封闭图形植树问题

合集下载

五年级上册数学植树问题(例3) (封闭图形)人教版课件PPT【精品】

五年级上册数学植树问题(例3) (封闭图形)人教版课件PPT【精品】

果一共有38人,需要并多少张桌子才能坐下?
4×10+2=42(人)
(选自教材P110练习二十四第11题)
(38-2)÷4=9(张)
答:10张桌子并成一排可以坐42人,
如果一共有38人,需要并9张桌子才能坐下。
5、一条项链长60 cm,每隔5 cm有一颗水晶。这条项链上 共有多少颗水晶? (选自教材P110练习二十四第12题)
封闭图形的特点有: (1)无论什么图形,只要起点和终点重合,即首尾相连
就是封闭图形。
(2)观察封闭图形上棵数与间隔数的关系,我们发现: 只要在封闭路线上植树,棵数总是等于间隔数。
正确解答: 因为圆形池塘是封闭图形,最外层的棵数=间隔数 所以 120÷10=12(个)间隔,也就是要栽12棵树。 120÷10=12(棵) 答:一共要栽12棵树。
9.笔直的跑道一旁插着51面小旗,它们的间隔是2m。现 在要改为只插26面小旗(两端的旗子不动),间隔应改 为多少米? (51-1)×2=100(m) 100÷(26-1)=4(m) 答:间隔应改为4m。
10.解下列方程。 16+x=71 x=55
18+7x=39 x =3
3(2x- 4)=9
x =3.5
60÷5=12(颗) 答:这条项链上共有12颗水晶。
6、小区花园是一个长60m、宽40m的长方形。现在要在花园四 周栽树,四个角上都要载,每相邻两棵间隔5m。一共要栽 多少棵树? (选自教材P110练习二十四第13题) (60÷5+1)×2=26(棵) (40÷5-1)×2=14(棵) 26+14=40(棵) 答:一共要栽40棵树。
人教版五年级数学上册第七单元植树问题
第3课时 封闭图形的植树问题 (例3)
1.了解沿封闭图形植树的特征,掌握解决沿封闭图 形植树问题的方法。 (重点)

五年级上7.2封闭图形的植树问题

五年级上7.2封闭图形的植树问题

五年级上7.2封闭图形的植树问题《五年级上 72 封闭图形的植树问题》在我们的日常生活中,植树是一项非常有意义的活动。

而在数学世界里,植树问题也是一个有趣且实用的知识领域。

今天,让我们一起来探索五年级上册 72 节中封闭图形的植树问题。

首先,我们来明确一下什么是封闭图形。

封闭图形就像是一个圆圈,或者是一个长方形、正方形等,它们的首尾是相连的,没有开口。

比如说,一个圆形的花坛,一个正方形的池塘四周,这都属于封闭图形。

那么在封闭图形中植树,又有什么规律和特点呢?我们先来看一个简单的例子。

假设有一个圆形的花坛,周长是 20 米,每隔 5 米种一棵树,那么一共能种多少棵树呢?我们来算一算。

因为是在封闭图形上植树,所以树的数量和间隔的数量是相等的。

这个圆形花坛的周长是 20 米,每隔 5 米一个间隔,那么间隔数就是 20÷5 = 4(个),所以树的数量也是 4 棵。

再比如一个正方形的池塘,边长是 12 米,每隔 3 米种一棵树,四个角都种,一共要种多少棵树呢?我们先算出每条边的间隔数:12÷3 = 4(个)。

因为正方形有四条边,所以总间隔数就是 4×4 = 16(个)。

但是要注意,由于四个角的树都被重复计算了一次,所以实际上树的数量就是 16 4 = 12(棵)。

通过这两个例子,我们可以总结出封闭图形植树问题的公式:植树的棵数=间隔数。

那为什么在封闭图形中,植树的棵数会等于间隔数呢?这其实很好理解。

想象一下我们围着一个圆形的操场跑步,起点和终点是重合的。

在这种情况下,跑过的间隔数和经过的位置数是一样的。

植树也是同样的道理,在封闭图形上,树就相当于跑步时经过的位置,间隔就相当于跑过的距离。

掌握了封闭图形的植树问题,对我们的生活也有很大的帮助呢。

比如说,在规划一个公园的时候,如果要在湖边种一排树,知道了湖的周长和树的间隔距离,就能很快算出需要种多少棵树,从而合理安排预算和人力。

再比如,要在一个圆形的广场周围安装路灯,如果知道了广场的周长和路灯之间的间隔,也能轻松算出需要安装多少盏路灯,让广场在夜晚能够明亮又美观。

植树问题2(封闭图形)

