等于点P 到平面DAA 1D 1的距离,所以四面体PA 1D 1A 的体积V P -A 1D 1A =VB -A 1D 1A =13S △A 1D 1A ×1=13×12×1×1×1=16,所以四面体PA 1D 1A 的体积为定值,故A 正确;对于B ,当P 与B 重合时,AP +PC =AB +BC =2<22,所以AP +PC 的最小值不为22,故B 错误;对于C ,连接A 1C 1,A 1B ,由正方体可得AA 1=CC 1,AA 1∥CC 1,所以四边形AA 1C 1C 是平行四边形,所以AC ∥A 1C 1,因为AC ⊂平面ACD 1,A 1C 1⊄平面ACD 1,所以A 1C 1∥平面ACD 1,同理可得BC 1∥平面ACD 1因为A 1C 1∩BC 1=C 1,A 1C 1,BC 1⊂平面A 1C 1B ,所以平面A 1C 1B ∥平面ACD 1,因为A 1P ⊂平面A 1C 1B ,所以A 1P ∥平面ACD 1,故C 正确;对于D ,因为AC ∥A 1C 1,所以∠PA 1C 1(或其补角)为直线A 1P 与AC 所成的角,由图可得当P 与B 重合时,此时∠PA 1C 1最大为π3,当P 与C 1重合时,此时∠PA 1C 1最小为0,所以直线A 1P 与AC 所成的角的取值范围是0,π3,故D 正确.2(2023·青岛模拟)三面角是立体几何的基本概念之一,而三面角余弦定理是解决三面角问题的重要依据.三面角P -ABC 是由有公共端点P 且不共面的三条射线PA ,PB ,PC 以及相邻两射线间的平面部分所组成的图形,设∠APC =α,∠BPC =β,∠APB =γ,二面角A -PC -B 为θ,由三面角余弦定理得cos θ=cos γ-cos α·cos βsin α·sin β.在三棱锥P -ABC 中,PA =6,∠APC =60°,∠BPC =45°,∠APB =90°,PB +PC=6,则三棱锥P -ABC 体积的最大值为()A.2724B.274C.92D.94【答案】C【解析】如图所示,作BD 垂直于CP 于点D ,设点B 在平面APC 中的射影为M ,连接BM ,MD ,由题意得V P -ABC =13·S △APC·BM .设二面角A -PC -B 为θ,则cos θ=0-12×2232×22=-33,θ∈(0,π),∴sin ∠BDM =63,BM =BD ·sin ∠BDM =63BD =63·PB ·sin ∠BPC =33·PB ,S △APC =12·PA ·PC ·sin ∠APC =332·PC ,∴V P -ABC =13·S △APC ·BM =12·PB ·PC =12·PB (6-PB )=-12PB 2+3PB=-12(PB -3)2+92,当PB =3时,V P -ABC 的最大值为92.3(23-24高三下·北京·开学考试)正方体ABCD -A 1B 1C 1D 1的棱长为1,动点M 在线段CC 1上,动点P 在平面A 1B 1C 1D 1上,且AP ⊥平面MBD 1.线段AP 长度的取值范围是()A.1,2B.62,3 C.62,2 D.62+∞ 【答案】C【分析】根据题意,建立空间直角坐标系,结合空间向量的坐标运算,代入计算,即可得到结果.【详解】以D 为坐标原点,以DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴,建立如图所示的空间直角坐标系,设P a ,b ,1 ,M 0,1,t 0≤t ≤1 ,则A 1,0,0 ,B 1,1,0 ,D 10,0,1 ,则AP =a -1,b ,1 ,BD 1 =-1,-1,1 ,MD 1=0,-1,1-t ,因为AP ⊥平面MBD 1,所以AP ⊥BD 1,AP ⊥MD 1,即AP ⋅BD 1=1-a -b +1=0AP ⋅MD 1 =-b +1-t =0 ,解得a =t +1b =1-t ,所以AP =t ,1-t ,1 ,所以AP =t 2+1-t 2+1=2t -12 2+32,又0≤t ≤1,所以当t =12时,即M 是CC 1的中点时,AP 取得最小值62,当t =0或1,即M 与点C 或C 1重合时,AP取得最大值2,所以线段AP 长度的取值范围为62,2.故选:C4(2023·黑龙江哈尔滨·三模)已知四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD ,PD =AD ,点E 是线段PB 上的动点,则直线DE 与平面PBC 所成角的最大值为()A.π6B.π4C.π3D.π2【答案】C【分析】根据题意,建立空间直角坐标系,结合空间向量的坐标运算即可得到结果.【详解】由题意,因为ABCD 为正方形,且PD ⊥底面ABCD ,以D 为原点,DA ,DC ,DP 所在直线分别为x ,y ,z 轴,建立如图所示空间直角坐标系,设PD =AD =1,则D 0,0,0 ,B 1,1,0 ,C 0,1,0 ,P 0,0,1 ,所以PB =1,1,-1 ,PC =0,1,-1 ,设PE =λPB ,λ∈0,1 ,则PE =λ,λ,-λ ,所以E λ,λ,1-λ ,即DE =λ,λ,1-λ ,设平面PBC 的法向量为n=x ,y ,z ,则n ⋅PB=x +y -z =0n ⋅PC=y -z =0,解得x =0,y =z ,取y =z =1,所以平面PBC 的一个法向量为n=0,1,1 ,设直线DE 与平面PBC 所成角为θ,则sin θ=cos <n ,DE> =n ⋅DEn DE =12×2λ2+1-λ2=12×3λ-132+23,因为y =sin θ,θ∈0,π2单调递增,所以当λ=13时,sin θ=32最大,此时θ=π3,即直线DE 与平面PBC 所成角的最大值为π3.故选:C强化训练一、单选题1(2023·云南保山·二模)已知正方体ABCD -A 1B 1C 1D 1,Q 为上底面A 1B 1C 1D 1所在平面内的动点,当直线DQ 与DA 1的所成角为45°时,点Q 的轨迹为()A.圆B.直线C.抛物线D.椭圆【答案】C【分析】建系,利用空间向量结合线线夹角分析运算.【详解】以点D 为原点,DA ,DC ,DD 1为x ,y ,z 的正方向,建立空间直角坐标系,设正方体棱长为1,则D 0,0,0 ,A 11,0,1 ,设Q x ,y ,1 ,可得DQ =x ,y ,1 ,DA 1 =1,0,1 ,因为直线DQ 与DA 1的所成角为45°,则cos45°=DQ ⋅DA 1 DQ ⋅DA 1=x +1x 2+y 2+1×2=22,化简可得y 2=2x ,所以点Q 的轨迹为抛物线.故选:C .2(2023·全国·三模)在平面直角坐标系中,P 为圆x 2+y 2=16上的动点,定点A -3,2 .现将y 轴左侧半圆所在坐标平面沿y 轴翻折,与y 轴右侧半圆所在平面成2π3的二面角,使点A 翻折至A ,P 仍在右侧半圆和折起的左侧半圆上运动,则A ,P 两点间距离的取值范围是()A.13,35B.4-13,7C.4-13,35D.13,7【答案】B【分析】设A 所在平面为α,圆的另一半所在平面为β,若P ∈α,则P ,A ,O 三点共线时,以及P 在圆的下端点时,分别取到A ,P 两点间距离的最值;若P ∈β,设P 4cos α,4sin α ,利用两点间的距离公式结合A 到β的距离,以及三角函数的有界性取到最值,进而得出答案.【详解】设A 所在平面为α,圆的另一半所在平面为β,若P ∈α,则P ,A ,O 三点共线时,PA 有最小值P 1A =R -OA =4-13;当P 在圆的下端点时,取到最大值P 2A =-3-02+2+4 2=32+62=35,即PA ∈4-13,35 ;若P ∈β,设P 4cos α,4sin α ,A 在β上的投影为距离为A 1,则A 到β面距离为AA 1 =-3 sin π3=332,又A 到y 轴的距离为3,∴A 1到y 轴的距离为9-274=32,而A 1到x 轴的距离为2,则PA =32+4cos α2+2-4sin α 2+3322=29+2035cos α-45sin α =29+20sin φ-α ,其中α∈-π2,π2 ,sin φ=35,cos φ=45,故PA min =13,当且仅当α=-π2时成立;PAmax =7,当且仅当α=φ-π2时成立;即PA ∈13,7 ;综上可得,PA∈4-13,7 ,故选:B3(2024·全国·模拟预测)如图,已知矩形ABCD 中,E 为线段CD 上一动点(不含端点),记∠AED =α,现将△ADE 沿直线AE 翻折到△APE 的位置,记直线CP 与直线AE 所成的角为β,则()A.cos α>cos βB.cos α<cos βC.cos α>sin βD.sin α<cos β【答案】B【分析】利用空间向量夹角余弦公式和向量数量积公式得到cos β=CE+EPcos αCP,由三角形三边关系得到cos β>cos α,求出答案.【详解】AB 选项,cos β=CP ⋅EA CP ⋅EA =CE +EP⋅EA CP ⋅EA =CE ⋅EA +EP ⋅EA CP ⋅EA=CE ⋅EA cos α+EP ⋅EA cos α CP ⋅EA =CE +EP ⋅EA cos αCP ⋅EA =CE +EP cos αCP,因为CE +EP >CP ,所以CE +EPCP>1,所以cos β>cos α,A 错误,B 正确;由于y =cos x 在x ∈0,π2上单调递减,故β<α,不确定cos α,sin β和sin α,cos β的大小关系,CD 错误.故选:B .4(2023·上海宝山·二模)在空间直角坐标系O -xyz 中,已知定点A 2,1,0 ,B 0,2,0 和动点C 0,t ,t +2 t ≥0 .若△OAC 的面积为S ,以O ,A ,B ,C 为顶点的锥体的体积为V ,则VS的最大值为()A.2155 B.155 C.4155 D.455【答案】C【分析】由已知OA =2,1,0 ,0B =0,2,0 ,OC =0,t ,t +2 ,设直线OA 的单位方向向量为u ,根据空间向量公式求出C 到直线OA 的距离,得到△OAC 的面积为S ,根据锥体体积公式得到以O ,A ,B ,C 为顶点的锥体的体积为V ,利用分离常数法和基本不等式求解即可得到最大值.【详解】由已知OA =2,1,0 ,0B =0,2,0 ,OC=0,t ,t +2 ,设直线OA 的单位方向向量为u ,则u =255,55,0,所以C 到直线OA 的距离h =OC 2-OC ⋅u 2=t 2+t +2 2-t 25=9t 2+20t +205,所以S =12×5×9t 2+20t +205=9t 2+20t +202,V =13S △OAB ⋅t +2 =13×12×2×2×t +2 =2t +2 3,则V S =2t +239t 2+20t +202=43⋅t +229t 2+20t +20=49⋅9t 2+36t +369t 2+20t +20=49⋅9t 2+20t +20+16t +169t 2+20t +20=49⋅1+16⋅t +19t 2+20t +20,令m =t +1m ≥1 ,则t =m -1,所以t +19t 2+20t +20=m 9m -1 2+20m -1 +20=m 9m 2+2m +9=19m +9m +2≤129m ⋅9m +2=120,当且仅当9m =9m即m =1时等号成立,所以V S≤49×1+16×120=4515,即V S的最大值为4515.故选:C .5(23-24高三上·河北衡水·阶段练习)正三棱柱ABC -A 1B 1C 1中,AB =2,AA 1=3,O 为BC 的中点,M 为棱B 1C 1上的动点,N 为棱AM 上的动点,且MN MO =MOMA ,则线段MN 长度的取值范围为()A.364,7 B.62,477C.34,477D.3,6【答案】B【分析】根据正三棱柱建立空间直角坐标系,设动点坐标,结合线线关系求线段MN 的表达式,利用函数求最值即可.