数字高程模型
数字高程模型(DEM)——知识汇总
数字高程模型(DEM)——知识汇总一、数字高程的定义数字高程模型(Digital Elevation Model,简称DEM)是DTM中最基本的部分,它是对地球表面地形地貌的一种离散的数学表达。
DEM表示区域D上的三维向量有限序列,用函数的形式描述为:式中,X i,Y i是平面坐标,Z i是(X i ,Y i)对应的高程。
二、数字高程的特点1)表达的多样性,容易以多种形式显示地形信息。
2)精度的恒定,常规地图对着时间的推移,图纸将会变形,而DEM采用数字媒介,能够保持精度不变。
3)更新的实时性,容易实现自动化,实时化。
4)具有多比例尺特性。
三、数字地面模型(DTM)、数字高程模型(DEM)和数字地形模型(DGM)的区别表 1 三者的区别与联系四、数字高程数据1. 来源:DEM数据包括平面和高程两种信息,常用的数据来源有:影像,现有的地形图,地球本身,其他数据源。
2. 数字高程数据类型1) 分辨率①. 10米DEM数据全国10米数字高程模型数据,为栅格图像数据,图像分辨率为10米,数学基础采用2000国家大地坐标系(CGCS2000)及Albers投影。
数据像素值记录了点位高程。
高程值计量单位为米。
②. 12.5米DEM数据12.5米DEM数据是由ALOS的PALSAR传感器采集。
该传感器具有高分辨率、扫描式合成孔径雷达、极化三种观测模式。
该数据水平及垂直精度可达12米。
ALOS(Advanced Land Observing Satellite)卫星于2006年1月24日由日本发射升空,载有3个传感器:全色测绘体例测绘仪(PRISM),主要用于数字高程测绘;先进可见光与近红外辐射计-2(AVNIR-2),用于精确陆地观测;相控阵型L波段合成孔径雷达(PALSAR),用于全天时全天候陆地观测。
③. 不同分辨率下的晕渲图对比10m分辨率数据12.5m分辨率数据来源: databox.store/product/Details/344图1 不同分辨率下的晕渲图2) 遥感测量方法a) SRTM数据SRTM(Shuttle Radar Topography Mission),由美国太空总署(NASA)和国防部国家测绘局(NIMA)联合测量。
数字高程模型
DEM的核心是地形表面特征点的三维坐 标数据和一套对地表提供连续描述的算法, 最基本的DEM由一系列地面点 x,y 位置及 其相联系的高程 z 组成,其数学函数式表达 是
z = f(x,y),(x,y) ∈ DEM所在区域
统计各类土地面积
以H2为临界值,将数字地形的数据按照 公式进行重新分类,得到数字地形的二值图, 将该二值图与土地利用数据进行布尔逻辑运 算,统计出各类土地的淹没面积。
zi,j =
1 0
当zi,j H2 当zi,j H2
(3)剖面图的自动绘制
AB CD E
(a) DEM数据
300
300
200
a.地形简单的地区存在大量冗余数据; b.如不改变格网大小,则无法适用于起伏程度不同的 地区; c.由于栅格过于粗略,不能精确表示地形的关键特征, 如山峰、洼坑、山脊、山谷等。为了压缩栅格DTM的 冗余数据,可采用游程编码或四叉树编码方法。
3.DEM的表示方法 不规则三角网(TIN)模型
1 XYZ 2 XYZ 3 XYZ 4 XYZ 5 XYZ 6 6 XYZ 7 XYZ 8 XYZ
(8)生成坡度图、坡向图、剖面图,辅助地貌分 析,估计侵蚀和径流等。
(9)作为背景叠加各种专题信息如土壤、土地利 用及植被覆盖数据等,以进行显示与分析等等
2.DTM的数据采集 (1)以航空或航天遥感图像为数据源
左航片
全数字摄影测量
右航片
DEM
2.DTM的数据采集 (1)以航空或航天遥感图像为数据源 (2)以地形图为数据源
(2-3) (2-4)
数字高程模型
数字高程模型数字高程模型(Digital Elevation Model,简称DEM)是一种用于表示地球表面高程信息的数字模型。
它通常是基于地理空间数据采集和处理技术得到的数字地形模型,反映了地表不同位置的高程值。
数字高程模型在地理信息系统、地貌分析、水文模拟等领域具有广泛的应用价值。
数字高程模型的原理和构建方法数字高程模型是通过采集地表高程信息,构建数学模型,并进行数字化表达得到的。
构建数字高程模型的最基本方法是通过激光雷达、全球定位系统(GPS)等技术采集地面高程点,并据此构建高程表面模型。
另一种常用的方法是通过航空或卫星影像获取地表高程信息,并结合插值算法生成数字高程模型。
