--一半径为R的半圆细环上均匀地分布电荷--求环心处的
大学物理复习题
大学物理1期末复习题(力学部分)第一章重点:质点运动求导法和积分法,圆周运动角量和线量。
第二章重点:牛顿第二运动定律的应用(变形积分) 第三章重点:动量守恒定律和机械能守恒定律 第四章重点:刚体定轴转动定律和角动量守恒定律1.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段时间内所经过的路程为422ttS ππ+=,式中S 以m 计,t 以s 计,则在t 时刻质点的角速度为 22tππ+rad/s , 角加速度为 2/2srad π。
(求导法)2.质点沿x 轴作直线运动,其加速度t a 4=m/s 2,在0=t 时刻,00=v ,100=x m ,则该质点的运动方程为=x 33210tx += 。
(积分法)3.一质点从静止出发绕半径R 的圆周作匀变速圆周运动,角加速度为β,则该质点走完半周所经历的时间为_____βπ2_ _____。
(积分法)4.伽利略相对性原理表明对于不同的惯性系牛顿力学的规律都具有相同的形式。
5.一质量为kg m 2=的质点在力()()N t F x 32+=作用下由静止开始运动,若此力作用在质点上的时间为s 2,则该力在这s 2内冲量的大小=I 10 NS ;质点在第s 2末的速度大小为 5 m/s 。
(动量定理和变力做功)6.一质点在平面内运动, 其1c r =,2/c dt dv =;1c 、2c 为大于零的常数,则该质点作 匀加速圆周运动 。
7.一质点受力26x F -=的作用,式中x 以m 计,F 以N 计,则质点从0.1=x m 沿X 轴运动到x=2.0 m 时,该力对质点所作的功=A J 14-。
(变力做功) 8.一滑冰者开始自转时其动能为20021ωJ ,当她将手臂收回, 其转动惯量减少为30J ,则她此时自转的角速度=ω 03ω 。
(角动量守恒定律)9.一质量为m 半径为R 的滑轮,如图所示,用细绳绕在其边缘,绳的另一端系一个质量也为m 的物体。
物理答案(1)
5.10 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1L r Q εE -=(2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21Lr r Q εE +=若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r q εe E 20d π41d '= 整个带电体在点P 的电场强度⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=LE i E d (2) 若点P 在棒的垂直平分线上,如图(A)所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==Ly E αE j j E d sin d 证 (1) 延长线上一点P 的电场强度⎰'=L r πεq E 202d ,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 2⎰'=利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2203/22222041π2d π41L r r εQ r x L xrQ εE L/-L/+=+=⎰当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度r ελL r L Q r εE l 0220π2 /41/π21lim =+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(B)].这说明只要满足r 2/L 2<<1,带电长直细棒可视为无限长带电直线.5 -11 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第5 -3 节的例1 可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度. 解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθR δS δq d sin π2d d 2⋅==,在点O 激发的电场强度为 ()i E 3/2220d π41d r x qx ε+=由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθR πδR θR πεr x q x πεE d cos sin 2 d sin 2cos 41d 41d 02303/2220=⋅=+= 积分得 02/004d cos sin 2εδθθθεδE π⎰==5 -18 设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为()()R r ρkr ρ>=≤≤= 0R r 0k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析 通常有两种处理方法:(1) 利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有2S π4d r E ⋅=⋅⎰S E 根据高斯定理⎰⎰=⋅V ρεd 1d 0S E ,可解得电场强度的分布. (2) 利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为r r ρq ''⋅=d π4d 2,每个带电球壳在壳内激发的电场0d =E ,而在球壳外激发的电场 r r εq e E 20π4d d = 由电场叠加可解得带电球体内外的电场分布()()()()R r r r R r>=≤≤=⎰⎰ d R r 0 d 00E E E E解1 因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理⎰⎰=⋅V ρεd 1d 0S E 得球体内(0≤r ≤R ) ()400202πd π41π4r εk r r kr εr r E r ==⎰ ()r εkr r e E 024= 球体外(r >R)()400202πd π41π4r εk r r kr εr r E R ==⎰ ()r εkR r e E 024= 解2 将带电球分割成球壳,球壳带电r r r k V ρq '''==d π4d d 2由上述分析,球体内(0≤r ≤R )()r r rεkr r r r r k εr e e E 0222004d π4π41=''⋅'=⎰ 球体外(r >R )()r r Rr εkR r r r πr k πεr e e E 20222004d 441=''⋅'=⎰5 -22 一个内外半径分别为R 1 和R 2 的均匀带电球壳,总电荷为Q 1 ,球壳外同心罩一个半径为R 3 的均匀带电球面,球面带电荷为Q 2 .求电场分布.电场强度是否为离球心距离r 的连续函数? 试分析.分析 以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而24d r πE ⋅=⎰S E .在确定高斯面内的电荷∑q 后,利用高斯定理∑⎰=0/d εq S E 即可求出电场强度的分布.解 取半径为r 的同心球面为高斯面,由上述分析∑=⋅02/π4εq r Er <R 1 ,该高斯面内无电荷,0=∑q ,故01=ER 1 <r <R 2 ,高斯面内电荷()31323131R R R r Q q --=∑ 故 ()()23132031312π4r R R εR r Q E --= R 2 <r <R 3 ,高斯面内电荷为Q 1 ,故2013π4rεQ E = r >R 3 ,高斯面内电荷为Q 1 +Q 2 ,故20214π4r εQ Q E += 电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图(B)所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3 的带电球面两侧,电场强度的跃变量230234π4ΔεσR εQ E E E ==-= 这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -24 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 , 0=∑q01=E 在带电面附近,电场强度大小不连续,电场强度有一跃变R 1 <r <R 2 ,L λq =∑rελE 02π2= r >R 2, 0=∑q03=E在带电面附近,电场强度大小不连续,电场强度有一跃变00π2π2ΔεσrL εL λr ελE === 5 -29 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a)放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布.解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布, ()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a εσa x2 00i E 电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x<<--=⋅=⎰ d 00l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 00a -a x l E l E ()a x a εσV >-=⋅+⋅=⎰⎰ d d 00a-a x l E l E 5 -30 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?分析 通常可采用两种方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.