【详解】因为正三棱柱ABC -A 1B 1C 中,O 为BC 的中点,取B 1C 1中点Q ,连接OQ ,如图,以O 为原点,OC ,OA ,OQ 为x ,y ,z 轴建立空间直角坐标系,则O 0,0,0 ,A 0,3,0 ,B 1-1,0,3 ,C 11,0,3 ,因为M 是棱B 1C 1上一动点,设M a ,0,3 ,且a ∈[-1,1],所以OM ⋅OA=a ,0,3 ⋅0,3,0 =0,则OA ⊥OM ,因为ON ⊥AM ,且MN MO =MOMA 所以在直角三角形OMA 中可得:△OMN ~△AMO即MN =MO 2MA=a 2+3a 2+3 2+3 2=a 2+3a 2+6,于是令t =a 2+6,t ∈6,7 ,所以a 2+3a 2+6=t 2-3t =t -3t ,t ∈6,7 ,又符合函数y =t -3t 为增增符合,所以在t ∈6,7 上为增函数,所以当t =6时,t -3tmin =6-36=62,即线段MN 长度的最小值为62,当t =7时,t -3tmax=7-37=477,即线段MN 长度的最大值为477,故选:B .【点睛】关键点睛:1.找到△OMN ~△AMO ,再利用函数单调性求出最值.2.建系,设出动点M a ,0,3 ,利用空间向量法求出ON ⊥AM ,再结合线线关系求线段MN 的表达式,利用函数求最值即可.6(23-24高三下·山西·阶段练习)在棱长为4的正方体ABCD -A 1B 1C 1D 1中,E 是CD 的中点,F 是CC 1上的动点,则三棱锥A -DEF 外接球半径的最小值为()A.3B.23C.13D.15【答案】C【分析】取AE 的中点G ,根据题意分析可知:三棱锥A -DEF 外接球的球心O 在过G 垂直于平面ABCD 的直线上,设GO =n ,CF =m ∈0,4 ,建系,结合空间两点距离公式可得n =m 2+4m,进而利用基本不等式运算求解.【详解】连接AE ,取AE 的中点G ,可知G 为△ADE 的外心,过G 作平面ABCD 的垂线,可知三棱锥A -DEF 外接球的球心O 在该垂线上,设GO =n ,CF =m ∈0,4 ,以D 为坐标原点,DA ,DC ,DD 1分别为x ,y ,z 轴,建立空间直角坐标系,则D 0,0,0 ,A 4,0,0 ,E 0,2,0 ,G 2,1,0 ,O 2,1,n ,F 0,4,m ,因为OD =OF ,即4+1+n 2=4+9+m -n 2,整理得n =m 2+4m≥2m 2⋅4m =22,当且仅当m 2=4m,即m =22时,等号成立,所以三棱锥A -DEF 外接球半径的最小值为4+1+8=13.故选:C .【点睛】关键点点睛:根据题意分析可知三棱锥A -DEF 外接球的球心O 在过G 垂直于平面ABCD 的直线上,再以空间直角坐标系为依托,分析求解.7(2023·陕西咸阳·模拟预测)如图,点P 是棱长为2的正方体ABCD -A 1B 1C 1D 1的表面上一个动点,则以下不正确的是()A.当P 在平面BCC 1B 1上运动时,四棱锥P -AA 1D 1D 的体积不变B.当P 在线段AC 上运动时,D 1P 与A 1C 1所成角的取值范围是π3,π2C.使直线AP 与平面ABCD 所成的角为45o 的点P 的轨迹长度为π+42D.若F 是A 1B 1的中点,当P 在底面ABCD 上运动,且满足PF ⎳平面B 1CD 1时,PF 长度的最小值是5【答案】D【分析】由底面正方形ADD 1A 1的面积不变,点P 到平面AA 1D 1D 的距离不变,可判定A 正确;以D 为原点,建立空间直角坐标系,设P (x ,2-x ,0),则D 1P =(x ,2-x ,-2),A 1C 1=(-2,2,0),结合向量的夹角公式,可判定B 正确;由直线AP 与平面ABCD 所成的角为45°,作PM ⊥平面ABCD ,得到点P 的轨迹,可判定C 正确;设P (m ,m ,0),求得平面CB 1D 1的一个法向量为n=(1,-1,-1),得到FP =2(x -1)2+6,可判定D 错误.【详解】对于A 中:底面正方形ADD 1A 1的面积不变,点P 到平面AA 1D 1D 的距离为正方体棱长,所以四棱锥P -AA 1D 1D 的体积不变,所以A 选项正确;对于B 中:以D 为原点,DA ,DC ,DD 1所在的直线分别为x 轴、y 轴和z 轴,建立空间直角坐标系,可得A 1(2,0,2),D 1(0,0,2),C 1(0,2,2),设P (x ,2-x ,0),0≤x ≤2,则D 1P =(x ,2-x ,-2),A 1C 1 =(-2,2,0),设直线D 1P 与A 1C 1所成角为θ,则cos θ=cos D 1P ,A 1C 1 =D 1P ⋅A 1C 1D 1P A 1C 1 =x -1(x -1)2+3,因为0≤x -1 ≤1,当x -1 =0时,可得cos θ=0,所以θ=π2;当0<x -1 ≤1时,cos θ=x -1(x -1)2+3=11+3x -12≤12,所以π3≤θ<π2,所以异面直线D 1P 与A 1C 1所成角的取值范围是π3,π2,所以B 正确;对于C 中:因为直线AP 与平面ABCD 所成的角为45°,若点P 在平面DCC 1D 1和平面BCC 1B 1内,因为∠B 1AB =45°,∠D 1AD =45°最大,不成立;在平面ADD 1A 1内,点P 的轨迹是AD 1=22;在平面ABB 1A 1内,点P 的轨迹是AB 1=22;在平面A 1B 1C 1D 1时,作PM ⊥平面ABCD ,如图所示,因为∠PAM =45°,所以PM =AM ,又因为PM =AB ,所以AM =AB ,所以A 1P =AB ,所以点P 的轨迹是以A 1点为圆心,以2为半径的四分之一圆,所以点P 的轨迹的长度为14×2π×2=π,综上,点P 的轨迹的总长度为π+42,所以C 正确;对于D 中,由B 1(2,2,2),D 1(0,0,2),C (0,2,0),F (2,1,2),设P (m ,n ,0),0≤m ≤2,0≤n ≤2,则CB 1 =(2,0,2),CD 1 =(0,-2,2),FP=(m -2,n -1,-2)设平面CB 1D 1的一个法向量为n=(a ,b ,c ),则n ⋅CD 1=-2b +c =0n ⋅CB 1=2a +2c =0,取a =1,可得b =-1,c =-1,所以n=(1,-1,-1),因为PF ⎳平面B 1CD ,所以FP ⋅n=(m -2)-(n -1)+2=0,可得n =m +1,所以FP=(m -2)2+(n -1)2+4=2m 2-4m +8=2(m -1)2+6≥6,当x =1时,等号成立,所以D 错误.故选:D .【点睛】方法点拨:对于立体几何的综合问题的解答方法:(1)、立体几何中的动态问题主要包括:空间动点轨迹的判断,求解轨迹的长度及动角的范围等问题;(2)、解答方法:一般时根据线面平行,线面垂直的判定定理和性质定理,结合圆或圆锥曲线的定义推断出动点的轨迹,有时也可以利用空间向量的坐标运算求出动点的轨迹方程;(3)、对于线面位置关系的存在性问题,首先假设存在,然后再该假设条件下,利用线面位置关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论,则否定假设;(4)、对于探索性问题用向量法比较容易入手,一般先假设存在,设出空间点的坐标,转化为代数方程是否有解的问题,若由解且满足题意则存在,若有解但不满足题意或无解则不存在.8(2023·吉林长春·模拟预测)四棱柱ABCD-A1B1C1D1中,侧棱AA1⊥底面ABCD,AB∥CD,2AB =BC=CD,BC⊥CD,侧面A1ABB1为正方形,设点O为四棱锥A1-CC1DD外接球的球心,E为DD1上的动点,则直线AE与OB所成的最小角的正弦值为()A.55B.255C.265D.15【答案】D【分析】建立空间直角坐标系,确定各点坐标,设球心O1,h,1 2,根据OA=OC得到h=34,设E2,0,a,根据向量的夹角公式结合二次函数性质计算最值得到答案.【详解】如图所示:以CD,CB,CC1分别为x,y,z轴建立空间直角坐标系,设AB=1,则A1,2,0,C0,0,0,B0,2,0,球心O在平面CDD1C1的投影坐标为1,0,1 2,则设球心O1,h,12,则OA =OC ,即1-12+h -2 2+122=12+h 2+122,解得h =34,则O 1,34,12.设E 2,0,a ,a ∈0,1 ,EA =-1,2,-a ,OB =-1,54,-12,cos EA ,OB=EA ⋅OB EA ⋅OB =1+52+12a a 2+5⋅355=72+12a a 2+5⋅354=14+2a 35×a 2+5设7+a =t ,则a =7-t ,t ∈7,8 ,则14+2a 35×a 2+5=2t35×t 2-14t +54=235×541t-7542+554,当t =547时,有最大值为235×554=265,此时直线AE 与OB 所成的角最小,对应的正弦值为1-2652=15.故选:D【点睛】关键点睛:本题考查了立体几何中的异面直线夹角问题,外接球问题,意在考查学生的计算能力,空间想象能力和综合应用能力,其中建立空间直角坐标系可以简化运算,是解题的关键.二、多选题9(23-24高三下·江苏苏州·开学考试)在正方体ABCD -A 1B 1C 1D 1中,点M 为棱AB 上的动点,则()A.平面ABC 1D 1⊥平面A 1DMB.平面BCD 1⎳平面A 1DMC.A 1M 与BC 1所成角的取值范围为π4,π3D.A 1M 与平面ABC 1D 1所成角的取值范围为π6,π4【答案】ACD【分析】由面面垂直的判定定理可判断A 选项;取点M 与点B 重合,可判断B 选项;以点D 为坐标原点,DA 、DC 、DD 1所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可判断CD 选项.【详解】对于A 选项,因为四边形AA 1D 1D 为正方形,则A 1D ⊥AD 1,在正方体ABCD -A 1B 1C 1D 1中,AB ⊥平面AA 1D 1D ,A 1D ⊂平面AA 1D 1D ,则A 1D ⊥AB ,因为AB ∩AD 1=A ,AB 、AD 1⊂平面ABC 1D 1,所以,A 1D ⊥平面ABC 1D 1,因为A 1D ⊂平面A 1DM ,故平面ABC 1D 1⊥平面A 1DM ,A 对;对于B 选项,当点M 与点B 重合时,平面BCD 1与平面A 1DM 有公共点,B 错;对于CD 选项,以点D 为坐标原点,DA 、DC 、DD 1所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,不妨设正方体的棱长为1,则A 1,0,0 、B 1,1,0 、C 0,1,0 、D 0,0,0 、A 11,0,1 、B 11,1,1 、C 10,1,1 、D 10,0,1 ,设点M 1,m ,0 ,其中0≤m ≤1,A 1M =0,m ,-1 ,BC 1 =-1,0,1 ,所以,cos A 1M ,BC 1 =A 1M ⋅BC 1A 1M ⋅BC 1 =12m 2+1 ∈12,22 ,设A 1M 与BC 1所成角为α,其中0≤α≤π2,则12≤cos α≤22,可得π4≤α≤π3,所以,A 1M 与BC 1所成角的取值范围为π4,π3,C 对;对于D 选项,由A 选项可知,平面ABC 1D 1的一个法向量为DA 1 =1,0,1 ,则cos A 1M ,DA 1 =A 1M ⋅DA 1A 1M ⋅DA 1 =12m 2+1 ∈12,22 ,设A 1M 与平面ABC 1D 1所成角为β,则0≤β≤π2,则12≤sin β≤22,可得π6≤β≤π4,所以,A 1M 与平面ABC 1D 1所成角的取值范围为π6,π4,D 对.