质谱讲课课件讲解
合集下载
质谱基础知识ppt课件
38
实例
1.先看MS部分, 是否有所要离子峰,必要时可通过提 取离子流来进行查找。 2.再看HPLC部分,含量有多少,主峰是否完全分开。 3.两者结合,推测反应进行的程度和反应产生的杂质。
39
40
41
Number of counts
12 units
8 9 10 11 12 13 14 15 16
mass
7
基本原理
•电离装置把样品电离为离子 •质量分析装置把不同质荷比的离子分开 •经检测器检测之后可以得到样品的质谱图
8
基本原理
以下为某一化合物的MS谱图
9
离子源
硬电离源:很多离子碎片峰,提供丰富的结构信息。
18
质量分析器
• 单聚焦磁偏转质量分析器(single focusing) • 双聚焦磁偏转质量分析器(double focusing) • 四极杆质量分析器 (Quadrupole mass
analyzer) • 飞行时间质量分析器(time of flight)
19
单聚焦磁偏转质量分析器
• m/z = H2R2/2U是磁分析器质谱方程,是设 计质谱仪的主要依据。
21
双聚焦磁偏转质量分析器
Re=2U/E=mu2/Ez
如果电场强度E一定,离子轨道半径仅取决于离子的 动能,而与离子质量无关,所以扇型电场是一个能量 分析器,不起质量分离的作用;对于质量相同的离子, 它是一个速度分离器。在双聚焦质谱仪中,同时采用电 场和磁场组成的质量分析器,因而不仅可以实现方向 聚焦,即将质荷比相同而入射方向不同的离子聚焦,而 且可以实现速度聚焦,即将质荷比相同,而速度(能量) 不同的离子聚焦。所以双聚焦质谱仪比单聚焦质谱仪 (只能实现方向聚焦)具有更高的分辨率。
实例
1.先看MS部分, 是否有所要离子峰,必要时可通过提 取离子流来进行查找。 2.再看HPLC部分,含量有多少,主峰是否完全分开。 3.两者结合,推测反应进行的程度和反应产生的杂质。
39
40
41
Number of counts
12 units
8 9 10 11 12 13 14 15 16
mass
7
基本原理
•电离装置把样品电离为离子 •质量分析装置把不同质荷比的离子分开 •经检测器检测之后可以得到样品的质谱图
8
基本原理
以下为某一化合物的MS谱图
9
离子源
硬电离源:很多离子碎片峰,提供丰富的结构信息。
18
质量分析器
• 单聚焦磁偏转质量分析器(single focusing) • 双聚焦磁偏转质量分析器(double focusing) • 四极杆质量分析器 (Quadrupole mass
analyzer) • 飞行时间质量分析器(time of flight)
19
单聚焦磁偏转质量分析器
• m/z = H2R2/2U是磁分析器质谱方程,是设 计质谱仪的主要依据。
21
双聚焦磁偏转质量分析器
Re=2U/E=mu2/Ez
如果电场强度E一定,离子轨道半径仅取决于离子的 动能,而与离子质量无关,所以扇型电场是一个能量 分析器,不起质量分离的作用;对于质量相同的离子, 它是一个速度分离器。在双聚焦质谱仪中,同时采用电 场和磁场组成的质量分析器,因而不仅可以实现方向 聚焦,即将质荷比相同而入射方向不同的离子聚焦,而 且可以实现速度聚焦,即将质荷比相同,而速度(能量) 不同的离子聚焦。所以双聚焦质谱仪比单聚焦质谱仪 (只能实现方向聚焦)具有更高的分辨率。
质谱的原理和图谱的分析PPT课件
.
若某一元素有两种同位素,在某化合物中含有 m 个 该元素的原子,则分子离子同位素峰簇的各峰的相对 丰度可用二项式 (a+b)m 展开式的系数推算
若化合物含有 i 种元素,它们都有非单一的同位素 组成,总的同位素峰簇各峰间的强度可用下式表示:
(a1+b1)m1 (a2+b2)m2 … (ai+bi)mi
(3) 场致离(FI)和场解吸 ( FD )
场致离(field ionization, FI) •气态样品分子在在强电场(107-108V/cm)的作用下 发生电离。 •要求样品分子处于气态, 灵敏度不高, 应用逐渐减少.
