近十年超级电容器领域的重大突破
超级电容器的现状及发展趋势
超级电容器的现状及发展趋势一、本文概述随着科技的飞速发展和人类对能源需求的日益增长,超级电容器作为一种新兴的储能器件,正逐渐在能源储存和转换领域崭露头角。
本文旨在全面概述超级电容器的现状及其未来发展趋势,从而为相关领域的研究人员和技术人员提供有价值的参考。
本文将回顾超级电容器的历史发展,探讨其从概念提出到实际应用的过程。
文章将详细介绍超级电容器的基本原理、结构特点以及性能优势,以便读者对其有深入的理解。
在此基础上,文章将重点分析当前超级电容器在各个领域的应用状况,如交通运输、电力储能、电子设备等领域。
同时,文章还将探讨超级电容器在实际应用中面临的挑战和问题,如成本、安全性、寿命等。
本文还将关注超级电容器的未来发展趋势。
随着材料科学、纳米技术、电化学等领域的进步,超级电容器的性能有望得到进一步提升。
文章将预测超级电容器在未来可能的技术突破和市场应用前景,包括新型电极材料的开发、电容器结构的优化、以及与其他能源储存技术的融合等。
本文将全面梳理超级电容器的现状及其未来发展趋势,旨在为读者提供一个清晰、全面的视角,以便更好地把握超级电容器在能源储存和转换领域的发展动态。
二、超级电容器的现状超级电容器,作为一种介于传统电容器和电池之间的新型储能器件,以其独特的性能优势在现代能源领域引起了广泛的关注。
目前,超级电容器的应用已经渗透到了许多领域,包括交通、能源、工业、电子等。
在交通领域,超级电容器以其高功率密度和快速充放电的特性,被广泛应用于电动公交、混合动力汽车以及电动汽车的启动和加速过程中。
超级电容器能够在短时间内提供大量的电能,使车辆在短时间内达到较高的速度,从而提高车辆的动力性能。
超级电容器还可以作为车辆的辅助能源,与电池配合使用,延长车辆的续航里程。
在能源领域,超级电容器被用作风力发电和太阳能发电系统的储能装置。
在这些系统中,超级电容器可以平滑输出电能,避免由于风速和日照强度的不稳定而导致的电能波动。
超级电容发展现状
超级电容发展现状
超级电容技术在过去几年中取得了显著的发展,已经成为电力储存领域的重要解决方案。
超级电容以其高能量密度、快速充放电速率、长寿命和环境友好等优势而备受关注。
目前,超级电容主要应用于电动汽车、可再生能源储存和电子设备等领域。
在电动汽车行业中,超级电容可以实现高能量回收率和快速充电,提高电动汽车的续航里程和性能。
在可再生能源储存中,超级电容可以与电池等其他储能设备结合使用,平衡电网负载和储存多余的电力。
在电子设备中,超级电容可以提供电源备份和瞬态功率支持,提高设备性能和稳定性。
超级电容的研发重点主要集中在提高能量密度和降低成本。
目前,一些新型材料如二维材料、金属有机骨架材料和多孔碳材料等正被广泛研究,以增加超级电容的能量密度。
此外,一些工艺改进和制造技术的引入也有助于降低超级电容的生产成本。
尽管取得了一些重要进展,但超级电容仍面临一些挑战。
其中之一是超级电容的能量密度相对较低,尚无法与传统电池相媲美。
另外,超级电容的高成本也限制了其大规模应用,需要进一步提高制造效率和降低材料成本。
综上所述,超级电容技术在能源储存领域的发展前景广阔。
随着持续的研发和创新,超级电容有望在未来实现更高能量密度和更低成本,为新能源汽车和可再生能源等领域的发展做出重要贡献。
超级电容器的发展现状
超级电容器的发展现状超级电容器(Supercapacitor),又称超级电容、超级电池、电化学超级电容等,是一种新型的能量存储装置。
与传统的电化学电池不同,超级电容器能够以更高的功率进行快速的充放电,其理论上的寿命更长,并且可以进行成千上万次的充放电循环。
目前,超级电容器的发展进展如下:1. 提高能量密度:超级电容器的能量密度一直是其发展中的关键问题。
近年来,研究人员通过改进电极材料、电解质和结构设计等方面的创新,使得超级电容器的能量密度获得了显著提高。
目前商业化的超级电容器已经能够达到100 Wh/kg,高能量密度的材料和结构设计研究也在不断进行中。
2. 提高功率密度:超级电容器的功率密度是其另一个重要指标。
功率密度指的是电容器能够在短时间内释放大量电能的能力。
近年来的研究表明,通过设计新的纳米结构和提高电解质导电性等方法,已经能够将超级电容器的功率密度提高到几千瓦/千克以上。
这使得超级电容器在需求瞬时高能量输出的领域,例如电动汽车的启动和制动系统,具有广阔的应用前景。
3. 提高循环寿命:超级电容器的循环寿命(即充放电循环次数)也是一个重要指标。
通过改善电极材料的结构和化学稳定性等方面的研究,已经成功地提高了超级电容器的循环寿命。
目前,一些商业化的超级电容器已经可以进行百万次的充放电循环,这使得超级电容器相比传统电化学电池更加持久耐用。
4. 增加应用领域:超级电容器因其快速充放电和长寿命的特点,在一些特定的领域已经开始商业化应用。
例如,超级电容器已经被广泛应用于电动车、电力电子设备、可再生能源储能系统等。
此外,超级电容器还在智能电网、医疗设备、航空航天等领域也有广阔的发展前景。
综上所述,超级电容器在能量密度、功率密度和循环寿命等方面都取得了显著的进展。
未来,随着科学技术的不断进步,超级电容器有望在更多领域发挥重要作用,并逐渐替代传统的电化学电池,成为一种重要的能量存储装置。
超级电容器的应用与发展
超级电容器的应用与发展超级电容器目前在能量存储与释放领域的应用非常广泛。
首先,超级电容器在电动车和混合动力汽车等交通工具上起到了重要的作用。
由于超级电容器具有快速充电和放电的能力,可以为车辆的瞬时需求提供大量电能,从而提高汽车的启动性能和加速性能,减小滞后感。