(2) 利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQ V 0π4= 在球面内电场强度为零,电势处处相等,等于球面的电势RεQ V 0π4= 其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布()()()22021321201211 π4 π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1 时,有20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r +=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞l E l E l E 当R 1 ≤r ≤R 2 时,有202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r +=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞l E l E当r ≥R 2 时,有rεQ Q V r 02133π4d +=⋅=⎰∞l E (2) 两个球面间的电势差⎪⎪⎭⎫ ⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V += 若该点位于两个球面之间,即R 1 ≤r ≤R 2 ,则202012π4π4R εQ r εQ V += 若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+= (2) 两个球面间的电势差()2011012112π4π42R εQ R εQ V V U R r -=-==6 -8 一导体球半径为R 1 ,外罩一半径为R 2 的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0 .求此系统的电势和电场的分布.分析 若200π4R εQ V =,内球电势等于外球壳的电势,则外球壳内必定为等势体,电场强度处处为零,内球不带电. 若200π4R εQ V ≠,内球电势不等于外球壳电势,则外球壳内电场强度不为零,内球带电.一般情况下,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示.依照电荷的这一分布,利用高斯定理可求得电场分布.并由⎰∞⋅=p p V l E d 或电势叠加求出电势的分布.最后将电场强度和电势用已知量V 0、Q 、R 1、R 2表示.解 根据静电平衡时电荷的分布,可知电场分布呈球对称.取同心球面为高斯面,由高斯定理()()∑⎰⋅=⋅=⋅02/π4d εq r E r r E S E ,根据不同半径的高斯面内的电荷分布,解得各区域内的电场分布为r <R 1时, ()01=r ER 1<r <R 2 时,()202π4r εq r E = r >R 2 时, ()202π4r εq Q r E +=由电场强度与电势的积分关系,可得各相应区域内的电势分布.r <R 1时,20103211π4π4d d d d 2211R εQ R εq V R R R R r r +=⋅+⋅+⋅=⋅=⎰⎰⎰⎰∞∞l E l E l E l E R 1<r <R 2 时,200322π4π4d d d 22R εQ r εq V R R r r +=⋅+⋅=⋅=⎰⎰⎰∞∞l E l E l E r >R 2 时,rεQ q V r 03π4d +=⋅=⎰∞l E 3 也可以从球面电势的叠加求电势的分布.在导体球内(r <R 1)20101π4π4R εQ R εq V += 在导体球和球壳之间(R 1<r <R 2 )2002π4π4R εQ r εq V += 在球壳外(r >R 2)rεQ q V 03π4+= 由题意102001π4π4R εQ R εq V V +== 得102001π4π4R εQ R εq V V +== 代入电场、电势的分布得r <R 1时,01=E ;01V V =R 1<r <R 2 时,22012012π4rR εQ R r V R E -=;r R εQ R r r V R V 201012π4)(--= r >R 2 时,220122013π4)(r R εQ R R r V R E --=;rR εQ R R r V R V 2012013π4)(--=8 -7 有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的电流,且电流均以tI d d 的变化率增长.若有一边长为d 的正方形线圈与两导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律tΦξd d -=来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=S ΦS B d 来计算(其中B 为两无限长直电流单独存在时产生的磁感强度B 1 与B 2 之和).为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即()B B x =,故取一个平行于长直导线的宽为dx 、长为d 的面元dS ,如图中阴影部分所示,则x d S d d =,所以,总磁通量可通过线积分求得(若取面元y x S d d d =,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tl ME M d d -=求解. 解1 穿过面元dS 的磁通量为 ()x d xI μx d d x I μΦd π2d π2d d d d 0021-+=⋅+⋅=⋅=S B S B S B 因此穿过线圈的磁通量为 ()43ln π2d π2d π2d 02020Id μx x Id μx d x Id μΦΦd d d d =-+==⎰⎰⎰ 再由法拉第电磁感应定律,有 tI d μt ΦE d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为43ln π20dI μΦ=线圈与两长直导线间的互感为 43ln π20d μI ΦM ==当电流以tl d d 变化时,线圈中的互感电动势为tI d μt I M E d d 43ln π2d d 0⎪⎭⎫ ⎝⎛=-= 试想:如线圈又以速率v 沿水平向右运动,如何用法拉第电磁感应定律求图示位置的电动势呢?此时线圈中既有动生电动势,又有感生电动势.设时刻t ,线圈左端距右侧直导线的距离为ξ,则穿过回路的磁通量()ξf ΦS,1d =⋅=⎰S B ,它表现为变量I 和ξ的二元函数,将Φ代入tΦE d d -= 即可求解,求解时应按复合函数求导,注意,其中v =t ξd d ,再令ξ=d 即可求得图示位置处回路中的总电动势.最终结果为两项,其中一项为动生电动势,另一项为感生电动势.8 -10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?分析 本题及后面几题中的电动势均为动生电动势,除仍可由t ΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰lE v 求解. 在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线OP 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-=由于静止的 形导轨上的电动势为零,则E =-2RvB .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0 又因 E =E OP +E PO即 E OP =-E PO =2RvB由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.8 -12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.分析 如前所述,本题既可以用法拉第电磁感应定律tΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰l E v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E vl αB lo d cos 90sin ⎰=v ()()l θB θωlo d 90cos sin ⎰-=l ()⎰==L θL B ωl l θB ω022sin 21d sin 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E tΦE ++==-=0d d 显然,E QO =0,所以 ()221PQ B ωE E E QO PQ OP ==-= 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.后者是垂直切割的情况.8 -13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40A .求杆中的感应电动势,杆的哪一端电势较高?分析 本题可用两种方法求解.(1) 用公式()l B d ⋅⨯=⎰l E v 求解,建立图(a )所示的坐标系,所取导体元x l d d =,该处的磁感强度xI μB π20=.(2) 用法拉第电磁感应定律求解,需构造一个包含杆AB 在内的闭合回路.为此可设想杆AB 在一个静止的形导轨上滑动,如图(b)所示.设时刻t ,杆AB 距导轨下端CD 的距离为y ,先用公式⎰⋅=S ΦS B d 求得穿过该回路的磁通量,再代入公式tΦE d d -=,即可求得回路的电动势,亦即本题杆中的电动势. 解1 根据分析,杆中的感应电动势为 ()V 1084.311ln 2πd 2πd d 50m 1.1m 1.00-⨯-=-=-==⋅⨯=⎰⎰v v v I μx x μxl E AB AB l B 式中负号表示电动势方向由B 指向A ,故点A 电势较高.解2 设顺时针方向为回路ABCD 的正向,根据分析,在距直导线x 处,取宽为dx 、长为y 的面元dS ,则穿过面元的磁通量为x y xI μΦd 2πd d 0=⋅=S B 穿过回路的磁通量为 11ln 2πd 2πd 0m1.1m 1.00⎰⎰-===S Iy μx y x I μΦΦ 回路的电动势为V 1084.32πd d 11ln 2πd d 500-⨯-=-=-=-=Iy μt y x I μt ΦE 由于静止的形导轨上电动势为零,所以V 1084.35-⨯-==E E AB式中负号说明回路电动势方向为逆时针,对AB 导体来说,电动势方向应由B 指向A ,故点A 电势较高.8 -14 如图(a)所示,在“无限长”直载流导线的近旁,放置一个矩形导体线框,该线框在垂直于导线方向上以匀速率v 向右移动,求在图示位置处,线框中感应电动势的大小和方向.分析 本题亦可用两种方法求解.其中应注意下列两点:1.当闭合导体线框在磁场中运动时,线框中的总电动势就等于框上各段导体中的动生电动势的代数和.