数字高程模型生成的过程中,需要考虑地球椭球体形状、椭球体参数、大地水准面等因素,并进行数学变换和处理以得到准确的高程数据。
常用的数字高程模型包括数字地面模型(DSM)、数字地形模型(DTM)等,它们之间的区别在于对地物表面和地表以下构造的不同描述。
数字高程模型在地理信息系统中的应用数字高程模型在地理信息系统中有广泛的应用,主要包括地形分析、三维可视化、洪水模拟、景观规划等方面。
在地形分析中,数字高程模型可以用于提取地形特征,计算坡度、坡向、流域分割线等地形参数,进而实现地貌分类、地形图绘制等功能。
三维可视化是数字高程模型应用的一个重要领域,通过将数字高程模型与空间数据结合,可以实现虚拟地形的构建和沉浸式视角的展示。
在洪水模拟和预测方面,数字高程模型可以用于模拟雨水径流路径、洪水淹没范围等,为防洪减灾提供重要的数据支持。
数字高程模型的发展趋势随着遥感技术、地理信息系统技术以及计算机处理能力的不断提升,数字高程模型的精度和分辨率也在不断提高。
未来,数字高程模型将更加精细化、高分辨率化,应用领域也将更加广泛,涉及城市规划、资源管理、环境保护等方面。
另外,数字高程模型的数据融合、多源信息整合、模型开放共享等方向也是未来发展的重点。
数字高程模型
1、数字高程模型:它是用一组有序数值阵列形式表示地面高程的一种实体地面模型,是数字地形模型(简称DTM)的一个分支,是表示区域D上的三维向量有限序列。
2、DTM:数字地形模型是利用一个任意坐标系中大量选择的已知x、y、z的坐标点对连续地面的一个简单的统计表示,或者说,DTM就是地形表面形态属性信息的数字表达,是带有空间位置特征和地形属性特征的数字描述。
地形表面形态的属性信息一般包括高程、坡度、坡向等。
3、TIN:不规则三角网,通过从不规则分布的数据点生成的连续三角面来逼近地形表面。
4、测绘4D产品(即DLG数字线划图、DRG数字栅格影像、DEM、DOM数字正射影像):DLG:现有地形图上基础地理要素分层存储的矢量数据集。
数字线划图既包括空间信息也包括属性信息。
DRG:数字栅格地图是纸制地形图的栅格形式的数字化产品。
DEM:数字高程模型是以高程表达地面起伏形态的数字集合。
DOM:数字正射影像利用航空相片、遥感影像,经象元纠正,按图幅范围裁切生成的影像。
5、连续不光滑DEM:指每个数据点代表的只是连续表面上的一个采样值,而表面的一阶导数或更高阶导数不连续的情况。
6、数字地貌模型:是地貌形体及其空间组合的数字形式,是一维、二维、三维、四维空间地貌的可视描述和模拟。
7、DEM误差:DEM高程值与真实值的差异9、插值:根据不同数据集的不同方式,DEM建模可以使用一个或多个数学函数对地表进行表示。
根据若干相邻参考点的高程求出待定点上的高程值。
(内插)14、不规则镶嵌数据模型:用相互关联的不规则形状与边界的小面块集合来逼近不规则分布的地形表面15、行程编码结构:对于一幅栅格图像,常常有行或列方向上相邻的若干点具有相同的属性代码,因而可采取某种方法压缩那些重复的记录内容,即只在各行或列数据的代码发生变化时依次记录该代码以及相同代码重复的个数,从而实现压缩16、细节层次模型:对同一个区域或区域中的局部使用具有不同细节的描述方法得到的一组模型。
第7章-数字高程模型
1 数字高程模型的定义
地形表面形态等多种信息的一个数字表示
DTM是定义在某一区域D上的m维向量有限序 列:
{Vi ,i 1,2,, n}
➢数字高程模型DEM(Digital Elevation Model)或 DHM(Digital Height Model) 是表示区域D上地形的三维向量有限序列
0
1 L
L
2kX
[{
0
Ck cos(
k 0
L
k
)
k 0
Ck
cos(2kX
L
k
)]}2
dX
2 z
1 2
m
(Ck
k 0
Ck )2 dX
1 2
m
(1
k 0
Ck Ck
)2 Ck2
1 2
m
[1
k 0
H (uk )]2Ck2
采样间隔和地形的复杂程度
2.利用检查点的DEM精度评定
在DEM内插时,预留一部分数据点作 为检查点,在建立DEM之后,由DEM内 插出这些点的高程,DEM的精度
“任何一个圆滑的数学表面总是可以用一 系列有规则的数学表面的总和,以任意的 精度进行逼近。”也就是一个数学表面上 某点(X,Y)处高程Z的表达式为:
n
Z f (X ,Y ) ajq(X ,Y , X j,Yj ) j 1
a1q(X ,Y , X1,Y1) a2q(X ,Y , X 2,Y2) anq(X ,Y , X n,Yn )