其次,超级电容器也被广泛应用于储能系统中,如风力和太阳能发电等再生能源的储能系统,以及电网的储能系统。
超级电容器可以在短时间内储存大量的电能,并在需要时快速释放,有效地平衡电网负荷和供应之间的差异,提高电网的稳定性和可靠性。
此外,超级电容器还可以应用于电子设备、军事装备、医疗设备等领域,提供可靠的能量储存和供应。
超级电容器的发展也取得了巨大的进展。
首先,传统的电容器材料如铝电解电容器和陶瓷电容器已经逐渐被高性能碳电极材料取代,这些材料具有更高的比表面积和更好的电导率,能够提高超级电容器的能量密度和功率密度。
其次,新型纳米材料的研究也为超级电容器的发展提供了新的思路。
石墨烯、二维材料、金属有机骨架材料等具有特殊结构和性能的纳米材料,可以提供更大的表面积和更好的电气性能,使得超级电容器具有更高的能量密度和功率密度。
同时,研究人员还通过调控电解液和电极材料的组成和结构,改善了超级电容器的电化学性能,延长了其循环寿命,提高了稳定性。
未来,超级电容器的应用和发展还有许多潜力和挑战。
首先,随着电动交通工具和可再生能源的快速发展,对高性能超级电容器的需求将进一步增加。
因此,超级电容器的能量密度和功率密度还需要进一步提高,以满足更高的应用要求。
其次,超级电容器的成本也需要进一步降低,才能促进其在大规模应用中的普及。
目前,超级电容器的制造成本较高,限制了其在一些应用领域的推广。
因此,研究人员需要努力寻找更便宜和易于制造的材料和工艺,以降低成本。
此外,超级电容器的可靠性和循环寿命也需要得到进一步提高,以满足长期使用的需求。
总的来说,超级电容器具有广泛的应用前景和发展潜力。
超级电容器点燃储能新亮点 新能源领域市场规模呈现快速增长
超级电容器点燃储能新亮点新能源领域市场规模呈现快速增长目前,我国超级电容器在许多应用领域还处于成长和起步阶段。
随着应用开发的不断深入,我国超级电容器将成为化学电源领域新的亮点。
交通运输用超级电容器市场规模占比最大,预计2025年有望达到100亿元。
同时,工业用、新能源用超级电容器等领域市场规模也呈现快速增长。
2018年超级电容器被列入国家专项扶持重点项目,并且入选新兴产业重点产品。
工信部、发改委、科技部出台了一系列专项政策,明确对超级电容器以及新材料领域给予支持,这表明超级电容器产业迎来了很好的发展机遇,预示着未来的增长前景。
超级电容作为核心基础零部件,在加快经济发展,服务社会民生方面,发挥着越来越重要的作用。
不久前,在广西北海市召开的超级电容器技术及产业国际论坛暨产业年会上,中国工程院院士杨裕生指出,“储能器件种类很多,各有特色,要充分发挥超级电容器的优势,继续开拓其他储能器件难以竞争的应用领域。
提高电容器的比能量是我们超级电容界的梦想。
”2018年我国在高电压石墨烯电容器技术方面取得了一些可喜的突破,为进一步提高双电层电容器的体积能量密度,提供了有益的思路,值得产业化探索。
同时,许多企业正在中国超级电容产业联盟倡导的第四类超级电容器——电池型电容器的应用上下功夫。
工信部对超级电容这个新领域也非常重视,给予了大力支持,中国超级电容产业联盟正在积极制订相关标准,这些都是非常正确的发展方向。
新的亮点行业据工业和信息化部科技司巡视员毕开春介绍,近年来,随着我国加快实施制造强国和网络强国战略,深入推进制造业创新中心、智能制造、绿色制造等重大工程,新技术、新产业、新业态、新模式竞相涌现。
以高能量、低成本、节能环保为主要特点的超级电容器研发成功并走向市场,有力支撑新能源汽车、先进轨道交通装备等新兴产业的快速发展,引领传统产业优化升级、实现高质量发展。
与此同时,随着新技术的迭代创新,市场期望超级电容器拥有更大的电容量、更高的能量、更宽的工作范围以及更长的使用寿命,这也为超级电容器的产业发展迎来宝贵契机。
超级电容器发展现状
超级电容器发展现状超级电容器是一种新型的电能存储设备,能够实现高能量密度、快速充放电和长寿命等特点,因此在能源存储领域具有广阔的应用前景。
目前超级电容器的研究和发展正处于高速发展阶段,以下是对超级电容器发展现状的介绍。
首先,超级电容器在材料方面有了重要突破。
传统的电容器使用的是电解液作为介质,而超级电容器利用的是具有高比表面积和高导电性的活性材料,如活性炭和金属氧化物。
近年来,研究人员发现一些新的活性材料如二维材料和纳米材料也具有较高的电容量和导电性,这对超级电容器的发展具有重要意义。
其次,超级电容器在技术方面有了重大突破。
目前,研究人员通过改变电极结构和改进电解质以提高超级电容器的能量密度和功率密度。
例如,采用新的电极结构,如纳米孔洞电极和纳米线电极,能够增加电极表面积并提高电荷的储存能力。
此外,研究人员还通过调节电解质的成分和浓度,提高了超级电容器的电导率和离子迁移速度,从而提高了超级电容器的充放电速度和效率。
再次,超级电容器在应用方面也取得了重要进展。
目前,超级电容器已经广泛应用于交通工具和可再生能源领域。
例如,超级电容器能够实现电动汽车的快速充电和长里程续航,通过回收和利用汽车制动能量来提高能源利用效率。
此外,超级电容器还可以用于可再生能源的储能,如太阳能和风能的储存和释放。
超级电容器还可以用于平衡电网的负载和峰谷切换,从而提高电网的稳定性和效率。
最后,超级电容器还面临一些挑战和问题。
首先,超级电容器的能量密度相对较低,无法与锂离子电池等传统储能设备相比。
其次,超级电容器的成本较高,限制了其大规模商业化应用的发展。
此外,超级电容器的环境适应性和稳定性也需要进一步提高。
综上所述,超级电容器作为一种新型电能存储设备,在材料、技术和应用方面取得了重要突破,但仍面临一些挑战和问题。
随着相关技术的不断进步和成本的降低,相信超级电容器将会在能源存储领域发挥更重要的作用。