如图(a)所示,导体eh 段和fg 段上的电动势为零[此两段导体上处处满足()0l B =⋅⨯d v ],因而线框中的总电动势为()()()()hg ef hgef gh ef E E E -=⋅⨯-⋅⨯=⋅⨯+⋅⨯=⎰⎰⎰⎰l B l B l B l B d d d d v v v v 其等效电路如图(b)所示.2.用公式tΦE d d -=求解,式中Φ是线框运动至任意位置处时,穿过线框的磁通量.为此设时刻t 时,线框左边距导线的距离为ξ,如图(c )所示,显然ξ是时间t 的函数,且有v =t ξd d .在求得线框在任意位置处的电动势E (ξ)后,再令ξ=d ,即可得线框在题目所给位置处的电动势.解1 根据分析,线框中的电动势为hg ef E E E -=()()⎰⎰⋅⨯-⋅⨯=hgef l B l B d d v v ()⎰⎰+-=2201000d 2πd 2πl l l l d I μl d I μv v ()1202πl d I I μ+=1vI 由E ef >E hg 可知,线框中的电动势方向为efgh .解2 设顺时针方向为线框回路的正向.根据分析,在任意位置处,穿过线框的磁通量为()()ξl ξξx Il μdx ξx Il μΦl 120020ln π2π21++=+=⎰相应电动势为 ()()1120π2d d l ξξl l I μt ΦξE +=-=v 令ξ=d ,得线框在图示位置处的电动势为()1120π2l d d l l I μE +=v 由E >0 可知,线框中电动势方向为顺时针方向.8 -19 截面积为长方形的环形均匀密绕螺绕环,其尺寸如图(a)所示,共有N 匝(图中仅画出少量几匝),求该螺绕环的自感L .分析 如同电容一样,自感和互感都是与回路系统自身性质(如形状、匝数、介质等)有关的量.求自感L 的方法有两种:1.设有电流I 通过线圈,计算磁场穿过自身回路的总磁通量,再用公式I ΦL =计算L .2.让回路中通以变化率已知的电流,测出回路中的感应电动势E L ,由公式t I E L L d /d =计算L .式中E L 和tI d d 都较容易通过实验测定,所以此方法一般适合于工程中.此外,还可通过计算能量的方法求解.解 用方法1 求解,设有电流I 通过线圈,线圈回路呈长方形,如图(b)所示,由安培环路定理可求得在R 1 <r <R 2 范围内的磁场分布为xNI μB π20= 由于线圈由N 匝相同的回路构成,所以穿过自身回路的磁链为12200ln π2d π2d 21R R hI N μx h x NI μN N ψS R R ==⋅=⎰⎰S B 则1220ln π2R R h N μI ψL = 8 -20 如图所示,螺线管的管心是两个套在一起的同轴圆柱体,其截面积分别为S 1 和S 2 ,磁导率分别为μ1 和μ2 ,管长为l ,匝数为N ,求螺线管的自感.(设管的截面很小)分析 本题求解时应注意磁介质的存在对磁场的影响.在无介质时,通电螺线管内的磁场是均匀的,磁感强度为B 0 ,由于磁介质的存在,在不同磁介质中磁感强度分别为μ1 B 0 和μ2 B 0 .通过线圈横截面的总磁通量是截面积分别为S 1 和S 2 的两部分磁通量之和.由自感的定义可解得结果.解 设有电流I 通过螺线管,则管中两介质中磁感强度分别为I L N μnl μB 111==,I LN μnl μB 222== 通过N 匝回路的磁链为 221121S NB S NB ΨΨΨ+=+=则自感2211221S μS μlN I ψL L L +==+= 8 -23 如图所示,一面积为4.0 cm 2共50 匝的小圆形线圈A ,放在半径为20 cm 共100 匝的大圆形线圈B 的正中央,此两线圈同心且同平面.设线圈A 内各点的磁感强度可看作是相同的.求:(1) 两线圈的互感;(2) 当线圈B 中电流的变化率为-50 A ·s-1 时,线圈A 中感应电动势的大小和方向.分析 设回路Ⅰ中通有电流I 1 ,穿过回路Ⅱ的磁通量为Φ21 ,则互感M =M 21 =Φ21I 1 ;也可设回路Ⅱ通有电流I 2 ,穿过回路Ⅰ的磁通量为Φ12 ,则21212I ΦM M == . 虽然两种途径所得结果相同,但在很多情况下,不同途径所涉及的计算难易程度会有很大的不同.以本题为例,如设线圈B 中有电流I 通过,则在线圈A 中心处的磁感强度很易求得,由于线圈A 很小,其所在处的磁场可视为均匀的,因而穿过线圈A 的磁通量Φ≈BS .反之,如设线圈A 通有电流I ,其周围的磁场分布是变化的,且难以计算,因而穿过线圈B 的磁通量也就很难求得,由此可见,计算互感一定要善于选择方便的途径.解 (1) 设线圈B 有电流I 通过,它在圆心处产生的磁感强度RI μN B B200=穿过小线圈A 的磁链近似为 A BA A A A S RI μN N S B N ψ200== 则两线圈的互感为 H 1028.6260-⨯===R S μN N I ψM A B A A (2)V 1014.3d d 4-⨯=-=tI M E A 互感电动势的方向和线圈B 中的电流方向相同.8 -24 如图所示,两同轴单匝线圈A 、C 的半径分别为R 和r ,两线圈相距为d .若r 很小,可认为线圈A 在线圈C 处所产生的磁场是均匀的.求两线圈的互感.若线圈C 的匝数为N 匝,则互感又为多少?解 设线圈A 中有电流I 通过,它在线圈C 所包围的平面内各点产生的磁感强度近似为()2/322202d R IR μB +=穿过线圈C 的磁通为()22/32220π2r d R IR μBS ψC +==则两线圈的互感为()2/3222202πd R R r μI ψM +== 若线圈C 的匝数为N 匝,则互感为上述值的N 倍.8 -27 一无限长直导线,截面各处的电流密度相等,总电流为I .试证:单位长度导线内所贮藏的磁能为π16/20I μ.分析 本题中电流激发的磁场不但存在于导体内当r <R 时,201π2R Ir μB =,而且存在于导体外当r >R 时,r I μB π202=.由于本题仅要求单位长度导体内所储存的磁能,故用公式V w W V m m d ⎰=计算为宜,因本题中B 呈柱对称性,取单位长度,半径为r ,厚为dr 的薄柱壳(壳层内m w 处处相同)为体元dV ,则该体元内储存的能量r r R Ir μμW m d π2π221d 2200⎥⎥⎦⎤⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=,积分即可求得磁能.证 根据以上分析单位长度导线内贮存的磁能为π16d π2π8d 20024220I μr r r R I μW W Rm m =⎥⎦⎤⎢⎣⎡==⎰⎰上述结果仅为单位长度载流导线内所具有的磁场能量,它是总磁场能量的一部分,总能量还应包括导线外磁场所储存的磁能.。
矿大《大学物理》习题解答(下)
=
σ 2ε 0
1 −
a a2 +
R2
由题意,令 E=σ/(4ε0),得到
From: 理学院
~3~
2018
中国矿业大学(北京)《大学物理》习题
R= 3a
*4. 一半径为 R 的半球面,均匀地带有电荷,电荷面密度为 σ,求球心 O 处的电场强 度。
R dθ
θ
dE
O
x
解:选取坐标轴 Ox 沿半球面的对称轴,如图所示。把半球面分成许多微小宽度的环带, 每一环带之面积:
O 点处的总场强:
∫ σ
E= 2ε 0
π /2
sinθ
0
d(sinθ )
=
σ 2ε 0
sin 2 θ 2
|π0 / 2 =
σ 4ε 0
E = σ i 4ε 0
其中 i 为沿 x 轴正方向的单位矢量。
5. 半径为 R 的均匀带电球体内的电荷体密度为 ρ ,若在球内挖去一块半径为 r < R 的 小球体,如图所示.试求:两球心 O 与 O′ 点的场强,并证明小球空腔内的电场是均匀
E1
=
λ 4πε 0 R
(− i
−
j )
半无限长直线 B∞在 O 点产生的场强 E2 :
E2
=
λ 4πε 0 R
(− i
+
j学(北京)《大学物理》习题
半圆弧线段在 O 点产生的场强 E3 :
E3
=
λ 2πε 0 R
i
由场强叠加原理,O 点合场强为:
E = E1 + E2 + E3 = 0
From: 理学院
~4~
2018
的.
中国矿业大学(北京)《大学物理》习题
大学物理静电场练习题及答案
练习题7-1 两个点电荷所带电荷之和为Q ,它们各带电荷为多少时,相互间的作用力最大?解: 这是一个条件极值问题。
设其中一个点电荷带电q ,则另一个点电荷带电q Q -, 两点电荷之间的库仑力为()241r qq Q F -=πε由极值条件0d d =q F,得Q q 21=又因为202221d d r q F πε-=<0这表明两电荷平分电荷Q 时,它们之间的相互作用力最大。
7-2 两个相同的小球,质量都是m ,带等值同号的电荷q ,各用长为l 的细线挂在同一点,如图7-43所示。
设平衡时两线间夹角2θ很小。
(1)试证平衡时有下列的近似等式成立:31022⎪⎪⎭⎫⎝⎛=mg l q x πε式中x 为两球平衡时的距离。
(2)如果l = 1.20 m ,m =10 g ,x =5.0 cm ,则每个小球上的电荷量q 是多少?(3)如果每个球以-19s C 1001⋅⨯-.的变化率失去电 图7-43 练习题7-2图 荷,求两球彼此趋近的瞬时相对速率d x /d t 是多少? 解:(1)带电小球受力分析如图解所示。
小球平衡时,有FT =θsinmg T =θcos由此二式可得mgF =θtan因为θ很小,可有()l x 2tan ≈θ,再考虑到2024x q F πε=可解得31022⎪⎪⎭⎫ ⎝⎛=mg l q x πε(2)由上式解出C 10382282130-⨯±=⎪⎪⎭⎫⎝⎛±=.l mgx q πε (3) 由于tq q x t q q mg l t x d d 32d d 322d d 31310=⎪⎪⎭⎫ ⎝⎛==-πευ 带入数据解得-13s m 10401⋅⨯=-.υ合力的大小为2222201222412cos 2⎪⎭⎫ ⎝⎛+⋅⎪⎭⎫ ⎝⎛+⋅⋅===d x x d x e F F F x πεθ()23222043241dx xe +=πε令0d d =x F ,即有()()0482341825222232202=⎥⎥⎦⎤⎢⎢⎣⎡+⋅-+d x x d x e πε 由此解得α粒子受力最大的位置为22d x ±=7-4 由相距较近的等量异号电荷组成的体系称电偶极子,生物细胞膜及土壤颗粒表面的双电层可视为许多电偶极子的集合。
大学物理第五章静电场单元测验(带答案)