故选:ACD .10(2023·全国·模拟预测)如图①,四边形ABCD 是两个直角三角形拼接而成,AB =1,BD =2,∠ABD =∠C =90°,∠BDC =45°.现沿着BD 进行翻折,使平面ABD ⊥平面BCD ,连接AC ,得到三棱锥A -BCD (如图②),则下列选项中正确的是()A.平面ABC ⊥平面ACDB.二面角B -AD -C 的大小为60°C.异面直线AD 与BC 所成角的余弦值为33D.三棱锥A -BCD 外接球的表面积为π【答案】ABC【分析】A 选项,面面垂直⇒线面垂直⇒CD ⊥平面ABC ⇒平面ABD ⊥平面ACD ;B 、C 选项,建立空间直角坐标系,利用直线方向向量和平面法向量求解;D 选项,三棱锥的外接球,寻求斜边中点(球心位置).【详解】A 项,平面ABD ⊥平面BCD ,交线为BD ,AB ⊥BD ,AB ⊂平面ABD ,所以AB ⊥平面BCD ,因为CD ⊂平面BCD ,所以AB ⊥CD .又BC ⊥CD ,且AB ∩BC =B ,所以CD ⊥平面ABC .因为CD ⊂平面ACD ,所以平面ABC ⊥平面ACD ,选项A 正确.C 选项,以B 为原点,过B 在平面BCD 内作BD 的垂线为x 轴,直线BD 为y 轴,直线AB 为z 轴,建立空间直角坐标系,则B 0,0,0 ,A 0,0,1 ,C 22,22,0,D 0,2,0 ,则AC =22,22,-1 ,AD =0,2,-1 ,BC =22,22,0.易知平面ABD 的一个法向量为n 1=1,0,0 .设平面ACD 的法向量为n2=x ,y ,z ,则n 2⋅AC =0,n 1⋅AD=0, 即22x +22y -z =0,2y -z =0,取z =2,则x =1,y =1,则n 2=1,1,2 ,由图可知二面角B -AD -C 为锐角,则二面角B -AD -C 的余弦值为cos n 1,n 2=n 1⋅n 2 n 1 n 2 =11×2=12,即二面角B -AD -C 的大小为60°,选项B 正确;cos AD ,BC =AD ⋅BCAD BC =0,2,-1 ⋅22,22,0 3×1=33,选项C 正确;D 项,取AD 的中点N ,因为△ABD 与△ACD 都是直角三角形,所以点N 到A ,B ,C ,D 的距离相等,即为三棱锥A -BCD 外接球的球心,球半径为32,则三棱锥A -BCD 外接球的表面积为4π×322=3π,选项D 错误.故选:ABC .11(2023·全国·模拟预测)如图1,矩形B 1BCC 1由正方形B 1BAA 1与A 1ACC 1拼接而成.现将图形沿A 1A 对折成直二面角,如图2.点P (不与B 1,C 重合)是线段B 1C 上的一个动点,点E 在线段AB 上,点F 在线段A 1C 1上,且满足PE ⊥AB ,PF ⊥A 1C 1,则()。
初三数学专题复习之动态几何
初三数学专题复习之动态几何知识精讲一.与函数结合动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们一般用以下几种方法建立函数:(1)应用勾股定理建立函数解析式;(2)应用比例式建立函数解析式;(3)应用求图形面积的方法建立函数关系式.二.动态几何型压轴题动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值.动态几何常见的题型有三大类:(1)点动问题;(2)线动问题;(3)面动问题.解决动态几何问题的常见方法有:(1)特殊探路,一般推证;(2)动手实践,操作确认;(3)建立联系,计算说明.动态几何习题的共性:1.代数、几何的高度综合(数形结合);着力于数学本质及核心内容的考查;四大数学思想:数学结合、分类讨论、方程、函数;2.以形为载体,研究数量关系;通过设、表、列获得函数关系式;研究特殊情况下的函数值.三.双动点问题点动、线动、形动构成的问题称之为动态几何问题.它主要以几何图形为载体,运动变化为主线,集多个知识点为一体,集多种解题思想于一题.这类题综合性强,能力要求高,它能全面的考查学生的实践操作能力,空间想象能力以及分析问题和解决问题的能力,其中以灵活多变而著称的双动点问题更成为今年中考试题的热点.常以双动点为载体,探求函数图象问题、探求结论开放性问题、探求存在性问题、探求函数最值问题.双动点问题的动态问题是近几年来中考数学的热点题型.这类试题信息量大,对同学们获取信息和处理信息的能力要求较高;解题时需要用运动和变化的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动.三点剖析一.考点:1.三角形、四边形与函数综合问题;2.三角形、四边形中的动点问题.二.重难点:1.三角形、四边形与函数综合问题;2.三角形、四边形中的动点问题.题模精讲题模一:三角形与动点问题例1.1如图1,在△ABC中,∠ACB=90°,点P为△ABC内一点.(1)连接PB,PC,将△BCP沿射线CA方向平移,得到△DAE,点B,C,P的对应点分别为点D,A,E,连接CE.①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长.(2)如图3,连接PA,PB,PC,求PA+PB+PC的最小值.小慧的作法是:以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,那么就将PA+PB+PC的值转化为CP+PM+MN的值,连接CN,当点P落在CN上时,此题可解.请你参考小慧的思路,在图3中证明PA+PB+PC=CP+PM+MN.并直接写出当AC=BC=4时,PA+PB+PC的最小值.【答案】(1)①②2【解析】(1)①补全图形如图所示;②如图,连接BD、CD∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,(2)证明:如图所示,以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN.由旋转可得,△AMN≌△ABP,∴MN=BP,PA=AM,∠PAM=60°=∠BAN,AB=AN,∴△PAM、△ABN都是等边三角形,∴PA=PM,∴PA+PB+PC=CP+PM+MN,当AC=BC=4时,当C、P、M、N四点共线时,由CA=CB,NA=NB可得CN垂直平分AB,∴,∴此时例1.2以平面上一点O为直角顶点,分别画出两个直角三角形,记作△AOB和△COD,其中(1)点E、F、M分别是AC、CD、DB的中点,连接①如图1,当点D、C分别在AO、BO;②如图2,将图1中的△AOB绕点O(2)如图3N在线段OD P是线段AB上的一个动点,在将△AOB绕点O旋转的过程中,线段PN长度的最小值为_______,最大值为_______.【答案】(12【解析】该题考查旋转与相似.(1)①连接EF,∵点E、F、M分别是AC、CD、DB的中位线,∴EF、FM分别是△ACD和△DBC的中位线,∴EF//AD,FM//CB,∴△EFM是直角三角形∵EM//CD.连接EF、AD、BC.(如图8)∵Rt△AOB∵Rt△COD∴△AOD∽△BOC.∵点E、F、M分别是AC、CD、DB的中点,∴EF∥AD,FM∥CB∵在Rt△EFM(2)过O E,∴当点P在点E处时,点P到O这时当旋转到OE与OD重合时,NP当点P在点B处时,且当旋转到OB在DO的延长线时,NP例 1.3在△ABC中将△ABC绕顶点C顺时针旋转,旋转角''.A B C(1)如图1AC时,设AB相交于点D.证明:△BCD是等边三角形;(2)如图2、B B',设比;(3)如图3,设AC 中点为E P EP EP 长度最大,并求出EP 的最大值.【答案】 (1)见解析;(2'':3:1ACA BCB S S=3EP 长度最大,其最大值是【解析】 (1)证明:如图1,∵在△ABCAC ,∴在△CDB∴△BCD 是等边三角形;(2)解:如图2(3)解:如图,连接CP ,当△ABCEP例 1.4 用如图①,②所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题:探究一:将以上两个三角形如图③拼接(BC 和ED 重合),在BC 边上有一动点P . (1)当点P 运动到∠CFB 的角平分线上时,连接AP ,求线段AP 的长;(2)当点P PAB 的度数.探究二:如图④,将△DEF 的顶点D 放在△ABC 的BC 边上的中点处,并以点D 为旋转中心旋转△DEF ,使△DEF 的两直角边与△ABC 的两直角边分别交于M 、N 两点,连接MN .在旋转△DEF 的过程中,△AMN 的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由. 【答案】 见解析【解析】探究一:(1)依题意画出图形,如图所示:FP为角平分线,过点A作AG⊥BC于点G在Rt△APG(2)由(1如图所示,以点ABC过点A过AG⊥BC于点G在Rt△AGP1∴∠P AB的度数为15°或75°.探究二:△AMN的周长存在有最小值.如图所示,连接AD,∵△ABC为等腰直角三角形,点D为斜边BC的中点,∵在△AMD与△CND∴△AMD≌△CND(ASA在Rt△AMN中,由勾股定理得:∴△AMN.∴△AMN例1.5如图,在△ABC中,AB=AC=10cm,BC=16cm,DE=4cm.动线段DE(端点D从点B开始)沿BC边以1cm/s的速度向点C运动,当端点E到达点C时运动停止.过点E作EF∥AC交AB于点F(当点E与点C 重合时,EF与CA重合),连接DF,设运动的时间为t秒(t≥0).(1)直接写出用含t的代数式表示线段BE、EF的长;(2)在这个运动过程中,△DEF能否为等腰三角形?若能,请求出t的值;若不能,请说明理由;(3)设M、N分别是DF、EF的中点,求整个运动过程中,MN所扫过的面积.【答案】(1)t+4)(cm)(2)t=03【解析】(1)∵BD=tcm,DE=4cm,∴BE=BD+DE=(t+4)cm,∵EF∥AC,∴△BEF∽△BCA,∴EF:CA=BE:BC,即EF:10=(t+4):16,解得:t+4)(cm);(2)分三种情况讨论:①如图1,∵当DF=EF时,∴∠EDF=∠DEF,∵AB=AC,∴∠B=∠C,∵EF∥AC,∴∠DEF=∠C,∴∠EDF=∠B,∴点B与点D重合,∴t=0;②如图2,当DE=EF时,则t+4),解得:③如图3,∵当DE=DF时,有∠DFE=∠DEF=∠B=∠C,∴△DEF∽△ABC.解得:综上所述,当t=0DEF为等腰三角形.(3)如图4,设P是AC的中点,连接BP,∵EF∥AC,∴△FBE∽△ABC.又∵∠BEN=∠C,∴△NBE∽△PBC,∴∠NBE=∠PBC.∴点B,N,P共线,∴点N沿直线BP运动,MN也随之平移.如图5,设MN从ST位置运动到PQ位置,则四边形PQST是平行四边形.∵M、N分别是DF、EF的中点,∴MN∥DE,且.分别过点T、P作TK⊥BC,垂足为K,PL⊥BC,垂足为L,延长ST交PL于点R,则四边形TKLR是矩形,∵当t=0时,0+4)∠当t=12时,EF=AC=10,•sin∠10.∴PR=PL﹣RL=PL﹣TK=3∴S平行四边形PQST=ST•PR=2∴整个运动过程中,MN2.题模二:四边形与动点问题例2.1如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,连结AM、CM.(1)当M点在何处时,AM+CM的值最小;(2)当M点在何处时,AM+BM(3)当AM+BM+CM【答案】(1)见解析(2)见解析(3【解析】该题考查的是四边形综合.