2024年超级电容器市场规模分析
2024年超级电容器市场规模分析引言超级电容器是一种新兴的电子器件,其具有高能量密度、快速充放电、长寿命等特点。
随着电动车、可再生能源等领域的快速发展,超级电容器市场呈现出快速增长的趋势。
本文将对超级电容器市场的规模进行深入分析。
市场规模超级电容器市场的规模主要由市场容量和市场价值两个方面来衡量。
根据市场研究数据,预计到2025年,全球超级电容器市场的市场容量将达到X万台。
同时,市场价值也将达到X亿美元。
行业状况超级电容器市场在过去几年取得了快速增长,主要得益于其在传统电池无法满足需求的领域的广泛应用。
特别是在电动车领域,由于超级电容器能够快速充电和高效能量释放,被认为是替代传统电池的重要解决方案。
此外,可再生能源领域也是超级电容器市场的主要驱动力之一。
超级电容器能够与太阳能和风能等可再生能源相结合,提供更稳定和可靠的电力存储和释放方案。
市场机会超级电容器市场在未来几年将继续保持快速增长的趋势,主要受到以下因素的驱动:1.新能源政策的推动:各国政府相继推出鼓励可再生能源发展的政策,为超级电容器市场提供了良好的环境。
2.电动车市场的扩大:随着电动车市场的不断扩大,对高效能量储存和释放的需求也在增加,超级电容器作为重要的解决方案将有更广阔的市场空间。
3.工业自动化需求的增加:工业自动化的快速发展带来了对高效能量存储设备的需求,超级电容器由于其快速充放电的特点而受到青睐。
挑战与限制虽然超级电容器市场发展迅猛,但仍面临一些挑战和限制:1.高成本:超级电容器的制造成本较高,导致产品价格相对较高,限制了其市场普及程度。
2.技术瓶颈:超级电容器的技术瓶颈仍存在,比如能量密度和电容量等方面与传统电池还有差距,限制了其在某些领域的应用。
3.市场竞争:目前超级电容器市场竞争激烈,存在着来自传统电池和其他新兴技术的竞争。
市场前景尽管存在一些限制和挑战,超级电容器市场仍具有广阔的前景:1.技术革新:随着技术的不断推进,预计超级电容器的能量密度和电容量等性能将大幅提升,进一步拓展其在各个领域的应用。
马斯克的超级电容技术成功改进储能技术的突破
马斯克的超级电容技术成功改进储能技术的突破近年来,随着可再生能源的快速发展和能源存储需求的不断增加,储能技术成为能源行业的重要研究领域。
而在这个领域,特斯拉公司的CEO埃隆·马斯克以他的超级电容技术成功地改进了现有的储能技术,取得了突破性的进展。
一、超级电容技术简介及其优势超级电容器(Supercapacitor)是一种高功率密度、长寿命、高安全性的电能存储设备。
相比于传统电池,超级电容器具有以下优势:1. 高功率密度:超级电容器能够在很短的时间内放电,并提供高功率输出,适用于短时间高功率需求的场景,如电动车加速和制动过程中的能量回收。
2. 长寿命:传统电池在充放电循环过程中会逐渐损耗能力,而超级电容器的寿命远远超过传统电池,可以承受百万次以上的充放电循环。
3. 高安全性:由于无需使用化学反应,超级电容器具有较高的热稳定性和安全性,避免了传统电池可能出现的爆炸和泄漏等安全问题。
二、马斯克改进的超级电容技术在储能技术领域,超级电容技术一直面临着能量密度较低的限制,这使得其应用范围受到了一定的限制。
然而,马斯克率领的特斯拉团队成功地改进了超级电容技术,使其能量密度得到了极大提升。
1. 纳米材料的应用:马斯克的团队利用纳米材料技术,制造出具有极高比表面积的电极材料,从而提高电容器的能量密度。
这些纳米材料能够提供更多的电荷储存空间,使储能器件的电容量得到了显著提高。
2. 电解液的改良:电解液是超级电容器中导电的关键部分。
马斯克的团队研发了一种新型电解液,能够有效地提高超级电容器的导电性能,从而减少能量损耗,提高储能效率。
3. 模块化设计:为了提高超级电容器的使用灵活性和可扩展性,马斯克的团队开发了一种模块化设计方案。
这个设计方案使得超级电容器可以根据需要进行组合,形成不同容量和电压的多模块储能系统,满足不同场景下的能量需求。
三、超级电容技术的应用前景马斯克改进的超级电容技术在能源存储领域具有广阔的应用前景。
2023年超级电容器行业市场分析现状
2023年超级电容器行业市场分析现状超级电容器(Supercapacitors,SCs)或电化学超级电容器是一种利用电化学原理储存和释放能量的二次电池,能够快速充放电,具备高能量密度和高功率密度等显著优势。
超级电容器已广泛应用于电动车、储能系统、智能家居、工业控制等领域,逐渐成为电源市场上的重要角色。
本文将从市场规模、行业现状、市场趋势、进出口情况等角度对超级电容器行业进行分析。
一、市场规模超级电容器市场规模逐年增长,目前已成为电源市场一个重要的细分领域。
根据2019年市场研究报告,全球超级电容器市场规模为3.82亿美元,预计到2025年将达到9.28亿美元。
亚太地区是全球超级电容器市场的最大市场,2019年占据了全球市场份额的39.2%。
在应用领域方面,电动车是当前超级电容器市场的主要应用领域,占据市场份额的最大部分。
此外,储能系统、智能家居、工业控制等领域也是超级电容器的主要应用领域,其中智能家居领域增长最为迅速。
二、行业现状目前,全球超级电容器行业较为集中,主要由欧洲、美洲和亚洲三大地区主导。
其中亚洲地区以中国企业为主导。
截至2019年,全球超级电容器市场前五名厂家为Maxwell Technologies、Nesscap Energy、Skeleton Technologies、Nippon Chemi-Con、Panasonic,其中中国企业占据两个位置。
国内超级电容器行业起步较晚,但在快速发展的过程中追赶了国际先进水平。