2014-2015学年第二学期电学单元测试――――――――――――――――――――――――――――――――――――――――――――――――― —、选择题 (每题2分,共30分) 1、以下说法哪一种是正确的A) 电场中某点电场强度的方向,就是试验电荷在该点所受的电场力方向 (B)电场中某点电场强度的方向可由E =确定,试验电荷0q 可正可负,F 为试验电荷所受的电场力(C) 在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同 (D) 以上说法都不正确 2、如图所示,一个点电荷q 位于立方体一顶点A 上,则通过abcd 面上的电通量为A 06q εB 012q ε C 024q ε D 036q ε3、1056:点电荷Q 被曲面S 所包围,从无穷远处引入另一点电荷q(A) 曲面S 的电通量不变,曲面上各点场强不变 (B) 曲面S (C) 曲面S 的电通量变化,曲面上各点场强变化 (D) 曲面S 4、如图所示,两个“无限长”的、半径分别为R 1和R 2荷分别为1λ和2λ,则在外圆柱面外面、距离轴线为r 处的P 点的电场强度大小E 为:(A)r 0212ελλπ+ (B) ()()20210122R r R r -π+-πελελ (C)()20212R r-π+ελλ (D) 20210122R R ελελπ+π 5、设无穷远处电势为零,则半径为R 的均匀带电球体产生的电场的电势分布规律为(图中的U 0和b 皆为常量):6、如图所示,一半径为a 的“无限长”圆柱面上均匀带电,其电荷线密度为λ。
在它外面同轴地套一半径为b 的薄金属圆筒,圆筒原先不带电,但与地连接。
以大地的电势为零,则在内圆柱面里面、距离轴线为r 的P 点的场强大小和电势分别为:(A) E =0,U =r a ln 20ελπ (B) E =0,U =a bln20ελπ(C) E =r 02ελπ,U =r b ln 20ελπ (D) E =r 02ελπ,U =a b ln20ελπ7、如图所示,两个同心的均匀带电球面,内球面半径为R 1、带电荷Q 1,外球面半径为R 2、带电荷Q 2 .设无穷远处为电势零点,则在两个球面之间、距离球心为r 处的P 点的电势U 为:(A)r Q Q 0214επ+ (B) 20210144R Q R Q εεπ+π (C) 2020144R Q r Q εεπ+π (D) r Q R Q 0210144εεπ+π 8、在电荷为-Q 的点电荷A 的静电场中,将另一电荷为q 的点电荷B 从a 点移到b 点。
大学物理第7章电场题库答案(含计算题答案)
大学物理第7章电场题库答案(含计算题答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN9题图 第七章 电场填空题 (简单)1、两无限大平行平面的电荷面密度分别为σ+和σ+,则两无限大带电平面外的电场强度大小为σε ,方向为 垂直于两带电平面并背离它们 。
2、在静电场中,电场强度E 沿任意闭合路径的线积分为 0 ,这叫做静电场的 环路定理 。
3、静电场的环路定理的数学表达式为 0l E dl =⎰ ,该式可表述为 在静电场中,电场强度的环流恒等于零 。
4、只要有运动电荷,其周围就有 磁场 产生;5、一平行板电容器,若增大两极板的带电量,则其电容值会 不变 ;若在两极板间充入均匀电介质,会使其两极板间的电势差 减少 。
(填“增大”,“减小”或“不变”)6、在静电场中,若将电量为q=2×108库仑的点电荷从电势V A =10伏的A 点移到电势V B = -2伏特的B 点,电场力对电荷所作的功A ab = 92.410⨯ 焦耳。
(一般)7、当导体处于静电平衡时,导体内部任一点的场强 为零 。
8、电荷在磁场中 不一定 (填一定或不一定)受磁场力的作用。
9、如图所示,在电场强度为E 的均匀磁场中,有一半径为R 的半球面,E 与半球面轴线的夹角为α。
则通过该半球面的电通量为 2cos B R πα-⋅ 。
10、真空中两带等量同号电荷的无限大平行平面的电荷面密度分别为σ+和σ+,则两无限大带电平面之间的电场强度大小为 0 ,两无限大带电平面外的电场强度大小为σε 。
11、在静电场中,电场力所做的功与 路径 无关,只与 起点 和 终点位置 有关。
12、由高斯定理可以证明,处于静电平衡态的导体其内部各处无 净电荷 ,电荷只能分布于导体 外表面 。
因此,如果把任一物体放入空心导体的空腔内,该物体就不受任何外 电场的影响,这就是 静电屏蔽 的原理。
(一般)13、静电场的高斯定理表明静电场是 有源 场, (一般)14、带均匀正电荷的无限长直导线,电荷线密度为λ。
大学物理练习七答案参考
大学物理练习七答案参考一、 选择题:1. 在空间有一非均匀电场,其电力线分布如图所示。
在电场中作一半径为R 的闭合球面S ,已知通过球面上某一面元S ∆的电场强度通量为e ∆Φ,则通过该球面其余部分的电场强度通量为[ A ] (A)e ∆Φ- (B)e SSR ∆Φ∆∆-24π (C)e SR ∆Φ∆24π (D) 0通过该球面其余部分的电场强度通量=0e ∆Φ-2. 有两个点电荷电量都是+q ,相距为2 a 。
今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面。
在球面上取两块相等的小面积S 1和S 2,其位置如图所示。
设通过S 1和S 2的电场强度通量分别为1Φ和2Φ,通过整个球面的电场强度通量为s Φ,则 [ D ](A)s ΦΦ>Φ,21=0/εq (B)021/2,εq s =ΦΦ<Φ (C)021/,εq s =ΦΦ=Φ (D)021/,εq s =ΦΦ<Φ解∶通过S 1的电场强度通量分别为1Φ,有穿进又有穿出; 但通过S 2的电场强度通量分别为2Φ,只有穿出. 故,21Φ<Φ据高斯定理通过整个球面的电场强度通量为s Φ只与面内电荷有关。
3.图示为一具有球对称性分布的静电场的E ~ r 关系曲线。
请指出该静电场是由下列哪种带电体产生的? [ D ](A) 半径为R 的均匀带电球面。
(B) 半径为R 的均匀带电球体。
(C) 半径为R 、电荷体密度Ar =ρ(A 为常数)的非均匀带电球体。
(D) 半径为R 、电荷体密度r A /=ρ (A 为常数)的非均匀带电球体。
204rqE i πε∑=4.在磁感应强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B 的夹角为α,则通过半球面S 的磁通量为 [ D ](A) .2B r π (B) 2.2B r π (C) απsin 2B r -. (D) απcos 2B r -.第6题图 . 第7题图5 .四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I 。
大学物理II第10章静电场 作业题
10.1 四个点电荷到坐标原点的距离均为d ,如题10.1图所示,求点O 的电场强度的大小和方向 。
题图10.1解:由图所示x 轴上两点电荷在O 点产生场强为i d q i d q i d q i E i E E q q2020*********πεπεπε=+=+=-y 轴上两点电荷在点O 产生场强为j dq j d q j d q j E j E E q q2020*********πεπεπε-=--=+=- 所以,点O 处总场强为j dq i d q E E E O2020214343πεπε-=+= 大小为202221423dq E E E O πε=+=,方向与x 轴正向成045-角。
10.4 正方形的边长为a ,四个顶点都放有电荷,求如题10.4图所示的4种情况下,其中心处的电场强度。
q qq q (a ) (b ) (c ) (d )题图10.4解:在四种情况下,均以中心O 为坐标原点,水平向右为x 轴正方向,竖直向上为y 轴正方向建立坐标系,则有(a )根据对称性,四个顶点处的电荷在中心处产生的场强两两相互抵消。
所以0=a E(b ) 根据对称性,电荷在中心处产生的场强在x 轴上抵消,只有y 轴上的分量,所以[]j aq j a a q j E E qy b20220245cos )2/()2/(444πεπε-=+-=-= (c ) 根据对称性,对角线上的电荷在中心处的场强可以相互抵消,所以0=c E(d ) 根据对称性,电荷在中心处产生的场强在y 轴上抵消,只有x 轴上的分量,所以[]i aq i a a q i E E qx d20220245sin )2/()2/(444πεπε=+== 10.5 一半径为R 的半圆细环上均匀地分布电荷+Q ,求环心处的电场强度。
题图10.5解:以环心O 为原心,取如图所示的坐标轴。
在环上取一线元dl ,其所带电量为RQdldq π=,它在环心O 处的电场强度E d 在y 轴上的分量为θππεsin 14120R R Qdl dE y =由于环对y 轴对称,电场强度在x 轴上的分量为零。
大学物理第7章真空中的静电场答案解析
第七章 真空中的静电场7-1 在边长为a 的正方形的四角,依次放置点电荷q,2q,-4q 和2q ,它的几何中心放置一个单位正电荷,求这个电荷受力的大小和方向。
解:如图可看出两2q 的电荷对单位正电荷的在作用力 将相互抵消,单位正电荷所受的力为)41()22(420+=a q F πε=,2520aqπε方向由q 指向-4q 。
7-2 如图,均匀带电细棒,长为L ,电荷线密度为λ。
(1)求棒的延长线上任一点P 的场强;(2)求通过棒的端点与棒垂直上任一点Q 的场强。
解:(1)如图7-2 图a ,在细棒上任取电荷元dq ,建立如图坐标,dq =λd ξ,设棒的延长线上任一点P 与坐标原点0的距离为x ,则2020)(4)(4ξπεξλξπεξλ-=-=x d x d dE则整根细棒在P 点产生的电场强度的大小为)11(4)(40020xL x x d E L--=-=⎰πελξξπελ=)(40L x x L-πελ方向沿ξ轴正向。
(2)如图7-2 图b ,设通过棒的端点与棒垂直上任一点Q 与坐标原点0的距离为y习题7-1图0 dqξd ξ习题7-2 图a204r dxdE πελ=θπελcos 420rdxdE y =, θπελsin 420r dxdE x =因θθθθcos ,cos ,2yr d y dx ytg x ===, 代入上式,则)cos 1(400θπελ--=y =)11(4220Ly y+--πελ,方向沿x 轴负向。
θθπελθd ydE E y y ⎰⎰==000cos 4 00sin 4θπελy ==2204Ly y L+πελ7-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。
解:如图,在半环上任取d l =Rd θ的线元,其上所带的电荷为dq=λRd θ。
对称分析E y =0。
θπεθλsin 420RRd dE x =⎰⎰==πθπελ00sin 4RdE E x R02πελ= θθπελθd y dE E x x ⎰⎰-=-=0sin 4xdx习题7-2 图byx习题7-3图2022R q επ=,如图,方向沿x 轴正向。
