大数据外文翻译参考文献综述
大数据时代文献综述(一)2024
大数据时代文献综述(一)引言概述:随着信息技术的不断发展和数据的大规模积累,大数据时代正以前所未有的速度产生着深远的影响。
在这个时代,大数据的应用已经渗透到诸多领域,如金融、医疗、交通等,给社会带来了诸多的机遇和挑战。
本文旨在通过文献综述的方式,介绍大数据时代的概念以及其主要特点,分析大数据对经济社会发展的影响,并总结目前相关研究的主要问题和趋势。
正文内容:一、大数据时代的概念和特点1. 大数据的定义和范围2. 大数据的四个特点:大量性、高速性、多样性和价值密度3. 大数据的数据源和采集技术4. 大数据的存储和处理技术5. 大数据的隐私与安全问题二、大数据对经济发展的影响1. 大数据在市场营销中的应用及效果2. 大数据对企业决策的支持作用3. 大数据对商业模式创新的推动4. 大数据对供应链管理的优化5. 大数据在金融行业的应用和风险管理三、大数据对社会发展的影响1. 大数据在医疗领域的应用和医疗服务的改进2. 大数据对教育领域的影响和学习模式的改变3. 大数据在城市规划和交通管理中的应用4. 大数据对环境保护与可持续发展的促进5. 大数据对政府决策与治理的影响四、大数据研究的主要问题和趋势1. 大数据的质量与准确性问题2. 大数据融合与共享的难题3. 大数据的处理与分析技术的挑战4. 大数据隐私保护的法律与伦理问题5. 大数据人才培养与研究的跨学科合作五、总结在大数据时代,大数据的产生和应用不仅带来了巨大的机遇,也带来了诸多挑战。
大数据已经对经济社会发展产生了深远影响,但同时也暴露出一系列问题。
未来,需要进一步研究与探索大数据的质量与准确性、处理与分析技术以及隐私保护等方面的问题,加强跨学科合作,培养专业人才,以更好地应对大数据时代的挑战与机遇。
文末总结。
大数据外文翻译参考文献综述
大数据外文翻译参考文献综述(文档含中英文对照即英文原文和中文翻译)原文:Data Mining and Data PublishingData mining is the extraction of vast interesting patterns or knowledge from huge amount of data. The initial idea of privacy-preserving data mining PPDM was to extend traditional data mining techniques to work with the data modified to mask sensitive information. The key issues were how to modify the data and how to recover the data mining result from the modified data. Privacy-preserving data mining considers the problem of running data mining algorithms on confidential data that is not supposed to be revealed even to the partyrunning the algorithm. In contrast, privacy-preserving data publishing (PPDP) may not necessarily be tied to a specific data mining task, and the data mining task may be unknown at the time of data publishing. PPDP studies how to transform raw data into a version that is immunized against privacy attacks but that still supports effective data mining tasks. Privacy-preserving for both data mining (PPDM) and data publishing (PPDP) has become increasingly popular because it allows sharing of privacy sensitive data for analysis purposes. One well studied approach is the k-anonymity model [1] which in turn led to other models such as confidence bounding, l-diversity, t-closeness, (α,k)-anonymity, etc. In particular, all known mechanisms try to minimize information loss and such an attempt provides a loophole for attacks. The aim of this paper is to present a survey for most of the common attacks techniques for anonymization-based PPDM & PPDP and explain their effects on Data Privacy.Although data mining is potentially useful, many data holders are reluctant to provide their data for data mining for the fear of violating individual privacy. In recent years, study has been made to ensure that the sensitive information of individuals cannot be identified easily.Anonymity Models, k-anonymization techniques have been the focus of intense research in the last few years. In order to ensure anonymization of data while at the same time minimizing the informationloss resulting from data modifications, everal extending models are proposed, which are discussed as follows.1.k-Anonymityk-anonymity is one of the most classic models, which technique that prevents joining attacks by generalizing and/or suppressing portions of the released microdata so that no individual can be uniquely distinguished from a group of size k. In the k-anonymous tables, a data set is k-anonymous (k ≥ 1) if each record in the data set is in- distinguishable from at least (k . 1) other records within the same data set. The larger the value of k, the better the privacy is protected. k-anonymity can ensure that individuals cannot be uniquely identified by linking attacks.2. Extending ModelsSince k-anonymity does not provide sufficient protection against attribute disclosure. The notion of l-diversity attempts to solve this problem by requiring that each equivalence class has at least l well-represented value for each sensitive attribute. The technology of l-diversity has some advantages than k-anonymity. Because k-anonymity dataset permits strong attacks due to lack of diversity in the sensitive attributes. In this model, an equivalence class is said to have l-diversity if there are at least l well-represented value for the sensitive attribute. Because there are semantic relationships among the attribute values, and different values have very different levels of sensitivity. Afteranonymization, in any equivalence class, the frequency (in fraction) of a sensitive value is no more than α.3. Related Research AreasSeveral polls show that the public has an in- creased sense of privacy loss. Since data mining is often a key component of information systems, homeland security systems, and monitoring and surveillance systems, it gives a wrong impression that data mining is a technique for privacy intrusion. This lack of trust has become an obstacle to the benefit of the technology. For example, the potentially beneficial data mining re- search project, Terrorism Information Awareness (TIA), was terminated by the US Congress due to its controversial procedures of collecting, sharing, and analyzing the trails left by individuals. Motivated by the privacy concerns on data mining tools, a research area called