超级电容器行业备受瞩目,成为国家政策支持的重点发展产业。
目前国内的超级电容器主要应用于储能系统、新能源汽车、电动工具等领域。
国内超级电容器行业市场规模较小,但市场需求加大,市场增长潜力十分巨大。
三、市场趋势1.超级电容器市场将快速增长。
随着新能源汽车、储能系统、智能家居等行业的高速发展,超级电容器市场需求将会快速增长。
预计到2025年,全球超级电容器市场规模将达到9.28亿美元。
超电容的技术进展及最新应用一览
超电容的技术进展及最新应用一览无论如何称呼,超电容(ultracapacitor)或者超级电容(supercapacitor)这类新型电容都比传统的电容器的电容大得多。
直接地说,您现在可以购买到额定值为5~10F/2.5V的径向引线式板载电容、额定值为120~150F/5V的闪光灯电池大小的电容,更大的单电容可以达到650~3000F/2.7V的电容值。
注意,所有这些电容器的电容值都是以法拉为单位的。
而在不久以前,两千微法的器件就被认为是大电容了。
如果您需要更多种类的电容,您可以订购电容额定值为20F到500F、电压额定值为15V 到390V的各种电容器现货。
如果采用适当的串/并联组合,您甚至可以用这类电容驱动一辆巴士(bus)——对,不是电路板上的布线,而是载人的巴士汽车。
(尽管混合燃料系统、化学电池和燃料电池指日可待,但是它们迟迟没有正式投入使用)。
在研发超电容时,人们并没有发现什么新的物理定律。
实际上,有关超电容的原理仍然要追溯到德国物理学家赫尔姆霍兹。
与普通电容器一样,超电容也是采用在两个“极板”之间储存电荷的形式来储存能量的。
电容值的大小与极板的面积以及两极板之间所用的介电材料成正比,与两极板之间的距离成反比。
但是,超电容的原理有所不同。
在用超电容实现巨大的电容之前,我们就已经掌握了电解化学(electrolytics)的原理。
超电容不是电解化学,但是了解电解化学有助于我们认识超电容这一新型的技术。
之所以称之为电解化学,是因为它的一个(或两个)“极板”是在金属衬底的表面形成的非金属电解质。
在制造过程中,电压驱动电流从阳极金属板通过导电的电镀槽流向阴极。
这样就会在阳极的表面产生一层绝缘的金属氧化物——电介质。
在电解化学中,当把电极浸入到电解溶液中时,会在电极分界面上出现电荷累积和电荷分离的现象。
电解液中反向带电离子的累积补偿了电极表面的剩余电荷。
这一分界面称为赫尔姆霍兹层(Helmholtz layer)。
国外超级电容器技术进展
2014.5Vol.38No.5由于超级电容器所具有的优异性能(表1,图1),近年来得到了广泛的关注。
据MarketsandMarkets最新市场研究报告《按材料、产品、应用和地域划分的超级电容器市场2013至2020年分析与预测》称,全球超级电容器市场在2014年至2020年将以复合年增长率(CAGR)26.93%的速度发展。
其中,美洲在营收方面占据该市场主导地位,欧洲在其发表的科学刊物方面占据主导地位,亚洲则大范围注入资金,以支持混合交通系统。
1美国研究动态Maxwell技术公司正在为电力和自动化技术集团ABB公司提供超级电容器,用于费城城际轻轨升级换代,这是ABB近期赢得的合同项目。
ABB将为东南宾夕法尼亚州交通局(SEPTA)的城际轻轨系统安装混合动力型高效ENVI-LINETM能量回收和存储系统,为大费城区域提供服务。
2012年,ABB曾在SEPTA的一个配电站安装电池供电的ENVILINE制动能量回收系统,现在将Maxwell的超级电容器用于最新混合设计,以提升能量回收效率,同时延长电池使用寿命。
除了能将SEPTA铁路车辆耗电量降低10%到20%外,该系统还能让SEPTA为美国电力联营体(PJMInter-connectionNetwork)提供频率调节服务。
PJM是一个区域性输电机构(RTO),负责协调特拉华州、马里兰州、密歇根州、哥伦比亚特区等全境或部分地区的电力批发业务。
采用超级电容器后,人们可以回收更多制动能量,从频率调节中获得更多收入,并延长电池使用寿命。
SEPTA模式开创了世界先河,它不仅能够回收制动能量,而且还可支持快速调节,帮助进一步稳定电网,提高电网效率。
电动车和混合动力车使用的制动能量回收系统借助电机产生的阻力制动车辆,把本来会浪费在常规摩擦制动系统上的动能转换为电能储存起来,达到节省燃料和电能的目的。
超级电容器具有独特的快速充放电特性,与电池系统相比,每次制动能够捕捉和存储更多能量。
2024年超级电容器市场发展现状
2024年超级电容器市场发展现状1. 引言超级电容器是一种高性能储能设备,具有高能量密度、高功率密度和长寿命等优点。
随着能源需求的增长和环保意识的提高,超级电容器在许多领域得到了广泛应用。
本文将介绍超级电容器市场的发展现状,并探讨其未来的发展前景。
2. 超级电容器市场的应用领域超级电容器在多个应用领域都存在市场需求。
2.1 交通运输领域超级电容器在电动车辆、混合动力车辆以及轨道交通系统中有着广泛应用。
其高功率密度和快速充放电特性使得电动车辆具备快速加速、回收刹车能量以及持续电力供应的能力。
2.2 工业领域超级电容器可用于稳定电力系统,提供瞬时电源,以及满足各种工业设备的高功率需求。
在电网蓄能和备用电源领域,超级电容器也具备重要的应用潜力。
2.3 可再生能源领域超级电容器可以解决可再生能源系统中的能量储存和输出不稳定问题。
通过将超级电容器与太阳能电池板或风力发电机相结合,能够实现电力的平滑输出。
3. 超级电容器市场的发展现状超级电容器市场在过去几年里取得了显著的增长。
以下是市场发展现状的一些关键点:3.1 市场规模扩大超级电容器市场的规模不断扩大,预计在未来几年将继续增长。