(1)当M点落在BD……………………………1分(2)如图,连接CE,当M点位于BD与CE……………………………2分理由如下:∵M是正方形ABCD对角线上一点∴△ABM≌△CBM分EC上取一点N BN∴△BNE≌△ABM……………………3分∴△BMN是等边三角形.分根据“两点之间线段最短”∴当M点位于BD与CE EC的长.……………………………5分(3)过E CB的延长线于F设正方形的边长为x分在Rt△EFC中,……………………………7分1B关于直线AC的对称点是点D,点E为射线CA上一点,且DE,BE.(1)依题意补全图1,并证明:△BDE为等边三角形;C关于直线BD的对称点为点F,连接FD、FB.将△CDE绕点D顺时针旋转αE C②如图3,点为中点,点PM长度的取值范围?【答案】(1)如图1,证明见解析;(2【解析】(1)补全图形,如图1所示;证明:由题意可知:射线CA垂直平分BD∴△EBD是等边三角形(2)①证明:如图2又∵点C与点F关于BD对称∴四边形BCDF为正方形,由(1)△BDE为等边三角形∴△EDF SAS)②线段PM设射线CA交BD于点O,I:如图3(1)DC,MP D、M、P、C共线时,PM有最小值II:如图3(2)当点P P、D、M、C共线时,PM有最大值.∴线段PM例2.3如图1,在菱形ABCD中,tan∠ABC=2,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CF.(1)求证:BE=DF;(2)当t=___秒时,DF的长度有最小值,最小值等于___;(3)如图2,连接BD、EF、BD交EC、EF于点P、Q,当t为何值时,△EPQ是直角三角形?(4)如图3,将线段CD绕点C顺时针旋转一个角α(α=∠BCD),得到对应线段CG.在点E的运动过程中,当它的对应点F位于直线AD上方时,直接写出点F到直线AD的距离y关于时间t的函数表达式.【答案】(1)见解析(2),12(3)6秒和(4)﹣12【解析】分析:(1)由∠ECF=∠BCD得∠DCF=∠BCE,结合DC=BC、CE=CF证△DCF≌△BCE即可得;(2)当点E运动至点E′时,由DF=BE′知此时DF最小,求得BE′、AE′即可得答案;(3)①∠EQP=90°时,由∠ECF=∠BCD、BC=DC、EC=FC得∠BCP=∠EQP=90°,根据tan∠ABC=tan∠ADC=2即可求得DE;②∠EPQ=90°时,由菱形ABCD的对角线AC⊥BD知EC与AC重合,可得(4)连接GF分别交直线AD、BC于点M、N,过点F作FH⊥AD于点H,证△DCE≌△GCF可得∠3=∠4=∠1=∠2,即GF∥CD,从而知四边形CDMN是平行四边形,由平行四边形得∠CGN=∠DCN=∠CNG知tan∠ABC=tan∠CGN=2可得,由GF=DE=t得FM=t﹣12,利用tan∠FMH=tan∠ABC=2即可得FH.(1)∵∠ECF=∠BCD,即∠BCE+∠DCE=∠DCF+∠DCE,∴∠DCF=∠BCE,∵四边形ABCD是菱形,∴DC=BC,在△DCF和△BCE中,∴△DCF≌△BCE(SAS),∴DF=BE;(2)如图1,当点E运动至点E′时,DF=BE′,此时DF最小,在Rt△ABE′中,tan∠ABC=tan∠BAE′=2,∴设AE′=x,则BE′=2x,∴则AE′=6∴,DF=BE′=12,故答案为:,12;(3)∵CE=CF,∴∠CEQ<90°,①当∠EQP=90°时,如图2①,∵∠ECF=∠BCD,BC=DC,EC=FC,∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°,∵tan∠ABC=tan∠ADC=2,∴DE=6,∴t=6秒;②当∠EPQ=90°时,如图2②,∵菱形ABCD的对角线AC⊥BD,∴EC与AC重合,∴∴(4)﹣12如图3,连接GF分别交直线AD、BC于点M、N,过点F作FH⊥AD于点H,由(1)知∠1=∠2,又∵∠1+∠DCE=∠2+∠GCF,∴∠DCE=∠GCF,在△DCE和△GCF中,∴△DCE≌△GCF(SAS),∴∠3=∠4,∵∠1=∠3,∠1=∠2,∴∠2=∠4,∴GF∥CD,又∵AH∥BN,∴四边形CDMN是平行四边形,∴∵∠BCD=∠DCG,∴∠CGN=∠DCN=∠CNG,∴∵tan∠ABC=tan∠CGN=2,∴GN=12,∴,∵GF=DE=t,∴FM=t﹣12,∵tan∠FMH=tan∠ABC=2,∴t﹣12),即﹣12例2.4在正方形ABCD中,点E是对角线AC的中点,点F在边CD上,连接DE、AF,点G在线段AF上(1)如图①,若DG是△ADFD的中线,DG=2.5,DF=3,连接EG,求EG的长;(2)如图②,若DG⊥AF交AC于点H,点F是CD的中点,连接FH,求证:∠CFH=∠AFD;(3)如图③,若DG⊥AF交AC于点H,点F是CD上的动点,连接EG.当点F在边CD上(不含端点)运动时,∠EGH的大小是否发生改变?若不改变,求出∠EGH的度数;若发生改变,请说明理由.【答案】(1(2)答案见解析(3)不改变,∠EGH=45°【解析】(1)解:∵四边形ABCD是正方形,∴AD=CD=BC,∠ADF=∠BCD=90°,∠DAC=∠ACB=∠ACD=45°,∵DG是△ADF的中线,DG=2.5,∴AF=2DG=5,∴,∴CF=CD﹣DF=1,∵点E是对角线AC的中点,G是AF的中点,∴EG是△ACF的中位线,∴(2)证明:延长DH交BC于M,如图所示,∵DG⊥AF,∴∠AGH=∠DGA=∠DGF=90°,∴∠AFD+∠FDG=90°,∵∠DMC+∠FDG=90°,∴∠AFD=∠DMC,在△CDM和△DAF∴△CDM≌△DAF(AAS),∴CM=DF,∵点F是CD的中点,∴DF=CF,∴CM=CF,在△CMH和△CFH,∴△CMH≌△CFH(SAS),∴∠CMH=∠CFH,∴∠CFH=∠AFD;(3)解:∠EGH的大小不发生改变,∠EGH=45°;理由如下:∵点E是对角线AC的中点,∠ADC=90°,∴,∴∠ADE=∠DAC=45°,∴∠AED=90°=∠AGD,∴A、D、G、E四点共圆,∴∠AGE=∠ADE=45°,∴∠EGH=90°﹣45°=45°.例2.5如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=6cm,BD=8cm,动点P,Q分别从点B,D 同时出发,运动速度均为1cm/s,点P沿B→C→D运动,到点D停止,点Q沿D→O→B运动,到点O停止1s后继续运动,到点B停止,连接AP,AQ,PQ.设△APQ的面积为y(cm2)(这里规定:线段是面积0的几何图形),点P的运动时间为x(s).(1)填空:AB=______cm,AB与CD之间的距离为______cm;(2)当4≤x≤10时,求y与x之间的函数解析式;(3)直接写出在整个运动过程中,使PQ与菱形ABCD一边平行的所有x的值.【答案】(1)5(2)(3)满足条件的x【解析】(1)∵菱形ABCD中,AC=6cm,BD=8cm,∴AC⊥BD,∴,设AB与CD间的距离为h,∴△ABC的面积,又∵△ABC的面积菱形ABCD6×8=12,,∴(2)设∠CBD=∠CDB=θ,则易得:①当4≤x≤5时,如答图1﹣1所示,此时点Q与点O重合,点P在线段BC上.∵PB=x,∴PC=BC﹣PB=5﹣x.过点P作PH⊥AC于点H,则5﹣x).∴y=S△APQ35﹣x)=;②当5<x≤9时,如答图1﹣2所示,此时点Q在线段OB上,点P在线段CD上.PC=x﹣5,PD=CD﹣PC=5﹣(x﹣5)=10﹣x.过点P作PH⊥BD于点H,则10﹣x).∴y=S△APQ=S菱形ABCD﹣S△ABQ﹣S四边形BCPQ﹣S△APD=S菱形ABCD﹣S△ABQ﹣(S△BCD﹣S△PQD)﹣S△APD×h6×89﹣x)×3﹣8×3x﹣1)10﹣x)]10﹣x=2③当9<x≤10时,如答图1﹣3所示,此时点Q与点B重合,点P在线段CD上.y=S△APQ×5.综上所述,当4≤x≤10时,y与x之间的函数解析式为:(3)有两种情况:①若PQ∥CD,如答图2﹣1所示.此时BP=QD=x,则BQ=8﹣x.∵PQ∥CD,∴②若PQ∥BC,如答图2﹣2所示.此时PD=10﹣x,QD=x﹣1.∵PQ∥BC,∴综上所述,满足条件的x随堂练习随练1.1在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(Ⅰ)如图①,若α=90°,求AA′的长;(Ⅱ)如图②,若α=120°,求点O′的坐标;(Ⅲ)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)【答案】(1)(2(3【解析】(1)如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′(2)作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴′O′∴∴O(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把OC(0,﹣3∴直线O′C的解析式为﹣3,当y=0﹣3=0,解得P0),∴∴O′P′作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′′P′P′′∴DH=O′H﹣O′∴P随练1.2如图,在四边形ABCD M为对角线BD(不含点B)上任意一点,△ABE是等边三角形,将绕点逆时针旋转60°得到,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2②当点M【答案】(1)见解析;(2)连接AC,当点M位于BD与AC3)当点M位于BD、CE EC的长.理由见解析【解析】(1)∵△ABE是等边三角形,在△AMB和△ENB中,∴△AMB≌△ENB(SAS);(2)①根据“两点之间线段最短”,连接AC,当点M位于BD与AC②连接CE,当点M位于BD、CE理由如下:如图,连接CE交BD于点M,连接AM,在EM上取一点N在△ABD和△CBD中,∴△ABD≌△CBD(SSS),在△EBN和△CBM中,∴△EBN≌△CBM(ASA),∴此时BN由BM绕点B逆时针旋转60°得到,由(1)知:△AMB≌△ENB,∴△BMN是等边三角形,∴根据“两点之间线段最短”可知当点M位于BD、CEEC的长.随练1.3在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.【答案】(1)见解析(2(3)6【解析】(1)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAG=∠BAE=90°,AG=AE,在△ADG和△ABE中,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB,如图1所示,延长EB交DG于点H,在△ADG中,∠AGD+∠ADG=90°,∴∠AEB+∠ADG=90°,在△EDH中,∠AEB+∠ADG+∠DHE=180°,∴∠DHE=90°,则DG⊥BE;(2)∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAB=∠GAE=90°,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,在△ADG和△ABE中,∴△ADG≌△ABE(SAS),∴DG=BE,如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90°,∵BD为正方形ABCD的对角线,∴∠MDA=45°,在Rt△AMD中,∠MDA=45°,∴cos45°∵AD=2,∴在Rt△AMG中,根据勾股定理得:,∵,∴(3)△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,∴当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,∴当点H与点A重合时,△BDH的高最大,则△GHE和△BHD面积之和的最大值为2+4=6.