材料科学基础考研知识点总结

合集下载

材料科学基础考研复习

材料科学基础考研复习

材料科学基础考研复习材料科学基础是材料科学与工程学科中的一门基础课程,其内容涉及材料科学的基本理论、基本原理和基本方法,是进行材料科学研究和工程应用的基础。

考研复习材料科学基础需要系统地学习和理解相关知识点,加深对材料科学的理论和实践应用的认识。

1.材料工程基础知识:包括材料科学的发展历史、材料分类与特性等知识。

这些知识对于理解和掌握材料科学的基础概念和原理非常重要。

2.结构与性能关系:掌握材料的微观结构与宏观性能之间的关系。

了解材料的结构特点,如晶体结构、非晶态结构等,并能够解释材料性能改善的原因。

3.材料制备技术:学习不同材料的制备方法与工艺,如液相法、气相法、固相法等。

了解各种制备方法的特点及其对材料性能的影响。

4.材料测试与分析技术:包括材料的物理性能、化学性能和机械性能等测试方法与技术。

学习各种常用测试仪器和分析方法,如扫描电镜、透射电镜、X射线衍射等。

5.材料性能与应用:了解材料的各种性能指标,如强度、硬度、导电性、磁性等,并能够解释不同材料的性能应用特点。

在复习材料科学基础时,可以通过以下几个途径进行:1.整理笔记:将课堂上的重点内容进行整理和归纳,形成自己的复习笔记。

可以通过制作思维导图、总结重要公式和推导过程等方式,帮助加深对知识点的记忆和理解。

2.刷题巩固:通过解答一些典型的习题和试题,巩固所学知识。

可以选择一些综合性的考研试题进行模拟考试,提高解题能力和应试技巧。

3.参考教材和相关资料:选择几本优质的教材和参考书进行阅读和学习。

可以参考一些考研辅导资料和复习指南,了解相关知识点的掌握程度和考点分布。

4.学习小组讨论:可以与其他考研学生组成学习小组,一起讨论和解答问题。

通过讨论和交流,加深对知识点的理解和运用,并及时纠正和改进自己的思路和方法。

在复习材料科学基础时,还需要注意以下几点:1.提前规划:合理安排复习时间和目标,制定合理的学习计划。

根据自己的掌握情况和考试时间,合理安排每一阶段的复习内容和进度,保证复习进程的顺利进行。

材料科学基础考研知识点总结

材料科学基础考研知识点总结

材料科学基础考研知识点总结第一章原子结构和键合1.原子键合●金属键●离子键●共价键●氢键●范德华力:静电力诱导力色散力第二章固体结构1.晶体学基础●空间点阵和晶胞●七个晶系14种点阵2.金属的晶体结构●晶体结构和空间点阵的区别3.合金的相结构●晶相指数和晶面指数●晶向指数●晶面指数●六方晶系指数●晶带●晶面间距●晶体的对称性●宏观对称元素●极射投影●金属的晶体结构●三种典型的金属的晶体结构●多晶型性●置换固溶体●间隙固溶体●固溶体的围观不均匀性●影响固溶度的主要因素●固溶体的性质●中间相●正常价化合物●电子化合物●与原子尺寸因素相关的化合物●超结构(有序固溶体)4.常见离子晶体结构●离子晶体配位规则(鲍林规则)●负离子配位多面体规则(引入临界离子半径比值)●电价规则(整体不显电性)●负离子多面体共顶,棱和面规则(由于共用顶,棱和面间距下降,导致库仑力上升,稳定性下降)●不同种类正离子配位多面体规则(能量越高区域越分散)●节约规则(【俄罗斯方块原理】)●典型离子晶体结构●AB型化合物【CsCl结构 NaCl结构 ZnS型结构】●AB2型化合物结构【CaF2 萤石 TiO2金红石型结构】●硅酸盐的晶体结构●孤岛状硅酸盐●组群状硅酸盐●链状硅酸盐●层状硅酸盐●架状硅酸盐5.共价晶体结构第三章晶体中的缺陷1.点缺陷●点缺陷形成●点缺陷的平衡浓度2.位错●刃型位错●螺型位错●混合位错●伯氏矢量●位错运动●位错弹性性质(认识)●位错生成与增值●实际位错中伯氏矢量3.面缺陷●外表面与内表面(了解)●晶界和亚晶界●晶界的特性●孪晶界●相界第四章固体中的扩散1.扩散的表象理论●菲克第一定律●菲克第二定律●扩散方程●置换固溶体扩散(柯肯达尔效应)2.扩散热力学●扩散的热力学分析(上坡扩散)3.扩散的微观理论与机制●扩散机制●晶界扩散及表面扩散●扩散系数4.扩散激活能5.影响扩散的因素●温度●晶体结构●晶体缺陷●化学成分●应力作用6.反应扩散7.离子晶体中的扩散第五章材料的变形1.弹性变形●弹性的不完整性●包申格效应●弹性后效●弹性滞后2.黏弹性变形3.塑性变形●单晶体塑性变形●滑移●孪生●扭折●多晶体的塑性变形●晶粒取向的影响●晶界的影响●合金的塑性变形●单相固溶体塑性变形●影响因素●曲服现象●应变实效●多相合金的塑性变形●弥散分布型合金的塑性变形●塑性变形对组织性能影响●显微组织变化●亚结构变化●性能变化●形变织构●残余应力4.回复与再结晶●冷变形金属在加热时组织与性能的变化●回复●再结晶●晶粒的长大5.热加工●动态回复●动态再结晶●蠕变●超塑性第六章凝固1.相平衡和相率●吉布斯相律2.纯晶体的凝固●液态结构●晶体凝固的热力学条件●形核●晶粒长大●结晶动力学及凝固组织●凝固理论应用3.合金的凝固●正常凝固●区域熔炼●合金成分过冷4.铸锭组织与凝固技术●铸锭的宏观组织●铸锭的缺陷第七章相图1.二元相图基础●2.二元相图●匀晶相图●共晶相图●包晶相图●铁碳相图3.三元相图基●基本特点●表示方法●杠杠定律及重心定律第八章材料的亚稳态1.纳米材料2.准晶3.非晶态4.固态相变形成亚稳相●固体相变形成的亚稳相●固溶体脱溶分解产物●脱熔转变●连续脱溶●不连续脱溶●脱溶过程亚稳相●脱溶分解对性能影响●马氏体转变●特征●形态●贝氏体转变●钢中贝氏体转变特征●贝氏体转变的基本特征。

材料科学基础考研笔记

材料科学基础考研笔记

第一章材料中的原子排列第一节原子的结合方式1 原子结构2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。