场解吸 (field desorption, FD ) • 样品不需汽化, 将样品吸附在作为场离子发射体的金属 丝上, 送入离子源, 然后通以微弱电流, 使样品分子从发 射体上解吸下来, 并扩散至高场强的场发射区, 进行离子 化.
稳离子。
.
二、分子离子与分子式
(1)分子离子峰的识别 • 在质谱图中,分子离子峰应是最高质荷比的离子峰。
(同位素离子及准分子离子峰除外)。 • 分子离子峰是奇电子离子峰。 • 分子离子能合理地丢失碎片(自由基或中性分子)。 • 符合氮律:
当化合物不含氮或含偶数个氮时,分子量为偶数; 当化合物含奇数个氮时,该化合物分子量为奇数。
例如:已知某化合物的质谱图中,M为166;M+1为10.15,
M+2为1.1。按Beynon表可以查到分子量为166的一些分子式为:
M+1 M+2
M+1 M+2
C8H8NO3 9.27 0.98 C9H10O3 10.00 1.05 C8H10N2O2 9.65 0.82 C9H12NO2 10.38 0.89 C8H12N3O 10.02 0.65 C9H14N2O 10.75 0.72 C8H14N4 10.40 0.49 C9H2N4 11.28 0.58 由上述数据可以看出, C9H10O.3 最符合上述条件。
若某一元素有两种同位素,在某化合物中含有 m 个 该元素的原子,则分子离子同位素峰簇的各峰的相对 丰度可用二项式 (a+b)m 展开式的系数推算
若化合物含有 i 种元素,它们都有非单一的同位素 组成,总的同位素峰簇各峰间的强度可用下式表示:
(a1+b1)m1 (a2+b2)m2 … (ai+bi)mi
(3) 场致离(FI)和场解吸 ( FD )
场致离(field ionization, FI) •气态样品分子在在强电场(107-108V/cm)的作用下 发生电离。 •要求样品分子处于气态, 灵敏度不高, 应用逐渐减少.
场解吸 (field desorption, FD ) • 样品不需汽化, 将样品吸附在作为场离子发射体的金属 丝上, 送入离子源, 然后通以微弱电流, 使样品分子从发 射体上解吸下来, 并扩散至高场强的场发射区, 进行离子 化.
稳离子。
.
二、分子离子与分子式
(1)分子离子峰的识别 • 在质谱图中,分子离子峰应是最高质荷比的离子峰。
(同位素离子及准分子离子峰除外)。 • 分子离子峰是奇电子离子峰。 • 分子离子能合理地丢失碎片(自由基或中性分子)。 • 符合氮律:
当化合物不含氮或含偶数个氮时,分子量为偶数; 当化合物含奇数个氮时,该化合物分子量为奇数。
例如:已知某化合物的质谱图中,M为166;M+1为10.15,
M+2为1.1。按Beynon表可以查到分子量为166的一些分子式为:
M+1 M+2
M+1 M+2
C8H8NO3 9.27 0.98 C9H10O3 10.00 1.05 C8H10N2O2 9.65 0.82 C9H12NO2 10.38 0.89 C8H12N3O 10.02 0.65 C9H14N2O 10.75 0.72 C8H14N4 10.40 0.49 C9H2N4 11.28 0.58 由上述数据可以看出, C9H10O.3 最符合上述条件。
质谱法专业知识课件
在离子源内,用电加热铼或钨旳灯丝到2023℃,产生高速电子 束,其能量为10~7OeV。当气态试样由分子漏入孔进入电离室 时,高速电子与分子发生碰撞,若电子旳能量不小于试样分子 旳电离电位,将造成试样分子旳电离。
碎片离子可用于有机化合物旳构造鉴定
优点: 1)稳定, 质谱图再现性好,便于计算机检索及比较; 2)离子碎片多,可提供较多旳分子构造信息。 缺陷:
4)基质辅助激光解吸离子源(MALDI)
原理:是用激光照射样品与基质形成旳共结晶薄膜,基质从 激光中吸收能量传递给样品,从而使样品解吸和电离旳过程。 它是一种软电离技术,合用于混合物及生物大分子旳测定。
(3)质量分析器
质谱仪旳质量分析器位于离子源和检测器之间。
作用 :过滤
质量分析器旳主要类型有:磁分析器、飞行时间质量分 析器、离子阱质量分析器和四级杆质量分析器等。
质谱能做什么?