植树问题2(封闭图形)

巩固练习
巩固练习 (3)四(2)共有48名同学,他们也在操场上围成了一个正
方形,每边人数相等,四个顶点都站了人,每边站了几个人?
尝试评价
巩固练习
(1)四(1)班的同学在操场上围成了一个正方形,每边各站 12人,四个顶点都站了人,这个班级一共有多少人? (2)四(2)共有48名同学,他们也在操场上围成了一个正 方形,每边人数相等,四个顶点都站了人,每边站了几个人?
巩固练习 (1)四(1)班的同学在操场上围成了一个正方形,每边各
站12人,四个顶点都站了人,这个班级一共有多少人?
(1)在每边种2、3、4、5棵这几种情况中选择 几种来研究。 (2)利用小磁贴摆一摆,数一数,并完成表格。 (3)完成表格后想一想,你们发现了什么?
反馈提炼 每边棵数 每边段数 总棵数 总段数
尝试解决 如果要在正方形的植物园四周种上小树, 每边要种19棵树,四个顶点都要种,一共 要种多少棵树?
Hale Waihona Puke 自学提高植树问题准备问题
在100米的小路的一边,每隔5米种一棵柳树, 起点和终点都栽,一共种了多少棵?
尝试问题 如果要在正方形的植物园四周种上小树, 每边要种19棵树,四个顶点都要种,一共 要种多少棵树?
合作交流
如果要在正方形的植物园四周种上小树, 每边要种19棵树,四个顶点都要种,一共 要种多少棵树? 小组合作要求

《封闭图形植树问题》教案

《封闭图形植树问题》教案

《封闭图形植树问题》教案《封闭图形植树问题》教案作为一名教学工作者,很有必要精心设计一份教案,借助教案可以更好地组织教学活动。

那要怎么写好教案呢?以下是作者收集整理的《封闭图形植树问题》教案,仅供参考,欢迎大家阅读。

《封闭图形植树问题》教案1教材分析本册教材的数学广角主要是渗透有关植树问题的方法。

它通过生活中常见实际问题,让学生发现规律,抽取出植树问题的数学模型,再用来解决简单的实际问题。

本课时是本单元的第3课时,探讨封闭图形的植树问题(如果是矩形,每边可看作一端种另一端不种)。

教学目标1、建立“棵数=间隔数”的数学模型,解决简单的实际问题。

2、在解决问题的过程中发现规律,建立模型,应用模型,建立初步的解决植树问题的方法。

3、体会数学模型的'生活意义与作用,体验到学习的喜悦。

学习重点:建立“树的棵数=间隔数”的数学模型学习难点:为什么“树的棵数=间隔数”?预设过程一、复习开放情形……在一条20米路的一侧种树(两端都种),每2米种一棵,共需种几棵?在一条20数路的一侧种树(两端都不种),每2米种一棵,共需种几棵?……在一条20米路的一侧种树(一端种),每2米种一棵,共需种几棵?1、揭题:植树问题。

2、呈现问题,请学生解决。

3、反馈解法,说说什么情况下选择什么方法。

二、研究封闭情形用围棋摆一个正方形,每边摆7个,一共需要多少围棋?1、议:7×4=28对不对?2、根据要求及图形,用自己的方法解决。

3、反馈各种解法,说说自己的方法的怎么避免重复计数的?4、议:(7-1)×4的理由是什么?三、练习1、完成P121做一做-1,3。

2、完成P121做一做-2,并讨论最多的情况。

3、画图完成第3题。

四、《封闭图形植树问题》教案2学习目标:1.探讨封闭曲线中的植树问题。

2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法。

3.在小组合作交流过程中,学会从不同角度思考问题。

学习过程:一、自主探究例3:张伯伯准备在圆形池塘周围栽树。

五上数学植树问题(封闭图形)

五上数学植树问题(封闭图形)