这主要得益于其在交通运输、工业以及可再生能源等领域的广泛应用。
3.2 技术进步超级电容器技术不断进步,产品性能得到了提升。
目前,高容量超级电容器的研发取得了突破,使其在能量密度和功率密度方面具备了与传统储能设备竞争的能力。
3.3 价格下降随着超级电容器市场的不断发展,生产规模逐渐扩大,超级电容器的价格也在逐渐下降。
这促使更多的企业和个人选择超级电容器作为替代传统储能设备的选项。
3.4 市场竞争加剧超级电容器市场的竞争日益激烈,各个厂商纷纷推出高性能、低成本的产品。
在市场竞争加剧的情况下,厂商需要不断改进产品性能,以满足客户的需求。
4. 超级电容器市场的发展前景超级电容器市场的发展前景十分广阔。
4.1 技术创新超级电容器技术仍有很大的创新空间。
超级电容器现状与发展
超级电容器产业前景分析国际电气电子工程师学会高级会员于凌宇超级电容器作为一种新型储能装置,具有显著的特点和优势,可以在某些领域取代传统蓄电池,在节能环保日益成为主题的今天,它的应用越来越引起世界各国的重视。
超级电容器产业化受到各国重视●美国、日本、俄罗斯、瑞士、韩国、法国的一些公司凭借多年的研究开发和技术积累,目前处于领先地位●国内从事大容量超级电容器研发的厂家共有50多家,能够批量生产并达到实用化水平的厂家只有10多家在超级电容器的产业化方面,美国、日本、俄罗斯、瑞士、韩国、法国的一些公司凭借多年的研究开发和技术积累,目前处于领先地位。
如美国的Maxwel,日本的Nec、松下、Tokin和俄罗斯的Econd公司等,这些公司目前占据着全球大部分市场。
国外主要的生产企业有:美国的Maxwell公司,俄罗斯的Econd 公司、Elit公司,日本的Elna公司、Panasonic公司、Nec-Tokin公司,韩国的Ness公司、Korchip公司、Nuintek公司等。
美国、日本、韩国等国家一直致力于开发高比功率和高比能量的超级电容器。
在超级电容器的研究中,许多工作都是开发在各种电解液中有较高比能量的电极材料。
目前应用于超级电容器的材料主要有碳基材料、金属氧化物及水合物材料和导电聚合物材料三种。
国外研究超级电容器起步较早,技术相对比较成熟。
它们均把超级电容器项目作为国家级的重点研究和开发项目,提出了近期和中长期发展计划。
俄罗斯的Esma公司是生产无机混合型超级电容器的代表,然而,Esma公司目前还没有形成规模生产能力。
此外,俄罗斯的Elit公司、法国的Saft公司、美国的Cooper 公司、日本的Nec公司和松下公司也投入巨大资金对大容量超级电容器进行规模化生产的研究。
2007年,全球纽扣型超级电容器产业规模为10.2亿美元,卷绕型和大型超级电容器产业规模为34.8亿美元,超级电容器产业总规模为45亿美元,同比增长45%;预计2008年全球纽扣型超级电容器产业规模为15.3亿美元,卷绕型和大型超级电容器产业规模为52.2亿美元,超级电容器产业总规模为67.5亿美元,同比增长50%。
超级电容器发展现状及发展前景分析
超级电容器发展现状及发展前景分析超级电容器研究国世界分布图超级电容器在新能源领域并不是一个陌生的名词。
实际上,超级电容器已在该领域历经了几十年的坎坷,虽然它的应用形式同电池不同,但在实际应用上却总被电池取代,此外还面临成本高、技术难度大的劣势。
然而,超级电容器在技术上一旦取得突破,将可对新能源产业的发展产生极大的推动力。
因此,尽管研发过程困难重重,但攻克它的意义却很重大。
超级电容器的尴尬现状超级电容器从诞生到现在,已经历了三十多年的发展历程。
目前,微型超级电容器在小型机械设备上得到广泛应用,例如电脑内存系统、照相机、音频设备和间歇性用电的辅助设施。
而大尺寸的柱状超级电容器则多被用于汽车领域和自然能源采集上,并可预见在该两大领域的未来市场上,超级电容器有着巨大的发展潜力。
超级电容器“全家福”使用寿命久、环境适应力强、高充放电效率、高能量密度,这是超级电容器的四大显著特点,这也使它成为当今世界最值得研究的课题之一。
目前,超级电容器的主要研究国为中、日、韩、法、德、加、美。
从制造规模和技术水平来看,亚洲暂时领先。
然而,超级电容器的研发工作一直笼罩在电池(主要为镍氢电池、锂电池)的阴影之下。
镍氢电池和锂电池的开发因为可以获得来自政府和大投资商的巨额资金支持,技术交流获得极大推动,也更容易聚焦全世界的目光。
相比之下,超级电容器却很难得到雄厚的资金支持,技术的进步和发展也就受到很大程度地制约。
另外,超级电容器成本高、能量密度低的现状也与锂电池形成鲜明对比,这使它在很多领域备受冷落。
先驱EEStor公司勇于挑战却惨遭败北尽管超级电容器已发展多年,但实际生产厂家的数量却少得可怜。
一部分厂商面对超级电容器技术上发育不完全的现状,不敢轻易投资,采取观望策略,期待市场能出现一个涉足此领域并获得成功的例子。
另外一部分厂商则坚信,只要超级电容器的生产成本实现大幅下降,仅以当前它的快速充放电特性,就可实现快速普及。
美国超级电容器生产商EEStor就属于后者。
超级电容新突破打破国外产品垄断 市场前景广阔
超级电容新突破打破国外产品垄断市场前景广阔
北极星储能网讯:在十二五863 计划先进能源技术领域高性能化学储能电池及示范电站关键技术研究主题项目支持下,高比能、低成本的新型超级电容器关键技术研究课题取得了重大进展,近期通过技术验收。
来自科技部官方微博锐科技8 月15 日消息,在新型超级电容器方面,突破了高能量密度、高功率密度、长寿命超级电容器的制备技术瓶颈,研制了多孔石墨烯、高耐压电解质盐和电解液、纤维素隔膜等材料,开发了干法制备电极片中试技术,突破了(3.0V/12000F)超级电容器产业化的核心技术,产品已在机械能回收、超级电容器轨道车辆方面在国内外获得应用。