深度学习在DEM数据获取中的应用
1.针对激光点云的地面点和非地面点的分类处理: 一处理Lidar数据,提取每个点与周围点之间的相对高差并将其
转换为表示点特征的图像,用于神经网络的训练。分离地物点
数字高程模型
对地面地形的数字化模拟
01 简介
03 形式
目录
02 建立方法 04 数据来源
05 分辨率
07 产品案例
目录
06 用途
数字高程模型(Digital Elevation Model),简称DEM,是通过有限的地形高程数据实现对地面地形的数字 化模拟(即地形表面形态的数字化表达),它是用一组有序数值阵列形式表示地面高程的一种实体地面模型,是 数字地形模型(Digital Terrain Model,简称DTM)的一个分支,其它各种地形特征值均可由此派生。
(2)不规则三角。不规则三角是用不规则的三角表示的DEM,通常称DEM或TIN(Triangulated Irregular Network),由于构成TIN的每个点都是原始数据,避免了内插精度损失,所以TIN能较好地估计地貌的特征点、线, 表示复杂地形比矩形格精确。但是TIN的数据量较大,除存储其三维坐标外还要设点连线的拓扑关系,一般应用 于较大范围航摄测量方式获取数值 。
一般认为,DTM是描述包括高程在内的各种地貌因子,如坡度、坡向、坡度变化率等因子在内的线性和非线 性组合的空间分布,其中DEM是零阶单纯的单项数字地貌模型,其他如坡度、坡向及坡度变化率等地貌特性可在 DEM的基础上派生。
简介
DTM的另外两个分支是各种非地貌特性的以矩阵形式表示的数字模型,包括自然地理要素以及与地面有关的 社会经济及人文要素,如土壤类型、土地利用类型、岩层深度、地价、商业优势区等等。实际上DTM是栅格数据 模型的一种。它与图像的栅格表示形式的区别主要是:图像是用一个点代表整个像元的属性,而在DTM中,格的 点只表示点的属性,点与点之间的属性可以通过内插计算获得 。
用途
由于DEM描述的是地面高程信息,它在测绘、水文、气象、地貌、地质、土壤、工程建设、通讯、军事等国 民经济和国防建设以及人文和自然科学领域有着广泛的应用。如在工程建设上,可用于如土方量计算、通视分析 等;在防洪减灾方面,DEM是进行水文分析如汇水区分析、水系络分析、降雨分析、蓄洪计算、淹没分析等的基 础;在无线通讯上,可用于蜂窝的基站分析等等。
数字高程模型(DEM)——知识汇总
一、数字高程的定义数字高程模型(Digital Elevation Model,简称DEM)是DTM中最基本的部分,它是对地球表面地形地貌的一种离散的数学表达。
DEM表示区域D上的三维向量有限序列,用函数的形式描述为:V i=(X i,Y i,Z i);i=1,2,…,n式中, X i, Y i是平面坐标, Z i是(X i, Y i)对应的高程。
二、数字高程的特点1)表达的多样性,容易以多种形式显示地形信息。
2)精度的恒定,常规地图对着时间的推移,图纸将会变形,而DEM采用数字媒介,能够保持精度不变。
3)更新的实时性,容易实现自动化,实时化。
4)具有多比例尺特性。
三、数字地面模型(DTM)、数字高程模型(DEM)和数字地形模型(DGM)的区别表 1 三者的区别与联系四、数字高程数据1.来源:DEM数据包括平面和高程两种信息,常用的数据来源有:影像,现有的地形图,地球本身,其他数据源。
2.数字高程数据类型1)分辨率①.10米DEM数据全国10米数字高程模型数据,为栅格图像数据,图像分辨率为10米,数学基础采用2000国家大地坐标系(CGCS2000)及Albers投影。
数据像素值记录了点位高程。
高程值计量单位为米。
②.12.5米DEM数据12.5米DEM数据是由ALOS的PALSAR传感器采集。
该传感器具有高分辨率、扫描式合成孔径雷达、极化三种观测模式。
该数据水平及垂直精度可达12米。
ALOS(AdvancedLand Observing Satellite)卫星于2006年1月24日由日本发射升空,载有3个传感器:全色测绘体例测绘仪(PRISM),主要用于数字高程测绘;先进可见光与近红外辐射计-2(A VNIR-2),用于精确陆地观测;相控阵型L波段合成孔径雷达(PALSAR),用于全天时全天候陆地观测。
③.不同分辨率下的晕渲图对比图 1 不同分辨率下的晕渲图2)遥感测量方法a)SRTM数据SRTM(Shuttle Radar Topography Mission),由美国太空总署(NASA)和国防部国家测绘局(NIMA)联合测量。