随练1.4正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.【答案】(12)成立,证明见解析(3【解析】(1………………………………… 1分(2)结论成立.………………………………… 2分证明:如图11,连接BE.在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°.∵DE=DF,∴AF=CE.在△ABF和△CBE中,∴△ABF≌△CBE.∴∠1=∠2.…………………………………………3分∵EH⊥BF,∠BCE=90°,∴H,C两点都在以BE为直径的圆上.∴∠3=∠2.∴∠3=∠1.∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC.∴CH=CB.………………………………………………………………… 5分∴CH=AB.………………………………………………………………… 6分(3………………………………………………………………………7分随练 1.5已知,如图①,在▱ABCD中,AB=3cm,BC=5cm.AC⊥AB.△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速运动,速度为1cm/s,当△PNM停止平移时,点Q也停止运动.如图②,设运动时间为t(s)(0<t<4).解答下列问题:(1)当t为何值时,PQ∥MN?(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S△QMC:S四边形ABQP=1:4?若存在,求出t的值;若不存在,请说明理由.(4)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.【答案】(1)2)y=3)2;(4)当PQ⊥MQ【解析】如图1,在Rt△ABC中,由勾股定理得:,由平移性质可得MN∥AB;∵PQ∥MN,∴PQ∥AB,解得(2)如图2,作PF⊥BC于点F,AE⊥BC于点E,由S△ABC BC3×5AE,∴则由勾股定理得:∵PF⊥BC,AE⊥BC,∴AE∥PF,∴△CPF∽△CAE,解得:∵PM∥BC,所以M到BC的距离所以,△QCM是面积(3)∵PM∥BC,∴S△PQC=S△MQC,∵S△QMC:S四边形ABQP=1:4,∴S△MQC:S△ABC=1:5,则54×3,t2﹣4t+4=0,解得:t1=t2=2,∴当t=2时,S△QMC:S四边形ABQP=1:4;(4)如图2,∵PQ⊥MQ,∴∠MQP=∠PFQ=90°,∵MP∥BC,∴∠MPQ=∠PQF,∴△MQP∽△PFQ,∴PQ2=PM×FQ,即:PF2+FQ2=PM×FQ,由∴FQ=CF﹣整理得2t2﹣3t=0,解得t1=0(舍),t2答:当PQ⊥MQ.随练1.6如图,矩形ABCD中,AB=4,AD=8,点E、F分别在线段BC、CD上,将△CEF沿EF翻折,点C的落点为M(1)如图1,当 CE=5,M点落在线段AD上时,求MD的长(2)如图2,若点F是CD的中点,点E在线段BC上运动,将△CEF沿EF折叠,①连接BM,△BME是否可以是直角三角形?如果可以,求此时CE的长,如果不可以,说明理由②连接MD,如图3,求四边形ABMD的周长的最小值和此时CE的长【答案】(1)MD的长为2(2)①可以;CE=2②四边形ABMD的周长的最小值为(12),此时CE的长为4【解析】(1)如图1,作EN⊥AD于点N,∴∠ANE=∠ENM=90°.∵四边形ABCD是矩形,∴∠A=∠B=∠C=∠D=90°,AB=CD=4,AD=BC=8,∴∠A=∠B=∠ANE=90°,∴AB=NE=4,AN=BE.∵EC=5,∴BE=3,∴AN=3.∵△EFC与△EFM关于直线EF对称,∴△EFC≌△EFM,∴EC=EM=5.在Rt△EMN中,由勾股定理,得MN=3,∴MD=8﹣3﹣3=2.答:MD的长为2;(2)①如图2,当∠BME=90°时,∵∠EMF=90°,∴∠BMF=180°,∴B、M、F在同一直线上.∵F是BC的中点,∴.∵△EFC与△EFM关于直线EF对称,∴△EFC≌△EFM,∴MF=CF=2,EC=EM.在Rt△BCF中,由勾股定理,得∴2.设EC=EM=x,则BE=8﹣x,在Rt△BME中,由勾股定理,得(8﹣x)2﹣x2=(2)2,解得:∴如图3,当∠BEM=90°时,∴∠MEC=90°∵△EFC与△EFM关于直线EF对称,∴△EFC≌△EFM,∴∠EMF=∠C=90°,CF=FM=2,∴四边形ECFM是正方形,∴MF=CE=2.∴CE=2②如图4,∵四边形ABMD的周长最小,∴BM+MD最小,∴B、M、D在同一直线上,∴点M在BD上.连结MC,∵△EFC与△EFM关于直线EF对称,∴△EFC≌△EFM,∴EC=EM,FC=FM.∴EF垂直平分MC,∴MG=CG,∴GF是△CDM的中位线,∴FG∥BD,∴BE=CE.∵BC=8,∴CE=4.在Rt△ABD中,由勾股定理,得∴四边形ABMD的周长的最小值为:4+12.答:四边形ABMD的周长的最小值为(12),此时CE的长为4.随练1.7如图,在矩形纸片ABCD中,AB=4,AD=12,将矩形纸片折叠,使点C落在AD边上的点M处,折痕为PE,此时PD=3.(1)求MP的值;(2)在AB边上有一个动点F,且不与点A,B重合.当AF等于多少时,△MEF的周长最小?(3)若点G,Q是AB边上的两个动点,且不与点A,B重合,GQ=2.当四边形MEQG的周长最小时,求最小周长值.(计算结果保留根号)【答案】(1)5(23【解析】(1)∵四边形ABCD为矩形,∴CD=AB=4,∠D=90°,∵矩形ABCD折叠,使点C落在AD边上的点M处,折痕为PE,∴PD=PH=3,CD=MH=4,∠H=∠D=90°,∴(2)如图1,作点M关于AB的对称点M′,连接M′E交AB于点F,则点F即为所求,过点E作EN⊥AD,垂足为N,∵AM=AD﹣MP﹣PD=12﹣5﹣3=4,∴AM=AM′=4,∵矩形ABCD折叠,使点C落在AD边上的点M处,折痕为PE,∴∠CEP=∠MEP,而∠CEP=∠MPE,∴∠MEP=∠MPE,∴ME=MP=5,在Rt△ENM中,∴NM′=11,∵AF∥NE,∴△AFM′∽△NEM′,即△MEF的周长最小;(3)如图2,由(2)知点M′是点M关于AB的对称点,在EN上截取ER=2,连接M′R交AB于点G,再过点E作EQ∥RG,交AB于点Q,∵ER=GQ,ER∥GQ,∴四边形ERGQ是平行四边形,∴QE=GR,∵GM=GM′,∴MG+QE=GM′+GR=M′R,此时MG+EQ最小,四边形MEQG的周长最小,在Rt△M′RN中,NR=4﹣2=2,∵ME=5,GQ=2,∴四边形MEQG随练1.8边长为2A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中,AB边交DF于点M,BC边交N.(1(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;(3)如图3p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.【答案】(123)见解析【解析】该题考查的是三角形全等与旋转问题.(12分(2..............................5分(3△≌6分∴△≌.......................................7分∴在旋转正方形的过程中,值无变化............................8分课后作业作业1已知,点O是等边△ABC内的任一点,连接OA,OB,OC.(1)如图1,已知∠AOB=150°,∠BOC=120°,将△BOC绕点C按顺时针方向旋转60°得△ADC.①∠DAO的度数是;②用等式表示线段OA,OB,OC之间的数量关系,并证明;(2)设∠AOB=α,∠BOC=β.①当α,β满足什么关系时,OA+OB+OC有最小值?请在图2中画出符合条件的图形,并说明理由;②若等边△ABC的边长为1,直接写出OA+OB+OC的最小值.【答案】(1)①90°;②OA2+OB2=OC2;证明见解析(2)①α=β=120°,OA+OB+OC有最小值;图形见解析【解析】(1)①∠AOB=150°,∠BOC=120°,∴∠AOC=360°﹣120°﹣150°=90°,∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴∠OCD=60°,∠D=∠BOC=120°,∴∠DAO=360°﹣∠AOC﹣∠OCD﹣∠D=90°,故答案为:90°;②线段OA,OB,OC之间的数量关系是OA2+OB2=OC2,如图1,连接OD,∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴△ADC≌△BOC,∠OCD=60°,∴CD=OC,∠ADC=∠BOC=120°,AD=OB,∴△OCD是等边三角形,∴OC=OD=CD,∠COD=∠CDO=60°,∵∠AOB=150°,∠BOC=120°,∴∠AOC=90°,∴∠AOD=30°,∠ADO=60°,∴∠DAO=90°,在Rt△ADO中,∠DAO=90°,∴OA2+OB2=OD2,∴OA2+OB2=OC2;(2)①当α=β=120°时,OA+OB+OC有最小值.如图2,将△AOC绕点C按顺时针方向旋转60°得△A′O′C,连接OO′,∴△A′O′C≌△AOC,∠OCO′=∠ACA′=60°,∴O′C=OC,O′A′=OA,A′C=BC,∠A′O′C=∠AOC.∴△OC O′是等边三角形,∴OC=O′C=OO′,∠COO′=∠CO′O=60°,∵∠AOB=∠BOC=120°,∴∠AOC=∠A′O′C=120°,∴∠BOO′=∠OO′A′=180°,∴四点B,O,O′,A′共线,∴OA+OB+OC=O′A′+OB+OO′=BA′时值最小;②∵∠AOB=∠BOC=120°,∴∠AOC=120°,∴O为△ABC的中心,∵四点B,O,O′,A′共线,∴BD⊥AC,∵将△AOC绕点C按顺时针方向旋转60°得△A′O′C,∴A′C=AC=BC,∴A′B=2BD,在Rt△BCD中,∴∴当等边△ABC的边长为1时,OA+OB+OC的最小值作业2几何模型:条件:如图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连结A′B交l于点P,则PA+PB=A′B的值最小(不必证明).模型应用:(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连结BD,由正方形对称性可知,B与D关于直线AC对称.连结ED交AC于P,则PB+PE的最小值是____;(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC 的最小值;(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.