privacy-reserving data mining (PPDM) emerged in 2000. The initial idea of PPDM was to extend traditional data mining techniques to work with the data modified to mask sensitive information. The key issues were how to modify the data and how to recover the data mining result from the modified data. The solutions were often tightly coupled with the data mining algorithms under consideration. In contrast, privacy-preserving data publishing (PPDP) may not necessarily tie to a specific data mining task, and the data mining task is sometimes unknown at the time of data publishing. Furthermore, some PPDP solutions emphasize preserving the datatruthfulness at the record level, but PPDM solutions often do not preserve such property. PPDP Differs from PPDM in Several Major Ways as Follows :1) PPDP focuses on techniques for publishing data, not techniques for data mining. In fact, it is expected that standard data mining techniques are applied on the published data. In contrast, the data holder in PPDM needs to randomize the data in such a way that data mining results can be recovered from the randomized data. To do so, the data holder must understand the data mining tasks and algorithms involved. This level of involvement is not expected of the data holder in PPDP who usually is not an expert in data mining.2) Both randomization and encryption do not preserve the truthfulness of values at the record level; therefore, the released data are basically meaningless to the recipients. In such a case, the data holder in PPDM may consider releasing the data mining results rather than the scrambled data.3) PPDP primarily “anonymizes” the data by hiding the identity of record owners, whereas PPDM seeks to directly hide the sensitive data. Excellent surveys and books in randomization and cryptographic techniques for PPDM can be found in the existing literature. A family of research work called privacy-preserving distributed data mining (PPDDM) aims at performing some data mining task on a set of private databasesowned by different parties. It follows the principle of Secure Multiparty Computation (SMC), and prohibits any data sharing other than the final data mining result. Clifton et al. present a suite of SMC operations, like secure sum, secure set union, secure size of set intersection, and scalar product, that are useful for many data mining tasks. In contrast, PPDP does not perform the actual data mining task, but concerns with how to publish the data so that the anonymous data are useful for data mining. We can say that PPDP protects privacy at the data level while PPDDM protects privacy at the process level. They address different privacy models and data mining scenarios. In the field of statistical disclosure control (SDC), the research works focus on privacy-preserving publishing methods for statistical tables. SDC focuses on three types of disclosures, namely identity disclosure, attribute disclosure, and inferential disclosure. Identity disclosure occurs if an adversary can identify a respondent from the published data. Revealing that an individual is a respondent of a data collection may or may not violate confidentiality requirements. Attribute disclosure occurs when confidential information about a respondent is revealed and can be attributed to the respondent. Attribute disclosure is the primary concern of most statistical agencies in deciding whether to publish tabular data. Inferential disclosure occurs when individual information can be inferred with high confidence from statistical information of the published data.Some other works of SDC focus on the study of the non-interactive query model, in which the data recipients can submit one query to the system. This type of non-interactive query model may not fully address the information needs of data recipients because, in some cases, it is very difficult for a data recipient to accurately construct a query for a data mining task in one shot. Consequently, there are a series of studies on the interactive query model, in which the data recipients, including adversaries, can submit a sequence of queries based on previously received query results. The database server is responsible to keep track of all queries of each user and determine whether or not the currently received query has violated the privacy requirement with respect to all previous queries. One limitation of any interactive privacy-preserving query system is that it can only answer a sublinear number of queries in total; otherwise, an adversary (or a group of corrupted data recipients) will be able to reconstruct all but 1 . o(1) fraction of the original data, which is a very strong violation of privacy. When the maximum number of queries is reached, the query service must be closed to avoid privacy leak. In the case of the non-interactive query model, the adversary can issue only one query and, therefore, the non-interactive query model cannot achieve the same degree of privacy defined by Introduction the interactive model. One may consider that privacy-reserving data publishing is a special case of the