如高分子材料。

(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。

如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。

如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。

如复合材料。

3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键和氢键。

4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。

长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。

长程无序,各向同性。

第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。

图1-5特征:a 原子的理想排列;b 有14种。

其中:空间点阵中的点-阵点。

它是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a 可能存在局部缺陷;b 可有无限多种。

2 晶胞图1-6(1)――-:构成空间点阵的最基本单元。

(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。

(3)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。

《材料科学基础》考研2021年考研考点归纳

《材料科学基础》考研2021年考研考点归纳

《材料科学基础》考研2021年考研考点归纳与考研真题第1章材料概论1.1 考点归纳一、材料的分类工程材料按属性可分为四类:金属材料、陶瓷材料、高分子材料及由前三类相互组合而成复合材料;按使用性能可分为两大类:主要利用其力学性能的结构材料和主要利用其物理性能的功能材料。

1.金属材料(1)金属材料中包括两大类型:钢铁材料和有色金属。

有色金属主要包括铝合金、钛合金、铜合金、镍合金等;(2)在有色金属中,铝及其合金用得最多,这主要是因为铝及其合金的以下特性:①重量轻,只有钢的1/3;②有好的导热性和导电性,在远距离输送的电缆中多用铝;③耐大气腐蚀,可用来制作容器和包装品、建筑结构材料及导电材料。

2.陶瓷材料(1)传统的陶瓷材料是由粘土、石英、长石等成分组成,主要作为建筑材料使用;(2)新型的结构陶瓷材料,其化学组成和制造工艺都大不相同,其成分主要是A12O3、SiC、Si3N4等;(3)新型结构陶瓷在性能上的优点:①重量轻;②压缩强度高,可以和金属相比,甚至超过金属;③熔点高,耐高温;④耐磨性能好,硬度高;⑤化学稳定性高,有很好的耐蚀性;⑥电与热的绝缘材料。

(4)新型结构陶瓷在性能上的缺点:①容易脆断;②不易加工成形。

3.高分子材料(1)高分子材料又称聚合物;(2)按用途可分为:塑料、合成纤维和橡胶三大类型;(3)塑料又分为:通用塑料和工程塑料。

4.复合材料(1)金属、聚合物、陶瓷自身都各有其优点和缺点,如把两种材料结合在一起,就产生了复合材料;(2)复合材料可分为三大类型:塑料基的复合材料、金属基和陶瓷基的复合材料;5.电子材料、光电子材料和超导材料(1)电子材料是指在电子学和微电子学中使用的材料,主要包括半导体材料、介电功能材料和磁性材料等;(2)光电子材料;(3)超导材料。

二、材料性能与内部结构的关系1.材料的性能金属、陶瓷与材料三种基本类型材料中,金属有好的导电性,有高的塑性与韧性;陶瓷材料则有高的硬度但很脆,且大多是电的绝缘材料;高分子材料的弹性模量、强度、塑性都很低,多数也是不导电的。

材料科学基础考纲知识重点

材料科学基础考纲知识重点

1—2:在多电子的原子中,核外电子的排布应遵循的原则。

(p3)1.能量最低原理:电子的排布总是尽可能使体系的能量最低。

也就是说,电子总是占据能量最低的壳层,只有当这些壳层布满后,电子才依次进入能量较高的壳层,即核外电子排满了K层才排L层,排满了L层才排M层。

在同一电子层,则依次按s,p.d,f的次序排列。

2.泡利不相容原理:在一个原子中不可能有运动状态完全相同的两个电子,即不能有四个量子数都相同的两个电子。

因此,主量子数为n的壳层,最多容纳2n^2个电子。

3.洪特规则:在同一亚层的各个能级中,电子的分布尽可能分占不同的能级,而且自旋方向相同。

当电子排布为全充满,半充满或全空时,是比较稳定的,整个原子的能量最低。

1—3:结合键的分类、定义和特点。

(p5)结合键可分为化学键和物理键两大类。

化学键即主价键,它包括金属键、离子键和共价键。

物理键即次价键,也称范德瓦尔斯力。

此外,还有一种称为氢键的,其性质介于化学键和范德瓦耳斯力力之间。

金属键:金属键既无饱和性又无方向性。

离子键:离子键结合的基本特点是以离子而不是以原子为结合单元。

离子键无方向性和饱和性。

离子中的晶体一般都有较高的配位数。

共价键:共价键具有饱和性和方向性。

共价键晶体之间都有确定的方位,配位数比较小。

氢键:氢键具有饱和性和方向性。

2—1:合金:合金是指由两种或两种以上的金属或金属与非金属经熔炼、烧结或其他方法组合而成,并具有金属特性的物质。

相:所谓相是指合金中有同一聚集状态、同一晶体结构和性质并以界面相互隔开的均匀组成部分。

固溶体:固溶体是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶质原子)所形成的均匀混合的固态溶体,它保持着溶剂的晶体结构类型。

(p42)晶带:所有平行或相交于某一晶向直线的晶面构成一个晶带,此直线称为晶带轴。

属此晶带的面称为共带面。

晶带轴[u v w]与该晶带的晶面(h k l)之间存在以下关系:Hu+kv+lw=0 (p26)致密度:致密度是指晶体结构中原子体积占总体积的百分数。

材料科学基础复习要点

材料科学基础复习要点

材料科学基础复习要点第一章工程材料中的原子排列1、晶体中的原子键合方式?各种原子结合键的特点2、原子核外电子的能级排列?遵循的规律3、晶体和非晶体的区别?晶体的各向异性及各向同性4、晶体结构和空间点阵的联系及区别5、晶向指数和晶面指数的确定及表示方法,重点为面心立方晶体和体心立方晶体中密排面和密排方向的指数及其表示6、三种常见的晶体结构的特点,包括晶胞中的原子数、点阵常数与原子半径的关系、致密度、配位数、晶体中的间隙、原子堆垛方式、密堆程度、晶体的多晶型性7、铁的三种同素异构体的晶体结构类型8、空位的类型:肖脱基空位、弗兰克尔空位,空位浓度对晶体物理性能的影响9、位错的类型,刃位错、螺位错位错线与柏氏矢量间的关系,画图表示,位错密度对材料强度的影响10、位错环中位错类型的确定(如课本27页,图1-38,33页,图1-47)11、位错柏氏矢量的确定、柏氏回路与柏氏矢量的关系12、柏氏矢量的表示方法、柏氏矢量的模的计算13、柏氏矢量的守恒性及其推论14、作用在位错上的力的大小及方向15、位错的运动方式?刃、螺位错分别能如何运动,运动方向与位错线、柏氏矢量间的关系16、刃、螺位错应力场的特点?应变能与柏氏矢量的关系,不同类型位错应变的大小比较17、平行同号位错间的相互作用18、常见金属晶体中的位错:全位错、不全位错,位错稳定性的判定19、位错反应的判定20、晶界的类型及其位错模型,界面能与晶界位向差间的关系21、相界面的类型22、课后作业51页习题1、3、11,复习思考题1、2、9、10、12第二章固体中的相结构1、相的定义2、固溶体的晶体结构特点、分类及影响固溶体固溶度的因素3、金属原子间形成无限固溶体的条件4、间隙固溶体和间隙化合物的区别5、固溶体的性能特点6、金属间化合物的结构特点、分类、特性7、课后习题79页1、复习思考题1、2第三章凝固1、金属凝固的微观过程及宏观现象2、过冷现象与过冷度3、金属结晶的热力学条件、驱动力及其与过冷度间的关系4、金属结晶的结构条件5、晶核的形成方式6、均匀形核过程中系统能量的变化、临界晶核半径、形核功、临界晶核表面积、临界晶核体积间的关系推导7、均匀形核的条件8、均匀形核的形核率的受控因数、有效过冷度及其与熔点间的关系9、非均匀形核的形核功与均匀形核功间的比较10、晶体长大的条件、动态过冷度11、液固界面的微观结构及其宏观表象、常见金属的界面结构12、不同界面结构下晶体的长大方式13、液固界面的温度梯度与晶体长大形态间的关系14、铸态晶粒大小的控制措施15、课后习题109页1、6,复习思考题第四章相图1、相平衡及相律,相平衡的热力学条件,相率的表达式及其应用2、杠杆定律的计算3、固溶体非平衡凝固中固相、液相的成分变化规律,晶内偏析及其消除方法4、成分过冷的定义、表达式含义及成分过冷对固溶体生长形态及组织的影响5、典型二元共晶相图的分析,如Pb-Sn相图,包括典型合金的结晶过程分析、室温下组成相及组织组成的分析、相的相对含量、组织相对含量的计算(室温下)、非平衡凝固组织组成的分析6、伪共晶、离异共晶的定义,组织特征7、铁碳合金相图的基本相组成及其结构、性能特点8、铁碳合金相图中重要的点、线的含义、3个典型转变的方程式及其转变产物的相组成、组织名称。