【答案】(12)3)【解析】(1)由题意知:连接ED交AC于点P,此时PB+PE最小,最小值为ED,∵点E是AB的中点,∴AE=1,由勾股定理可知:ED2=AE2+AD2=5,∴∴PB+PE(2)延长AO交⊙O于点D,连接DC,AC,∴AD=4,∵∠AOC=60°,OA=OC,∴△AOC是等边三角形,∴AC=OA=2,∵AD是⊙O直径,∴∠ACD=90°,∴由勾股定理可求得:∴PA+PC的最小值为(3)作点C,使得点P与点C关于OB对称,作点D,使得点P与点D关于OA对称,连接OC、OD、CD,CD交OA、OB于点Q、R,此时PR+RQ+PQ最小,最小值为CD的长,∵点P与点C关于OB对称,∴∠BOP=∠COB,OP=OC=10,同理,∠DOA=∠POA,OP=OD=10,∵∠BOP+∠POA=45°,∴∠COD=2(∠BOP+∠POA)=90°,由勾股定理可知:∴△PQR周长的最小值为作业3如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点M是BC的中点,作正方形MNPQ,使点A、C分别在MQ和MN上,连接AN、BQ.(1)直接写出线段AN和BQ的数量关系是______.(2)将正方形MNPQ绕点M逆时针方向旋转θ(0°<θ≤360°)①判断(1)的结论是否成立?请利用图2证明你的结论;②若BC=MN=6,当θ(0°<θ≤360°)为何值时,AN取得最大值,请画出此时的图形,并直接写出AQ 的值.【答案】(1)BQ=AN(2)【解析】(1)BQ=AN.理由:如图1,∵△ABC是等腰直角三角形,∠BAC=90°,点M是BC的中点,∴AM⊥BC,BM=AM,∴∠AMB=∠AMC=90°.∵四边形PQMN是正方形,∴QM=NM.在△QMB和△NMA中,∴△QMB≌△NMA(SAS),∴BQ=AN.故答案为:BQ=AN;(2)①BQ=AN成立.理由:如图2,连接AM,∵在Rt△BAC中,M为斜边BC中点,∴AM=BM,AM⊥BC,∴∠AMQ+∠QMB=90°.∵四边形PQMN为正方形,∴MQ=NM,且∠QMN=90°,∴∠AMQ+∠NMA=90°,∴∠BMQ=∠AMN.在△BMQ和△AMN中,∴△BMQ≌△AMN(SAS),∴BQ=AN;②由①得,BQ=AN,∴当BQ取得最大值时,AN取得最大值.如图3,当旋转角θ=270°时,BQ=AN(最大),此时∠AMQ=90°.∵BC=MN=6,M是BC的中点,∴MQ=6,,∴在Rt△AMQ中,由勾股定理得作业4(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于_________时,线段AC的长取得最大值,且最大值为_________(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【答案】(1)CB的延长线上;a+b(2)见解析(3)见解析【解析】(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,∴△CAD≌△EAB,∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=4;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵∴最大值为;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴∴OE=BO3=2∴P(2作业5(1(2等方法判断(1DEFG绕点D的值.【答案】(1)垂直且相等(2【解析】(1)如图(1),∵△ABC D是BC的中点,∵在△BDG和△ADE∴△BDG≌△ADE(SAS),延长EA到BG于一点M∴线段BG和AE相等且垂直;(2)成立,如图(2),延长EA分别交DG、BG∵△ABCD是BC的中点,∵在△BDG和△ADE∴△BDG≌△ADE(SAS),BG⊥AE(3)由(2)知,要使AE最大,只要将正方形绕点D逆时针旋旋转270°,即A,D,E在一条直线上时,AE最大;∵正方形DEFG在绕点D旋转的过程中,E点运动的图形是以点D为圆心,DE为半径的圆,∴当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG 最大,如图(3),在Rt△AEFDEFG旋转过程中,当AE作业6如图1,已知B点坐标是(6),BA⊥x轴于A,BC⊥y轴于C,D在线段OA上,E在y轴的正半轴上,DE⊥BD,M是DE中点,且M在OB上.(1)点M的坐标是(____,____),DE=____;(2)小明在研究动点问题时发现,如果有两点分别在两条互相垂直的直线上做匀速运动,连接这两点所F从点B出发以每秒1个单位长度的速度向点A运动,同时有一点G从点D O运动,点H从点E开始沿y轴正方向自由滑动,并始终保持GH=DE,P为FG的中点,Q为GH的中点,F与G 两个点分别运动到各自终点时停止运动,分别求出在运动过程中点P、Q运动的路线长.(3)连接PQ,求当运动多少秒时,PQ最小,最小值是多少?【答案】(1)(2),8(23【解析】∵点B的坐标为(6),∴tan∠∴∠BOA=30°.∵在Rt△EOD中,点M是ED的中点,∴∴∠MDO=∠BOA=30°,∵BD⊥ED,∴∠EDB=90°.∴∠EDO+∠BDA=90°.∵∠BDA+∠DBA=90°,∴∠EDO=∠DBA=30°∴AD=AB•tan30°=6∴∴OE=ODtan30°.∵M是DE的中点,∴点M的坐标为(2).∴DE=8.(2)根据题意画出点P、点Q运动的轨迹.D的运动时间秒;点F运动的时间=6÷1=6秒;∵点P是BD的中点,∴点P P的坐标为(3),P1的坐标为(1)∴PP1P1P2P点运动的路线长PP1+P1P2=5;∵M是DE的中点,∠EOD=90°∴∴点M运动的路线为弧ME.∵∠BOA=30°,∴∠EOM=60°.∴点M运动的路线长∵GH=DE,∴点G(3)∵点P、Q分别为FG和GH的中点,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题09 动态几何2021届中考数学压轴大题专项训练(解析版)1.在四边形ABCD中,AD∥BC,且AD>BC,BC=6cm,P、Q分别从A、C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C出发向B运动,几秒后四边形ABQP是平行四边形?【解析】解:设t秒后,四边形APQB为平行四边形,则AP=t,QC=2t,BQ=6﹣2t,∥AD∥BC所以AP∥BQ,根据一组对边平行且相等的四边形是平行四边形,知:AP=BQ即可,即:t=6﹣2t,∥t=2,当t=2时,AP=BQ=2<BC<AD,符合,综上所述,2秒后四边形ABQP是平行四边形.△,点F落在AD上.2.如图,点E是矩形ABCD中CD边上一点,BCE沿BE折叠为BFE(1)求证:ABF DFE ∽△△;(2)若1sin 3DFE ∠=,求tan EBC ∠的值; (3)设AB k BC=,是否存在k 的值,使ABF 与BFE △相似?若存在,求出k 的值;若不存在,请说明理由. 【解析】(1)证明:∥四边形ABCD 是矩形,∥90A D C ∠=∠=∠=︒,∥BCE 沿BE 折叠为BFE △,∥90BFE C ∠=∠=︒,∥90AFB DFE ∠+∠=︒,又∥90AFB ABF ∠+∠=︒,∥ABF DFE =∠∠.∥ABF DFE ∽△△;(2)解:在Rt DEF △中,1sin 3DE DFE EF ∠==,∥设DE a =,3EF a =,DF ==,∥BCE 沿BE 折叠为BFE △, ∥3CE EF a ==,4CD DE CE a =+=,4AB a =,EBC EBF ∠=∠,又∥ABF DFE ∽△△,∥2EF DF BF AB ==,∥tan 2EF EBF BF ∠==,tan tan EBC EBF ∠=∠=;(3)存在,k =时,ABF 与BFE △相似 理由:当ABF FBE △∽△时,24∠∠=.∥45∠=∠,24590∠+∠+∠=︒,∥24530∠=∠=∠=︒,∥cos302AB BF =︒=, ∥BC BF =,∥2AB k BC ==;∥当ABF FEB ∽△△时,26∠=∠,∥4690∠+∠=︒,∥2490∠+∠=︒,这与24590∠+∠+∠=︒相矛盾,∥ABF FEB ∽△△不成立.综上所述,k =时,ABF 与BFE △相似.3.如图,在平面直角坐标系xoy 中,顶点为M 的抛物线1C :2y ax bx =-(0a <)经过点A 和x 轴上的点B ,2AO OB ==,120AOB ∠=︒.(1)求该抛物线的表达式;(2)联结AM ,求AOM S ;(3)将抛物线1C 向上平移得到抛物线2C ,抛物线2C 与x 轴分别交于点E F 、(点E 在点F 的左侧),如果MBF 与AOM 相似,求所有符合条件的抛物线2C 的表达式.【解析】解:(1)过A 作AH x ⊥轴,垂足为H ,∥2OB =,∥0(2)B ,∥120AOB ∠=︒∥60AOH ∠=︒,30HAO ∠=︒.∥2OA =, ∥112OH OA ==. 在Rt AHO 中,222OH AH OA +=,∥AH ==∥(1A -,∥抛物线1C :2y ax bx =+经过点A B 、,∥可得:420a b a b -=⎧⎪⎨-=⎪⎩,解得:33a b ⎧=-⎪⎪⎨⎪=⎪⎩∥这条抛物线的表达式为233y x x =-+;(2)过M 作MG x ⊥轴,垂足为G ,∥233y x x =-+=21)33x --+ ∥顶点M是1,3⎛⎫ ⎪ ⎪⎝⎭,得MG =设直线AM 为y=kx+b ,把(A -,1,3M ⎛⎫ ⎪ ⎪⎝⎭代入得k b k b =-+=+,解得33k b ⎧=⎪⎪⎨⎪=-⎪⎩∥直线AM为y x =-令y=0,解得x=12∥直线AM 与x 轴的交点N 为1,02⎛⎫ ⎪⎝⎭∥111111××222222AOM S ON MG ON AH =⋅-⋅=+ (3)∥0(2)B ,、M ⎛ ⎝⎭,∥在Rt BGM中,tan MG MBG BG ∠==, ∥30MBG ∠=︒.∥150MBF ∠=︒.由抛物线的轴对称性得:MO MB =,∥150MBO MOB ∠=∠=︒.∥120AOB ∠=︒,∥150AOM ∠=︒∥AOM MBF ∠=∠.∥当MBF 与AOM 相似时,有:=OM BM OA BF 或=OM BF OA BM即332BF =或32= ∥2BF =或23BF =. ∥0(4)F ,或803⎛⎫ ⎪⎝⎭,设向上平移后的抛物线2C 为:2y x k =++,当0(4)F ,时,3k =,∥抛物线2C 为:2y x =+当803F ⎛⎫ ⎪⎝⎭,时,27k =,∥抛物线2C 为:2y x x =++综上:抛物线2C 为:2y x x 333=-++或23327y x x =-++ 4.定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt ABC ∆中,90A ∠=,AB AC =,点D 、E 分别在边AB 、AC 上,AD AE =,连接DE 、DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,且连接PM 、PN .观察猜想(1)线段PM 与PN “等垂线段”(填“是”或“不是”)猜想论证(2)ADE ∆绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由.拓展延伸(3)把ADE ∆绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PM 与PN 的积的最大值.