non-interactivequery model.This paper presents a survey for most of the common attacks techniques for anonymization-based PPDM & PPDP and explains their effects on Data Privacy. k-anonymity is used for security of respondents identity and decreases linking attack in the case of homogeneity attack a simple k-anonymity model fails and we need a concept which prevent from this attack solution is l-diversity. All tuples are arranged in well represented form and adversary will divert to l places or on l sensitive attributes. l-diversity limits in case of background knowledge attack because no one predicts knowledge level of an adversary. It is observe that using generalization and suppression we also apply these techniques on those attributes which doesn’t need th is extent of privacy and this leads to reduce the precision of publishing table. e-NSTAM (extended Sensitive Tuples Anonymity Method) is applied on sensitive tuples only and reduces information loss, this method also fails in the case of multiple sensitive tuples.Generalization with suppression is also the causes of data lose because suppression emphasize on not releasing values which are not suited for k factor. Future works in this front can include defining a new privacy measure along with l-diversity for multiple sensitive attribute and we will focus to generalize attributes without suppression using other techniques which are used to achieve k-anonymity because suppression leads to reduce the precision ofpublishing table.译文:数据挖掘和数据发布数据挖掘中提取出大量有趣的模式从大量的数据或知识。
文献综述外文翻译写作规范及要求
文献综述外文翻译写作规范及要求
文献综述是对已经发表的学术文献进行系统的综合分析和评价的一种
学术写作形式。
在撰写文献综述的过程中,外文翻译是不可或缺的一部分。
下面是一些关于外文翻译的写作规范和要求。
1.准确:外文翻译要准确无误地表达原文的意思。
翻译过程中应注意
遵守语法规则、掌握专业术语以及正确理解上下文。
2.逻辑清晰:翻译后的中文句子要符合中文语法和表达习惯,并保持
逻辑上的连贯。
避免使用过于生硬或拗口的句子结构。
3.简洁明了:文献综述注重对已有文献的概括和总结,因此翻译过程
中应力求简洁明了,避免翻译过多的细节和废话。
4.专业术语准确翻译:外文翻译中的专业术语在翻译过程中要保持准
确性。
可以参考已有的专业词典、论文翻译表格等工具来确保专业术语的
正确翻译。
5.文体和语气恰当:根据不同的文献类型和句子语境,选择合适的文
体和语气进行翻译。
可以参考论文综述的写作规范和范例,避免过于口语
化或过于正式的翻译。
在撰写文献综述的过程中,准确和恰当的外文翻译是非常重要的。
只
有通过准确和规范的翻译,才能保证文献综述的质量和可信度。
因此,应
该注重提升外文翻译的能力并积极学习相关的写作规范和要求。
外文文献综述
外文文献综述
外文文献对于学术研究具有重要意义。
在全球化的背景下,科研领域的交流与合作越来越频繁,外文文献成为了获取最新研究成果的重要途径。
同时,外文文献的发表质量普遍较高,对于拓宽研究视野、了解国际学术前沿具有不可替代的作用。
获取外文文献的途径多样。
学者可以通过各大数据库、在线期刊等途径获取外文文献。
例如,谷歌学术、PubMed、IEEE Xplore等数据库都提供了大量的外文文献资源。
此外,一些学术交流平台、科研社区也为学者提供了分享与获取外文文献的渠道。
阅读外文文献需要掌握一些技巧。
首先,对于非英语母语的学者来说,提前做好英语阅读的准备工作是必要的。
可以通过参加英语培训班、听力训练、背单词等方式提高英语水平。
其次,对于不熟悉的专业词汇,可以借助词典或在线翻译工具进行查找。
此外,阅读外文文献时要注重篇章结构的把握,辨别文章的重点和论证逻辑,以及注意文献的可信度和适用性。
外文文献的应用价值广泛。
首先,外文文献为学者提供了与国际同行交流的机会,促进了学科交叉与合作。
其次,外文文献能够为研究者提供新的思路和方法,拓宽研究领域。
此外,外文文献也为政府、企业等决策者提供了国外科技发展动态的参考依据,有助于制定科技创新政策和发展战略。
外文文献对于学术研究具有重要意义,了解外文文献的获取途径和阅读技巧对于扩大研究视野、提高学术水平至关重要。
外文文献的应用价值也不容忽视,对于促进学科交流与合作、拓宽研究领域、指导科技发展具有积极作用。
因此,学者们应该重视外文文献的阅读和应用,并不断提升自己的外文文献获取与阅读能力。
大数据时代 文献综述
大数据时代文献综述【大数据时代文献综述】【引言】随着信息技术的迅猛发展,大数据已经成为当今时代的热点话题之一。
大数据的产生和应用给各行各业带来了巨大的变革和机遇。
本文将对大数据时代的相关文献进行综述,从定义、特点、应用领域等方面进行详细介绍,旨在全面了解大数据时代的现状和未来发展趋势。
【定义】大数据是指规模巨大、类型繁多且难以在常规时间内处理的数据集合。
根据国际数据公司IDC的定义,大数据具备“3V”特征:Volume(数据量大)、Velocity (数据处理速度快)和Variety(数据类型多样)。
此外,还有人们提出了“4V”或者“5V”的概念,即Value(数据价值)和Veracity(数据真实性)。
【特点】大数据时代具有以下几个显著特点:1. 数据量巨大:大数据时代的数据量呈指数级增长,远远超过传统数据库处理的能力范围。
2. 处理速度快:大数据处理需要具备高速的计算和分析能力,以满足实时决策和应用的需求。
3. 数据类型多样:大数据涵盖了结构化数据、半结构化数据和非结构化数据,如文本、图象、音频等。
4. 数据价值高:通过挖掘和分析大数据,可以揭示隐藏的关联性和价值,为企业和社会创造更多商业机会和社会价值。
5. 数据真实性要求高:大数据的真实性对于决策和应用至关重要,因此数据质量和数据安全成为大数据时代的重要问题。
【应用领域】大数据时代的应用领域广泛,以下是几个典型的应用领域:1. 商业智能和市场营销:通过大数据分析,企业可以深入了解消费者的需求和行为,提供个性化的产品和服务,从而提高市场竞争力。
2. 金融风控和欺诈检测:大数据分析可以匡助金融机构及时发现风险和欺诈行为,提高风险管理和客户信任度。
3. 医疗健康:通过大数据分析,可以实现个性化的医疗诊断和治疗方案,提高医疗效果和患者满意度。
4. 城市管理和智慧城市:大数据分析可以匡助城市管理者更好地了解城市运行情况,提供智慧交通、智慧能源等解决方案,提升城市管理效率和居民生活质量。
大数据文献综述英文版
The development and tendency of Big DataAbstract: "Big Data" is the most popular IT word after the "Internet of things" and "Cloud computing". From the source, development, status quo and tendency of big data, we can understand every aspect of it. Big data is one of the most important technologies around the world and every country has their own way to develop the technology.Key words: big data; IT; technology1 The source of big dataDespite the famous futurist Toffler propose the conception of “Big Data” in 1980, for a long time, because the primary stage is still in the development of IT industry and uses of information sources, “Big Data” is not get enough attention by the people in that age[1].2 The development of big dataUntil the financial crisis in 2008 force the IBM ( multi-national corporation of IT industry) proposing conception of “Smart City”and vigorously promote Internet of Things and Cloud computing so that information data has been in a massive growth meanwhile the need for the technology is very urgent. Under this condition, some American data processing companies have focused on developing large-scale concurrent processing system, then the “Big Data”technology become available sooner and Hadoop mass data concurrent processing system has received wide attention. Since 2010, IT giants have proposed their products in big data area. Big companies such as EMC、HP、IBM、Microsoft all purchase other manufacturer relating to big data in order to achieve technical