东南大学考研材料科学基础108个重要知识点

东南大学考研材料科学基础108个重要知识点

东南大学---材料科学基础108个重要知识点1.晶体–原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。

2.中间相–两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。

由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

3.亚稳相–亚稳相指的是热力学上不能稳定存在,但在快速冷却成加热过程中,由于热力学能垒或动力学的因素造成其未能转变为稳定相而暂时稳定存在的一种相。

4.配位数–晶体结构中任一原子周围最近邻且等距离的原子数。

5.再结晶–冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状态,这个过程称为再结晶。

(指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程)6.伪共晶–非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金得到的共晶组织称为伪共晶。

7.交滑移–当某一螺型位错在原滑移面上运动受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移。

8.过时效–铝合金经固溶处理后,在加热保温过程中将先后析出GP 区,θ”,θ’,和θ。

在开始保温阶段,随保温时间延长,硬度强度上升,当保温时间过长,将析出θ’,这时材料的硬度强度将下降,这种现象称为过时效。

9.形变强化–金属经冷塑性变形后,其强度和硬度上升,塑性和韧性下降,这种现象称为形变强化。

10.固溶强化–由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。

11.弥散强化–许多材料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在材料内,则这种材料的强度往往会增加,称为弥散强化。

12.不全位错–柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。

13.扩展位错–通常指一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位错形态。

材料科学基础复习资料整理

材料科学基础复习资料整理

一.名词解释塑性韧性强度弹性比功分子键(空间)点阵固溶体间隙固溶体固溶强化位错多晶体单晶体反应扩散柯肯达尔效应二次结晶共晶转变包晶转变共析转变铁素体(非)均匀形核结构起伏成分过冷过冷度加工硬化再结晶淬透性(过)时效回火脆性调幅分解二. 需掌握的知识点1. 延性断裂和脆性断裂的区分标准—断裂前有无明显塑性变形。

2. 原子核外电子分布规律遵循的三个原则。

3. 金属键、离子键、共价键、分子键的特点。

4. 混合键比例计算与电负性差的关系。

5. fcc、bcc、hcp的常见金属、一个晶胞内原子数、配位数、致密度、常见滑移系等。

6. 固态合金相分为两大类:固溶体(间隙固溶体与置换固溶体)和中间相(区别点)。

7.影响固溶体溶解度的因素。

8.间隙相和间隙化合物的区别。

9. 晶体缺陷几何特征分类-点、线、面缺陷。

10. 点缺陷的种类及其区别(肖脱基缺陷和弗兰克尔缺陷)。

11.获得过饱和点缺陷的方法及原因。

12. 各类位错运动方向与柏氏矢量、切应力、位错线的位向关系。

13. 位错的主要运动方式;常温下金属塑性变形的方式。

14. 位错的增殖机制:F-R位错增殖机制、双交滑移增殖机制的主要内容。

15.说明柏氏矢量的确定方法。

掌握利用柏氏矢量和位错线的位向关系来判断位错类型。

16.两根平行的螺型位错相遇时的相互作用情况。

17.刃型位错和螺型位错的不同点。

18. 大小角度晶界的位向差、常见类型、模型描述、能量等。

19. 扩散第一定律、第二定律的数学表达式及其字母的物理含义。

20. 体扩散的主要机制、适用对象、扩散激活能大小等;短路扩散等;反应扩散与原子扩散;多晶材料的三种扩散途径—晶内、晶界、表面扩散。

21.柯肯达尔效应的含义及说明的问题(重要意义)。

22. 上坡扩散:物质由低浓度→高浓度,说明扩散的真正原因是化学势梯度而非浓度梯度。

23. 反应扩散定义、特点、扩散层增厚速度的决定因素。

24. 影响扩散的主要因素简述及分别叙述。

材料科学基础108个重要知识点

材料科学基础108个重要知识点

材料科学基础108个重要知识点1.晶体--原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。

2.中间相--两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。

由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。

3.亚稳相--亚稳相指的是热力学上不能稳定存在,但在快速冷却成加热过程中,由于热力学能垒或动力学的因素造成其未能转变为稳定相而暂时稳定存在的一种相。

4.配位数--晶体结构中任一原子周围最近邻且等距离的原子数。

5.再结晶--冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状态,这个过程称为再结晶。

(指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程)6.伪共晶--非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金得到的共晶组织称为伪共晶。

7.交滑移--当某一螺型位错在原滑移面上运动受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移。

8.过时效--铝合金经固溶处理后,在加热保温过程中将先后析出GP 区,θ”,θ’,和θ。

在开始保温阶段,随保温时间延长,硬度强度上升,当保温时间过长,将析出θ’,这时材料的硬度强度将下降,这种现象称为过时效。

9.形变强化--金属经冷塑性变形后,其强度和硬度上升,塑性和韧性下降,这种现象称为形变强化。

10.固溶强化--由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。

11.弥散强化--许多材料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在材料内,则这种材料的强度往往会增加,称为弥散强化。