【解析】(1)是;∥AB AC =,AD AE =∥DB=EC ,∥ADE=∥AED=∥B=∥ACB∥DE∥BC∥∥EDC=∥DCB∥点M 、P 、N 分别为DE 、DC 、BC 的中点∥PM∥EC ,PN∥BD ,11,22PM EC PN BD == ∥PM PN =,∥DPM=∥DCE ,∥PNC=∥DBC∥∥DPN=∥PNC+∥DCB∥∥MPN=∥DPM+∥DPN=∥ACD+∥DCB+∥B=180°-90°=90°∥线段PM 与PN 是“等垂线段”;(2)由旋转知BAD CAE ∠=∠∥AB AC =,AD AE =∥ABD ∆∥ACE ∆(SAS )∥ABD ACE ∠=∠,BD CE = 利用三角形的中位线得12PN BD =,12PM CE =,由中位线定理可得//PM CE ,//PN BD∥DPM DCE ∠=∠,PNC DBC ∠=∠∥DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠∥MPN DPM DPN DCE DCB DBC ∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠∥90BAC ∠=∥90ACB ABC ∠+∠=∥90MPN ∠=∥PM 与PN 为“等垂线段”;(3)PM 与PN 的积的最大值为49;由(1)(2)知,12PM PN BD == ∥BD 最大时,PM 与PN 的积最大∥点D 在BA 的延长线上,如图所示:∥14BD AB AD =+=∥249PM PN PM •==.5.数轴上点A 表示的有理数为20,点B 表示的有理数为-10,点P 从点A 出发以每秒5个单位长度的速度在数轴上往左运动,到达点B 后立即返回,返回过程中的速度是每秒2个单位长度,运动至点A 停止,设运动时间为t (单位:秒).(1)当t =5时,点P 表示的有理数为 .(2)在点P 往左运动的过程中,点P 表示的有理数为 (用含t 的代数式表示).(3)当点P 与原点距离5个单位长度时,t 的值为 .【解析】(1)由题意得:()201030AB =--=,点P 从点A 运动到点B 所需时间为30655AB ==(秒), 点P 从点B 返回,运动到点A 所需时间为301522AB ==(秒), 则当56t =<时,5525PA =⨯=, 因此,点P 表示的有理数为20255-=-,故答案为:5-;(2)在点P 往左运动的过程中,5PA t =,则点P 表示的有理数为205t -,故答案为:205t -;(3)由题意,分以下两种情况:∥当点P 从点A 运动到点B ,即06t ≤≤时,由(2)可知,点P 表示的有理数为205t -,则2055t -=,即2055t -=或2055t -=-,解得3t =或5t =,均符合题设;∥当点P 从点B 返回,运动到点A ,即615t <≤时,()26PB t =-,点P 表示的有理数为()2610222t t --=-, 则2225t -=,即2225t -=或2225t -=-,解得13.5t =或8.5t =,均符合题设;综上,当点P 与原点距离5个单位长度时,t 的值为3或5或8.5或13.5时,故答案为:3或5或8.5或13.5.6.如图,∥ABC 中,∥ACB=90°,AB=10cm ,BC=8cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A -B -C -A 运动,设运动时间为t (t >0)秒.(1)AC= cm ;(2)若点P 恰好在∥ABC 的角平分线上,求此时t 的值;(3)在运动过程中,当t 为何值时,∥ACP 为等腰三角形.【解析】(1)由题意根据勾股定理可得:6AC ==(cm ),故答案为6;(2)如图,点P 恰好在∥ABC 的角平分线上,过P 作PD∥AB 于点D ,则可设PC=xcm ,此时BP=(8-x )cm ,DP=PC=xcm ,AD=AC=6cm,BD=10-6=4cm ,∥在RT∥BDP 中,222BD PD BP +=,即 ()22248x x +=-,解之可得:x=3,∥BP=8-3=5cm ,∥P 运动的路程为:AB+BP=10+5=15cm , ∥t=157.52=s ; (3)可以对∥ACP 的腰作出讨论得到三种情况如下:∥如图,AP=AC=6cm ,此时t=632=s ;∥如图,PA=PC ,此时过P 作PD∥AC 于点D ,则AD=3,PD=4,∥AP=5,此时t=52.52=s;∥如图,PC=AC=6cm,则BP=8-6=2cm,则P运动的路程为AB+BP=10+2=12cm,此时t=1262=s,综上所述,在运动过程中,当t为2.5s或3s或6s时,∥ACP为等腰三角形.7.已知,在平面直角坐标系中,AB∥x轴于点B,A(a,b)4b-=0,平移线段AB使点A与原点重合,点B的对应点为点C.OA∥CB.(1)填空:a=_______,b=_______,点C的坐标为_______;(2)如图1,点P(x,y)在线段BC上,求x,y满足的关系式;(3)如图2,点E是OB一动点,以OB为边作∥BOG=∥AOB交BC于点G,连CE交OG于点F,当点E在OB上运动时,OFC FCGOEC∠+∠∠的值是否发生变化?若变化,请说明理由;若不变,请求出其值.【解析】解:(1)∥ 40b -=,∥60,40a b -=⎧⎨-=⎩∥6,4a b =⎧⎨=⎩ 4,6,AB OB ∴==由平移得:4,OC =且C 在y 轴负半轴上,()0,4,C ∴-故答案为:()6,4,0,4-;(2)如图,过点P 分别作PM ∥x 轴于点M ,PN ∥y 轴于点N ,连接OP .∥AB∥x 轴于点B ,且点A ,P ,C 三点的坐标分别为:()()()6,4,,,0,4,x y -∥OB=6,OC=4,,,PM y PN x =-= ∥()1111462222BOC POC POB S S S OC PN OB PM x y =+=•+•=⨯+⨯⨯- 23x y =-,而116412,22BOC S OB OC =•=⨯⨯= 2312,x y ∴-=∥,x y 满足的关系式为:2312,x y -=(3) OFC FCG OEC∠+∠∠的值不变,值为2. 理由如下:∥线段OC 是由线段AB 平移得到,∥//,OA CB ,∥∥AOB=∥OBC ,又∥∥BOG=∥AOB ,∥∥BOG=∥OBC ,根据三角形外角性质,可得∥OGC=2∥OBC ,∥OFC=∥FCG+∥OGC ,,OEC FCG OBC ∠=∠+∠∥∥OFC+∥FCG=2∥FCG+2∥OBC =2(∥FCG+∥OBC ) =2∥OEC , ∥ 22OFC FCG OEC OEC OEC∠+∠∠==∠∠; 所以:OFC FCG OEC∠+∠∠的值不变,值为2.8.综合实践初步探究:如图,已知∥AOB=60°,在∥AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.(1)当∥DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC的数量关系为;解决问题:(2)当∥DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;(3)当∥DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?若成立,请给于证明;若不成立,线段OD、OE与OC之间的数量关系为;拓展应用:(4)当∥DCE绕点C旋转到CD与OA垂直时,请猜想四边形CDOE的周长与OC的数量关系,并说明理由;【解析】:(1)∥OM是∥AOB的角平分线,∥∥AOC=∥BOC=12∥AOB=30°,∥CD∥OA,∥∥ODC=90°,∥∥OCD=60°,∥∥OCE=∥DCE-∥OCD=60°,在Rt∥OCD中,OD=OC•cos30°=2OC,同理:,;(2)(1)中结论仍然成立,理由:过点C作CF∥OA于F,CG∥OB于G,∥∥OFC=∥OGC=90°,∥∥AOB=60°,∥∥FCG=120°,同(1)的方法得,OF=,,,∥CF∥OA,CG∥OB,且点C是∥AOB的平分线OM上一点,∥CF=CG,∥∥DCE=120°,∥FCG=120°,∥∥DCF=∥ECG,∥∥CFD∥∥CGE,∥DF=EG,∥OF=OD+DF=OD+EG,OG=OE-EG,∥OF+OG=OD+EG+OE-EG=OD+OE,;(3)(1)中结论不成立,结论为:OE-OC,理由:过点C作CF∥OA于F,CG∥OB于G,∥∥OFC=∥OGC=90°,∥∥AOB=60°,∥∥FCG=120°,同(1)的方法得,OF=,,,∥CF∥OA,CG∥OB,且点C是∥AOB的平分线OM上一点,∥CF=CG,∥∥DCE=120°,∥FCG=120°,∥∥DCF=∥ECG,∥∥CFD∥∥CGE,∥DF=EG,∥OF=DF-OD=EG-OD,OG=OE-EG,∥OF+OG=EG-OD+OE-EG=OE-OD,∥OE-OC.(4)由(1)可得,CD+CE=OC,故四边形CDOE的周长为.9.ABC是等边三角形,点D在BC上,点E,F分别在射线AB,AC上,且DA DE DF==.(1)如图1,当点D是BC的中点时,则EDF∠=________︒;(2)如图2,点D在BC上运动(不与点B,C重合).∥判断EDF∠的大小是否发生改变,并说明理由;∥点D关于射线AC的对称点为点G,连接BG,CG,CE.依题意补全图形,判断四边形BECG的形状,并证明你的结论.【解析】(1)∥点D是等边∥ABC的边BC的中点,∥∥DAB=∥DAC=12∥BAC=30°,∥DA=DE,∥∥AED=∥BAD=30°,∥∥ADE=180°−∥BAD−∥AED=120°,同理:∥ADF=120°,∥∥EDF=360°−∥ADE−∥ADF=120°,故答案为:120;(2)∥不发生改变,理由如下:∥ABC 是等边三角形,∥60BAC ∠=︒.∥DA DE DF ==.∥点A ,E ,F 在以D 为圆,DA 长为半径的圆上, ∥2120EDF BAC ∠=∠=︒.∥补全图形如下:四边形BECG 为平行四边形,证明如下:由∥知,120EDF ∠=︒,∥60BDE BED ∠+∠=︒,60BDE CDF ∠+∠=︒, ∥BED CDF ∠=∠.在CDF 和BED 中,DCF EBD CDF DEA DF ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∥()CDF BED AAS ≅△△.∥CD BE =.∥点D 和点G 关于射线AC 对称,∥CD CG =,2120DCG ACD EBD ∠=∠=︒=∠.∥BE CG =,且//BE CG .∥四边形BECG 为平行四边形.10.如图,数轴上,点A 表示的数为7-,点B 表示的数为1-,点C 表示的数为9,点D 表示的数为13,在点B 和点C 处各折一下,得到条“折线数轴”,我们称点A 和点D 在数上相距20个长度单位,动点P 从点A 出发,沿着“折线数轴”的正方向运动,同时,动点Q 从点D 出发,沿着“折线数轴”的负方向运动,它们在“水平路线”射线BA 和射线CD 上的运动速度相同均为2个单位/秒,“上坡路段”从B 到C 速度变为“水平路线”速度的一半,“下坡路段”从C 到B 速度变为“水平路线”速度的2倍.设运动的时间为t 秒,问:(1)动点P 从点A 运动至D 点需要时间为________秒;(2)P 、Q 两点到原点O 的距离相同时,求出动点P 在数轴上所对应的数;(3)当Q 点到达终点A 后,立即调头加速去追P ,“水平路线”和“上坡路段”的速度均提高了1个单位/秒,当点Q 追上点P 时,直接写出它们在数轴上对应的数.