大学物理B1复习题
一、选择题1.一质点作直线运动,其运动学方程为)(31232m t t x -+=,则在t=( A )秒时,质点的速度达到最大值。
(A )1 ;(B )3 ;(C )2 ;(D )4 。
2.一质量为m 的质点,从某高处无初速地下落,设所受阻力与其速率的一次方成正比,即υk f -=,则其收尾速度的大小为( B )。
(A )k m / ;(B )k mg /;(C )0 ;(D )∞。
3.一质量为4kg 的质点,在变力)(ˆsin 2N it F ππ=作用下由静止开始作直线运动,则此力持续作用2秒后质点的速率大小为( C )1-ms 。
(A )1 (B )2 (C )0 (D )44.均匀细杆OM 能绕O 轴在竖直平面内自由转动,如图1所示。
今使细杆OM 从水平位置开始摆下,在细杆摆动到竖直位置时,其角速度ω、角加速度α的值分别为( D )。
(A)0,0==αω;(B)0,0≠≠αω;(C)0,0≠=αω;(D) 0,0=≠αω。
5.一质点作直线运动,其运动学方程为2246,3t t y t t x ++=+=(长度以m 计,时间以s 计),则质点初速度的大小为( B )m/s 。
(A )3; (B )5 ; (C )4 ; (D )7。
6.一质量为m 的质点,作初速为0υ的直线运动,因受阻力作用速度逐渐变小。
设质点所受阻力的大小与质点速率的一次方成正比,方向与速度方向相反,即υmk f -=,则质点的速率从0υ减小到021υ,所需的时间为( C )s 。
(A )k /2ln 2;(B )2;(C )k /2ln ;(D )4。
7.一质点的质量为2kg ,受变力t F ππ2cos 12=(N )作用作初速为0的直线运动,则在t=0.25s 时质点速度的大小为( D )m/s 。
(A )0; (B )6; (C )4; (D )3。
8.如图1所示,在一质量为M 半径为R 的匀质薄圆盘的边缘放一质量为m 的物体,设二者一起以角速度ω绕中心轴以角速度ω匀速转动,则系统对中心轴的角动量的大小为( A )。
13电势一解答
0 l
4πε 0 (l + a x )
λdx
x O l
dx a
P
x
λ λ l l = ln (l + a x ) 0 = ln 4πε 0 4πε 0 a
l/2
y P b l x dx x
UP =
4πε 0 (b 2 + z 2 )1/ 2 l / 2
∫
λdz
b2 + l 2 / 4 + l / 2 λ = ln 4πε 0 b2 + l 2 / 2 l / 2
第五章 静电场
二、填空题
1.已知均匀带正电圆盘的静电场的电力线分布如图所 . 由这电力线分布图可断定圆盘边缘处一点P的电势 示.由这电力线分布图可断定圆盘边缘处一点 的电势 UP与中心 处的电势 O的大小关系是 P < UO。 与中心O 处的电势U 的大小关系是U 关系选填=, =,< (关系选填=, 或 >) )
d a b O c
电势一
第五章 静电场
5.有N个电量均为 的点电荷,以两种方式分布在相 . 个电量均为q的点电荷 个电量均为 的点电荷, 同半径的圆周上:一种是无规则地分布, 同半径的圆周上:一种是无规则地分布,另一种是均匀 分布.比较这两种情况下在过圆心O并垂直于圆平面的 分布.比较这两种情况下在过圆心 并垂直于圆平面的 qi Z轴上任一点 的场强与电势,则有 轴上任一点p的场强与电势 轴上任一点 的场强与电势, (A)场强相等,电势相等. )场强相等,电势相等. z R (B)场强不等,电势不等. )场强不等,电势不等. P (C)场强分量 z相等,电势相等. )场强分量E 相等,电势相等. Ei (D)场强分量 z相等,电势不等. )场强分量E 相等,电势不等. 对称 ∑ eRi = 0 取无限远处为电势零点
大学物理上复习资料
内容提要位矢:k t z j t y i t x t r r )()()()(++==位移:k z j y i x t r t t r r ∆+∆+∆=-∆+=∆)()(一般情况,r r ∆≠∆速度:k z j y i x k dt dz j dtdy i dt dx dt r d t r t∙∙∙→∆++=++==∆∆=0lim υ 加速度:k z j y i x k dtz d j dt y d i dt x d dt r d dt d t a t ∙∙∙∙∙∙→∆++=++===∆∆=222222220lim υυ圆周运动 角速度:∙==θθωdtd 角加速度:∙∙===θθωα22dtd dt d (或用β表示角加速度) 线加速度:t n a a a += 法向加速度:22ωυR R a n ==指向圆心 切向加速度:αυR dt d a t ==沿切线方向 线速率:ωυR =弧长:θR s =解题参考大学物理是对中学物理的加深和拓展。
本章对质点运动的描述相对于中学时更强调其瞬时性、相对性和矢量性,特别是处理问题时微积分的引入,使问题的讨论在空间和时间上更具普遍性。
对于本章习题的解答应注意对基本概念和数学方法的掌握。
矢量的引入使得对物理量的表述更科学和简洁。
注意位矢、位移、速度和加速度定义式的矢量性,清楚圆周运动角位移、角速度和角加速度方向的规定。
微积分的应用是难点,应掌握运用微积分解题。
这种题型分为两大类,一种是从运动方程出发,通过微分求出质点在任意时刻的位矢、速度或加速度;另一种是已知加速度或速度与时间的关系及初始条件,通过积分求出任意时刻质点的速度、位矢或相互间的关系,注意式子变换过程中合理的运用已知公式进行变量的转换,掌握先分离变量后积分的数学方法。
内容提要动量:υm p =冲量:⎰=21t t dt F I动量定理:⎰=21t t dt F p d⎰=-210t t dt F p p 动量守恒定律:若0==∑i i F F ,则常矢量==∑ii p p力矩:F r M ⨯=质点的角动量(动量矩):υ⨯=⨯=r m p r L 角动量定理:dtL d M =外力 角动量守恒定律:若0==∑外力外力M M ,则常矢量==∑ii L L功:r d F dW ∙= ⎰∙=B A AB r d F W 一般地 ⎰⎰⎰++=B AB A B A z z z y y y x x x AB dz F dy F dx F W 动能:221υm E k = 动能定理:质点, 222121A B AB m m W υυ-=质点系,0k k E E W W -=+内力外力保守力:做功与路程无关的力。
2010普物练习题
普通物理练习题一、 选择题1、如图所示,O 点是两个相同的点电荷所在连线的中点,P 点为中垂线上的一点,则O 、P 两点的电势和场强大小有如下关系[C ]。
(A ),0p U U >|0E |〉|p E |;(B )p U U <0,|0E |〈|p E |;(C ),0p U U >|0E |〈|p E |;(D )p U U <0,|0E |〉|p E |。
2.关于稳恒磁场的磁场强度H 的下列几种说法中哪个是正确的[D].(A) H 仅与传导电流有关; (B)以闭合曲线L 为边缘的任意曲面的H 通量均相等.(C)若闭合曲线内没有包围传导电流,则曲线上各点的H 必为零;(D)若闭合曲线上各点的H 均为零,则该曲线所包围传导电流的代数和为零;3、一电场强度为E 的均匀电场,E 的方向与X 轴正向平行,如图所示,则通过图中一半径为R 的半球面的电场强度通量为[D ]。
(A )E R 2π;(B )21E R 2π;(C )2E R 2π;(D )0。
4、如图所示,直线MN 长为2L ,弧OCD 是以N 点为中心,L 为半径的半圆弧,N 点有正点电荷+q ,M 点有负点电荷-q ,今将一实验电荷+0q 从O 点出发沿路经OCDP 移到无穷远处,设无穷远处的电势为零,则电场力的功为[ ]。
(A ) A 〈0且为有限常量;(B )A 〉0且为有限常量;(C )A=∞;(D )A=0。
5、一质量为m ,电量为q 的粒子,以与均匀磁场B 垂直的速度V 射入磁场内,则粒子运动轨道所包围的磁通量Φ与磁感应强度B 大小的关系曲线是[ ]。
(A ) (B ) (C ) (D ) (E )6、有两个长直密绕螺线管,长度及匝数均相同,半径分别为1r 和2r ,管内充满均匀介质,其磁导率分别为1μ和2μ。
设1:2:,2:1:2121==μμr r ,当两只螺线管串联在电路中,通电稳定后,其自感系数之比21:L L 与磁能之比21:W W 分别为[ ]。
2012-2013学年第一学期 期末考试 大学物理II 试卷B
ORλ上海第二工业大学 (试卷编号:B0609A )2012-2013学年第一学期大学物理 期末考试 试卷姓名: 学号: 班级: 成绩:(本试卷共4页,请先查看试卷有无缺页,然后答题,请将答案写在答题纸上,写在试卷上的无效。
考试时间90分钟;总分100分)一、选择题(共10小题,每小题3分,共30分)1.真空中的无限大均匀带电平面,其电荷密度为σ,则由对称性可知其两侧空间电场强度大小为( )。
A .0 B .02εσ C .0εσ D .023εσ2.一半径为R 的半圆细环上电荷均匀分布,电荷线密度为λ,则 环心处的电场强度大小0E 为( )。
A .R 04πελ B .04ελ C .08ελ D .R02πελ 3.半径为R 的均匀带电球面,带的电量为q ,若取无限远处为电势的零点,则球面外离球心r 处的电势r U 为( )。
A .0 B .Rq 04πε C .rq 04πε D .204rq πε4. 如图,电量为Q 的点电荷被曲面S 所包围,从无穷远处引另一电量为q 的点电荷至曲面外一点,则下列说法正确的是( )。
A .曲面S 的E 通量不变,曲面上各点场强不变 B .曲面S 的E 通量变化,曲面上各点场强不变 C .曲面S 的E 通量变化,曲面上各点场强变化 D .曲面S 的E 通量不变,曲面上各点场强变化5.下列物理量中,可以表述为:“在数值上等于将试探电荷0q 从电场中的某点移至零电势能处过程中电场力做功”的是( )。
A .电势B .电势差C .电势能D .电场强度S.Q.q∙I32π∙O o I ∙OI IO xo zy6.如图所示,一磁场的磁感应强度为k c j b i a B++=(SI ),则通过一半径为R ,开口向x 轴正方向的半球壳表面的磁通量大小为( )Wb 。
A .2R a πB .2R b πC .2R c πD . 07.恒定磁场安培环路定理表达式为:⎰=⋅ll d B( ),表明磁场是( )。
大学物理_上海交通大学-第四版答案
11静电场11-1.直角三角形ABC的A点上,有电荷C108.191-⨯=q,B点上有电荷C108.492-⨯-=q,试求C点的电场强度(设0.04mBC=,0.03mAC=)。