消息称,目前国内在超级电容器方面从材料、器件到系统集成已形成核心技术体系,改变了超级电容器在十一五期间由国外产品垄断的局面。
国家重视发展
超级电容电池又叫黄金电容、法拉电容,它通过极化电解质来储能,属于双电层电容的一种。
由于其储能的过程并不发生化学反应,因此这种储能过程是可逆的,正因为此超级电容器可以反复充放电数十万次。
超级电容通常使用活性碳电极材料,具有吸附面积大,静电储存多的特点,在新能源汽车中有广泛使用。
在超级电容发展上,政府一贯重视。
2006 年、2007 年就在技术层面强调了重视超级电容器的发展,之后政府又出台了对超级电容器应用补贴的政策。
2016 年作为十三五的开局之年,关于超级电容的利好消息不断。
4 月份工信部印发了《工业强基2016 专项行动实施斱案》,首次将超级电容器列入扶持重点。
充电7秒续航35公里!新型超级电容器诞生【图】
充电7秒续航35公里!新型超级电容器诞生【图】
【PConline 资讯】超级电容器,是介于传统电容器和
电池之间的一种电化学储能装置,由于具有功率密度高、循环寿命长、安全可靠等特点,现已广泛应用于混合电动汽车、大功率输出设备等多个领域。
然而其本身能量密度低的问题,却一直没有没有得到很好的解决。
近日,中科院上海硅酸盐所科学家成功研制出一种高性能超级电容器电极材料——氮掺杂有序介孔石墨烯。
该材料具有极佳的电化学储能特性,可用作电动车的“超强电池”:充电只需7秒钟,即可
续航35公里。
黄富强研究团队发现,石墨烯是超级电容器
电极的最佳选择。
黄富强介绍,与传统电极材料相比,石墨烯有四大突出优势:其一,高比表面积有利于产生高能量密度;第二,超高导电性有利于保持高功率密度;第三,化
学结构丰富有利于引入赝电容,提高能量密度;第四,特殊的电子结构有利于优化结构与性能关系。
通过反复试验、设计、合成,黄富强团队发现,氮掺杂有序介孔石墨烯的性能表现最佳。
不仅能实现高能量密度、高功率密度,而且还可以通过使用水基电解液,做到无毒、环保、价格低廉、安全可靠。
据悉,该新型石墨烯超级电容器体积轻巧、不易燃也不易爆,可采用低成本制备,实现规模生产。
因性能较铅酸、镍氢等电池有明显的竞争优势,且在快速充放方面优于锂电池,该
“超级电池”可应用于现有混合电动汽车、大功率输出设备的更新换代。
不难想象,随着电池技术的不断进步,电动汽车在未来的市场表现将更加强劲。
超级电容器的发展现状
超级电容器的发展现状
超级电容器是一种能量存储设备,具有高能量密度、长寿命、快速充放电和可重复充放电等特点。
自从超级电容器问世以来,其研发和应用得到了快速发展。
首先,在材料方面,研究人员不断探索新的材料以提高超级电容器的性能。
传统的超级电容器使用活性炭作为电极材料,但其比表面积较小,限制了电容器的能量密度。
现在,研究人员已经发现一些新型碳材料,如纳米孔炭、二维材料和金属有机框架等,具有更高的比表面积和更好的电导率,可用于制造高性能的超级电容器。
其次,在结构设计上,研究人员提出了一些新的创新思路。
例如,采用纳米结构设计可以增加电容器的电极活性表面积,提高能量密度。
同时,研究人员还通过改变电解质组成和电极间距等参数,优化超级电容器的充放电性能和循环稳定性。
此外,超级电容器的应用领域也不断扩大。
除了传统的储能和辅助动力应用外,超级电容器还被广泛应用于电动车辆、轨道交通、电网储能等领域。
尤其是在电动车辆领域,超级电容器可以提供大功率瞬时输出和快速充电,有效解决传统锂离子电池的充电时间和耐久性问题。
然而,超级电容器仍然面临一些挑战。
比如,虽然能量密度有所提高,但仍然远远低于锂离子电池。
此外,超级电容器的成本较高,限制了其大规模应用。
综上所述,超级电容器在材料和结构设计上的不断创新以及广泛应用领域的拓展,使得其发展呈现出良好的态势。
随着技术的不断进步和研究的深入,相信超级电容器的性能会得到进一步提升,将更广泛地应用于能源领域。
文世界超级电容器发展动态档汇总
世界超级电容器发展动态国际电气电子工程师学会高级会员于凌字濮阳职业技术学院教授级高级工程师冯玉萍超级电容器又称超大容量电容器、金电容、黄金电容、储能电容、法拉电容、电化学电容器或双电层电容器(英文名称为 EDLC , 即 Electric Double Layer Capacitors , 是靠极化电解液来存储电能的新型电化学装置。
它是近十几年随着材料科学的突破而出现的新型功率型储能元件, 其批量生产不过几年时间。
超级电容器自面市以来,全球需求量快速扩大 , 已成为化学电源领域内新的产业亮点。
超级电容器在电动汽车、混合燃料汽车、特殊载重汽车、电力、铁路、通信、国防、消费性电子产品等众多领域有着巨大的应用价值和市场潜,被世界各国所广泛关注。
美国探索杂志 2O07年 1月号, 将超级电容器列为 2O06年世界七大科技发现之一, 认为超级电容器是能量储存领域的一项革命性发展 ,并将在某些领域取代传统蓄电池。
全球超级电容器技术生产新动态目前全球已有上千家超级电容器生商,可以提供多种类的超级电容器产品,大部分产品都是基于一种相似的双电层结构,采用的工艺流程为 :配料一混浆一制电极一裁片一组装一注液一活化一检测一包装。
超级电容器根据制造工艺和外形结构可划分为钮扣型、卷绕型和大型三种类型,三者在容量上大致归类为 5F以下、 5~200F 、 2o0F 以上。
钮扣型产品具备小电流、长时间放电的特点,可用在小功率电子产品及电动玩具产品中。
而卷绕型和大型产品则多在需要大电流短时放电, 有记忆存储功能的电子产品中做后备电源 ,适用于带 CPU 的智能家电, 工控和通信领域中的存储备份部。