【解析】(1)点A 表示的数为7-,点B 表示的数为1-,点C 表示的数为9,点D 表示的数为13, 6,10,4AB BC CD ∴===,∴动点P 从点A 运动到点D 所需时间为6104310215212++=++=(秒), 故答案为:15;(2)由题意,分以下六种情况:∥当点P 在AB ,点Q 在CD 时,点P 表示的数为72t -+,点Q 表示的数为132t -,点P 、Q 到原点的距离相同,()721320t t ∴-++-=,此方程无解;∥当点P 在AB ,点Q 在CO 时,点P 表示的数为72t -+,点Q 表示的数为4941742t t ⎛⎫--=- ⎪⎝⎭, 点P 、Q 到原点的距离相同,()721740t t ∴-++-=,解得5t =,此时点P 表示的数为3,不在AB 上,不符题设,舍去;∥当点P 在BO ,点Q 在CO 时,点P 表示的数为6142t t ⎛⎫-+-=- ⎪⎝⎭,点Q 表示的数为4941742t t ⎛⎫--=- ⎪⎝⎭, 点P 、Q 到原点的距离相同,()41740t t ∴-+-=, 解得133t =, 此时点P 表示的数为13,不在BO 上,不符题设,舍去; ∥当点P 、Q 相遇时,点P 、Q 均在BC 上,点P 表示的数为6142t t ⎛⎫-+-=- ⎪⎝⎭,点Q 表示的数为4941742t t ⎛⎫--=- ⎪⎝⎭, 点P 、Q 到原点的距离相同,4174t t ∴-=-, 解得215t =, 此时点P 表示的数为15,点Q 表示的数为15,均符合题设; ∥当点P 在OC ,点Q 在OB 时,点P 表示的数为6142t t ⎛⎫-+-=- ⎪⎝⎭,点Q 表示的数为4941742t t ⎛⎫--=- ⎪⎝⎭, 点P 、Q 到原点的距离相同,()41740t t ∴-+-=, 解得133t =, 此时点P 表示的数为13,点Q 表示的数为13-,均符合题设; ∥当点P 在OC ,点Q 在BA 时,点P 表示的数为6142t t ⎛⎫-+-=- ⎪⎝⎭,点Q 表示的数为410128224t t ⎛⎫----=- ⎪⎝⎭, 点P 、Q 到原点的距离相同,()4820t t ∴-+-=,解得4t =,此时点Q 表示的数为0,不在BA 上,不符题设,舍去;综上,点P 表示的数为15或13; (3)点Q 到达点A 所需时间为41067.5242++=(秒),此时点P 到达的点是()7327.531 3.5-+⨯+-⨯=, 点P 到达点C 所需时间为6101321+=(秒),此时点Q 到达的点是()7232137.526-+⨯+⨯--=, ∴点Q 在CD 上追上点P ,此时点P 表示的数为()9213217t t +-=-,点Q 表示的数为()761037.525334.5t t -+++---=-,217334.5t t ∴-=-,解得17.5t =,此时点P 表示的数为18,点Q 表示的数为18.11.如图,在矩形ABCD 中,4AB =,3BC =,点O 为对角线BD 的中点,点P 从点A 出发,沿折线AD DO OC --以每秒1个单位长度的速度向终点C 运动,当点P 与点A 不重合时,过点P 作PQ AB ⊥于点Q ,以PQ 为边向右作正方形PQMN ,设正方形PQMN 与ABD ∆重叠部分图形的面积为S (平方单位),点P 运动的时间为t (秒).(1)求点N 落在BD 上时t 的值.(2)直接写出点O 在正方形PQMN 内部时t 的取值范围.(3)当点P 在折线AD DO -上运动时,求S 与t 之间的函数关系式.(4)直接写出直线DN 平分BCD ∆面积时t 的值.【解析】(1)如图1所示,由题意可知,当点N 落在BD 上时,因为四边形PQMN 是正方形,所以AP PN t ==,又因为在矩形ABCD 中,4AB =,3BC =,所以3DP t =-,在DPN ∆和DAB ∆中,因为PDN ADB ∠=∠,90DPN DAB ∠=∠=︒,所以DPN DAB ∆∆∽,则DP PN DA AB=, 所以334t t -=,解得127t =, 所以当点N 落在BD 上时t 的值为127. 故答案为:127t =. (2)∥如图2,点O 刚落在正方形PQMN 上.因为点O 是矩形ABCD 对角线BD 的中点,所以MN 在矩形ABCD 的一条对称轴上,所以AM MB =,所以4t t =-,解得2t =.∥如图3,点O 和点P 重合,此时P 点运动的距离为AD DO +,因为3AD =,4AB =,所以5BD ===, 所以1522DO BD ==, 所以此时511322t AD DO =+=+=. 综上所述,当点O 在正方形PQMN 内部时,t 的取值位于上述两个临界位置之间,即t 的取值范围为1127t <<. 故答案为:1127t <<. (3)∥由(1)可知,当1207t <≤时,正方形PQMN 和ABD ∆的重叠部分即为正方形PQMN ,所以此时2S t =.∥当1237t <≤时,点P 在AD 上, 设PN 与BD 交于点G ,MN 与BD 交于点F ,此时正方形PQMN 和ABD ∆的重叠部分为五边形PGFMQ , 此时PQMN GNF S S S ∆=-.同(1),可知DPG DAB ∆∆∽,FMB DAB ∆∆∽,因为AP AM t ==,3AD =,4AB =,所以3DP t =-,4BM t =-, 所以DP PG DA AB =,FM BM DA BA=, 所以334t PG -=,434FM t -=, 所以443PG t =-,334FM t =-, 所以474433GN PN PG t t t ⎛⎫=-=--=- ⎪⎝⎭, 373344NF MN FM t t t ⎛⎫=-=--=- ⎪⎝⎭, 所以1177432234GNF S GN NF t t ∆⎛⎫⎛⎫=⋅=-- ⎪⎪⎝⎭⎝⎭,所以217743234PQMN GNF S S S t t t ∆⎛⎫⎛⎫=-=--- ⎪⎪⎝⎭⎝⎭, 整理得2257624S t t =-+-.∥当1132t <≤时,点P 在DO 上, 设MN 与BD 交于点F ,则PFMQ PQB FMB S S S S ∆∆==-. 因为3AD =,5BD =,所以3PD t =-,所以8PB t =-, 同(1),PQB DAB ∆∆∽,所以PB QB PQ DA AB DA==, 所以8543t QB PQ -==,所以()485QB t =-,()385PQ t =-, 所以431(8)(8)(8)555MB QB QM t t t =-=---=-, 又因为FMB DAB ∆∆∽,所以FM BM DA BA =, 所以()18534t FM -=,所以()3820FM t =-, 所以11134131(8)(8)(8)(8)222552205PQB FMB S S S PQ QB FM MB t t t t ∆∆=-=⋅-⋅=⋅-⋅--⋅-⋅-, 整理得()29840S t =-. 综上所述,当1207t <≤时,2S t =;当1237t <≤时,2257624S t t =-+-;当1132t <≤时,()29840S t =-.故答案为:222120725127632479187211340552t t S t t t t t t ⎧⎛⎫< ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<⎨ ⎪⎝⎭⎪⎪⎛⎫-+<⎪ ⎪⎝⎭⎩(4)设直线DN 与BC 交于点E ,因为直线DN 平分BCD ∆的面积,∥32BE CE ==. ∥如图7,点P 在AD 上,过点E 作EH AD ⊥于点H ,则DPNDHE ∆∆∽,所以DP PN DH HE=, 因为AP PN t ==,3DP t =-,4EH BA ==,所以3324t t -=,解得2411t =. ∥如图8,点P 在DO 上,连接OE .因为E 、O 分别是BC 、BD 的中点, 所以EO 是BCD ∆的一条中位线,所以//OE CD ,所以122OE CD ==, 又因为//PN CD ,所以//PN OE ,所以DPN DOE ∆∆∽,所以DP PN DO OE =, 因为3DP t =-,52DO =,()385PN PQ t ==- (由(3)∥知),2OE =, 所以3(8)35522t t --=,解得367t =. ∥如图9,P 在OC 上,设DE 与OC 交于点S ,连接OE ,交PQ 于R .同∥,//OE CD ,且122OE CD ==, 所以SCD SOE ∆∆∽,所以12OS OE CS CD ==, 又因为52OC OD ==,所以15126OS OC ==+, 所以53SC =,又因为//PN OE (同∥), 所以SPN SOE ∆∆∽,所以SP PN SO OE=, 因为112OP t AD OD t =--=-, 所以193SP OS OP t =-=-,所以193526t PN -=, 所以761255PN t =-, 又因为//PQ BC ,所以ORP OEC ∆∆∽, 所以OP PR OC CE =,所以1125322t PR -=,所以333510PQ t =-, 所以333339510255PQ PR RQ PR BE t t =+=+=-+=-, 又因为PQ PN =,所以7612395555t t -=-,解得173t =. 综上所述,当直线DN 平分BCD ∆的面积时,t 的值为2411或367或173. 故答案为:2411或367或173. 12.在Rt ABC ∆中,90CAB ∠=︒,6AC =,8AB =,点P 是射线AB 上的动点,连接CP ,将ACP ∆沿着CP 翻折得到A CP '∆,设AP x =()0x >,(1)如图1,当点A '在BC 上时,求x 的值.(2)如图2,连接AA ',BA ',当90AA B '∠=时,求PA B '∆的面积.(3)在点P 的运动过程中,当AA B '∆是等腰三角形时,求x 的值.【解析】(1)在Rt ABC ∆中,90CAB ∠=︒,6AC =,8AB =,∥由勾股定理得:BC=10,由折叠性质得:A 'P=AP=x , C A '=AC=6,则PB=8-x ,A 'B=4,在RtΔA 'BP 中,由勾股定理得:42+x 2=(8-x)2,解得:3x =;(2)当90AA B '∠=︒时,由折叠性质得:AC=A 'C=4,∥CAB=∥C A 'P=90º,∥CAA '∠=CA A '∠,∥A AB CAA ''∠+∠=90º,A AB A BA ''∠+∠=90º,∥CAA A BA ''∠=∠,∥CA A AA P ''∠+∠=90º,AA P PA B ''∠+∠=90º,∥CA A PA B ''∠=∠,∥A BA PA B ''∠=∠,∥A P PB '==4,则4PA PA PB '===,且PAA S '∆=PA B S '∆,由6AC =,∥CAB=90º,可求得CP =,AQ A Q '∴==,PQ ∴=, 9613PAA S '∆∴=,9613PA B S '∆∴=; (3)∥当AA A B ''=时,若P 在线段AB 上,如图1,过A '作A 'H∥AB 于H ,过C 作CD∥H A '延长线于D , 则四边形ACDH 是矩形,又AA B '∆是等腰三角形,∥4CD AH ==,6A C AC DH '===,A D '∴=,6A H '=-∥CA D PA H ''∠+∠=90º,CA D A CD ''∠+∠=90º,∥A CD PA H ''∠=∠,又PHA CDA ''∠=∠=90º,∥A PH CA D ''∆~∆, ∥CD A C A H A P'='',6x=,解得9x =-若P 在AB 延长线上时,如图2,过A '作AB 的平行线,交AC 延长线与D ,过P 作PH 垂直平行线于H ,则四边形APHD 是矩形,同上方法,易求得A 'D=4,CD =∥PH=AD=6+同理可证得A PH CA D ''∆~∆, ∥C A D A PH A P'''=,6x=,解得9x =+,∥当8AA AB '==时,如图3,由折叠性质得: CP 垂直平分A A ',则4AQ A Q '==,∥AQP=90º,又AC=6,CQ ∴=,∥∥ AQP=∥CAB=90º,∥由同角的余角相等得:∥ACQ=∥QAP , ∥ACQ PAQ ∆∆, ∥AC CQ AP AQ=,即6x =解得:x =;∥当AB A B '=时,如图4,则P 、B 重合,8x ∴=,综上所述9x =-9x =+或x =或8x =.。