解:1q在C点产生的场强:1124ACqE irπε=,2q在C点产生的场强:2224BCqE jr=,∴C点的电场强度:44122.710 1.810E E E i j=+=⨯+⨯;C点的合场强:4123.2410VE m==⨯,方向如图:1.8arctan33.73342'2.7α===。
11-2.用细的塑料棒弯成半径为cm50的圆环,两端间空隙为cm2,电量为C1012.39-⨯和方向。
解:∵棒长为2 3.12l r d mπ=-=,∴电荷线密度:911.010q C mlλ--==⨯⋅可利用补偿法,若有一均匀带电闭合线圈,则圆心处的合场强为0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去md02.0=长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷的塑料棒在O点产生的场强。
解法1:利用微元积分:21cos4O xRddERλθθπε=⋅,∴2000cos2sin2444OdE dR R Rααλλλθθααπεπεπε-==⋅≈⋅=⎰10.72V m-=⋅;解法2:直接利用点电荷场强公式:由于d r<<,该小段可看成点电荷:112.010q d Cλ-'==⨯,则圆心处场强:1191222.0109.0100.724(0.5)OqE V mRπε--'⨯==⨯⨯=⋅。
方向由圆心指向缝隙处。
11-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB的半径为R,试求圆ix心O 点的场强。
解:以O 为坐标原点建立xOy 坐标,如图所示。
①对于半无限长导线A ∞在O 点的场强:有:00(cos cos )42(sin sin )42Ax A y E R E R λπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩②对于半无限长导线B ∞在O 点的场强:有:00(sin sin )42(cos cos )42B x B y E R E R λπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩③对于AB 圆弧在O 点的场强:有:20002000cos (sin sin )442sin (cos cos )442AB x AB y E d R R E d R R ππλλπθθππεπελλπθθππεπε==-=⎧⎪⎪⎨⎪⎪=--⎩⎰⎰∴总场强:04O x E R λπε=,04O y E R λπε=,得:0()4O E i j R λπε=+。
8-6一半径为R的半圆细环上均匀地分布电荷,求环心处的电场强度
大学物理期末复习题(力学部分)第一章重点:质点运动求导法和积分法,圆周运动角量和线量。
第二章重点:三大守恒律---动量守恒定律、机械能守恒定律、角动量守恒定律 第三章重点:刚体定轴转动定律和角动量守恒定律1.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段时间内所经过的路程为422t t S ππ+=,式中S 以m 计,t 以s 计,则在t 时刻质点的角速度为 22t ππ+rad/s , 角加速度为 2/2s rad π。
(求导法)2.质点沿x 轴作直线运动,其加速度t a 4=m/s 2,在0=t 时刻,00=v ,100=x m ,则该质点的运动方程为=x 33210t x += 。
(积分法)3.一质点从静止出发绕半径R 的圆周作匀变速圆周运动,角加速度为β,则该质点走完半周所经历的时间为_____βπ2_ _____。
(积分法)4.一质点在平面内运动, 其1c r =,2/c dt dv =;1c 、2c 为大于零的常数,则该质点作 匀加速圆周运动 。
5.伽利略相对性原理表明对于不同的惯性系牛顿力学的规律都具有相同的形式。
6.一质量为kg m 2=的质点在力()()N t F x 32+=作用下由静止开始运动,若此力作用在质点上的时间为s 2,则该力在这s 2内冲量的大小=I 10 NS ;质点在第s 2末的速度大小为 5 m/s 。
(动量定理和变力做功)7.一质点受力26x F -=的作用,式中x 以m 计,F 以N 计,则质点从0.1=x m 沿X 轴运动到x=2.0 m 时,该力对质点所作的功=A J 14-。
(变力做功)8.一滑冰者开始自转时其动能为20021ωJ ,当她将手臂收回, 其转动惯量减少为3J ,则她此时自转的角速度=ω 03ω 。
(角动量守恒定律)9.一质量为m 半径为R 的滑轮,如图所示,用细绳绕在其边缘,绳的另一端系一个质量也为m 的物体。
高中物理奥林匹克竞赛专题——静电场典型习题(有详解答案)
题7.1:1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32的上夸克和两个带e 31-下夸克构成,若将夸克作为经典粒子处理(夸克线度约为10-20 m ),中子内的两个下夸克之间相距2.60⨯10-15 m 。
求它们之间的斥力。
题7.1解:由于夸克可视为经典点电荷,由库仑定律r r 220r 2210N 78.394141e e e F ===r e r q q πεπεF 与r e 方向相同表明它们之间为斥力。
题7.2:质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k 。
证明电子的旋转频率满足42k20232me E εν=其中是0ε真空电容率,电子的运动可视为遵守经典力学规律。
题7.2分析:根据题意将电子作为经典粒子处理。
电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷。
点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有220241r e r v m πε= 由此出发命题可证。
证:由上述分析可得电子的动能为re mv E 202k 8121πε==电子旋转角速度为30224mr e πεω=由上述两式消去r ,得43k 20222324meE επων== 题7.3:在氯化铯晶体中,一价氯离于Cl -与其最邻近的八个一价格离子Cs +构成如图所示的立方晶格结构。
(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作品格缺陷),求此时氯离子所受的库仑力。
题7.3分析:铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加。
为方便计算可以利用晶格的对称性求氯离子所受的合力。
解:(l )由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故01=F (2)除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力2F 的值为N 1092.134920220212-⨯===ae rq q F πεπε2F 方向如图所示。
大学物理习题及解答(电学)
1.一半径为R 的半圆细环上均匀分布电荷Q ,求环心处的电场强度。
2.两条无限长平行直导线相距为r 0,均匀带有等量异号电荷,电荷线密度为λ。
(1)求两导线构成的平面上任一点的电场强度(设该点到其中一线的垂直距离为x );(2)求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力。
3.地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷。
晴天大气电场平均电场强度约为120 V ⋅m -1,方向指向地面。
试求地球表面单位面积所带的电荷。
(-1.06×10-9c/m 2)4.一无限大均匀带电薄平板,电荷面密度为σ,在平板中部有一半径为r 的小圆孔。
求圆孔中心轴线上与平板相距为x 的一点P 的电场强度。
(2202r x x+εσ)5.一无限长、半径为R 的圆柱体上电荷均匀分布。
圆柱体单位长度的电荷为λ,用高斯定理求圆柱体内距轴线距离为r 处的电场强度。
6.两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1和R 2 (R 2 > R 1),单位长度上的电荷为λ。
求离轴线为r 处的电场强度:(1)r < R 1,(2)R 1 < r < R 2,(3)r > R 27.如图所示,有三个点电荷Q 1、Q 2、Q 3沿一条直线等间距分布,已知其中任一点电荷所受合力均为零,且Q 1 =Q 3=Q 。
求在固定Q 1、Q 3的情况下,将Q 2从点O 移到无穷远处外力所作的功。
解: :由题意Q 1所受的合力为零0244031021=+)d (Q Q d Q Q πεπε 解得Q Q Q 414132-=-= 在任一点电荷所受合力均为零时Q Q 412-=。
并由电势的叠加得Q 1、Q 3在点O 电势 d Qd Q d Q V o 00301244πεπεπε=+=将Q 2从点O 推到无穷远处的过程中,外力作功 d QV Q W o 0228πε=-=8.已知均匀带电长直线附近的电场强度近似为002r rE πελ= λ为电荷线密度。
大学物理作业
第4章 真空中的静电场4-3 一细棒弯成半径为R 的半圆形,均匀分布有电荷q ,求半圆中心O 处的场强。
解:建立如图所示的直角坐标系o-xy ,在半环上任取d l =Rd θ的线元,其上所带的电荷为则r R <12d 4S E r π=⋅=⎰E S R >22d 4S E r π=⋅=⎰E S 2r e rπε=外E 0q 44-9 如图所示,厚度为d 的“无限大”均匀带电平板,体电荷密度为ρ,求板内外的电场分布。
解:带电平板均匀带电,产生的电场具有面对称性,因而可以应用高斯定理求解。
作一柱形高斯面,其侧面与板面垂直;两底面s 和板面平行,且到板中心平面的距离相等,用xdEx表示。
(1) 平板内(2d x <) 11102d 2S S x E S ρψε⋅=⋅==⎰E S 得 10E x ρε=,方向垂直板面向外。
02d ρε=,方向垂直板面向外。
两个同心球面的半径分别为1R 12114S E dS E rπ⋅=⎰(b) 12R r R ≤≤22224S E dS E r π⋅=⎰1224E r πε=(c) 2r R >32123304S Q Q E dS E r πε+⋅==⎰12304r Q Q E e πε+=(2)求各区域的电势 (a) 1r R <1221212112112320044R R R rR R R R Q Q Q V E dr E dr E dr dr dr rπεπε∞∞+=⋅+⋅+⋅=⋅+⋅⎰⎰⎰⎰⎰得 1210121(4Q Q V R R πε=+ 12324R rE dr E dr rπε⋅+⋅=⎰⎰2() 4r R πε+ 14rdr πε=⎰0 4rπε=224R R Q E dr πε⋅=⎰取棒表面为零电势,求空间电势分布并画出电势分布曲线。