数字高程模型的认识
城市规划与建设
数字高程模型在城市规划与建设中具有广泛的应用价值。通过数字高程模型,规 划师可以获取城市地形信息,了解城市的地貌特征和地表形态,为城市空间布局 、道路规划、排水系统设计等提供依据。
数字高程模型还可以用于城市景观设计、绿化规划等方面,提高城市的生态环境 质量和美学价值。
土地资源调查
土地资源调查是数字高程模型应用的另一个重要领域。通 过数字高程模型,可以获取土地资源的地形信息,了解土 地资源的分布、质量和利用状况,为土地资源的合理利用 和保护提供科学依据。
数据采集
通过地面测量、航空摄影测量 和卫星遥感等方式获取地形数 据。
网格生成
将处理后的地形数据转换为数 字高程模型,通常采用规则或 不规则的网格形式进行表示。
流程
DEM的建立流程包括数据采集、 数据处理、网格生成和质量控 制等步骤。
数据处理
对采集到的地形数据进行预处 理、编辑和整理,以确保数据 的质量和准确性。
数据可视化与表达
可视化表达
将数字高程模型转换为可视化的地形图,便于分析和应用。
可视化技术
利用GIS、三维可视化等技术,实现数字高程模型的动态展示和交互操作。
04
数字高程模型的精度与 误差分析
精度影响因素
数据源
数字高程模型的数据源直接影响其精度,高质量 的数据源能够提供更准确的地面高程信息。
采样间隔
详细描述
高分辨率数字高程模型能够捕捉到更多的地形细节,对于城市规划、土地利用、地质调 查等领域具有重要意义。同时,精细化的发展趋势使得数字高程模型能够更好地模拟和
预测地形地貌的变化。
多源数据融合与集成应用
总结词
多源数据的融合和集成应用是数字高程模型 发展的重要方向,能够提高模型的准确性和 可靠性。
第五章数字高程模型
左航片
全数字摄影测量
DEM
右航片
以地形图为数据源
• 主要以比例尺不大于1:1万的国家近期地形图为数据源,从 中量取中等密度地面点集的高程数据,建立DTM。其方法有 下列几种:
– 手工方法采用方格膜片、网点板或带刻划的平移角尺叠置在地形图上, 并使地形图的格网与网点板或膜片的格网线逐格匹配定位,自上而下, 逐行从左到右量取高程。当格网交点落在相邻等高线之间时,用目视 线性内插方法估计高程值。它的优点是几乎不需要购置仪器设备,而 且操作简便。
地面坡向数字矩阵 aspect of aspect
地面平面曲率数字矩阵
地面平面曲率提取方法
地面平面曲率图
通视分析
通视分析
• 通视性分析也称道视分析,它实质属于对地形进 行最优化处理的范畴,比如设置雷达站、 电视 台的发射站、道路选择、航海导航等,在军事上 如布设阵地(如炮兵阵地、电子对抗阵地)、设置 观察哨所、铺架通信线路等。
水流方向矩阵
32 64 128 16 K 1 842
汇流累积量矩阵
汇流累积量提取结果
水流方向矩阵
0 0 00 0 0 0 1 12 2 0 0 3 75 4 0 0 0 0 20 0 1 0 0 0 1 24 0 0 2 4 7 35 2
32 64 128 16 K 1 842
汇流累积量矩阵
汇流累积量提取结果
• 通视性分析的基本因子有两个,一个是两点之间 的通视性(Intervisibility),另一个是可视域 (ViewShed),即对于给定的观察点所覆盖的区域。
地形特征提取——水文分析
水文分析与计算是对所研究的水文变量或过程,作 出尽可能正确的概率描述,对防止水旱灾害和开发、利 用、保护水资源的工程或非工程措施的规划、设计、施 工以及管理运用有着重要的意义,也是DEM数据应用的 一个重要方面,主要用于研究与地表水流有关的各种自 然现象比如:洪水水位及泛滥情况或者可以划定受污染 源影响的地区、以及预测当改变某一地区的地貌时对整 个地区造成的后果等。
数字高程模型的概念
数字高程模型的概念一、引言数字高程模型(Digital Elevation Model,简称DEM)是地球表面地形形态和特征的数字表达。
它是一种数据格式,用于存储、管理和显示地球表面某一特定范围内的高程数据。
DEM在地理信息系统(GIS)、遥感(RS)、全球定位系统(GPS)等领域有着广泛的应用。
二、高程数据高程数据是数字高程模型的基础,它描述了地球表面某一特定范围内的高程信息。
高程数据可以是绝对高程或相对高程。
绝对高程是以地球质心为参考点,测量得到的高程;相对高程则是相对于某一特定基准面(如海平面)的高程。
高程数据的精度和分辨率直接影响数字高程模型的精度和详细程度。
三、地形形态地形形态是地球表面地形的高低起伏状态,包括山峰、山谷、平原、高原等地形。