我国生产新动态近年来,由于看好这一领域广阔的应用前景, 中国一些公司也开始积极涉足这一产业, 并已经具备了一定的技术实力和产业化能力。
目前国内从事大容量超级电容器研发的厂家共有 50多家,然而 ,能够批量生产并达到实用化水平的厂家只有 10 多家。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近十年超级电容器领域的重大突破中国储能网讯:与传统电容器相比,超级电容器具有更大的比电容、更高的能量密度、更长的使用寿命等特点,而与锂离子电池相比,超级电容器又具有更高的功率密度、更长的使用寿命及绿色环保等优点。
超级电容器在未来储能器件领域占有绝对的优势,在军事、混合动力汽车、智能仪表等诸多领域具有广泛的应用前景。
随着社会的快速发展和人口的急剧增长,资源消耗日益增加,能源危机迫在眉睫,因此,寻找清洁高效的新能源与能源存储技术及装置已成为备受关注的研究课题。
与传统电容器相比,超级电容器具有更大的比电容、更高的能量密度、更长的使用寿命等特点,而与锂离子电池相比,超级电容器又具有更高的功率密度、更长的使用寿命及绿色环保等优点。
超级电容器在未来储能器件领域占有绝对的优势,在军事、混合动力汽车、智能仪表等诸多领域具有广泛的应用前景。
超级电容器是一种介于传统电容器和电池之间的新型储能器件,通过在电极材料和电解质界面快速的离子吸脱附或完全可逆的法拉第氧化还原反应来存储能量,根据储能与转化机制的不同可将超级电容器分为双电层电容器(Electric double layer capacitors,EDLC)和法拉第准电容器(又叫赝电容器,Pseudocapacitors)。
双电层电容器是建立在双电层理论基础之上的,1879年,Helmholz发现了电化学界面的双电层电容性质;1957年,Becker申请了第一个由高比表面积活性炭作电极材料的电化学电容器方面的专利(提出可以将小型电化学电容器用做储能器件);1962年,标准石油公司(SOHIO)生产了一种6V的以活性碳(AC)作为电极材料、以硫酸水溶液作为电解质的超级电容器,1969年,该公司首先实现了碳材料电化学电容器的商业化;1979年,NEC公司开始生产超级电容(Super CaPACitor),开始了电化学电容器的大规模商业应用。
随着材料与工艺关键技术的不断突破,产品质量和性能不断得到稳定和提升,到了九十年代末开始进入大容量高功率型超级电容器的全面产业化发展时期。
超级电容器作为电化学能源存储领域的前沿研究方向之一,近十年内有多个突破性工作,其发展也向着小型化、柔性化、平面化等方向发展。
石墨烯在实验室中是2004年被发现的,当时英国曼彻斯特大学的两位科学家安德烈˙杰姆和克斯特亚˙诺沃消洛夫发现他们能用一种非常简单的方法得到越来越薄的石墨薄片。
石墨烯具有优异的电导性、超高的比理论表面积、稳定的物理化学特性等特点,因此石墨烯基超级电容器具有优异的电化学性能,如高的比容量、极长的寿命、极小的阻力等。
目前石墨烯基超级电容器研究成为储能领域的一大热点,石墨烯基电极材料有望全面超越传统碳材料而得到广泛应用。
然而石墨烯团聚导致的低表面积和长离子传输路径严重限制了石墨烯基电容器的应用价值,因此人们一直致力于制备大比表面积、短离子传输路径的石墨烯基电极材料。
图1 商业超级电容器实物图(a, b),混合动力汽车中的超级电容器电源(c)在下面的内容中,材料人网为大家推荐几篇材料科学领域内超级电容器方向的ESI高被引文章,并按发文时间顺序对十年来的优秀文章内容及其通讯作者加以介绍,旨在为读者了解超级电容器高质量文献以及这一领域的研究团队提供便利。
文献一Preparation and acterization of graphene oxidepaper.(Nature , 2007,DOI:10.1038/nature06016)被引频次:2551图2 氧化石墨烯纸的形态和结构自支撑的纸型和薄膜型材料已经是当今社会技术中的一部分,它们可以应用在保护圈、化学滤器、电池和超级电容器的组分、粘结层以及分子存储等方面,纳米级的无机纸型材料(比如剥离的蛭石和云母板)已经受到很多关注,而且已经作为保护涂料、高温粘结剂、介质阻挡和气体防渗膜等材料商业化。
来源于巴奇纸的碳纳米管显示出优异的机械和电子性能,使它可能应用于燃料电池和结构复合物。
文章报道了一种氧化石墨烯纸的制备和表征,这种氧化石墨烯纸是单个氧化石墨烯片层定流控制制备的碳基膜材料。
这种新型材料在刚度和强度上超过其他很多纸型材料,这种材料结合了宏观上刚性和柔性两种优点,纸型的片层之间有很大的表面相互作用力,其褶皱也处于原子级别,褶皱形态处于亚微米级别,这些条件使材料的宏观样品具有高效的载荷分布,也使材料相比于传统的碳基、黏土基纸更有弹性。
类似于氧化石墨烯的廉价原始材料促进了大面积纸型片层的制备,同时可以应用于可控渗透过滤膜、各向异性离子导体、超级电容器、分子储存材料等。
石墨烯氧化纸也可以掺杂或作为物质载体制备含有聚合物、陶瓷和金属的混合材料。
另外,分层的氧化石墨烯片层表面有许多化学官能团使材料具有更多功能。
通讯作者Ruoff教授,2014年之前任美国德克萨斯大学奥斯汀分校(University of Texas at Austin)材料科学与工程讲席教授,现已通过韩国杰出科学家计划引进至韩国蔚山国立科技大学(UNIST),担任韩国基础科学研究院(Institute for Basic Science)多维碳材料研究研究中心(Center for Multidimensional Carbon Materials)主任。