据高斯定理有2r e ρε=R r ≤时:102RRr rV E dr rdr ε=⋅=⎰⎰)(4220r R -=ερ习题7-10图R r >时:22202SR l E dS E rl ρππε⋅==⎰2202n R E e r ρε→= 2202R R rr R dr V E dr rρε=⋅=⎰⎰r RR ln 202ερ=空间电势分布并画出电势分布曲线大致如图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
--一半径为R的半圆细环上均匀地分布电荷--求环心处的————————————————————————————————作者:————————————————————————————————日期:大学物理1期末复习题(力学部分)第一章重点:质点运动求导法和积分法,圆周运动角量和线量。
第二章重点:牛顿第二运动定律的应用(变形积分) 第三章重点:动量守恒定律和机械能守恒定律 第四章重点:刚体定轴转动定律和角动量守恒定律1.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段时间内所经过的路程为422t tS ππ+=,式中S 以m 计,t 以s 计,则在t 时刻质点的角速度为 22t ππ+rad/s , 角加速度为 2/2s rad π。
(求导法)2.质点沿x 轴作直线运动,其加速度t a 4=m/s 2,在0=t 时刻,00=v ,100=x m ,则该质点的运动方程为=x 33210t x += 。
(积分法)3.一质点从静止出发绕半径R 的圆周作匀变速圆周运动,角加速度为β,则该质点走完半周所经历的时间为_____βπ2_ _____。
(积分法)4.伽利略相对性原理表明对于不同的惯性系牛顿力学的规律都具有相同的形式。
5.一质量为kg m 2=的质点在力()()N t F x 32+=作用下由静止开始运动,若此力作用在质点上的时间为s 2,则该力在这s 2内冲量的大小=I 10 NS ;质点在第s 2末的速度大小为 5 m/s 。
(动量定理和变力做功)6.一质点在平面内运动, 其1c r =,2/c dt dv =;1c 、2c 为大于零的常数,则该质点作 匀加速圆周运动 。
7.一质点受力26x F -=的作用,式中x 以m 计,F 以N 计,则质点从0.1=x m 沿X 轴运动到x=2.0 m 时,该力对质点所作的功=A J 14-。
(变力做功)8.一滑冰者开始自转时其动能为20021ωJ ,当她将手臂收回, 其转动惯量减少为3J ,则她此时自转的角速度=ω 03ω 。
(角动量守恒定律)9.一质量为m 半径为R 的滑轮,如图所示,用细绳绕在其边缘,绳的另一端系一个质量也为m 的物体。
设绳的长度不变,绳与滑轮间无相对滑动,且不计滑轮与轴间的摩擦力矩,则滑轮的角加速度Rg32 ;若用力mg F =拉绳的一端,则滑轮的角加速度为 Rg2 。
(转动定律)10.一刚体绕定轴转动,初角速度80=ωrad/s ,现在大小为8(N ·m )的恒力矩作用下,刚体转动的角速度在2秒时间内均匀减速到4=ωrad/s ,则刚体在此恒力矩的作用下的角加速度=α____2/2s rad -__ _____,刚体对此轴的转动惯量=J 4kg •m 2 。
(转动定律) 11.一质点在平面内运动,其运动方程为 22 ,441x t y t t =⎧⎨=++⎩,式中x 、y 以m 计,t 以秒s 计,求:(1) 以t 为变量,写出质点位置矢量的表达式; (2) 轨迹方程;(3) 计算在1~2s 这段时间内质点的位移、平均速度; (4) t 时刻的速度表达式;(5) 计算在1~2s 这段时间内质点的平均加速度;在11=t s 时刻的瞬时加速度。
解:(1) ())m (14422j t t i t r+++=;(2)2)1(+=x y ;(3)(m)162Δj r+=i ; (m/s)162j+=i v ;(4))m/s ()48(2j t i dtrd ++==v ;(5) )(m/s 82j =a ;)(m/s 82j =1a (求导法)12.摩托快艇以速率0v 行驶,它受到的摩擦阻力与速度平方成正比,设比例系数为常数k ,即可表示为2kv F -=。
设快艇的质量为m ,当快艇发动机关闭后,(1)求速度随时间的变化规律;(2)求路程随时间的变化规律。
解:(1)2dvkv m dt-=mF0201vt v k dv dt v m =-⎰⎰ 00mv v m kv t =+ (2)0000xtmv dx dt m kv t =+⎰⎰0(1)kv t mx Ln k m =+(牛二定律变形积分)13.如图所示,两个带理想弹簧缓冲器的小车A和B ,质量分别为1m 和2m ,B 不动,A 以速度0v与B 碰撞,如已知两车的缓冲弹簧的倔强系数分别为1k 和2k ,在不计摩擦的情况下,求两车相对静止时,其间的作用力为多大?(弹簧质量忽略而不计)。
解:系统动量守恒: 1012()m v m m v =+系统机械能守恒: 2222101211221111()2222m v m m v k x k x =+++两车相对静止时弹力相等: 1122F k x k x ==F=02121212121][v k k kk m m m m +⋅+ (动量守恒和机械能守恒定律)14.有一质量为1m 长为l 的均匀细棒,静止平放在光滑的水平桌面上,它可绕通过其中点O 且与桌面垂直的固定光滑轴转动。
另有一水平运动的质量为2m 的子弹以速度v 射入杆端,其方向与杆及轴正交,求碰撞后棒端所获得的角速度。
解:系统角动量守恒: 2J 2lm v ω=总2212()122m l lJ m =+总 2126 (3)v m m m lω=+ (角动量守恒定律)电磁学部分第五章重点:点电荷系(矢量和)、均匀带电体(积分法)、对称性电场(高斯定理,分段积分)的电场强度E 和电势V 的计算。
第七章重点:简单形状载流导线(矢量和)、对称性磁场(安培环路定理)的磁感应强度BBA 1m2mv1k2k的计算,安培力F 的计算。
第八章重点:感生电动势(法拉第电磁感应定律)和动生电动势i ε的计算,磁通量m φ的计算。
1.一半径为R 的半圆细环上均匀地分布电荷Q ,求环心处的电场强度.[分析] 在求环心处的电场强度时,不能将带电半圆环视作点电荷.现将其抽象为带电半圆弧线。
在弧线上取线dl ,其电荷dl RQdq π=,此电荷元可视为点电荷,它在点O 的电场强度2041rdqdE πε=,因圆环上的电荷对y 轴呈对称性分布,电场分布也是轴对称的,则有0=⎰L xdE,点O 的合电场强度⎰=Ly dE E ,统一积分变量可求得E .解: (1)建立坐标系;(2)取电荷元dl RQdq π=(3)写2041rdq dE πε=(4)分解到对称轴方向θπεcos 4120r dqdE y =(5)积分:dl R QRE LO πθπε⋅⋅-=⎰2cos 41 由几何关系θRd dl =,统一积分变量后,有2022220202cos 4R Q d R Q E επθθεπππ-=-=⎰-,方向沿y 轴负方向.(积分法五步走)2.两条无限长平行直导线相距为0r ,均匀带有等量异号电荷,电荷线密度为.λ(1)求两导线构成的平面上任一点的电场强度(设该点到其中一线的垂直距离为x ); (2)求每一根导线 上单位长度导线受到另一根导线上电荷作用的电场力.[分析]在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场rE 02πελ=的叠加.解: 设点P 在导线构成的平面上,+E 、-E 分别表示正、负带电导线在P 点的电场强度,则有i x r x E E E⎪⎪⎭⎫ ⎝⎛-+=+=-+00112πελ()i x r x r -=0002πελ (矢量和)3.设均强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.[分析] 方法1:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=ΦSS S d E.方法2:作半径为R 的平面S '与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理∑⎰==⋅01q dS E Sε 这表明穿过闭合曲面的净通量为零,穿入平面S '的电场强度通量在数值上等于穿出半球面S 的电场强度通量. 因而⎰⎰'⋅-=⋅=ΦSS S d E S d E解: 由于闭合曲面内无电荷分布,根据高斯定理,有 ⎰⎰'⋅-=⋅=ΦSS S d E S d E依照约定取闭合曲面的外法线方向为面元dS 的方向,E R R E 22cos πππ=⋅⋅-=Φ (高斯定理和电通量定义式)4.在电荷体密度为ρ的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O '的矢量用a 表示(图8-17).试证明球形空腔中任一点的电场强度为a E3ερ= [分析] 本题带电体的电荷分布不满足球对称,其电场分布也不是球对称分布,因此无法直接利用高斯定理求电场的分布,但可用补偿法求解.挖去球形空腔的带电球体在电学上等效于一个完整的、电荷体密度为ρ的均匀带电球和一个电荷体密度为ρ-、球心在O '的带电小球体(半径等于空腔球体的半径).大小球体在空腔内P 点产生的电场强度分别为1E 、2E ,则P 点的电场强度为两者矢量和。