数字高程模型通过表达地形形态,可以反映地球表面地形的高低起伏变化。
地形形态是数字高程模型的重要特征之一,它对于地貌分析、土地利用、水资源管理等领域具有重要意义。
四、地形特征地形特征是指地球表面地形上的特殊点或区域,如山峰、河流、湖泊等。
数字高程模型通过表达这些地形特征,可以提供更丰富的地理信息。
例如,通过提取山峰数据,可以分析山脉的分布和高度;通过提取河流数据,可以分析流域的水文特征。
地形特征对于环境监测、城市规划、交通布局等领域具有重要应用价值。
五、总结数字高程模型是地球表面地形形态和特征的数字表达,它通过高程数据、地形形态和地形特征等要素,提供了丰富的地理信息。
数字高程模型在地理信息系统、遥感、全球定位系统等领域有着广泛的应用,为地貌分析、土地利用、水资源管理、环境监测、城市规划等领域提供了重要的支持和参考。
随着科技的发展,数字高程模型的应用范围还将不断扩大,为人类提供更全面、更准确的地理信息。
数字高程模型
+第一章绪论数字地形图:在测绘领域,地形图是一个专有名词。
国内的地形图(国外的不了解)一般特指那些特定比例尺系列、有着固定分幅范围的、全面表达地表面的地形、地物特征的地图。
其内容特点是全面、均衡、不突出表达某种要素。
一般包括:测量控制点、居民地、水系、交通、管线、地貌、植被等内容。
数字地形图的历史形态是模拟地形图,一般是纸质的。
数字高程模型(DEM):地形图上的地貌是用等高线、高程点、陡坎、陡崖等表达的。
等高线和高程点,外加陡坎、陡崖及其比高构成了一种“高程模型”。
通过对他们的判读,可以得到对地表高程的总体印象,是对实际地貌的一种模拟。
数字地形图上的等高线和高程点是数字高程模型的一种。
不规则三角网、规则格网都可以是数字高程模型,其核心特点是都可以对地表高程信息进行完整的模拟。
数字地面(地形)模型(DTM):地形是“地表形态”或“地貌形态”的简称。
地形可以用高程来描述,也可以用坡度、坡向等信息来描述。
数字地形模型包括数字高程模型、数字坡度模型、数字坡向模型等。
数字表面模型(DSM):DEM必须是高程信息,是对地形和地貌的模拟,DSM可以是地物表面的模拟,包括植被表面、房屋的表面,对DSM进行加工,去掉房屋、植被等信息,可以形成DEM。
模型(Model):用来表现其它事物的一个对象或概念,是按比例缩减并转变为能够理解的事物本体。
模型可用来表示系统或现象的最初状态,或表现某些假定或预测的情形。
三个层次:概念模型----基于个人的经验与知识在大脑中形成的关于状况或对象的模型。
物质模型----模拟的模型。
如沙盘,塑料地形模型。
数学模型----基于数字系统的定量模型。
用数学的语言、方法去近似地刻划实际,是由数字、字母或其它数学符号组成的,描述现实对象数量规律的数学公式、图形或算法。
•(1)按照模型的应用领域(或所属学科)如人口模型,生物模型,生态模型,交通模型,作战模型等。
•(2)按照建立模型的数学方法(或所属数学分支)如初等模型,微分方程模型、网络模型、运筹模型、随机模型等。
数字高程模型DEM
(6)体积的计算
(7)剖面积的计算
地形图数字化 DEM生成流程
3 DEM生成的流程
1. 从等高线数据可以直接生成TIN,也可
直接生成格网DEM
2. 格网DEM也可由等高线先生成TIN再内
插获得
3. 经过实践证明,由等高线先生成TIN再
内插格网DEM的精度和效率都是很好的
3.5.4 DEM的应用 1 基本地形因子计算
(1)坡度和坡向计算
空间插值
当进行降雨量、污染物浓度、高度变化等分析时,不可能对该 现象分布范围内的每点都进行测量,只能对研究区内进行采样 测量,然后使用这些样点数据推导整个区域。插值是这种推导 过程的一种方法
插值就是使用有限样本值去预测未知位置值的过程。即从分布 在某一区域内的一组具有已知值的样本点计算未知的位置的值
对线和面特征可以分为“硬(Hard)”或“软(Soft)”。硬特征表 示突变的事物(如道路、河流等指示坡度突变),软特征表示连续的 事物(如连续的山脊线等)
3.5.3 DEM的建立
为了建立DEM,必须测量一些点的三维坐标,这就是DEM数据采集
1、 DEM数据采集方法 (1)野外实地测量 利用自动记录的测距经纬仪(常用为全站仪)在野外实 测。这种速测经纬仪一般都有CPU,可以自动记录和显 示有关数据,还能进行多种测站上的计算工作。其记录
A
3 1 B 4 5 9 I 2 C D
E
7 F
6
8
11
G H
10
J
优 点
不规则三角网数字高程由连续的
三角面组成,三角面的形状和大