12.不全位错--柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。

13.扩展位错--通常指一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位错形态。

材料科学基础知识点

材料科学基础知识点

材料科学基础知识点
1. 结晶学:研究晶体的形成、结构和性质。

包括晶体生长、晶体结构分析、晶体缺陷等。

2. 材料力学:研究材料的力学性质,包括材料的强度、韧性、塑性、蠕变等。

3. 材料热学:研究材料的热传导、热膨胀、热稳定性等热学性质。

4. 材料电学:研究材料的电导率、介电性质、磁性等电学性质。

5. 材料化学:研究材料的化学成分、结构和化学反应。

包括材料的合成方法、表面改性、材料的腐蚀与防护等。

6. 材料物理学:研究材料的物理性质,包括光学性质、磁性、声学性质等。

7. 材料加工:研究材料的加工方法、工艺和性能改善。

包括材料的铸造、焊接、锻造、热处理等。

8. 材料性能测试:研究材料的各种性能指标的检测和测试方法。

9. 材料选择:根据工程要求和材料性能,选择最合适的材料。

10. 材料应用:研究材料在各种实际应用中的性能和适用范围,包括材料的耐久性、可靠性等。

材料科学基础知识点

材料科学基础知识点

材料科学基础知识点材料科学基础重点梳理第一章1.1原子的结合有哪些?1.2工程材料可分为哪几类?1.3晶向指数、晶面指数能画图,给图能写出。

1.4金属常见的晶格类型、配位数、致密度、原子密排面、密排晶向、结构中的间隙。

1.5晶体中缺陷的种类。

1.6位错的种类、位错方向与柏氏矢量的关系、位错的运动方式。

1.7位错反应条件及计算。

1.8晶界的种类,界面能与晶界的关系。

第二章2.1影响置换固溶体溶解度有哪些因素?有何规律?1、原子尺寸因素:溶质和溶剂的尺寸差别越小越容易形成置换固溶体2、晶体结构因素:同一种间隙原子在fcc的固熔度大于bcc的3、负电性因素;负电性相差很大时,即亲和力很大,往往比较容易形成比较稳定的化合物; 负电性差不大时,随负电性值增加,有利于增大固溶度4、电子浓度因素:溶质元素的原子价越高,形成固溶体的极限固溶度越小。

2.2间隙固溶体与间隙相之间的关系。

间隙固熔体式固熔体的一种,间隙相是一种金属间化合物两者的晶体结构也各不相同。

2.3金属间化合物的种类及特点金属间化合物分为正常价化合物,电子价化合物和间隙化合物;正常价化合物:电负性差值越大,稳定性越高;电子价化合物:间隙化合物:主要受组元的原子尺寸因素控制。

通常是由渡族金属与原子半径很小的非金属元素组成,分为简单间隙化合物与复杂间隙化合物,非金属元素处于化合物晶格的间隙中。

第三章3.1金属结晶的热力学条件是什么?热力学第二定律:在等温等压条件下物质系统总是自发地从自由能较高的状态向自由能较低的状态转变,就是说只有伴随着自由能降低的过程才能自发的进行。

3.2金属结晶的能量条件是什么?能量起伏(详细看书P85-86)固态金属自由能低于液态金属自由能。

当温度低于Tm时液态的自由能Gl高于固态的自由能,由液态转为固态时,将释放出那份能量而是系统自由能降低,所以过程才能够自动进行。

凝固过程一定要在低于熔点温度时才能进行。

3.3金属结晶的结构条件是什么?结构起伏 (详细看书P86-87)3.4金属结晶时的形核有哪些方式?均匀形核、非均匀形核3.5根据凝固理论,如何细化晶粒?单位体积中的晶粒数取决于两个因素:形核率N和长大速度V;增加过冷度;小制件:增加冷却速度,大制件:采用形核剂;振动。

【上海大学考研849】材料科学基础-基础知识点106页

【上海大学考研849】材料科学基础-基础知识点106页

上海大学材料科学基础知识点第一章材料中的原子排列第一节原子的结合方式1原子结构2原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。

如氧化物陶瓷。

(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。

如高分子材料。

(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。

如金属。

金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。

(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。

分子晶体:熔点低,硬度低。

如高分子材料。

氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O- H—O(4)混合键。

如复合材料。

3结合键分类(1)一次键(化学键):金属键、共价键、离子键。

(2)二次键(物理键):分子键和氢键。

4原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。

长程有序,各向异性。

(2)非晶体:――――――――――不规则排列。

长程无序,各向同性。

第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。

特征:a 原子的理想排列;b 有14种。

其中:空间点阵中的点-阵点。

它是纯粹的几何点,各点周围环境相同。

描述晶体中原子排列规律的空间格架称之为晶格。

空间点阵中最小的几何单元称之为晶胞。

(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。

特征:a 可能存在局部缺陷; b 可有无限多种。

2晶胞(1)――-:构成空间点阵的最基本单元。

(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。

(3)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。

材料科学基础知识总结-辽宁科技大学金材10-1

材料科学基础知识总结-辽宁科技大学金材10-1

第0章 绪论1.材料的分类①金属材料 ②无机非金属材料 ③高分子材料 ④复合材料2.无机非金属材料分类①水泥 ②玻璃 ③耐火材料 ④陶瓷(器)第一章 固体结构1.要求掌握的内容⑴晶体、晶体结构、空间点阵、对称、配位数、配位多面体、合金、固溶体、置换固溶体⑵晶体结构与空间点阵的关系和区别、点阵几何元素表示法、球体的最紧密堆积、金属的晶体结构、固溶体、鲍林规则、用鲍林规则分析离子晶体结构.⑶重点:晶体结构与空间点阵的关系和区别、点阵几何元素表示法、典型离子晶体的结构.⑷ 难点:空间点阵,点阵几何元素表示法,鲍林规则,硅酸盐晶体结构2.⑴晶体:内部质点在三维空间呈周期性重复排列的固体,即晶体是具有格子构造从理想晶体结构中抽象出来,相当于晶体结构中结构⑶晶体结构与空间格子晶体结构:客观实体,有实际内容,质点代表原子、离子、分子等。

空间格子:抽象几何图形,结点为几何点。

⑷根据6个点阵参数间的相互关系,可将全部空间点阵归属于7种类型,即7个晶系。

⑸布拉菲点阵:用数学方法推导出能够反映空间点阵全部特征的单位平面六面体只有14种,这14种空间点阵也称布拉菲点阵。

⑹晶胞-能代表整个晶体全部结构特征的最小单位。

(与单位平行六面体(单位空间格子)相对应,从实际晶体选取的这种最小单位。

)单位平行六面体(单位空间格子):能代表整个空间点阵全部特点的最小单位。

晶体结构:晶体内部质点在三维空间作周期性重复排列构成。

晶胞与平行六面体比较:区别:点的意义不同相同:晶胞与平行六面体的大小、形状、参数相同,“点”排列规律相同2.晶向符号①符号[212] ②符号[]210晶向符号不仅代表一根直线方向,而且代表所有平行于这根直线的直线方向。