1、48名学生在操场上做游戏。

大家围成一个正方形,每边人数相等。

四个顶点都有人,每边各有几名学生?(48+4)÷4=13(人)答:每边各有13名学生。

2、陈庄小学有一个长60米、宽40米的小操场,四个顶点都种有一棵树,长边上每隔10米种一棵,宽边上每隔8米种一棵。

操场四周一共种树多少棵?60÷10×2+40÷8)×2-4=18(棵)答:操场四周一共种树18棵。

3、在一个周长为1600米的水库四周,每隔8米种一棵杨树,后来又在两颗杨树中间等距离种了两颗柳树。

问水库四周一共种了多少棵树?1600÷8×2=400(棵)答:水库四周一共种了400棵树。

4、沿一个长50米、宽30米的长方形鱼塘每隔5米种一棵树,一共能种多少棵树?长方形周长:(50+30)×2=160(米)棵树:160÷5=32(棵)答:一共能种32棵树。

5、王大爷在正方形鱼池边上种树,每边等距种树10棵,(四个角都要种树),每辆棵之间相距4米。

鱼池的周长是多少米?(10×4-4)×4=144(棵)答:鱼池的周长是144米。

6、圆湖的周长1350米,在湖边相隔9米种柏树一棵,在两棵柏树之间种2棵桃树,两棵桃树之间的距离是多少米?9÷(2+1)=3(米)答:两棵桃树之间的距离是3米。

7、在一个湖的周围每隔4米种一棵柳树,一共种了180棵。

在相邻的两棵柳树间每隔2米种一棵柏树,一共种多少棵柏树?180×(4÷2-1)=180(棵)答:一共种180棵柏树。

8、沿着周长是240米的圆形花坛每隔6米栽一棵丁香树,再在每相邻的两株丁香树之间等距离地栽2株月季,一共能栽多少棵丁香树?一共能栽多少株月季?两棵相邻的丁香树之间的2株月季相距多少米?丁香花(封闭图形):周长÷间距=240÷6=40(株)月季花(在丁香花的每个间隔中):40×2=80(株)2 株月季花相距:6÷(2+1)=2(米)。

五年级上册数学植树问题例3

五年级上册数学植树问题例3
9米
10-1=9(段) 9×9=81(米)
答:从第一栏到最后一栏有81米。
例3:张伯伯准备在圆形池塘周围栽树。 池 塘 的 周 长 是 120m , 如 果 每 隔 10m 栽 一棵,一共要栽多少棵?
化曲为直
梳理方法,温故知新。
-----------------------
(封闭图形 ) 棵树=间隔数
人教版五年级数学上册
数学广角——植树问题
例3(封闭图形)
1、同学们做操,某竖行从第一人到最后 一人 的距离是24米,每两人之间相距2 米,这一行有多少人?
24÷2=12( 段 ) 12﹢1 =13(人) 答:这一行有13人。
2、中间共有10个栏,栏间距离为9 米,请你们算出从第一栏架到最后一 个栏架有多少米吗?
解决实际问题
例3:张伯伯准备在 圆形池塘周围栽树。 池塘的周长120m, 如果每隔10m 栽一 棵,一共要栽多少棵 树?
120÷10=12(棵)
答:一共要栽12棵树。
我是生活小帮手
1. 圆形滑冰场的一 周全长是150m。如 果沿着这一圈每隔 15m安装一灯,一 共需要装几盏灯?
150÷15=10(盏) 答:一共需要装10盏灯。
2. 一条项链长60cm ,每隔5cm有一颗 水晶。这条项链上 共有多少颗水晶?
60÷5=12(颗) 答:这条项链上共 有12颗水晶。
圆形花坛的一周全长50米,如果沿着这一圈 每隔2米摆放一盘花,一共需要多少盘花……按照这样的规律排列, 最后一个是★,已知★有30个,●有( )。 A、29个 B、30个 C 、31个 ②●○○○●○○○●……按照这样的规律 排列,最后一个是●,已知○有15个,●有 ( )。A、5个 B、6个 C 、7个 ③ 16名艺术体操运动员围成一个圆圈表演, 每两个人之间相隔2米,这个圆圈的周长大约 是( )A、 30米 B、32米 C、34米

植树问题(3)