数字高程模型
数据处理
01 数据采集:通过遥感、地形测量 等手段获取原始数据
02 数据预处理:对数据进行清洗、 格式转换等处理
03 数据融合:将不同来源的数据进 行融合,形成统一的数据格式
04 数据分析:对数据进行分析,提 取有用信息,生成数字高程模型
数据可视化
数字高程模型:将 地形数据转化为可 视化的三维模型
个高程值。
的地形表面高程数据模型。
03 DEM可以用于各种地形
04 DEM的数据来源包括遥
分析、可视化和建模应用,
感数据、地形测量数据、
如地形渲染、洪水模拟、
数字地图等。
地貌分析等。
数字高程模型的应用领域
01
地形分析:用于地形特征分 析、地貌分类等
02
工程设计:用于道路、桥梁、 水利等工程设计
03
05
激光雷达数字高程模型:利用激 光雷达技术获取高程数据,具有 较高的精度和分辨率
02
矢量数字高程模型:以矢量形式 表示高程数据,每个矢量元素都 有一个高程值
04
地形图数字高程模型:以地形图 为基础,通过数字化处理得到高 程数据
06
卫星遥感数字高程模型:利用卫 星遥感技术获取高程数据,覆盖 范围广,更新速度快
储
03
跨领域合作:不 同领域之间的合 作,实现数据共
享和整合
04
隐私保护:在数 据共享过程中, 注重保护用户隐
私和数据安全
谢谢
应用拓展
01
城市规划:用于城市地 形分析、规划设计等
02
灾害预警:用于洪水、 滑坡等自然灾害预警和 评估
03
交通规划:用于道路、 铁路等交通基础设施规 划
04
环境监测:用于水土保 持、生态评估等环境监 测和评估
数字高程模型
数字高程模型(Digital Elevation Models, DEM)主要用于描述地面起伏状况,可以用于各种地形信息提取,如坡度、坡向等,并进行可视化分析等应用分析。
DEM在土木工程设计、军事指挥等众多领域被广泛使用。
一、基于DEM的信息提取(一)、坡度的计算地表单元的坡度就是其切平面的法线方向与Z轴的夹角。
若需求格网点上的坡度时,可取3×3的格网单元进行计算。
也可求出该格网点八个方向上的坡度,再取其平均值。
(详细的计算方法)(二)、坡向的计算坡向是地表单元的法向量在OXY平面上的投影与X轴之间的夹角。
(详细的计算方法)二、基于DEM的可视化(一)、剖面分析研究地形剖面,常常可以以线代面,研究区域的地貌形态、轮廓形状、地势变化、地质构造、斜坡特征、地表切割强度等等。
如果在地形剖面上叠加上其它地理变量,例如坡度、土壤、植被、土地利用现状等,可以提供土地利用规划、工程选线和选址等的决策依据。
坡度图的绘制应在格网DEM或三角网DEM上进行。
已知两点的坐标A(x1,y1),B(x2,y2),则可求出两点连线与格网或三角网的交点,以及各交点之间的距离。
然后按选定的垂直比例尺和水平比例尺,按距离和高程绘出剖面图。
在格网或三角网交点的高程通常可采用简单的线性内插算出,且剖面图不一定必须沿直线绘制,也可沿一条曲线绘制,但其绘制方法仍然是相同的。
(剖面分析例图)(二)、通视分析通视分析是指以某一点为观察点,研究某一区域通视情况的地形分析。
通视分析的核心是通视图的绘制。
绘制通视图的基本思路是:以以O为观察点,对格网DEM或三角网DEM上的每个点判断通视与否,通视赋值为1,不通视赋值为0。
由此可形成属性值为0和1的格网或三角网。
对此以0.5为值追踪等值线,即得到以O为观察点的通视图。
因此,判断格网或三角网上的某一点是否通视成为关键。
(通视分析例图)另一种利用DEM绘制通视图的方法是,以观察点O为轴,以一定的方位角间隔算出0°~360°的所有方位线上的通视情况。
数字高程模型及地形分析
数字高程模型及地形分析
§10.2 DEM的主要表示模型
四. 层次模型
▪ 特点:
• 一种表达多种不同精度水平的数字高程模型 • 大多数层次模型是基于不规则三角网模型的 • 层次地形模型允许根据不同的任务要求选择不同精度的地形模型
▪ 实际运用中必须注意几个重要的问题:
• 层次的数据导致数据冗余 • 自动搜索的效率问题,例如搜索一个点可能先在最粗的层次上搜索,
再在更细的层次上搜索,直到找到该点 • 三角网形状的优化问题 • 可能允许根据地形的复杂程度采用不同详细层次的混合模型 • 在表达地貌特征方面应该一致,例如,如果在某个层次的地形模型上
数字高程模型及地形分析
§10.1 概述
❖DEM的表示方法
▪ 一个地区的地 表高程的变化 可以采用多种 方法表达
DEM 表 示 方 法
▪ 用数学定义的 表面或点、线 、影像都可用 来部 点数据