integration[1]. Based on this, we can learn how important the big data strategy is. Development of big data thanks to some big IT companies such as Google、Amazon、China mobile、Alibaba and so on, because they need a optimization way to store and analysis data. Besides, there are also demands of health systems、geographic space remote sensing and digital media[2].3 The status quo of big dataNowadays America is in the lead of big data technology and market application. USA federal government announced a “Big Data’s research and development” plan in March,2012, which involved six federal government department the National Science Foundation, Health Research Institute, Department of Energy, Department of Defense, Advanced Research Projects Agency and Geological Survey in order to improve the ability to extract information and viewpoint of big data[1]. Thus, it can speed science and engineering discovery up, and it is a major move to push some research institutions making innovations.The federal government put big data development into a strategy place, which hasa big impact on every country. At present, many big European institutions is still at the primary stage to use big data and seriously lack technology about big data. Most improvements and technology of big data are come from America. Therefore, there are kind of challenges of Europe to keep in step with the development of big data. But, in the financial service industry especially investment banking in London is one of the earliest industries in Europe. The experiment and technology of big data is as good as the giant institution of America. And, the investment of big data has been maintained promising efforts. January 2013, British government announced 1.89 million pound will be invested in big data and calculation of energy saving technology in earth observation and health care[3].Japanese government timely takes the challenge of big data strategy. July 2013, Japan’s communications ministry proposed a synthesize strategy called “Energy ICT of Japan” which focused on big data application. June 2013, the abe cabinet formally announced the new IT strategy----“The announcement of creating the most advanced IT country”. This announcement comprehensively expounded that Japanese new IT national strategy is with the core of developing opening public data and big data in 2013 to 2020[4].Big data has also drawn attention of China government.《Guiding opinions of the State Council on promoting the healthy and orderly development of the Internet of things》promote to quicken the core technology including sensor network、intelligent terminal、big data processing、intelligent analysis and service integration. December 2012, the national development and reform commission add data analysis software into special guide, in the beginning of 2013 ministry of science and technology announced that big data research is one of the most important content of “973 program”[1]. This program requests that we need to research the expression, measure and semantic understanding of multi-source heterogeneous data, research modeling theory and computational model, promote hardware and software system architecture by energy optimal distributed storage and processing, analysis the relationship of complexity、calculability and treatment efficiency[1]. Above all, we can provide theory evidence for setting up scientific system of big data.4 The tendency of big data4.1 See the future by big dataIn the beginning of 2008, Alibaba found that the whole number of sellers were on a slippery slope by mining analyzing user-behavior data meanwhile the procurement to Europe and America was also glide. They accurately predicting the trend of world economic trade unfold half year earlier so they avoid the financial crisis[2]. Document [3] cite an example which turned out can predict a cholera one year earlier by mining and analysis the data of storm, drought and other natural disaster[3].4.2 Great changes and business opportunitiesWith the approval of big data values, giants of every industry all spend more money in big data industry. Then great changes and business opportunity comes[4].In hardware industry, big data are facing the challenges of manage, storage and real-time analysis. Big data will have an important impact of chip and storage industry,besides, some new industry will be created because of big data[4].In software and service area, the urgent demand of fast data processing will bring great boom to data mining and business intelligence industry.The hidden value of big data can create a lot of new companies, new products, new technology and new projects[2].4.3 Development direction of big dataThe storage technology of big data is relational database at primary. But due to the canonical design, friendly query language, efficient ability dealing with online affair, Big data dominate the market a long term. However, its strict design pattern, it ensures consistency to give up function, its poor expansibility these problems are exposed in big data analysis. Then, NoSQL data storage model and Bigtable propsed by