3.晶面指数X C A ZO AX Z OXm 面: ()233 晶面符号代表了一组平行等距的晶面。

P 面: ()2334.晶带:⑴晶带:所有平行或相交于某一直线的这些晶面构成一个晶带,此直线称为晶带轴。

【热点】考研材料科学基础总结

【热点】考研材料科学基础总结

第1章原子结构和键合1.1原子结构1.1.1物质的组成(Substance Construction )物质由无数微粒(Particles )聚集而成分子(Molecule ):单独存在 保存物质化学特性dH2O=0.2nm M(H2)为2 M (protein )为百万原子(Atom ): 化学变化中最小微粒1.1.2原子的结构1.1.3原子的电子结构核外电子排布遵循以下3个原则:1.1.4元素周期表⎧⎧⎪⎪⎨⎪⎪⎩⎪⎨⎪⨯⎪⎪⎩-27-27-31(proton)(neutron)质子:正电荷m=1.6726×10kg 原子核(nucleus):位于原子中心、带正电中子:电中性m=1.6748×10kg 电子(electron):核外高速旋转,带负电,按能量高低排列,如电子云(ele ctron cloud ) m =9.109510kg,约为质子的1/1836i i n K L M N l (the orbital quantum number)主量子数(the principal quantum number): 决定原子中电子能量和核间距离(the energy of the electron), 即量子壳层,取正整数1、2、3、4、5?…, 用、、、……表示轨道动量量子数: 给出电子在同一量子壳层内所处的能级, 与电子运动的角动量有i n 1, s p d f m the inner quantum number)(spatial orientation of an electron cloud)1),1,0,⋅⋅⋅⋅⋅⋅--⋅⋅⋅⋅⋅⋅-i i 关(shape of the electron subshell), 取值为0,1,2,用,,,……表示磁量子数( :决定原子轨道或电子云在空间的伸展方向, 取值为-l ,-(l i 1,s the spin quantum number)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⋅⋅⋅⋅⋅⋅⎪⎪⎪⎪⎪⎪⎪⎩i l 自旋角动量量子数( : 表示电子自旋(spin moment )的方向,11取值为+或-22不可能有运动状态完全相同的电子, 同一亚层中电子尽量分占不同能级,2能量最低原理(Minimum Energy principle)电子总是占据能量最低的壳层 1s -2s -2p -3s -3p -4s -3d -4p -5s -4d -5p -Pauli 不相容原理(Pauli Exclusion principle): 2n Hund 原则(Hund' Rule)自⎧⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩全充满半充满 全空旋方向相同 −−−−−−−−−−−→−−−−−−−−−−−−→电离核电荷↑,原子半径↓能↑,失电子能力↓,得电子能力↑最外层电子数相同,电子层数↑,原子半径↑电离能↓,失电子能力↑,得电子能力↓同周期元素:左右,金属性↓,非金属性↑同主族元素:上下,金属性↑,非金属性↓1.2原子间的键合1.2.1金属键(Metallic bonding )典型金属原子结构:最外层电子数很少,即价电子(valence electron )极易 挣脱原子核之束缚而成为自由电子(Free electron ),形成电子云(electron cloud )金属中自由电子与金属正离子之间构成键合称为金属键特点:电子共有化,既无饱和性又无方向性,形成低能量密堆结构性质:良好导电、导热性能,延展性好1.2.2离子键(Ionic bonding)实质: 金属原子 带正电的正离子(Cation )非金属原子 带负电的负离子(anion )特点:以离子而不是以原子为结合单元,要求正负离子相间排列,且无方向性,无饱和性性质:熔点和硬度均较高,良好电绝缘体1.2.3共价键(covalent bonding )亚金属(C 、Si 、Sn 、 Ge ),聚合物和无机非金属材料实质:由二个或多个电负性差不大的原子间通过共用电子对而成特点:饱和性 配位数较小 ,方向性(s 电子除外)性质:熔点高、质硬脆、导电能力差1.2.4范德华力(Van der waals bonding)包括:静电力(electrostatic)、诱导力(induction)和色散力(dispersive force) 属物理键 ,系次价键,不如化学键强大,但能很大程度改变材料性质1.2.5氢键(Hydrogen bonding )极性分子键 存在于HF 、H2O 、NH3中 ,在高分子中占重要地位,氢 原子中唯一的电子被其它原子所共有(共价键结合),裸露原子核将与近邻分子的负端相互吸引——氢桥介于化学键与物理键之间,具有饱和性1.3高分子链(High polymer Chain)⎧⎨⎩键电对键键两键间极性(Polar bonding):共用子偏于某成原子非极性(Nonpolar bonding): 位于成原子中⎧⎨⎩链结构(Chain Structure)高分子结构聚集态结构(Structure of aggregation state)1.3.1高分子链的近程结构1.结构单元的化学组成(the Chemistry of mer units)2.高分子链的几何形态(structure )热塑性:具有线性和支化高分子链结构,加热后会变软,可反复加工再成型热固性:具有体型(立体网状)高分子链结构,不溶于任何溶剂,也不能熔融,一旦受热固化后不能再改变形状,无法再生3.高分子链的键接方式4.高分子链的构型(Molecular configurations )o 线热变软动热链联线胶联变强韧状性高分子(linear polymers): 加后,甚至流,可反复加工- 塑性(therm plastic)支高分子(branched polymers):交高分子(crosslinked polymer):性天然橡用S交后耐磨体型(立体网)高分子(network on three -dimensional poly ⎧⎪⎪⎪⎨⎪⎪⎪⎩mer)近程结构(一次结构):化学结构,分子链中的原子排列,结构单元高分子链结构 的键接顺序,支化,交联等相对分子质量及其分布,链的柔顺性及构象1.3.2高分子链的远程结构1.高分子的大小2.高分子链的内旋转构象主链以共价键联结,有一定键长 d 和键角θ,每个单键都能内旋转(Chain twisting )故高分子在空间形态有mn-1( m 为每个单键内旋转可取的位置数,n 为单键数目)※ 键的内旋转使得高分子存在多种构象统计学角度高分子链取 伸直(straight )构象几率极小,呈卷曲(zigzag )构象几率极大3.影响高分子链柔性的主要因素(the main influencing factors on the molecular flexibility )高分子链能改变其构象的性质称为柔性(Flexibility )处链两侧两单处链边体间无规(syndisotactic configurations): (isotactic configurations):(atactic configuration R取代基交替地在主平面, 即旋光异构元交替R取代基全在主平面一, 即全部由一种旋光异构同立构全同立构立构⎧⎪⎪⎪⎨⎪⎪⎪⎩链两侧规则s):R取代基在主平面不排列⎧⎪⎪⎨⎪⎪⎩链结响决内势垒从酰响链链对称积响联响联单键内转碍联时主构的影:起定性作用,C -O,C -N,Si-O 旋的比C -C低,而使聚酯, 聚胺、聚胺酯,聚二甲基硅氧烷等柔性好取代基的影:取代基的极性,沿分子排布距离,在主上性,体均有影交的影:因交附近的旋受阻,交度大,柔性↓↓第2章固体结构2.1晶体学基础(Basis Fundamentals of crystallography)晶体结构的基本特征:原子(或分子、离子)在三维空间呈周期性重复排列(periodic repeated array),即存在长程有序(long-range order)性能上两大特点:1.固定的熔点(melting point),2.各向异性(anisotropy)2.1.1空间点阵和晶胞※空间点阵的概念将晶体中原子或原子团抽象为纯几何点(阵点 lattice point),即可得到一个由无数几何点在三维空间排列成规则的阵列—空间点阵(space lattice)特征:每个阵点在空间分布必须具有完全相同的周围环境(surrounding)※晶胞(Unite cells)代表性的基本单元(最小平行六面体)small repeat entities选取晶胞的原则:Ⅰ)选取的平行六面体应与宏观晶体具有同样的对称性;Ⅱ)平行六面体内的棱和角相等的数目应最多;Ⅲ)当平行六面体的棱角存在直角时,直角的数目应最多;Ⅳ)在满足上条件,晶胞应具有最小的体积。