定性:化合物旳构造。 定量:混合物旳各构成含量。 领域:化学、生物学、医学、药学、环境、物理、材料、能源 等。
质谱分析法旳特点
➢(1)应用范围广。测定样品能够是无机物,也能够是有 机物。被分析旳样品能够是气体和液体,也能够是固体。 ➢(2)敏捷度高,样品用量少。目前有机质谱仪旳绝对敏 捷度可达50pg(pg为10−12g),无机质谱仪绝对敏捷度可 达10−14 g。用微克级样品即可得到满意旳分析成果。 ➢(3)分析速度快,并可实现多组分同步测定。 ➢(4)与其他仪器相比,仪器构造复杂,价格昂贵,使用 及维修比较困难。对样品有破坏性。
在一般有机分子鉴定时,能够经过同位素离子峰相对强度之 比来拟定其元素构成。
➢例如:CH4 M=16
➢12C+1H×4=16
M
➢13C+1H×4=17 M+1
质谱法专题教育课件
: R4
++
:e
(M-R2)+
(M-R1)+
(M-R3)+
M+
Mass Spectrometer
EI源:可变旳离子化能量 (10~70 eV)
有机分子旳电离电位一般为7-15eV。 可提供丰富旳构造信息。
电子能量 分子离子增长
电子能量 碎片离子增长
原则质谱图基本都是采用EI源(70eV)取得旳
合用性强,图谱重现性好 但图谱复杂,分子离子峰难寻找
分子离子或准分子离子峰
质谱中分子离子峰旳辨认及分子式旳拟定是至关重要旳.
分子离子峰旳辨认
1. 假定分子离子峰: 高质荷比区,RI 较大旳峰(注意:同位素峰) 2. 判断其是否合理: 与相邻碎片离子(m/z较小者)之间关系是否
合理
Δm
1
2
丢失 H· H2
3
15
16
17
H2, H CH3
O
OH
NH2
18 20 H2O
质谱仪器构造框图
电子轰击离子化EI(50~100 eV) 分子离子,可裂
M
e
M
•
2e
离子被电场加速后,动能和位能相等
(加速后旳电子势能转化为动能)
1 mv2 zU 2
解为碎片离子
m:离子质量 v:离子速度 z:离子电荷 U:电场电压
加速后旳离子进入磁场,圆周运动旳离心力和向心力相等
mv2 Hzv R
R
CH CH2 CH2
(M-18)+
酚
(三)醛和酮
C3H7
H .+ O
CH3C O+
C6H13C O+
《质谱分析的原理与方法》PPT课件
最大峰
分子离子和碎片离子之间的质量差
氮规则:在分子中只含C,H,O,S,X元素时,相对 分子质量Mr为偶数;若分子中除上述元素外还 含有N,则含奇数个N时相对分子质量Mr为奇数, 含偶数个N时相对分子质量Mr为偶数。
[氮规则] 当分子中含有偶数个氮原子或不含氮原子时,分子量应为偶数; 当分子中含有奇数个氮原子时,分子量应为奇数。
b、羧酸酯羰基碳上的裂解有两种类型,其强 峰(有时为基准峰)通常来源于此;
c、由于McLafferty重排,甲酯可形成m/z=74, 乙酯可形成m/z=88的基准峰;
d、二元羧酸及其甲酯形成强的M峰,其强度随 两个羧基的接近程度增大而减弱。二元酸酯 出现由于羰基碳裂解失去两个羧基的M-90峰。
胺
特征:a、脂肪开链胺的M峰很弱,或者消失; 脂环胺及芳胺M峰明显;含奇数个N的胺其M 峰质量为奇数;低级脂肪胺芳香胺可能出现 M-1峰(失去·H);
酚和芳香醇的特征:
a、和其他芳香化合物一样,酚和芳香醇的M峰 很强,酚的M峰往往是它的基准峰;
b、苯酚的M-1峰不强,而甲苯酚和苄醇的M-1 峰很强,因为产生了稳定的鎓离子;
c、自苯酚可失去CO 、HCO。
卤化物
特征: a、脂肪族卤化物M峰不明显,芳香族的明显; b、氯化物和溴化物的同位素峰非常特征; c、卤化物质谱中通常有明显的X、M-X、M-