线数据
傅立叶级数 高次多项式
规则数学分块
不规则数学分块
密度一致
规则
密度不一致
特征点
数字高程模型及地形分析
§10.2 DEM的主要表示模型
❖ DEM的表示模型
一.等高线模型 二.规则格网模型 三.不规则三角网模型
数字高程模型及地形分析
§10.2 DEM的主要表示模型
一. 等高线模型
▪ 等高线通常被存储 成一个有序的坐标 点序列,可以认为 是一条带有高程值 属性的简单多边形 或多边形弧段
▪ 数据量过大 ,给数据管理带来了不方便,通常要进行 压缩存储
• 哈夫曼编码进行无损压缩 • 基于离散余弦变换(Discrete Cosine Transformation,DCT
测绘技术中常见的数字高程模型介绍
测绘技术中常见的数字高程模型介绍测绘技术在现代社会中发挥了重要的作用,尤其是在城市规划、土地利用以及自然灾害防治等方面。
数字高程模型(Digital Elevation Model, DEM)是测绘技术中常见且重要的一个概念。
本文将介绍数字高程模型的概念、应用以及构建方法。
一、数字高程模型的概念数字高程模型指的是一种描述地表形态及其相关信息的数学模型。
它用离散的数据点或像元来表示地面的高程信息。
数字高程模型能够精确表达地表的高低起伏,并且能够提供用于分析和测量的几何和地形属性,如高度、坡度和坡向等。
二、数字高程模型的应用数字高程模型在测绘技术中有着广泛的应用。
首先,它在地图制作中起到了至关重要的作用。
数字高程模型能够提供地形的三维信息,帮助测绘人员更加准确地绘制地图。
其次,数字高程模型也是土地规划和建设工程设计的重要工具。
通过数字高程模型,规划师和工程师能够深入了解地表形态特征,为城市规划和建设提供科学依据。
此外,数字高程模型在环境保护、水资源管理以及自然灾害预测和防治等领域也有着广泛的应用。
三、数字高程模型的构建方法数字高程模型的构建有多种方法,主要包括测量和遥感两种方式。
测量方式包括地面实地测量和空中摄影测量。
地面实地测量通常使用全站仪或GPS等测量仪器对地面进行测量,然后通过插值法将测量数据构建成数字高程模型。
空中摄影测量则是通过航空器从空中获取影像,再通过摄影测量技术提取地面高程信息,并通过数字影像处理软件构建数字高程模型。
遥感方式则是利用航天卫星或航空器搭载的遥感传感器获取地表影像数据,通过图像处理技术提取高程信息,并构建数字高程模型。
这种方式可以快速且经济地获取大范围的地表高程信息。
四、数字高程模型的分类根据数据的来源和表示方式,数字高程模型可以分为灰度 DEM、三角网 DEM 和等高线 DEM。
灰度 DEM 是最常见的一种数字高程模型,它使用灰度图像来表示地表的高程信息。
三角网 DEM 是通过将地表划分为多个三角网单元,利用分析网格单元内的高程数据构建数字高程模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字高程模型
4
什么是4D产品(DEM,DLG,DRG,DOM)
数字高程模型(Digital Elevation Model,缩 写DEM)是在某一投影平面(如高斯投影平面) 上规则格网点的平面坐标(X,Y)及高程(Z)的 数据集。DEM的格网间隔应与其高程精度相适配, 并形成有规则的格网系列。根据不同的高程精度, 可分为不同类型。为完整反映地表形态,还可增加 离散高程点数据。 数字线划地图(Digital Line Graphic,缩写 DLG)是现有地形图要素的矢量数据集,保存各要 素间的空间关系和相关的属性信息,全面地描述地 表目标。
规则格网数据模型的优点: 1)数据结构简单,算法实现容易,便于空间操作
和存储。尤其适合在栅格数据结构的GIS系统中。 2)容易计算等高线、坡度、坡向、自动提取地域
地形等。 规则格网是DEM最广泛使用的格式。目前,很多
国家都以规则格网的数据矩阵作为DEM提供方式。
数字高程模型
14
规则格网数据模型的缺点: 1)数据量大,通常采用压缩存储
描述地形表面的模型。实质上这是对地面形态和属性 信息的数字表达。 DEM(Digital Elevation Model)数字高程模型
当DTM模型中数字属性为高程时称DEM模型,即 数字高程模型。
DEM模型是DTM模型的一种特例。
数字高程模型
3
从测绘的角度看
DEM模型是新一代的地形图,它通过存储在 介质上的大量地面点空间数据和地形属性数 据,以数字形式来描述地形地貌。