考研必备之《材料科学基础》学霸笔记

考研必备之《材料科学基础》学霸笔记

材料科学基础笔记第一章原子结构与键合概述:决定材料性能的最根本的因素是组成材料的各元素的原子结构,原子间的相互作用、相互结合,原子或分子在空间的排列分布和运动规律以及原子集合体的形貌特征等。

为此,我们需要了解材料的微观构造,即其内部结构和组织状态,以便从其内部的矛盾性找出改善和发展材料的途径。

第一节原子结构1 物质的组成物质是由无数微粒按一定方式聚集而成的,这些微粒可能是原子、分子或离子;分子是能单独存在且保持物质化学特性的一种微粒;原子是化学变化中的最小微粒。

2 原子的结构(原子结构直接影响原子间的结合方式)3 原子的电子结构3.1电子既有粒子性又具有波动性,具有波粒二象性。

3.2电子的状态和在某处出现的机率可用薛定谔方程的解/波函数来描述,即原子中每个电子的空间位置和能量可用四个量子数来确定:a主量子数(n):决定原子中电子的能量及与核的平均距离(一般能量低的趋向近轨道,r较小,反之则反),即表示电子所处的量子壳层。

如K、L、M…,n=1,2,3;b 轨道角动量量子数(l):表示电子在同一壳层内所处的能级,与电子运动的角动量有关。

如s、p、d、f…(0,1,2,…n-1);c 磁量子数(m):给出每个轨道角动量量子数的能级数或轨道数,为2l+1,决定电子云的空间取向;d 自旋角动量量子数(s):反映电子不同的自旋方向,其值可取*只有n,l决定能量和能级3.3能级和能级图把电子不同状态对应着相同能量的现象称为简并。

将所有元素的各种电子态(n,l)按能量水平排列成能级图。

3.4核外电子的排布规则a 能量最低原理:电子的排布总是尽可能使体系的能量最低;b Pauling不相容原理:在一个原子中,不可能有上述运动状态完全相同的两个电子,即不能有上述四个量子数都相同的两个电子;c 洪德Hund规则:在同一个亚层中的各个能级中,电子的排布尽可能分占不同的能级,而且自旋方向相同(尽可能保持自旋不成对);3.5 元素周期表元素是具有相同核电荷数的同一类原子的总称;元素的外层电子 结构随着原子序数的递增而呈周期性的变化规律称为元素周期律;元素周期表是元素周期律的表现形式;元素的性质、原子结构和该元素在周期表中的位置三者之间有着密切的关系。

材料专业考研知识点总结

材料专业考研知识点总结

材料专业考研知识点总结一、材料科学基础知识1. 材料的结构与性能材料的结构与性能是材料科学基础知识中的重要内容,包括晶体结构、非晶体结构、晶体缺陷、晶体生长、固溶体、晶体取向和晶体生长等。

材料的结构与性能直接影响着材料的力学性能、热学性能、电学性能、磁学性能和光学性能等。

2. 材料的工艺与制备材料的工艺与制备是材料科学基础知识中的另一个重要内容。

包括材料加工技术、材料成形工艺、材料表面处理工艺、材料热处理工艺、材料连接工艺等。

材料的工艺与制备直接决定了材料的结构和性能,对材料的性能起着至关重要的作用。

3. 材料性能测试与分析材料性能测试与分析是材料科学基础知识中的另一个重要内容。

包括材料性能测试方法、材料性能测试仪器、材料性能测试标准、材料性能测试结果分析以及材料性能测试结果的评价等。

材料性能测试与分析对材料的选择、设计和应用起着重要的指导作用。

4. 材料科学基础理论材料科学基础理论是材料科学基础知识中的核心内容,包括材料的微观结构与宏观性能的关系、材料的相变规律、材料的热力学、材料的动力学以及材料的物理学、化学学和力学学等。

材料科学基础理论对材料的研究、开发和应用起着重要的理论支撑与指导作用。

二、材料工程专业知识点1. 材料结构与性能材料结构与性能包括晶体结构、非晶体结构、晶体缺陷、晶体生长、固溶体、晶体取向、晶体生长以及材料性能的测试、分析和评价等。

材料结构与性能是材料工程专业知识点中的核心内容,对材料的应用性能起着至关重要的作用。

2. 材料工艺与制备材料工艺与制备包括材料加工技术、材料成形工艺、材料表面处理工艺、材料热处理工艺、材料连接工艺等。

材料工艺与制备是材料工程专业知识点中的另一个重要内容,对材料的结构和性能具有重要的影响。

3. 材料应用与设计材料应用与设计包括材料选择、材料设计、材料应用技术、材料选择原则、材料的优化设计以及材料的工程应用等。

材料应用与设计是材料工程专业知识点中的另一个重要内容,对材料的工程应用具有重要的指导作用。

《材料科学基础》考研复习知识点

《材料科学基础》考研复习知识点

浙江大学《材料科学基础》第一章晶体结构§1-1晶体学基础一、空间点阵空间点阵:晶体中原子或分子的空间规则排列。

图1- 1点阵特点:各阵点为彼此等同的原子群或分子群的中心,周围环境都相同,在空间的位置是一定点阵基本要素:阵点(二)晶胞晶胞:点阵中取出的一个反映点阵对称性的代表性基本单元(通常取最小平行六面体)。

点阵的组成单元图1- 2晶胞描述:1晶轴X、Y、Z;2点阵常数a、b、c;3晶轴夹角α、β、γ 图1- 3 晶胞的原子、体积与密度计算(三)晶系7个晶系:按晶胞外形即棱边长度之间的关系和晶轴夹角情况归类,每一类别即一个晶系。

晶系只有七种!表1- 1(四)布拉菲点阵14种布拉菲点阵的晶胞:1-简单三斜;2-简单单斜;3-底心单斜;4-简单正交;5-底心正交;6-体心正交;7-面心正交;8-简单六方;9-菱形(三角);10-简单四方;11-体心四方;12-简单立方;13-体心立方;14-面心立方3个晶族:表示晶体结构对称性高低。

三、晶向指数和晶面指数晶向:晶体的方向晶面:原子所构成的平面晶向指数:确定晶向的一组数[uvw],表示所有相互平行、方向一致的晶向。

晶向族:晶体中因对称关系而等同的各晶向的归并,表为<uvw>。

(二)晶面指数晶面指数:确定晶面方位的一组数,代表一组相互平行的晶面 晶面族:具等同条件,而空间位向不同的各组晶面的归并 晶面指数的确定步骤:(1)对晶胞作晶轴X 、Y 、Z ,以晶胞的边长作为晶轴上的单位长度。