质谱的应用
例:某化合物的质谱数据:M=181,PM%=100% P(M+1)%=14.68% P(M+2)%=0.97%
查[贝诺表]
分子式
M+1
M+2
(1) C13H9O
14.23
1.14
(2) C13H11N 14.61
分子离子和碎片离子之间的质量差
氮规则:在分子中只含C,H,O,S,X元素时,相对 分子质量Mr为偶数;若分子中除上述元素外还 含有N,则含奇数个N时相对分子质量Mr为奇数, 含偶数个N时相对分子质量Mr为偶数。
[氮规则] 当分子中含有偶数个氮原子或不含氮原子时,分子量应为偶数; 当分子中含有奇数个氮原子时,分子量应为奇数。
b、羧酸酯羰基碳上的裂解有两种类型,其强 峰(有时为基准峰)通常来源于此;
c、由于McLafferty重排,甲酯可形成m/z=74, 乙酯可形成m/z=88的基准峰;
d、二元羧酸及其甲酯形成强的M峰,其强度随 两个羧基的接近程度增大而减弱。二元酸酯 出现由于羰基碳裂解失去两个羧基的M-90峰。
胺
特征:a、脂肪开链胺的M峰很弱,或者消失; 脂环胺及芳胺M峰明显;含奇数个N的胺其M 峰质量为奇数;低级脂肪胺芳香胺可能出现 M-1峰(失去·H);
酚和芳香醇的特征:
a、和其他芳香化合物一样,酚和芳香醇的M峰 很强,酚的M峰往往是它的基准峰;
b、苯酚的M-1峰不强,而甲苯酚和苄醇的M-1 峰很强,因为产生了稳定的鎓离子;
c、自苯酚可失去CO 、HCO。
卤化物
特征: a、脂肪族卤化物M峰不明显,芳香族的明显; b、氯化物和溴化物的同位素峰非常特征; c、卤化物质谱中通常有明显的X、M-X、M-
质谱的应用
例:某化合物的质谱数据:M=181,PM%=100% P(M+1)%=14.68% P(M+2)%=0.97%
查[贝诺表]
分子式
M+1
M+2
(1) C13H9O
14.23
1.14
(2) C13H11N 14.61
质谱解析学习.pptx
第36页/共49页
4. 断裂的预测
a.产物的稳定性
第37页/共49页
第38页/共49页
b.立体化学因素
第39页/共49页
c. 键的活泼性
C-I键比C-Br键活泼、C-O键比C-C键活泼
第40页/共49页
Some molecules undergo very little fragmentatio
丢失电子的能力 n>π>σ第10页 Nhomakorabea共49页
4.软电离技术的应用
C I 、 FA B 、 M A L D I 、 A P I
第11页/共49页
5. 分子式的确定(高分辨质谱的应用)
第12页/共49页
Exact Molecular Weights
O
CH3(CH2)5CH3 Heptane
CH3CO Cyclopropyl acetate
Relative intensity
100 80 60 40 20 0
91
CH2—CH2CH3
120
20
40
60
80 100
120
m/z
第43页/共49页
四、重排离子 P279-286 (自学)
1.
麦氏重排
2.
逆Diels-Alder反应
3.
中性小分子的脱离
4.
四员环重排
5.
双氢重排
6.
其它重排
第44页/共49页
A molecule that contains only C, H, and O or which has an even number of nitrogens has an even molecular weight.
第四章--质谱PPT课件
化合物可达到10-12-10-15g的检测灵敏度;并可适用于多种接口
联机技术(如流动注射,HPLC,HPCE)。
.