植树问题(3)
15×3 = 45(m) 答:种1ห้องสมุดไป่ตู้ 棵树的距离是45 m。
状元成才路
植树问题 例3
-----封闭图形中的“植树问题”
张伯伯准备在圆形池塘周围栽树。池塘的周长
是14200 m,如果每隔10 m栽一棵,一共要栽多 少棵树?
状元成才路
如果把圆拉直成线段,你能发现什么?
我发现间隔数与 棵树一一对应。
相当于一端栽, 一端不栽。
状元成才路
小结: 我们将封闭图形“化曲为直”后,发
现封闭图形和在不封闭图形“只栽一端” 中棵数和间隔数的关系是一样的,都是棵 数等于间隔数。
1. 圆形滑冰场的一周全长是 150 m。如果沿着这一圈 每隔15 m安装一盏灯,一 共需要装几盏灯?
150÷15 = 10(盏) 答:一共需要装10盏灯。
状元成才路
2.张伯伯围绕圆形池塘栽树, 每两棵树之间的距离是3 m, 照这样计算,种15 棵树的 距离是多少米?

封闭图形的植树问题公式

封闭图形的植树问题公式

封闭图形的植树问题公式当我们提到植树的时候,第一件事是想到树被植在大地上,以达到防洪、减少沙尘暴等等环境保护的作用。

但是有一个问题,就是如何在有限的土地上,植树者如何最大程度地植树,这个问题就是封闭图形的植树问题。

在数学上,植树问题是一个求最大化的问题,有时候也被称为井宿植树问题。

在植树问题中,植树者需要先设定一个封闭的图形,例如三角形,正方形或者其他几何图形,然后图形中的每块土地可以植树,也可以不植。

宗旨是尽可能多地植树,即最大化植树的块数,从而达到环境保护的作用。

封闭图形的植树问题已经被许多学者研究,他们利用数学的解决方法开发出了相关的公式。

一般来说,任何封闭图形的植树问题都可以用以下公式表示:最大植树数量= (图形总面积-中心空间面积)/植树单元面积植树单元面积是指树的根护罩的面积,也就是说,如果植树者面前有一块土地,根护罩的面积就是植树单元的面积。

中心空间面积是指封闭图形中心空间的总面积,因为任何封闭图形都有一些内部空间占据,这些空间是不可植树的,所以需要从总面积中减去。

例如,一个边长为10米的正方形,如果其中心空间占据2米,植树单元面积为1米,那么根据公式,最大植树数量就是(100-4)/1=96棵树。

封闭图形的植树问题公式是一种有效的方法,可以帮助有限的土地植树者尽可能多地植树,并且也可以帮助植树者更加实际有效地解决植树的问题。

此外,封闭图形的植树问题公式也可以帮助植树者有效管理植树,例如,应该在哪里植树,以及植树之后,如何有效地管理这些树木,以及如何充分利用这些树木,例如通过收集树木果实等,等等。

因此,封闭图形的植树问题公式不仅可以有效提高植树者的植树效率,而且还可以有效帮助植树者管理和利用树木,从而达到最大程度地环境保护目的。

封闭图形的植树问题1

封闭图形的植树问题1
1500÷15=100(盏)
(封闭图形)棵数=段数(间隔数) 总长度=段数×间距
我们发现的规律: (封闭图形)点数 = 段数
在正八边形 花坛的每边 摆3盆花。 花坛一圈一 共可以摆多 少盆花?
? 3×8=24(盆)
√ √ 3×8-8=16(盆) (3-1)×8=16(盆)
做一做:
48名学生在操场上做游戏。大家围成一 个正方形,每边人数相等。四个顶点都 有人,每边各有几名学生?
48 ÷4 +1
=12+1
=13(名)
社区有一块正五边形水池,要在
每边都摆4盆花,五个角各摆一盆,
可以怎样摆放?最少需要多少盆 花?
9个小朋友围成一圈做 游戏,每两个人之间的 距离是1米,这一圈的 长度是多少?
圆形体育馆的一周全长是1500米, 如果沿着这一圈每隔15米安装一盏灯, 一共需要装几盏灯?
棋盘的最外层每边能放19个棋子。
最外层一共可以摆放多少棋子?
19 17 19×2+17×2=72 17
19
18×4=72
你还有其它的方 法吗?试试看!
点数是(3), 间隔数是(3)。
点是(4) 段数是(4)
点数是( 6 ), 间隔数是( 6 )。
点数是( 8 ), 间隔数是( 8 )。
点数是(8), 间隔数是(8)。