Google start to be in fashion[5].Big data analysis technology which uses MapReduce technological frame proposed by Google is used to deal with large scale concurrent batch transaction. Using file system to store unstructured data is not lost function but also win the expansilility. Later, there are big data analysis platform like HA VEn proposed by HP and Fusion Insight proposed by Huawei . Beyond doubt, this situation will be continued, new technology and measures will come out such as next generation data warehouse, Hadoop distribute and so on[6].ConclusionThis paper we analysis the development and tendency of big data. Based on this, we know that the big data is still at a primary stage, there are too many problems need to deal with. But the commercial value and market value of big data are the direction of development to information age.忽略此处..[1] Li Chunwei, Development report of China’s E-Commerce enterprises, Beijing , 2013,pp.268-270[2] Li Fen, Zhu Zhixiang, Liu Shenghui, The development status and the problems of large data, Journal of Xi’an University of Posts and Telecommunications, 18 volume, pp. 102-103,sep.2013 [3] Kira Radinsky, Eric Horivtz, Mining the Web to Predict Future Events[C]//Proceedings of the 6th ACM International Conference on Web Search and Data Mining, WSDM 2013: New York: Association for Computing Machinery,2013,pp.255-264[4] Chapman A, Allen M D, Blaustein B. It’s About the Data: Provenance as a Toll for Assessing Data Fitness[C]//Proc of the 4th USENIX Workshop on the Theory and Practice of Provenance, Berkely, CA: USENIX Association, 2012:8[5] Li Ruiqin, Zheng Janguo, Big data Research: Status quo, Problems and Tendency[J],Network Application,Shanghai,1994,pp.107-108[6] Meng Xiaofeng, Wang Huiju, Du Xiaoyong, Big Daya Analysis: Competition and Survival of RDBMS and ManReduce[J], Journal of software, 2012,23(1): 32-45。
大数据时代 文献综述(二)2024
大数据时代文献综述(二)引言概述:随着科技的发展和互联网的普及,大数据的概念逐渐走入人们的视野,并在各个领域产生了深远的影响。
大数据时代不仅为企业提供了更多的商业机会,也对人们的生活方式、治理模式和科学研究带来了革命性的改变。
本文旨在对大数据时代的相关文献进行综述,深入探讨大数据在不同领域的应用和影响。
正文:1. 大数据在商业领域的应用- 市场调研和消费行为分析- 营销决策和个性化推荐- 风险管理和预测分析- 供应链管理和运营优化- 金融科技和区块链应用2. 大数据在社会治理的影响- 城市规划和智能交通- 公共安全和犯罪预测- 教育和人才培养- 医疗卫生和健康管理- 环境保护和资源优化3. 大数据在科学研究的应用- 生物医学研究和药物开发- 天文学和宇宙探索- 地球科学和气候变化研究- 材料科学和新材料开发- 社会科学和行为分析4. 大数据时代的挑战与问题- 数据隐私和安全保护- 数据质量和准确性- 数据治理和标准化- 技术能力和人才短缺- 法律法规和伦理问题5. 大数据时代的机遇与未来发展- 人工智能与大数据融合- 数据共享和合作机制- 数据开放和开放创新- 数据驱动的决策和智能化服务- 数据智能化的社会发展和治理总结:大数据时代带来了商业、社会和科学各个领域的巨大机遇和挑战。
在商业领域,大数据应用的深入推进将进一步提高企业的竞争力和效率;在社会治理方面,大数据将为城市发展和公共服务提供更精准的决策支持;在科学研究领域,大数据将推动科学家们的发现和创新。
然而,我们也需要面对数据隐私保护、数据治理以及技术人才短缺等问题。
未来,随着人工智能与大数据的深度融合,数据驱动的决策和智能化服务将成为大数据时代的新趋势,为社会发展和治理带来更多想象空间。
外文翻译与文献综述模板格式以及要求说明
杭州电子科技大学信息工程学院毕业论文外文文献翻译要求根据《普通高等学校本科毕业设计(论文)指导》的内容,特对外文文献翻译提出以下要求:一、翻译的外文文献可以是一篇,也可以是两篇,但总字符要求不少于1.5万(或翻译成中文后至少在3000字以上)。
二、翻译的外文文献应主要选自学术期刊、学术会议的文章、有关著作及其他相关材料,应与毕业论文(设计)主题相关,并作为外文参考文献列入毕业论文(设计)的参考文献。
并在每篇中文译文首页用“脚注”形式注明原文作者及出处,中文译文后应附外文原文。
三、中文译文的基本撰写格式为:1.题目:采用小三号、黑体字、居中打印;2.正文:采用小四号、宋体字,行间距一般为固定值20磅,标准字符间距。
页边距为左3cm,右2.5cm,上下各2.5cm,页面统一采用A4纸。
四、封面格式由学校统一制作(注:封面上的“翻译题目”指中文译文的题目),并按“封面、译文一、外文原文一、译文二、外文原文二、考核表”的顺序统一装订。
五、忌自行更改表格样式。
毕业论文外文文献翻译毕业设计(论文)题目Xxx翻译(1)题目指翻译后的中文译文的题目翻译(2)题目指翻译后的中文译文的题目系会计系以本模板为准)专业XXXXXX(以本模板为准)姓名XXXXXX(以本模板为准)班级XXXXXX(以本模板为准)学号XXXXXX(以本模板为准)指导教师XXXXXX(以本模板为准)正文指导教师对外文翻译的评语:指导教师(签名)年月日建议成绩(百分制)评阅小组或评阅人对外文翻译的评语:评阅小组负责人或评阅人(签名)年月日建议成绩(百分制)杭州电子科技大学信息工程学院本科毕业论文文献综述的写作要求为了促使学生熟悉更多的专业文献资料,进一步强化学生搜集文献资料的能力,提高对文献资料的归纳、分析、综合运用能力及独立开展科研活动的能力,现对本科学生的毕业设计(论文)提出文献综述的写作要求,具体要求如下:一、文献综述的概念文献综述是针对某一研究领域或专题搜集大量文献资料的基础上,就国内外在该领域或专题的主要研究成果、最新进展、研究动态、前沿问题等进行综合分析而写成的、能比较全面地反映相关领域或专题历史背景、前人工作、争论焦点、研究现状和发展前景等内容的综述性文章。
外文翻译及文献综述
2 无线射频系统(RFID)的原理及安全性分析
2.1 RFID系统概述 RFID系统一般由三部分组成[3]: 标签(Tag):它是RFID的核心部件,主要包括用于收 发信息的藕合元件和一块微控制芯片组成,芯片内存 有唯一的电子编码; 阅读器(Reader):用来对标签进行读写操作的设备; 天线(Antenna):传递射频信号必需的收发装置。
毕业设计过程中阅读的和课题注意是 “和课题相关的”。不要选择 和课题无关的外文资料进行翻译。
3.1.3 外文翻译工具
谷歌翻译(/#) 有道翻译(/) 爱词霸翻译(http://fy.iciba. com/)
(3) Chien和Chen于2007年提出了一个符合EPC Class 1 Generation 2 的 RFID双向认证协议[18]
(4) Tassos Dimitriou等人提出的安全与效率兼得的协议
6 小结
虽然RFID技术在各行各业中有良好的应用前景,但如果不能很好 地解决隐私、追踪等安全问题,这种应用前景难以变成现实的产 业,因此,对RFID安全协议进行研究具有比较重要的意义。 本文首先对RFID系统进行了大致的描述,包括RFID系统的结构 及其原理,并针对在RFID系统上存在的一些隐私与安全隐患做了 细致分析,指出了在RFID系统上采用安全措施的必要性。同时从 多个角度阐述了一些RFID安全机制,重点介绍了基于密码技术的 RFID协议,文中又可分为基于杂凑的安全协议和其他密码学机制 的安全协议,并对文中提到的每一个协议给出了详细的通信流程, 分析了这些协议的缺陷。 随着RFID技术成本的降低和技术的成熟,人们将会越来越重视 RFID的安全性问题。我们相信,在不久的将来,RFID安全与隐私 问题一定能得到进一步完善的解决,同时RFID技术也一定会全面 普及。
文献综述、外文翻译
上市公司财务风险的评价及控制的文献综述0704043046 会计074 唐明婷中国从资本市场建立开始,上市公司也随之不断地发展,上市的公司从行业、类型到地区、规模都呈现多样化趋势。
中国的上市公司,特别是上市公司中的ST公司,存在着严重的财务风险问题,财务风险比较大,对上市公司的发展会有很大的影响。
因此对上市公司财务风险问题的研究是十分重要的。
通过对这一领域大量文献的研究,从企业财务风险的成因、评价体系及控制三个角度综述,加强分析,以期对上市公司财务风险的理论和实践研究提供借鉴和指导。
(一)国外研究综述西方古典经济学家在十九世纪就已经提出了风险的概念,认为风险是经营活动的副产品,经营者的收入是其在经营活动中承担风险的报酬。
从狭义上看,企业的财务风险是指由于利用负债给企业带来的破产风险或普通股收益发生大幅度变动的风险。
这种观点立足于企业筹资时过多举债或举债不当。
西方国家强调全面风险管理的观念是从资金运动到资本经营整个体系的过程,对财务风险的控制包括风险预警、风险识别、危机处理等内容。
美国经济学家富兰克.H.奈特(Frank H.Knight)在1921年出版的(Risk,Un certai nty and Profit) 一书中认为:风险是指“可度量的不确定性”。
而“不确定性”是指不可度量的风险。
风险的特征是概率估计的可靠性,概率估计的可靠性来自所遵循的理论规律或稳定的经验规律。
与可计算或可预见的风险不同,不确定性是指人们缺乏对事件的基本知识,对事件可能的结果知之甚少,因此,不能通过现有理论或经验进行预见和定量分析①。