8
2.分析器
(1)静电场和磁场分析器
单聚焦仪器的分析器由磁场组成,双聚焦仪器的分析器由 静电场和磁场组成(顺置型),磁场在前,静电场在后,属于 倒置型。 (2)四极质量分析器
四极质量分析器是由四根互相平行的电极组成。
(2)论文记录法
论文记录方式如下(也是 m/z与RA%列表):32(M+) (66)
3l
(100)
29
(64)
15
(13)
:
:
括号中的数值表示该离子的相对强度。
表格形式虽然也可以准确地表示相对强度,甚至很弱的峰也能表示出来, 但不如棒图一目了然。
. 17
4.1.4 质谱仪的分辨率
质谱仪的分辨率 指的是能把相邻两个 峰分开的能力,两个 高度相等质量分别为M1 和M2的相邻峰正好分开。 分辨率定义为:
①按质荷比大小排列:m/z 15 16 17 28 29 30 31 32 33 34
RA% 13 0.21 1.0 6.3 64 38 100 66 0.98 0.14
②按相对强度次序排列:m/z 31 32 29 15 28 30 17 33 16 34
RA% 100 66 64 13 6.3 3.8 1.0 0.98 0.21 0.14
对于质荷比m/z100的离子,分辨率R=100时,它能与m/z101的峰分辨开; R=1000时它能与m/z100.1的峰分辨开;R=10000时它能与m/z100.01的峰分 辨开,R值越高越能与质荷比相近的离子分开。
如十三烷基苯(C19H32)M=260.2505,十一烷基苯酮(C18H28O)M=260.2140和 l,2-二甲基4-苯甲酰基萘(C19H160)M=260.1204,分辨率R=1000的低分辨仪器
第五章质谱分析法ppt课件
内容
第一节、质谱法的基本原理 第二节、质谱仪(自学) 第三节、质谱及主要离子峰的类型 第四节、质谱法的应用
1
第一节、质谱法的基本原理
一、概述
• 质谱分析法是在高真空系统中测定样品的分子离子及碎片离 子质量,以确定样品相对分子质量及分子结构的方法。
• 化合物分子受到电子流冲击后,形成的带正电荷分子离子及
静电分析器将具有相同 速度(或能量)的离子 分成一类;进入磁分析 器后,再将具有相同质 荷比而能量不同的离子 进行分离。 分辨率高,但体积大。
28
3. 四极滤质器(四极杆质量分析器)
特点: • 结构简单、体积小,分析速度快,适合与色谱联用 • 分辨率较高(比磁分析器略低) • 准确度和精密度低于磁偏转分析器,对质量较高的
醛,乙基取代物 伯胺 醇,甲酯类 乙酰基,丙基取代物 烷烃 结构中有芳环
CH3COOH+· C6H5CH2+ C6H5CO+
羧酸,乙酸酯,甲酯 苄基 苯甲酰基
36
·OCH3, CH3NH2
37
对于一般有机物电子失去的程度:
n电子 > 电子 > 电子
O
失去一个n电子形成的分子离子:
-e R C R'
质谱仪按用途分: 同位素质谱仪(测定同位素)、无机质谱仪(测定无机化合物)、
有机质谱仪(测定有机化合物)等。 根据质量分析器的工作原理分:
静态仪器:采用稳定磁场,按空间位置区分不同质荷比的离子 单聚焦和双聚焦质谱仪
动态仪器:采用变化的电磁场,按时空来区分不同质荷比的离子 飞行时间和四极滤质器式质谱仪
在电子轰击下,甲烷首先被电离: CH4+ →CH4++CH3++CH2++CH++C++H+
第一节、质谱法的基本原理 第二节、质谱仪(自学) 第三节、质谱及主要离子峰的类型 第四节、质谱法的应用
1
第一节、质谱法的基本原理
一、概述
• 质谱分析法是在高真空系统中测定样品的分子离子及碎片离 子质量,以确定样品相对分子质量及分子结构的方法。
• 化合物分子受到电子流冲击后,形成的带正电荷分子离子及
静电分析器将具有相同 速度(或能量)的离子 分成一类;进入磁分析 器后,再将具有相同质 荷比而能量不同的离子 进行分离。 分辨率高,但体积大。
28
3. 四极滤质器(四极杆质量分析器)
特点: • 结构简单、体积小,分析速度快,适合与色谱联用 • 分辨率较高(比磁分析器略低) • 准确度和精密度低于磁偏转分析器,对质量较高的
醛,乙基取代物 伯胺 醇,甲酯类 乙酰基,丙基取代物 烷烃 结构中有芳环
CH3COOH+· C6H5CH2+ C6H5CO+