(2)求出晶面在三个晶轴上的截距(如该晶面与某轴平行,则截距为∞)。

例如1、1、∞,1、1、1,1、1、1/2等。

(3)取这些截距数的倒数。

例如110,111,112等。

(4)将上述倒数化为最小的简单整数,并加上圆括号,即表示该晶面的指数,一般记为(hkl)。

例如(110),(111),(112)等。

如果所求晶面在晶轴上的截距为负数,则在相应的指数上方加一负号,如(1-10)、(11-1)、(112-)等。

材料科学基础知识点整理

材料科学基础知识点整理

材料科学与基础第一章晶体结构第一节晶体学基础一、空间点阵晶体中原子或分子的空间规则排列,阵点周围环境相同,在空间的位置一定。

(一)晶胞点阵中取出的一个反映点阵对称性的代表性基本单元。

通过晶胞角上的某一阵点,沿其三个棱边作坐标轴X、Y、Z(称为晶轴),则此晶胞就可由其三个棱边的边长a、b、c(称为点阵常数)及晶轴之间的夹角α、β、γ六个参数表达出来。

事实上,采用三个点阵矢量a、b、c来描述晶胞更方便。

(二)晶系(三)布拉菲点阵只能有14种空间点阵,归属于7个晶系。

(四)晶体结构与空间点阵最简单的空间格子,又叫原始格子,以P表示。

对称性高的为高级晶族。

二、晶向指数和晶面指数(一)晶向指数1.以晶胞的晶轴为坐标轴X、Y、Z,以晶胞边长作为坐标轴的长度单位。

2.从晶轴系的原点O沿所指方向的直线取最近一个阵点的坐标u、v、w。

3.将此数化为最小整数并加上方括号,即为晶向指数。

[100],[110],[111̅]晶向指数表示所有相互平行、方向一致的晶向。

晶体中因对称关系而等同的各组晶向可并为一个晶向族,用<uvw>表示。

(二)晶面指数1.对晶胞作晶轴X、Y、Z以晶胞的边长作为晶轴上的单位长度。

2.求出待定晶面在三个晶轴上的截距(如该晶面与某轴平行,则截距为∞)。

3.取这些截距数的倒数。

4.将上述倒数化为最小的简单整数,并加上圆括号,即表示该晶面的指数,记为(hkl )晶面指数所代表的不仅是某一晶面,而是代表着一组相互平行的晶面。

(化简相等)在晶体中,具有等同条件而只是空间位向不同的各组晶面,可归并为一个晶面族,用{hkl }表示。

在立方晶系中,具有相同指数的晶向和晶面必定是相垂直的。

即[hkl ]⊥{hkl} (三)六方晶系指数晶面指数以(hkil )四个指数来表示,有h +k +i =0; 晶向指数以[uvtw]表示,有u +v +t =0。

六方晶系按两种晶轴系所得的晶面指数和晶向指数可相互转换如下:对晶面指数来说,从(hkil )转换成(hkl )只需去掉i ;对晶向指数,[UVW]与[uvtw]的关系为:U =u −t; V =v −t; W =w 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属学与热处理总结一、金属的晶体结构重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。

基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。

晶体的特征、晶体中的空间点阵。

晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。

金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。

位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。

位错的柏氏矢量具有的一些特性:①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。

刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。

晶界具有的一些特性:①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。

二、纯金属的结晶重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。

基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。

铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。

相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。

过冷度:理论结晶温度与实际结晶温度的差称为过冷度。

变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。

过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。

从热力学的角度上看,没有过冷度结晶就没有趋动力。

根据 T R k ∆∝1可知当过冷度T ∆为零时临界晶核半径R k 为无穷大,临界形核功(21T G ∆∝∆)也为无穷大。

临界晶核半径R k 与临界形核功为无穷大时,无法形核,所以液态金属不能结晶。

晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。

细化晶粒的方法:增加过冷度、变质处理、振动与搅拌。

铸锭三个晶区的形成机理:表面细晶区:当高温液体倒入铸模后,结晶先从模壁开始,靠近模壁一层的液体产生极大的过冷,加上模壁可以作为非均质形核的基底,因此在此薄层中立即形成大量的晶核,并同时向各个方向生长,形成表面细晶区。

柱状晶区:在表面细晶区形成的同时,铸模温度迅速升高,液态金属冷却速度减慢,结晶前沿过冷都很小,不能生成新的晶核。

垂直模壁方向散热最快,因而晶体沿相反方向生长成柱状晶。

中心等轴晶区:随着柱状晶的生长,中心部位的液体实际温度分布区域平缓,由于溶质原子的重新分配,在固液界面前沿出现成分过冷,成分过冷区的扩大,促使新的晶核形成长大形成等轴晶。

由于液体的流动使表面层细晶一部分卷入液体之中或柱状晶的枝晶被冲刷脱落而进入前沿的液体中作为非自发生核的籽晶。

三、二元合金的相结构与结晶重点内容:杠杆定律、相律及应用。

基本内容:相、匀晶、共晶、包晶相图的结晶过程及不同成分合金在室温下的显微组织。

合金、成分过冷;非平衡结晶及枝晶偏析的基本概念。

相律:f = c – p + 1其中,f 为 自由度数,c 为 组元数,p 为 相数。

伪共晶:在不平衡结晶条件下,成分在共晶点附近的亚共晶或过共晶合金也可能得到全部共晶组织,这种共晶组织称为伪共晶。

合金:两种或两种以上的金属,或金属与非金属,经熔炼或烧结、或用其它方法组合而成的具有金属特性的物质。

合金相:在合金中,通过组成元素(组元)原子间的相互作用,形成具有相同晶体结构与性质,并以明确界面分开的成分均一组成部分称为合金相。

四、铁碳合金重点内容:铁碳合金的结晶过程及室温下的平衡组织,组织组成物及相组成物的计算。

基本内容:铁素体与奥氏体、二次渗碳体与共析渗碳体的异同点、三个恒温转变。

钢的含碳量对平衡组织及性能的影响;二次渗碳体、三次渗碳体、共晶渗碳体相对量的计算;五种渗碳体的来源及形态。

奥氏体与铁素体的异同点:相同点:都是铁与碳形成的间隙固溶体;强度硬度低,塑性韧性高。

不同点:铁素体为体心结构,奥氏体面心结构;铁素体最高含碳量为0.0218%,奥氏体最高含碳量为2.11%,铁素体是由奥氏体直接转变或由奥氏体发生共析转变得到,奥氏体是由包晶或由液相直接析出的;存在的温度区间不同。

二次渗碳体与共析渗碳体的异同点。

相同点:都是渗碳体,成份、结构、性能都相同。

不同点:来源不同,二次渗碳体由奥氏体中析出,共析渗碳体是共析转变得到的;形态不同二次渗碳体成网状,共析渗碳体成片状;对性能的影响不同,片状的强化基体,提高强度,网状降低强度。