无损压缩存储,如游程编码、链码、四叉树编码; 有损压缩存储,如离散余弦(DCT Discrete Cosine Transformation), 小波变换(Wavelet Transformation)
2)不规则的地面特性与规则的数据表示之间本身就不 协调。它对不同地形采用一律平等的规则格网,不利于 表示复杂地形。
一、规则格网(grid)模型
规则格网模型将空间区域分成规则的等距离单元, 每个单元对应一个数值,通常在数学上表示为一个 矩阵,在计算机中表现为一个二维数组,每个格网 单元或数组元素对应一个高程值。
用规则采样点数据(或把不规则采样点数据内插成 规则点数据),而后,以矩阵形式来表地面形状。 它已成为栅格数据结构中DEM的通用形式。
将格网面元四个角点高程拟合为双线性趋 势面。
将格网面元四个角点高程拟合为双三次趋 势面。
3)格网点 针对格网点的值
数字高程模型
( i, j ) ( i, j+1) ( i+1,j ) ( i+1, j+1) ( i, j ) ( i, j+1) ( i+1,j ) ( i+1, j+1)
12
3. 格网数据结构
第七章 数字高程模型
1 数字地面模型概述 2 DEM常用数据模型 3 DEM数据的获取 4 数字地形可视化 5 数字地形分析 6 DEM的应用
数字高程模型
1
7.1 数字地面模型概述
地理空间实质是三维的,只是人们通常在二维地 理空间上描述并进行分析。如在土地利用,土地分 级等问题上,都用平面专题图来描述。
数字高程模型
5
• 数字栅格地图(Digital Raster Graphic, 缩写DRG)是现有纸质地形图经计算机 处理后得到的栅格数据文件。每一幅地 形图在扫描数字化后,经几何纠正,并 进行内容更新和数据压缩处理,彩色地 形图还应经色彩校正,使每幅图像的色 彩基本一致。数字栅格地图在内容上、 几何精度和色彩上与国家基本比例尺地 形图保持一致。
数字高程模型
15
二、不规则三角网 (TIN) (Triangulated Irregular Network )
由于受观测手段所限,或专业要求,在实际中获取 的数据常不是规则格网数据,大多为不规则的离散 数据。如地震观测中观测的地层结构数据,水利中 观测的地下水资源数据等。
数字高程模型
10
规则格网(grid)模型
数字高程模型
11
2. 格网的含义
1)格网面元
组成格网的四个相邻格点在水平面上所包含 的面积单元。
2)格网面元的趋势面
格网面元的四个角点高程支撑的数学面,通 常该数学面用三种形式表示。
按最小二乘法将格网面元四个角点高程拟 合为一个平面,称格网面元的平面趋势面。
格网数ห้องสมุดไป่ตู้结构是典型的栅格数据结构,可采用栅格
矩阵及其压缩编码的方法表示。其数据包括三部分:
1)元数据
描述DEM数据的数据,如数据表示的时间、边界、测 量单位、投影参数。
2)数据头
DEM数据的起点坐标、坐标类型、格网大小、行列数 等。
3)数据体
行列数分布的数据阵列。
数字高程模型
13
4、规则格网的优缺点
数字地面模型的提出,从时间上实际上早于GIS, 但GIS的发展大大促进人们对数字地面模型的研究。
目前,数字地面模型已成为GIS的重要内容, GIS的很多功能以数字地面模型为基础。
数字高程模型
2
DTM (Digital Terrain Model)数字地形模型 50年代由MIT摄影测量实验室提出,是用数字形式
数字高程模型
6
• 数字正射影像图(Digital Orthophoto Map,缩写DOM)是利用数字高程模型 (DEM)对经扫描处理的数字化航空像 片,经逐像元进行投影差改正、镶嵌, 按国家基本比例尺地形图图幅范围剪裁 生成的数字正射影像数据集。它是同时 具有地图几何精度和影像特征的图像, 具有精度高、信息丰富、直观真实等优 点。
数字高程模型
7
DEM表示方法
整体
数学方法 局部
傅立叶级数 高次多项式 规则数学分块 不规则数学分块
规则 点数据 不规则
密度一致 密度不一致 三角网
邻近网
图形法
典型特征 水平线
山峰、洼坑 隘口、边界
线数据 垂直线 典型线
山脊线 谷底线 海岸线 坡度变换线
DEM的表示方法
数字高程模型
8
7.2 DEM的常用数据模型
数字高程模型
9
1.模型的表示
按平面上等间距规则采样,或内插所建立的数字地面 模型,称为基于栅格的数字地面模型,可以写成以下 形式:
DTM=│Zi,j│,i=l,2,…,m; j=1,2,n
式中,Z为栅格结点(i,j)上的地面属性数据,包括土 地权属、土壤类型、土地利用等。当该属性为海拔高 程时 ,则该模型即为数字高程模型 。