. 证: 带电球体内部一点的电场强度为 r E 03ερ=所以 1013r E ερ=;2023r E ερ-=()210213r r E E E-=+=ερ 根据几何关系a r r=-21,上式可改写为a E 03ερ= (等效法和高斯定理) 5.一无限长、半径为R 的圆柱体上电荷均匀分布.圆柱体单位长度的电荷为λ,用高斯定理求圆柱体内距离为r 处的电场强度.[分析] 无限长圆柱体的电荷具有轴对称分布,电场强度也为轴对称分布,且沿径矢方向.取同轴柱面为高斯面,电场强度在圆柱侧面上大小相等,且与柱面正交.在圆柱的两个底面上,电场强度与底面平行,0=⋅dS E ,对电场强度通量的贡献为零.整个高斯面的电场强度通量为⎰⋅=⋅rL E dS E π2由于圆柱体电荷均匀分布,电荷体密度E,出于高斯面内的总电荷L r q ∑⋅=2πρ由高斯定理⎰∑=⋅0εq dS E 可解得电场强度的分布. 解: 取同轴柱面为高斯面,由上述分析得 L r RL r rL E 2202012ελπρεπ=⋅=⋅202RrE πελ=(高斯定理) 6.两个带有等量异号电荷的无限长同轴圆柱面,半径分别为1R 和()122R R R >,单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1)1R r <,(2)21R r R <<,(3)2R r > [分析] 电荷分布在无限长同轴圆柱面上,电场强度也必定程轴对称分布,沿径向方向.去同轴圆柱为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=⋅,2rL E dS E π求出不同半径高斯面内的电荷∑q .利用高斯定理可解得各区域电场的分布.解: 作同轴圆柱面为高斯面,根据高斯定理 ∑=⋅02επqrL E1R r <,∑=0q01=E21R r R <<,∑=L q λrE 022πελ=2R r >,∑=0q03=E在带电面附近,电场强度大小不连续,电场强度有一跃变 0022εσπλπελ===∆rL L r E (高斯定理) 7.如图所示,有三个点电荷 321Q Q Q 、、沿一条直线等间距分布,已知其中任一点电荷所受合力均为零,且Q Q Q ==21.求在固定1Q 、3Q 的情况下,将2Q 从点O 移到无穷远处外力所作的功.[分析] 由库仑力的定义,根据1Q 、3Q 所受合力为零可求得42QQ -=.外力作功W '应等于电场力作功W 的负值,即W W '-=.求电场力作功可根据功电场力作的功与电势能差的关系,有()0202V Q V V Q W =-=∞其中0V 是点电荷1Q 、3Q 在点O 产生的电势(取无穷远处为零电势).:解 在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加1Q 、3Q 在O 的电势dQ dQ dQ V 003010244πεπεπε=+=将2Q 从点O 推到无穷远处的过程中,外力作功 dQ V Q W 02028πε=-=' (受力平衡、点电荷系电势、电场力做功)8.已知均匀带电长直线附近的电场强度近似为r e rE02πελ=λ为电荷线密度. (1)在求在1r r =和2r r =两点间的电势差;(2)在点电荷的电场中,我们曾取∞−→−r 处的电势为零,求均匀带电长直线附近的电势时,能否这样取?试说明.解 )(1由于电场力作功与路径无关,若取径矢为积分路径,则有12012ln 221r r r dr E U r r ⎰=⋅=∆επλ(电势差定义式)(2)不能. 严格地讲,电场强度 rE 02πελ=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,∞→r 处的电势应与直线上的电势相等.9.两个同心球面的半径分别为1R 和2R ,各自带有电荷1Q 和2Q .求:(1)各区域电势分布,并画出分布曲线;(2)两球面间的电势差为多少?[分析] 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰⎰∞∞⋅=⋅=rPP dr E l d E V 可求得电势分布.解: 由高斯定理可求得电场分布01=E 1R r < 20124r Q E πε=21R r R <<202134rQ Q E πε+= 2R r > 由电势 ⎰∞⋅=rdr E V 可求得区域的电势分布.当 1R r ≤时,有dr E dr E dr E V R R R R r⋅+⋅+⋅=⎰⎰⎰∞221132112021210141140R Q Q R R Q πεπε++⎪⎪⎭⎫ ⎝⎛-+= 20210144R Q R Q πεπε+=当21R r R ≤≤时,有dr E dr E V R R r⋅+⋅=⎰⎰∞22322202121014114R Q Q R r Q πεπε++⎪⎪⎭⎫ ⎝⎛-=2020144R Q rQ πεπε+=当1R r ≥ 时,有⎪⎪⎭⎫⎝⎛-=⋅=⎰∞210133114R R Q dr E V rπε(先用高斯定理求场强E,再用分段积分求电势V)10.两个很长的共轴圆柱面()m R m R 10.0,100.3221=⨯=,带有等量异号的电荷,两者的电势差为450V .求:(1)圆柱面单位长度上带有多少电荷?(2)两圆柱面之间的电场强度. 解 由8的结果,两圆柱面之间的电场 rE 02πελ= 根据电势差的定义有12012ln 221R R dr E U R R ⎰=⋅=∆πελ 解得 1812120101.2ln2--⋅⨯==m C R R U πελ V rr E 11074.3220⨯==πελ 两柱面间电场强度的大小与r 成反比. (电势差定义式)11.在Oxy 面上倒扣着半径为R 的半球面,半球面上电荷均匀分布,电荷密度为σ.A 点的坐标为()20R ,,B 点的坐标为()23R ,求电势差AB U . [分析] 电势的叠加是标量的叠加,根据对称性,带电半球面在Oxy 平面上各点产生的电势显然就等于带电球面在改点的电势的一半.据此,可先求出一个完整球面在B A 、间的电势差AB U ',再求出半球面时的电势差AB U .由于带电球面内等电势,球面内A 点的电势,故()B R ABAB V V U U '-'='=2121 其中R V '是带电球表面的电势,B V '是带电球面在B 点的电势. 解 假设将半球面扩展为带有相同电荷面密度σ的一个完整球面,此时在B A 、两点的电势分别为RAV RRQ V '==='004εσπε020324εσεσπεRr R r QV B ===' 则半球面在B A 、两点的电势差 ()0621εσR V V U B R AB ='-'==∆(点电荷电势式和电势差定义式)12.在半径为1R 的长直导线外,套有氯丁橡胶绝缘护套,护套外半径为2R ,相对电容率为r ε.设沿轴线单位长度上,导线的电荷密度为λ.试求介质层内的E D 、和P .[分析] 将长直导线视作无限长,自由电荷均匀分布在导线表面.在绝缘介质层的内、外表面分别出现极化电荷,这些电荷在内外表面呈均匀分布,所以电场是轴对称分布.取同轴柱面为高斯面,由介中的高斯定理可得电位移矢量D 的分布.在介质中E D r εε0=,E D P0ε-=,可进一步求得电场强度E 和电极化强度矢量P 的分布.解 由介质中的高斯定理,有⎰=⋅=⋅L rL D S d D λπ2得 rD πλ2= 在均匀各向同性介质中 rDE r rεπελεε002==r r e r E D P πλεε2110⎪⎪⎭⎫ ⎝⎛-=-= (有电介质时的高斯定理)13.设有两个薄导体同心球壳A 与B ,它们的半径分别为cm R 101=与cm R 203=,并分别带有电荷C C 78100.1100.4--⨯⨯-与.球壳间有两层介质,内层介质的0.2,0.421==r r εε外层介质的,其分界面的半径为.152cm R =球壳B 外为空气.求:(1)两球间的电势差AB U ;(2)离球心cm 30的电场强度;(3)2球A 的电势.[分析] 自由电荷和极化电荷均匀分布在球面上,电场呈球对称分布.取同心球面为高斯面,根据介质中的高斯定理可求得介质中的电场分布.由电势差和电场强度的积分关系可求得两导体球壳间的电势差,由于电荷分布在有限空间,通常取无穷远处为零电势⎰∞⋅=AA dl E V解 (1)由介质中的高斯定理,有124Q r D dS D =⋅=⋅⎰π 得 221214r e r Q D D π== r r e r D E 21011εε=R r R <<1r r r e rQ D E 220120224επεεε==32R r R <<两球壳间的电势差 ⎰⋅=31R R AB dl E Udl E dl E R R R R ⋅+⋅=⎰⎰322121⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=3220121101114114R R Q R R Q r r επεεπε V 2100.6⨯-= (2)同理由高斯定理可得 1320213100.64-⋅⨯=+=m V e e rQ Q E r rπε (3)取无穷远处电势为零,则 V R Q Q U dl E U V AB BAB A 330213101.24⨯=++=+=⎰∞πε(先由电介质中高斯定理求D 分布,再求E 分布,再分段积分求V 分布)14. 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感应强度各为多少?[分析] 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度3210B B B B++=. 解 (a) 长直电流对点O 而言,它在延长线上点O 产生的磁场为零,则点O 处总的磁感强度为41圆弧电流所激发,故有: RIB 800μ=,方向垂直纸面向外Θ.(b) 将载流导线看作圆电流和长直电流,由叠加原理可得.RIRIB πμμ22000-= , 方向垂直纸面向里 ⊗(c) 将载流导线看作21圆电流和两段半无限长直电流,由叠加原理可得 RIR I R I R I R I B 42444000000μπμμπμπμ+=++=,方向垂直纸面向外. Θ (矢量和)15.载流长直导线的电流为I ,试求通过矩形线圈ABCD 的磁通量.[分析] 由于矩形平面上各点的磁感应强度不同,故磁通量BS ≠Φ.为此,可在矩形平面上取一矩形面元ldx dS =()[]b 1011-图,载流长直导线的磁场穿过该面元的磁通量为 ldx xIdS B d πμ20=⋅=Φ 矩形平面的总磁通量⎰Φ=Φd 解 由上述分析可得矩形平面的总磁通量 1200ln 2221d dIl ldx x I d d πμπμ==Φ⎰(积分法四步走) 16.有同轴电缆,其尺寸如图所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感应强度:(1);1R r <(2)21R r R <<;(3)32R r R <<;(4)3R r >.画出r B -图线.[分析] 同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径,⎰⋅=⋅r B l d B π2 ,利用安培环路定理∑⎰=⋅I l d B 0μ,可解得各区域的磁感强度.解 由上述分析得1R r < 22112r R Ir B ππμπ=⋅ 21012R IrB πμ=21R r R << I r B 022μπ=⋅rIB πμ202=31R r R << ()()⎥⎦⎤⎢⎣⎡---=⋅I R R R r I r B 2223222032ππμπ2223223032R R r R r I B --=πμ 3R r > ()0204=-=⋅I I r B μπ04=B磁感强度()r B 的分布曲线略。