②Ross, Westerfield, Jordan(1995在《Fundamentals of Corporate Finance 提到债务筹资会增加股东的风险,使用债务筹资所产生的这部分额外风险称为公司股①[美]Frank H.Knight,王宇,王文玉译.《风险、不确定性和利润》[M].中国人民大学出版社.2005;②此段原文如下:“The debt finacing increases the risks borne by the stockholders. The extra risk that arises from the use of debt finacing is called the financial risk of the firm equity. In other word,financial risk is the equity risk that comes from the financial policy(i.e. capital structure) of the f1rm. ” Ross,Westerfield,Jordan,Fundamentals of Corporate Finance,1995东的财务风险。
大数据文献综述(一)
大数据文献综述(一)引言概述:大数据是当前信息技术发展的热点,它以巨大规模的、多种类型的数据集为基础,通过创新的处理和分析方法,揭示出隐藏在数据背后的规律和价值,对于推动社会经济的发展具有重要作用。
本文旨在对大数据的相关文献进行综述,系统梳理大数据的定义、特点、应用领域等方面的研究成果,为深入理解和应用大数据提供参考依据。
正文内容:一、大数据的定义与特点1. 大数据的定义:从数据量、速度、多样性等方面阐述大数据的底线。
2. 大数据的特点:探讨大数据的海量、高维、真实、价值等特点,以区别于传统数据。
二、大数据的技术基础1. 大数据的存储技术:介绍分布式文件系统、NoSQL数据库等存储大数据的技术手段。
2. 大数据的处理技术:讨论MapReduce、Hadoop等大数据处理框架及其应用场景。
三、大数据的应用领域1. 金融领域:探索大数据在风险评估、投资决策等方面的应用。
2. 医疗领域:分析大数据在疾病预测、基因分析等方面的应用案例。
3. 零售领域:剖析大数据在市场分析、用户行为预测等方面的应用。
4. 媒体领域:阐述大数据在舆情分析、个性化推荐等方面的应用。
四、大数据的挑战与机遇1. 数据隐私与安全问题:探讨大数据背后存在的隐私泄露和数据安全问题。
2. 数据质量与整合问题:分析大数据链路中可能出现的数据质量不确定性和信息孤立问题。
3. 人才缺口与资源投入问题:讨论大数据技术人才与资源投入不足的挑战。
五、大数据的未来发展趋势1. 人工智能与大数据:探讨人工智能与大数据的紧密结合,推动大数据应用走向智能化。
2. 数据驱动的企业发展:分析数据驱动型企业的兴起和发展趋势。
3. 数据治理与合规性问题:讨论大数据时代下数据治理与合规性的重要性。
总结:本文通过对大数据的定义、特点、技术基础、应用领域、挑战与机遇以及未来发展趋势的综述,为读者提供了深入了解大数据的基础知识和前沿动态的参考。
随着信息技术的不断发展,大数据将继续引领社会变革的浪潮,为各行业创造更多的机遇与挑战。
文献综述和外文翻译撰写要求与格式规范
本科毕业论文(设计)文献综述和外文翻译撰写要求与格式规范一、毕业论文(设计)文献综述(一)毕业论文(设计)文献综述的内容要求1.封面:由学院统一设计,普通A4纸打印即可。
2.正文综述正文部分需要阐述所选课题在相应学科领域中的发展进程和研究方向,特别是近年来的发展趋势和最新成果。
通过与中外研究成果的比较和评论,说明自己的选题是符合当前的研究方向并有所进展,或采用了当前的最新技术并有所改进,目的是使读者进一步了解本课题的意义。
文中的用语、图纸、表格、插图应规范、准确,量和单位的使用必须符合国家标准规定,引用他人资料要有标注。
文献综述字数在5000字以上。
正文前须附500字左右中文摘要,末尾须附参考文献。
参考文献的著录按在文献综述中出现的先后顺序编号。
期刊类文献书写方法:[序号]作者(不超过3人,多者用等表示).题(篇)名[J].刊名,出版年,卷次(期次):起止页次., 图书类文献书写方法:[序号]作者.书名[M].版本.出版地:出版者,出版年:起止页次.论文集类文献书写方法:[序号]作者.篇名[C].论文集名.出版地:出版者,出版年:起止页次.学位论文类书写方法:[序号]作者.篇名[D].出版地:单位名称 年份.电子文献类书写方法:[序号]主要责任者. 题名:其他题名信息[文献类型标志/文献载体标志 ]出版地:出版者,出版年(更新或修改日期)[引用日期].获取和访问途径.参考文献篇数应符合学院毕业论文(设计)工作的要求。
(二)毕业论文(设计)文献综述撰写与装订的格式规范第一部分:封面1.封面:由学院统一设计,“本科生毕业论文(设计)”根据作业实际明确为“论文”或“设计”,其它文本、表格遇此类情况同样处理。
第二部分:文献综述主题1.中文摘要与关键词摘要标题(五号,宋体,顶格,加粗)摘要内容(五号,宋体)关键词标题(五号,宋体,顶格,加粗)关健词内容(五号,宋体,词间用分号隔开)2.正文标题标题最多分四级。
文献综述外文翻译写作规范及要求
文献综述外文翻译写作规范及要求文献综述是对一定范围内已有文献的综合评述和总结,旨在回答特定研究问题、揭示研究现状、批判前人工作或发展新的研究方向等。
以下是文献综述和外文中文翻译的写作规范及要求:文献综述写作规范及要求:1.选择适当的文献范围:确定综述的主题和范围,选择与主题相关的高质量文献。
2.搜集文献:利用数据库、图书馆和互联网等途径,广泛搜集相关文献。
3.文献筛选:根据综述的目标和问题,筛选出与主题相关、有代表性的文献。
一般建议引用近几年的研究,但也可以引用经典文献。
4.综述结构:按照逻辑顺序,将文献分类、总结和评价。
一般包括引言、方法、结果和讨论等部分。
5.文章结构和语言:注意文章结构的连贯性和条理性,使用准确的科技词汇和语言,注意段落和句子的清晰性。
6.学术文献引用格式:按照学术规范,使用适当的引用格式,如APA、MLA等。
外文中文翻译写作规范及要求:1.翻译准确:理解原文意思,确保准确翻译每个词和句子。
2.语言流畅:在保证准确性的基础上,使译文语句通顺、流畅,符合汉语表达习惯。
3.词汇选择:选择恰当的词汇,尽量避免直译和生硬的译文,注意上下文的语境和词语的用法。
4.文化转换:针对涉及特定文化细节的部分,进行文化适应和转换,使读者能够理解和接受。
5.段落和结构:保持原文段落和结构的清晰,正确表达文章的逻辑和条理。
6.校对和修改:仔细校对翻译的准确性、语句的通顺性和表达的准确性,进行必要的修改和完善。
7.注明出处:在译文中注明原文的出处,并按照学术规范进行引用。
以上是文献综述和外文中文翻译的一般写作规范和要求,具体可以根据不同学科领域和学术期刊的要求进行调整和补充。
大数据文献综述范文
大数据综述可以写哪些方面的问题大数据(big data),是指在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。
大数据的特点:1、容量(Volume):数据的大小决定所考虑的数据的价值的和潜在的信息;2、种类(Variety):数据类型的多样性;3、速度(Velocity):指获得数据的速度;4、可变性(Variability):妨碍了处理和有效地管理数据的过程。
5、真实性(Veracity):数据的质量大数据的意义:现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。
有人把数据比喻为蕴藏能量的煤矿。
煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。
与此类似,大数据并不在“大”,而在于“有用”。
价值含量、挖掘成本比数量更为重要。
对于很多行业而言,如何利用这些大规模数据是成为赢得竞争的关键。
大数据的缺陷:文献综述范文怎么写英语毕业论文文献综述好写的,根据题目写相关学者的总结,开始我也不会,还是师姐介绍的莫文网,专业的就是不一样,很快就帮忙完成了对大学英语翻译教学若干问题的思考应用英语翻译呼唤理论指导大学英语翻译教学:现状与对策国内商务英语翻译研究综述商务英语翻译中存在的问题与对策顺应理论视角下科技英语翻译切雅实证分析经济一体化环境下的商务英语翻译教学新世纪十年来商务英语翻译研究:回顾与前瞻语用观视角下的中医英语翻译教学实证研究翻译——找到源语的所指——对规划教材《商务英语翻译》误译译例的批判研究从功能对等角度看商务英语翻译高校科技英语翻译课程设置探讨科技英语汉译的英语翻译技巧研究——以船舶英语文本中的汉译为例功能对等视角下的科技英语翻译论商务英语翻译的4Es标准大学英语翻译教学存在的问题与对策关联理论在科技英语翻译中的应用——以Climate Change and Peak Oil文本的翻译为例功能对等理论指导下的商务英语翻译大学英语翻译教学:问题与对策英语翻译专业本科生的笔译能力调查分析——以某师范大学英语翻译专业为例中国职业篮球俱乐部体育英语翻译人员现状及发展对策研究从目的论的角度下看商务英语翻译论高职商务英语翻译教学中学生跨文化交际意识的培养试论近代国人英语翻译任务型教学法在《商务英语翻译》教学中的运用商务英语翻译与文化信息等值研究大学英语翻译教学教材编写探讨——以《新时代交互英语(读写译1-4册)》为例东西方文化差异对商务英语翻译的影响顺序分析在科技英语翻译中的应用——以翻译项目《大气污染排放系数手册》为案例从关联理论分析法律英语翻译中的文化差异及其翻译补偿商务英语翻译原则探讨跨文化因素对商务英语翻译的影响及调整策略###世界经济一体化、文化多元化的快速发展,英语作为世界通用语地位的确立,为我国大学英语教学提出培养具有跨文化交际能力的高素质人才的新要求。
文献综述和外文翻译的撰写要求
Keeping organizational information in a file-processing system has a number of major disadvantages.
?Data redundancy and inconsistency. Since the files and application programs are created by different programmers over a long period, the various files are likely to have different formats and the programs may be written in several programming languages. Moreover, the same information may be duplicated in several places (files). For example, the address and telephone number of a particular customer may appear in file that consists of savings-account records and in a file that consists of checking-account records. This redundancy leads to higher storage and access cost. In addition, it may lead to data inconsistency; that is, the various copies of the same data may no longer agree. For example, a changed coustomer address may be reflected in savings-account records but not elsewhere in the system.