成分、组织与机械性能之间的关系:如亚共析钢。

亚共析钢室温下的平衡组织为F+P,F的强度低,塑性、韧性好,与F相比P强度硬度高,而塑性、韧性差。

随含碳量的增加,F量减少,P量增加(组织组成物的相对量可用杠杆定律计算)。

所以对于亚共析钢,随含碳量的增加,强度硬度升高,而塑性、韧性下降六、金属及合金的塑性变形与断裂重点内容:体心与面心结构的滑移系;金属塑性变形后的组织与性能。

基本内容:固溶体强化机理与强化规律、第二相的强化机理。

霍尔——配奇关系式;单晶体塑性变形的方式、滑移的本质。

塑性变形的方式:以滑移和孪晶为主。

滑移:晶体的一部分沿着一定的晶面和晶向相对另一部分作相对的滑动。

滑移的本质是位错的移动。

体心结构的滑移系个数为12,滑移面:{110},方向<111>。

面心结构的滑移系个数为12,滑移面:{111},方向<110>。

金属塑性变形后的组织与性能:显微组织出现纤维组织,杂质沿变形方向拉长为细带状或粉碎成链状,光学显微镜分辨不清晶粒和杂质。

亚结构细化,出现形变织构。

性能:材料的强度、硬度升高,塑性、韧性下降;比电阻增加,导电系数和电阻温度系数下降,抗腐蚀能力降低等。

七、金属及合金的回复与再结晶重点内容:金属的热加工的作用;变形金属加热时显微组织的变化、性能的变化,储存能的变化。

基本内容:回复、再结的概念、变形金属加热时储存能的变化。

再结晶后的晶粒尺寸;影响再结晶的主要因素性能的变化规律。

变形金属加热时显微组织的变化、性能的变化:随温度的升高,金属的硬度和强度下降,塑性和韧性提高。

电阻率不断下降,密度升高。

金属的抗腐蚀能力提高,内应力下降。

再结晶:冷变形后的金属加热到一定温度之后,在原来的变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化,并恢复到完全软化状态,这个过程称之为再结晶。

热加工的主要作用(或目的)是:①把钢材加工成所需要的各种形状,如棒材、板材、线材等;②能明显的改善铸锭中的组织缺陷,如气泡焊合,缩松压实,使金属材料的致密度增加;③使粗大的柱状晶变细,合金钢中大块状碳化物初晶打碎并使其均匀分布;④减轻或消除成分偏析,均匀化学成分等。

使材料的性能得到明显的改善。

影响再结晶的主要因素:①再结晶退火温度:退火温度越高(保温时间一定时),再结晶后的晶粒越粗大;②冷变形量:一般冷变形量越大,完成再结晶的温度越低,变形量达到一定程度后,完成再结晶的温度趋于恒定;③原始晶粒尺寸:原始晶粒越细,再结晶晶粒也越细;④微量溶质与杂质原子,一般均起细化晶粒的作用;⑤第二相粒子,粗大的第二相粒子有利于再结晶,弥散分布的细小的第二相粒子不利于再结晶;⑥形变温度,形变温度越高,再结晶温度越高,晶粒粗化;⑦加热速度,加热速度过快或过慢,都可能使再结晶温度升高。

塑性变形后的金属随加热温度的升高会发生的一些变化:显微组织经过回复、再结晶、晶粒长大三个阶段由破碎的或纤维组织转变成等轴晶粒,亚晶尺寸增大;储存能降低,内应力松弛或被消除;各种结构缺陷减少;强度、硬度降低,塑性、韧度提高;电阻下降,应力腐蚀倾向显著减小。

八、扩散重点内容:影响扩散的因素;扩散第一定律表达式。

基本内容:扩散激活能、扩散的驱动力。

柯肯达尔效应,扩散第二定律表达式。

柯肯达尔效应:由置换互溶原子因相对扩散速度不同而引起标记移动的不均衡扩散现象称为柯肯达尔效应。

影响扩散的因素:①温度:温度越高,扩散速度越大;② 晶体结构:体心结构的扩散系数大于面心结构的扩散系数;③ 固溶体类型:间隙原子的扩散速度大于置换原子的扩散速度;④ 晶体缺陷:晶体缺陷越多,原子的扩散速度越快;⑤ 化学成分:有些元素可以加快原子的扩散速度,有些可以减慢扩散速度。

扩散第一定律表达式:扩散第一定律表达式:dxdC D J -= 其中,J 为扩散流量;D 为扩散系数;dxdC 为浓度梯度。

扩散的驱动力为化学位梯度,阻力为扩散激活能九、钢的热处理原理重点内容:冷却时转变产物(P 、B 、M )的特征、性能特点、热处理的概念。

基本内容:等温、连续C-曲线。

奥氏体化的四个过程;碳钢回火转变产物的性能特点。

热处理:将钢在固态下加热到预定的温度,并在该温度下保持一段时间,然后以一定的速度冷却下来,让其获得所需要的组织结构和性能的一种热加工工艺。

转变产物(P 、B 、M )的特征、性能特点:片状P 体,片层间距越小,强度越高,塑性、韧性也越好;粒状P 体,Fe 3C 颗粒越细小,分布越均匀,合金的强度越高。

第二相的数量越多,对塑性的危害越大;片状与粒状相比,片状强度高,塑性、韧性差;上贝氏体为羽毛状,亚结构为位错,韧性差;下贝氏体为黑针状或竹叶状,亚结构为位错,位错密度高于上贝氏体,综合机械性能好;低碳马氏体为板条状,亚结构为位错,具有良好的综合机械性能;高碳马氏体为片状,亚结构为孪晶,强度硬度高,塑性和韧性差。

等温、连续C-曲线。

一、论述四种强化的强化机理、强化规律及强化方法。

1、 形变强化形变强化:随变形程度的增加,材料的强度、硬度升高,塑性、韧性下降的现象叫形变强化或加工硬化。

机理:随塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割加剧,结果即产生固定的割阶、位错缠结等障碍,使位错运动的阻力增大,引起变形抗力增加,给继续塑性变形造成困难,从而提高金属的强度。

规律:变形程度增加,材料的强度、硬度升高,塑性、韧性下降,位错密度不断增加,根据公式Δσ=αbGρ1/2,可知强度与位错密度(ρ)的二分之一次方成正比,位错的柏氏矢量(b)越大强化效果越显著。

方法:冷变形(挤压、滚压、喷丸等)。

形变强化的实际意义(利与弊):形变强化是强化金属的有效方法,对一些不能用热处理强化的材料可以用形变强化的方法提高材料的强度,可使强度成倍的增加;是某些工件或半成品加工成形的重要因素,使金属均匀变形,使工件或半成品的成形成为可能,如冷拔钢丝、零件的冲压成形等;形变强化还可提高零件或构件在使用过程中的安全性,零件的某些部位出现应力集中或过载现象时,使该处产生塑性变形,因加工硬化使过载部位的变形停止从而提高了安全性。

相关文档
最新文档