羧酸,乙酸酯,甲酯 苄基 苯甲酰基
36
·OCH3, CH3NH2
37
对于一般有机物电子失去的程度:
n电子 > 电子 > 电子
O
失去一个n电子形成的分子离子:
-e R C R'
质谱仪按用途分: 同位素质谱仪(测定同位素)、无机质谱仪(测定无机化合物)、
有机质谱仪(测定有机化合物)等。 根据质量分析器的工作原理分:
静态仪器:采用稳定磁场,按空间位置区分不同质荷比的离子 单聚焦和双聚焦质谱仪
动态仪器:采用变化的电磁场,按时空来区分不同质荷比的离子 飞行时间和四极滤质器式质谱仪
在电子轰击下,甲烷首先被电离: CH4+ →CH4++CH3++CH2++CH++C++H+
质谱讲课课件讲解
Agilent7500系列ICP-MS
进样系统
真空系统
离子源
质量分析器
检测器
1.气体扩散 2.直接进样 3.气相色谱
1.电子轰击 2.化学电离 3.场致电离 4.激光
1.单聚焦 2.双聚焦 3.飞行时间 4.四极杆
显示
质谱仪各部分的工作原理
1. 真空系统
质谱仪的离子产生及经过系统必须处于高真空状态(离子 源真空度应达1.3×10-4~1.3×10-5Pa,质量分析器中应达 1.3×10-6Pa)。其作用是减少离子碰撞损失。 真空度过低,将会引起: a)大量氧会烧坏离子源灯丝; b)引起其它分子离子反应,使质谱图复杂化; c)用作加速离子的几千伏高压会引起放电。
适合分析高极性、相对分子量大 难挥发、和热稳定相差的样品, 对极性化合物测定不灵敏。常用的 基质:甘油、乙二醇胺等。
1、测定质量数可以做到7000Da。 2、快速。 3、软电离方式,碎片离子少
C. 基质辅助激光解吸附离子源(MALDI)
MALDI是通过激光束照射样品与基质的共结晶而使样品分 子电离,可以解决生物大分子的离子化难题,离子化过程 与FBI有相似之处。对基质的要求是能吸收337nm紫外光并 气化,能量由基质传给样品使样品一起气化并离子化。
CH2 CH2
CH2
CH2 CH2 CH3
CH2 CH2 CH2 CH3
15 CH3
CH2 CH2 CH2 CH2 CH3
43
29 15
57
71 85 99 113 142
m/z
正癸烷
C、亚稳离子峰 若质量为m1的离子在离开离子源受电场加速后,在进
入质量分析器之前,由于碰撞等原因很容易进一步分裂失 去中性碎片而形成质量m2的离子,即
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
质谱分析原理及质谱仪
一、质谱仪的基本结构
质谱仪是通过对样品电离后产生的具有不同的 m/z 的离 子来进行分离分析的。
主要组成部分: 1.进样部分 2.离子源 3.质量过滤器(分析器) 4.离子检测器 为了获得离子的良好分离和分析效果,避免离子损失,凡 有样品分子及离子存在和通过的地方,必须处于真空状态。
1、质量数可达300,000Da。 3、软电离方式,无或极少碎
片离子。 4、耐盐(样品含盐可达毫摩
尔浓度)。 5、适于分析复杂混合物。
常用基质
1、α氰基-4羟基-肉桂酸
硬电离方式,只能用于远远小于生物有机分 子的小分子(400Da以下)的检测,样品需经过 汽化进入电离区,不适合难挥发和热不稳定的 样品。能电离挥发性化合物、气体和金属蒸 汽。
B. FBI快速原子/离子轰击离子源(FAB)
使用高能量的惰性原子束(Ar)喷射样品靶上的样品和 基质表面,基质是溶解样品的非挥发性溶剂,样品从基质中解 吸附并汽化,离子化。基质的作用是溶解样品;吸收大部分能 量,有助于样品离子化并保护样品不被高能量撞击破坏。
第五章 质谱
质谱的基本知识 离子裂解的机理 有机质谱中的裂解反应 常见各类化合物的质谱 有机质谱的解析及应用 最新质谱技术及应用简介
质谱仪的工作原理
质谱仪是利用电磁学原理,使带电的样品离子按质荷 比进行分离的装置。离子电离后经加速进入磁场中,其 动能与加速电压及电荷 z 有关,即
z e U = 1/2 m 2
其中z为电荷数,e为元电荷(e=1.60×10-19C),U为加速 电压,m为离子的质量, 为离子被加速后的运动速度。
具有速度 的带电粒子进入质谱分析器的电磁场中,
根据所选择的分离方式,最终实现各种离子按m/z进行分