文献综述,外文翻译,论文网站
文献综述,外文翻译,论文网站目录一、网站概述 (2)1.1 网站背景 (3)1.2 网站目的与意义 (3)二、网站结构与功能 (5)2.1 网站结构 (6)2.1.1 首页设计 (7)2.1.2 栏目设置 (8)2.1.3 搜索功能 (9)2.2 网站功能特点 (10)2.2.1 文献浏览功能 (11)2.2.2 文献翻译功能 (12)2.2.3 文献下载与分享功能 (13)三、外文文献综述内容分析 (15)3.1 综述目的和范围 (16)3.2 外文文献来源及筛选标准 (17)3.2.1 文献来源 (18)3.2.2 筛选标准与方法 (19)3.3 外文文献的主要内容及观点 (21)3.3.1 某一领域的研究现状 (22)3.3.2 不同观点的碰撞与融合 (23)四、外文文献翻译质量分析 (24)4.1 翻译团队介绍及翻译标准 (26)4.1.1 专业翻译团队组成 (26)4.1.2 翻译质量标准与流程 (27)4.2 翻译错误类型及纠正方法 (28)4.2.1 常见翻译错误类型 (29)4.2.2 翻译错误的纠正方法 (31)五、网站的用户群体与使用效果分析 (32)一、网站概述在当今全球化的学术研究领域,信息的交流与传播至关重要。
为了满足学者们对国外文献的需求,促进国际学术研究的深入发展,我们精心搭建了一个综合性的“文献综述外文翻译论文网站”。
该网站致力于提供一个便捷、高效的平台,使用户能够轻松获取并翻译最新的国外学术文献,从而提升自身的研究水平和国际影响力。
本网站不仅收录了海量的英文原版文献,还提供了精准的翻译服务。
我们的专业翻译团队由经验丰富的译员组成,他们精通多种语言,能够确保翻译的准确性和地道性。
我们还利用先进的文本处理技术,实现了文献的自动分类、检索和下载功能,大大提高了用户的阅读体验。
本网站还设有专业的文献综述栏目,为用户提供系统、全面的文献综述指导和分析。
通过对比不同文献的观点和方法,用户可以更加深入地了解研究领域的最新动态和趋势,为自己的研究工作提供有力的理论支撑。
大数据文献综述范文docx(一)2024
大数据文献综述范文docx(一)引言概述:本文旨在综述大数据领域的相关文献,通过对现有研究成果的整理和分析,归纳出目前大数据领域的研究热点和发展趋势,为进一步的研究提供参考和借鉴。
正文:一、大数据的定义与特征1. 大数据的概念及演变2. 大数据的四个基本特征:3V(Volume、Velocity、Variety)+ Value3. 大数据与传统数据的差异与联系4. 大数据对经济、社会、科学等领域的影响二、大数据的采集与存储1. 大数据采集的主要方法:传感器网络、物联网等2. 大数据存储的常用技术:分布式文件系统、NoSQL数据库等3. 大数据采集和存储过程中面临的挑战及解决方案4. 大数据隐私与安全保护的技术与方法三、大数据的分析与挖掘1. 大数据分析的基本流程与方法:数据清洗、数据集成、数据挖掘、模型建立、结果验证等2. 大数据分析常用的算法和技术:关联规则挖掘、聚类分析、分类与预测等3. 大数据分析的应用领域与案例研究4. 大数据分析在决策支持中的作用与价值四、大数据的可视化与交互1. 大数据可视化的基本原理及方法2. 大数据可视化工具的比较与选择3. 大数据可视化的应用案例与效果评估4. 大数据可视化的交互技术与方法五、大数据的发展趋势与挑战1. 大数据发展趋势:云计算、边缘计算、人工智能等技术的融合与应用2. 大数据面临的挑战:数据质量、隐私与安全、算法效率等问题3. 大数据发展的政策与法律环境4. 大数据发展的前景与应用展望总结:通过对大数据领域相关文献的综述,可以发现大数据在经济、社会和科学领域的重要作用和潜在价值。
同时,大数据采集、存储、分析与可视化面临许多挑战和难题,需要我们进一步研究和探索。
随着技术的不断发展和应用的深入推广,大数据必将在各个领域中发挥更大的作用,为社会进步和经济发展提供有力支持。
开题报告、文献综述、外文翻译技巧
开题报告、文献综述、外文翻译、论文反抄袭软件、论文目录,就差论文正文了,其他都全了!!开题报告主要包括以下几个方面:(一)论文名称论文名称就是课题的名字第一,名称要准确、规范。
准确就是论文的名称要把论文研究的问题是什么,研究的对象是什么交待清楚,论文的名称一定要和研究的内容相一致,不能太大,也不能太小,要准确地把你研究的对象、问题概括出来。
第二,名称要简洁,不能太长。
不管是论文或者课题,名称都不能太长,能不要的字就尽量不要,一般不要超过20个字。
(二)论文研究的目的、意义研究的目的、意义也就是为什么要研究、研究它有什么价值。
这一般可以先从现实需要方面去论述,指出现实当中存在这个问题,需要去研究,去解决,本论文的研究有什么实际作用,然后,再写论文的理论和学术价值。
这些都要写得具体一点,有针对性一点,不能漫无边际地空喊口号。
主要内容包括:⑴研究的有关背景(课题的提出):即根据什么、受什么启发而搞这项研究。
⑵通过分析本地(校)的教育教学实际,指出为什么要研究该课题,研究的价值,要解决的问题。
(三)本论文国内外研究的历史和现状(文献综述)。
规范些应该有,如果是小课题可以省略。
一般包括:掌握其研究的广度、深度、已取得的成果;寻找有待进一步研究的问题,从而确定本课题研究的平台(起点)、研究的特色或突破点。
(四)论文研究的指导思想指导思想就是在宏观上应坚持什么方向,符合什么要求等,这个方向或要求可以是哲学、政治理论,也可以是政府的教育发展规划,也可以是有关研究问题的指导性意见等。
(五)论文写作的目标论文写作的目标也就是课题最后要达到的具体目的,要解决哪些具体问题,也就是本论文研究要达到的预定目标:即本论文写作的目标定位,确定目标时要紧扣课题,用词要准确、精练、明了。
常见存在问题是:不写研究目标;目标扣题不紧;目标用词不准确;目标定得过高, 对预定的目标没有进行研究或无法进行研究。
确定论文写作目标时,一方面要考虑课题本身的要求,另一方面要考率实际的工作条件与工作水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据外文翻译参考文献综述(文档含中英文对照即英文原文和中文翻译)原文:Data Mining and Data PublishingData mining is the extraction of vast interesting patterns or knowledge from huge amount of data. The initial idea of privacy-preserving data mining PPDM was to extend traditional data mining techniques to work with the data modified to mask sensitive information. The key issues were how to modify the data and how to recover the data mining result from the modified data. Privacy-preserving data mining considers the problem of running data mining algorithms on confidential data that is not supposed to be revealed even to the partyrunning the algorithm. In contrast, privacy-preserving data publishing (PPDP) may not necessarily be tied to a specific data mining task, and the data mining task may be unknown at the time of data publishing. PPDP studies how to transform raw data into a version that is immunized against privacy attacks but that still supports effective data mining tasks. Privacy-preserving for both data mining (PPDM) and data publishing (PPDP) has become increasingly popular because it allows sharing of privacy sensitive data for analysis purposes. One well studied approach is the k-anonymity model [1] which in turn led to other models such as confidence bounding, l-diversity, t-closeness, (α,k)-anonymity, etc. In particular, all known mechanisms try to minimize information loss and such an attempt provides a loophole for attacks. The aim of this paper is to present a survey for most of the common attacks techniques for anonymization-based PPDM & PPDP and explain their effects on Data Privacy.Although data mining is potentially useful, many data holders are reluctant to provide their data for data mining for the fear of violating individual privacy. In recent years, study has been made to ensure that the sensitive information of individuals cannot be identified easily.Anonymity Models, k-anonymization techniques have been the focus of intense research in the last few years. In order to ensure anonymization of data while at the same time minimizing the informationloss resulting from data modifications, everal extending models are proposed, which are discussed as follows.1.k-Anonymityk-anonymity is one of the most classic models, which technique that prevents joining attacks by generalizing and/or suppressing portions of the released microdata so that no individual can be uniquely distinguished from a group of size k. In the k-anonymous tables, a data set is k-anonymous (k ≥ 1) if each record in the data set is in- distinguishable from at least (k . 1) other records within the same data set. The larger the value of k, the better the privacy is protected. k-anonymity can ensure that individuals cannot be uniquely identified by linking attacks.2. Extending ModelsSince k-anonymity does not provide sufficient protection against attribute disclosure. The notion of l-diversity attempts to solve this problem by requiring that each equivalence class has at least l well-represented value for each sensitive attribute. The technology of l-diversity has some advantages than k-anonymity. Because k-anonymity dataset permits strong attacks due to lack of diversity in the sensitive attributes. In this model, an equivalence class is said to have l-diversity if there are at least l well-represented value for the sensitive attribute. Because there are semantic relationships among the attribute values, and different values have very different levels of sensitivity. Afteranonymization, in any equivalence class, the frequency (in fraction) of a sensitive value is no more than α.3. Related Research AreasSeveral polls show that the public has an in- creased sense of privacy loss. Since data mining is often a key component of information systems, homeland security systems, and monitoring and surveillance systems, it gives a wrong impression that data mining is a technique for privacy intrusion. This lack of trust has become an obstacle to the benefit of the technology. For example, the potentially beneficial data mining re- search project, Terrorism Information Awareness (TIA), was terminated by the US Congress due to its controversial procedures of