作为知名碳材料研究专家,Ruoff教授1988年在University ofIllinois-Urbana获得化学物理博士学位,1988-1989在Max Planck Institute fuer Stroemungsforschung任Fulbright Fellow。
他曾经于2002-2007年间在美国西北大学作为John Evans Professor并在该校的Biologically Inspired Materials Institute担任Director。
至今Ruoff教授已经在化学、物理、材料科学、机械工程以及生物医药工程等领域发表超过360篇研究论文,并被Thomson Reuters评为2000-2010最顶尖的100名材料科学家之一(排名第16)。
他是多家国际期刊的主编或者编委,并曾获得多项国际学术界奖项。
Ruoff教授在材料领域尤其在碳纳米材料领域有着深厚的造诣,曾经在金刚石、富勒烯、纳米碳管和石墨烯领域做出了多项杰出工作,在Science和Nature期刊上发表多篇文章。
文献二 Graphene-based electrochemical supercapacitors.( Journal of Chemical Sciences,2008,DOI:10.1007/s12039-008-0002-7 ) 被引频次:475图3 石墨烯基超级电容器伏安特性及比电容2008年,Vivekchand等人首次将石墨烯作为超级电容器电极材料。
文章介绍了由三种不同的方法制备石墨烯作为电化学超级电容器的电极材料。
制备的石墨烯比表面为925 m2/g,在1.0 mol/L H2SO4中,其比容量为117 F/g,当以电压窗口较宽离子液体N-甲基丁基吡咯烷二(三氟甲基磺酰)亚胺盐(PYR14TFS)为电解质时,其比容量和能量密度分别为71 F/g和31.9 Wh/kg。
通讯作者C.N.R.Rao教授,Rao先生1958年获得美国普渡大学博士学位,1960年获得印度麦索尔大学博士学位,他曾经担任印度科学院院长,现在担任第三世界科学院院长。
Rao 先生主要是在凝聚太材料和分子结构方面有造诣,另外他曾当选为很多国家科学院院士或者研究院的院士。
文献三Graphene-based ultracapacitors.(Nano letters,2008, DOI: 10.1021/nl802558y) 被引频次:4010图4 电池组装测试示意图此后,以石墨烯为核心的储能材料在超级容器中的研究迅速发展起来。
单个石墨烯片的比表面积可达2630 m2 / g,这个值远远大于现在使用活性炭做电极材料的电化学双电层电容器。
Stoller等人以水合肼作为还原剂,在100 °C的油浴中将石墨烯氧化(Graphene Oxide, GO)还原成石墨烯,虽然具有一定程度的团聚,但其比表面可达705 m2/g,在KOH电解质中其比容量为135 F/g,在TEABF4 /AN电解质中比电容为99 F/g,但水合肼毒性较大。
Stoller等人的研究团队开创了一种新的碳材料,称之为化学改性石墨烯(CMG)。
CMG材料来源于一个原子层厚的碳片,根据所需功能化,研究者们研究了该材料在超级电容器中的性能。
此外,高导电性使这些材料在一个广泛的电压窗口内有良好的性能。
注:【通讯作者Ruoff教授,同文献1】文献四Graphene-Based Supercapacitor with an Ultrahigh Energy Density.(Nano Lett., 2010, DOI: 10.1021/nl102661q) 被引频次:1170图5 弯曲的石墨烯片层的SEM和TEM图片石墨烯基电极的超级电容器在室温下显示出优异的比能量密度85.6Wh/kg,80℃下可达136Wh/kg,这些能量密度可以和镍金属氰化物电池的值相比。
制备弯曲石墨烯片层重要的关键是要充分利用内在比电容和单层石墨烯的比表面积。
弯曲形态确保了中孔的形成在大于4V的工作电压下可以通过离子液体。
通讯作者张博增,纳米石墨烯专家,中央"千人计划"专家。
美国莱特州立大学(Wright State University)的工程与计算科学学院教授。
1982-2002在Auburn University曾先后担任助理研究员、教授,2002-2005在North Dakota State University任教授,2005至今,在美国莱特州立大学(Wright State University)的工程与计算科学学院任教授和院长。
主要从事材料科学与新材料制备方面的研究工作,获得100多项美国专利,在国际会议和学术杂志上发表300多篇学术论文,曾任Science and Engineering of Composite Materials, an international journal、International Materials Review杂志国际编委和the Journal of Manufacturing Systems and the Journal of Manufacturing Processes杂志副主编,兼职于美国多个大学、研究单位和国际学术组织。
文献五Ni(OH)2 Nanoplates Grown on Graphene as AdvancedElectrochemical Pseudocapacitor Materials.( J. Am. Chem. Soc., 2010, DOI: 10.1021/ja102267j) 被引频次:1118图6 Ni(OH)2/GS 复合材料的SEM和TEM图片Ni(OH)2纳米晶体上生长不同氧化程度的石墨烯片层作为电化学赝电容材料是一种十分有潜力的储能应用材料。