离。
e-
++ +
+
发展历史
1、1913年:Thomson使用MS发现了Ne是由22Ne和24Ne两种 同位素组成,随后,同位素分析开始发展。
适合分析高极性、相对分子量大 难挥发、和热稳定相差的样品, 对极性化合物测定不灵敏。常用的 基质:甘油、乙二醇胺等。
1、测定质量数可以做到7000Da。 2、快速。 3、软电离方式,碎片离子少
C. 基质辅助激光解吸附离子源(MALDI)
MALDI是通过激光束照射样品与基质的共结晶而使样品分 子电离,可以解决生物大分子的离子化难题,离子化过程 与FBI有相似之处。对基质的要求是能吸收337nm紫外光并 气化,能量由基质传给样品使样品一起气化并离子化。
4、60年代:出现了气相色谱-质谱联用仪,使质谱仪的应用 领域大大扩展,开始成为有机物分析的重要仪器;计算 机的应用又使质谱分析法发生了飞跃变化 。
5、90年代:由于生物分析的需要,一些新的离子化方法得 到快速发展,如快原子轰击离子源,基质辅助激光解吸 电离源,电喷雾电离源,大气压化学电离源等。
6、目前:出现了比较成熟的液相色谱-质谱联用仪,感应耦 合等离子体质谱仪,傅立叶变换质谱仪等。质谱分析法 已广泛地应用于化学、化工、材料、环境、地质、能源 、药物、刑侦、生命科学、运动医学等各个领域。
Agilent7500系列ICP-MS
进样系统
真空系统
离子源
质量分析器
检测器
1.气体扩散 2.直接进样 3.气相色谱
1.电子轰击 2.化学电离 3.场致电离 4.激光
1.单聚焦 2.双聚焦 3.飞行时间 4.四极杆
显示
质谱仪各部分的工作原理
1. 真空系统
质谱仪的离子产生及经过系统必须处于高真空状态(离子 源真空度应达1.3×10-4~1.3×10-5Pa,质量分析器中应达 1.3×10-6Pa)。其作用是减少离子碰撞损失。 真空度过低,将会引起: a)大量氧会烧坏离子源灯丝; b)引起其它分子离子反应,使质谱图复杂化; c)用作加速离子的几千伏高压会引起放电。
➢ 电子轰击(EI) ➢ 化学电离(CI) ➢ 电喷雾电离 (ESI) ➢ 基质辅助轰击法是通用的电离法,是使用高能电子束从试样
分子中撞出一个电子而产生正离子,即
M e M 2e
式中M为待测分子,M+为分子离子或母体离子。
电加热锑或钨的灯丝到2000℃,产生高 速电子束,其能量为10~70eV。
3) 直接探针进样:高沸点液体及固体 探针杆通常是一根规格为25cm6mm,末端有一装样
品的黄金杯(坩埚),将探针杆通过真空闭锁系统引入样品 ,如图所示。
优点: 引入样品量小,
样品蒸汽压可以很 低;
3.电离源
电离源的功能是将进样系统引入的气态样品分子转化成 离子。由于离子化所需要的能量随分子不同差异很大,因 此,对于不同的分子应选择不同的离解方法。通常称能给 样品较大能量的电离方法为硬电离方法,而给样品较小能 量的电离方法为软电离方法,后一种方法适用于易破裂或 易电离的样品。常见的离子源包括:
2、20世纪30年代末至40年代:由于石油工业的发展,需要 测定油的成份。通常用蒸馏的方法先分离这些烃类混合 物,然后再利用分别测定其折光率的方法来分析它们。 这通常要花数天时间。将MS用于石油工业中烃的分析, 可以大大缩短分析时间。
3、50年代初:质谱仪器开始商品化,并广泛用于各类有机 物的结构分析;同时质谱方法与NMR、IR等方法结合成 为分子结构分析的最有效的手段。
1) 色谱进样:利用气相和液相色谱的分离能力,与质谱仪 联用,进行多组份复杂混合物分析。
2) 间歇式进样:适于气体、沸点低且易挥发的液体、中等 蒸汽压固体。
(加热)
1.3-0.13Pa
如图所示。注入样品(10-100g)—贮样器(1L-3L)—抽真空并加热—样品蒸汽
分子(压力陡度)—漏隙—高真空离子源。
一般质谱仪都采用机械泵预抽空后,再用高效率扩散泵连 续地运行以保持真空。现代质谱仪采用分子泵可获得更高 的真空度。
2、进样系统
进样系统的作用是高效重复地将样品引入到离子源中,并 且不能造成真空度的降低。
常用的进样装置有三种类型:间歇式进样、直接探针进样、 色谱进样系统(GC-MS、HPLC-MS)和高频感藕等离子体 进样系统(ICP-MS)等。