collecting, sharing, and analyzing the trails left by individuals. Motivated by the privacy concerns on data mining tools, a research area called privacy-reserving data mining (PPDM) emerged in 2000. The initial idea of PPDM was to extend traditional data mining techniques to work with the data modified to mask sensitive information. The key issues were how to modify the data and how to recover the data mining result from the modified data. The solutions were often tightly coupled with the data mining algorithms under consideration. In contrast, privacy-preserving data publishing (PPDP) may not necessarily tie to a specific data mining task, and the data mining task is sometimes unknown at the time of data publishing. Furthermore, some PPDP solutions emphasize preserving the datatruthfulness at the record level, but PPDM solutions often do not preserve such property. PPDP Differs from PPDM in Several Major Ways as Follows :1) PPDP focuses on techniques for publishing data, not techniques for data mining. In fact, it is expected that standard data mining techniques are applied on the published data. In contrast, the data holder in PPDM needs to randomize the data in such a way that data mining results can be recovered from the randomized data. To do so, the data holder must understand the data mining tasks and algorithms involved. This level of involvement is not expected of the data holder in PPDP who usually is not an expert in data mining.2) Both randomization and encryption do not preserve the truthfulness of values at the record level; therefore, the released data are basically meaningless to the recipients. In such a case, the data holder in PPDM may consider releasing the data mining results rather than the scrambled data.3) PPDP primarily “anonymizes” the data by hiding the identity of record owners, whereas PPDM seeks to directly hide the sensitive data. Excellent surveys and books in randomization and cryptographic techniques for PPDM can be found in the existing literature. A family of research work called privacy-preserving distributed data mining (PPDDM) aims at performing some data mining task on a set of private databasesowned by different parties. It follows the principle of Secure Multiparty Computation (SMC), and prohibits any data sharing other than the final data mining result. Clifton et al. present a suite of SMC operations, like secure sum, secure set union, secure size of set intersection, and scalar product, that are useful for many data mining tasks. In contrast, PPDP does not perform the actual data mining task, but concerns with how to publish the data so that the anonymous data are useful for data mining. We can say that PPDP protects privacy at the data level while PPDDM protects privacy at the process level. They address different privacy models and data mining scenarios. In the field of statistical disclosure control (SDC), the research works focus on privacy-preserving publishing methods for statistical tables. SDC focuses on three types of disclosures, namely identity disclosure, attribute disclosure, and inferential disclosure. Identity disclosure occurs if an adversary can identify a respondent from the published data. Revealing that an individual is a respondent of a data collection may or may not violate confidentiality requirements. Attribute disclosure occurs when confidential information about a respondent is revealed and can be attributed to the respondent. Attribute disclosure is the primary concern of most statistical agencies in deciding whether to publish tabular data. Inferential disclosure occurs when individual information can be inferred with high confidence from statistical information of the published data.Some other works of SDC focus on the study of the non-interactive query model, in which the data recipients can submit one query to the system. This type of non-interactive query model may not fully address the information needs of data recipients because, in some cases, it is very difficult for a data recipient to accurately construct a query for a data mining task in one shot. Consequently, there are a series of studies on the interactive query model, in which the data recipients, including adversaries, can submit a sequence of queries based on previously received query results. The database server is responsible to keep track of all queries of each user and determine whether or not the currently received query has violated the privacy requirement with respect to all previous queries. One limitation of any interactive privacy-preserving query system is that it can only answer a sublinear number of queries in total; otherwise, an adversary (or a group of corrupted data recipients) will be able to reconstruct all but 1 . o(1) fraction of the original data, which is a very strong violation of privacy. When the maximum number of queries is reached, the query service must be closed to avoid privacy leak. In the case of the non-interactive query model, the adversary can issue only one query and, therefore, the non-interactive query model cannot achieve the same degree of privacy defined by Introduction the interactive model. One may consider that privacy-reserving data publishing is a special case of the non-interactivequery model.This paper presents a survey for most of the common attacks techniques for anonymization-based PPDM & PPDP and explains their effects on Data Privacy. k-anonymity is used for security of respondents identity and decreases linking attack in the case of homogeneity attack a simple k-anonymity model fails and we need a concept which prevent from this attack solution is l-diversity. All tuples are arranged in well represented form and adversary will divert to l places or on l sensitive attributes. l-diversity limits in case of background knowledge attack because no one predicts knowledge level of an adversary. It is observe that using generalization and suppression we also apply these techniques on those attributes which doesn’t need th is extent of privacy and this leads to reduce the precision of publishing table. e-NSTAM (extended Sensitive Tuples Anonymity Method) is applied on sensitive tuples only and reduces information loss, this method also fails in the case of multiple sensitive tuples.Generalization with suppression is also the causes of data lose because suppression emphasize on not releasing values which are not suited for k factor. Future works in this front can include defining a new privacy measure along with l-diversity for multiple sensitive attribute and we will focus to generalize attributes without suppression using other techniques which are used to achieve k-anonymity because suppression leads to reduce the precision ofpublishing table.译文:数据挖掘和数据发布数据挖掘中提取出大量有趣的模式从大量的数据或知识。