封闭植树问题公式

封闭植树问题公式

封闭植树问题公式
封闭图形的植树问题的公式是棵数=间隔数、棵树=周长÷间距、棵树=长度÷间距+1(两端都栽)、棵树=长度÷间距-1(两端都不栽)、棵树=长度÷间距(一端栽、一端不栽)。

在封闭图形上进行植树,段数等于株数,满足的公式和直线型仅在路的一端植树是一样的:株数=段数=全长÷株距,全长=株距×株数,株距=全长÷株数。

解植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。

将封闭图形“化曲为直”后,发现封闭图形和在不封闭图形“一头种”中棵数和间隔数的关系是一样的,都是棵数等于间隔数。

请注意,在解答具体问题时,应结合题目的实际情况选择合适的公式进行计算。

封闭图形的植树问题

封闭图形的植树问题

计算机模拟法
方法描述
计算机模拟法是通过编程实现一个模拟程序来模拟植树 过程,并输出各种植树方案的数量。这种方法不需要对 问题进行深入分析,而是直接通过模拟来解决。
优缺点
该方法的优点是简单易行,可以处理大规模数据和复杂 问题。但缺点是可能存在计算效率不高或结果不准确的 问题。
具体步骤
编写一个计算机程序,根据给定的封闭图形和植树条件 进行模拟,并统计各种植树方案的数量。
背景
• 封闭图形植树问题是一个经典的几何问题,它不仅在数学领域有广泛的应用,还在计算机科学、图形学等领域具有实际 意义。该问题具有高度的复杂性和挑战性,对于解决策略和算法的设计都有很高的要求。
问题的数学模型
01
封闭图形植树问题可以用数学模型进 行描述。假设在二维平面上有一个封 闭图形,该图形的边界由n个点组成 ,每条边都由两个相邻的点确定。现 在要在该图形内种植m棵树,每棵树 至少与三条直线段相交。每条边可以 由两个相邻点确定,每个交点可以有 多个边经过。
04
封闭图形植树问题的扩展 问题
非规则封闭图形的植树问题
非规则封闭图形
对于非规则的封闭图形,如凹多边形、凸多边形等,需要针对图 形的特点进行植树问题的求解。
求解方法
求解非规则封闭图形的植树问题,通常采用动态规划、分治策略 或优化算法等方法。
树种选择
在非规则封闭图形中,树种的选择也会影响最终的植树方案。不同 的树种具有不同的生长特性和适应能力,需要根据实际情况进行选 择。
应用拓展研究
总结词
应用拓展研究旨在将封闭图形植树问题的研究成果应用于更广泛的领域,用拓展研究包括将封闭图形植树问题的算法和方法应用于其他图形和网络问题,例如网络流量控制 、交通路网规划、社交网络分析等。此外,还可以将封闭图形植树问题的研究成果应用于其他学科领 域,例如生物学、化学、物理学等。

封闭图形的植树问题

封闭图形的植树问题

城市绿化
城市中的街道、广场、公园等公共区域常常需要进行绿化,封闭图形的植树问题 可以用来解决如何合理地布置树木,以达到美观和生态的效果。
例如,在一块矩形区域中,需要种植多棵树,使得这些树均匀地分布在区域内部 ,并且每两棵树之间的距离相等。
公园建设
在建设公园时,需要考虑到如何合理地布置景点和设施,以 使游客能够更好地欣赏公园的景色。封闭图形的植树问题可 以用来解决如何合理地布置景点和设施,以达到最佳的观赏 效果。
封闭图形植树问题的特点
封闭性
封闭图形植树问题中的图形是 封闭的,因此需要考虑如何在 边界内合理地安排树木的位置

规则性
封闭图形植树问题通常有一定 的规则和限制,例如每棵树之 间的距离、不能种植在特定区 域等。
最优化
封闭图形植树问题的目标是找 到最优化的解决方案,使得树 木的位置合理、美观且符合规 则和限制。
封闭图形的植树问题
汇报人: 2023-12-27
目录
• 封闭图形植树问题的定义 • 封闭图形植树问题的分类 • 封闭图形植树问题的解决方法 • 封闭图形植树问题的应用场景 • 封闭图形植树问题的实例分析
01
封闭图形植树问题的定义
封闭图形的定义
封闭图形是指一个二维平面上的闭合 路径,其边界形成一个连续的线条, 内部没有空隙。常见的封闭图形包括 矩形、圆形、三角形等。
根据封闭图形的面积和树的尺寸,计 算需要种植的树的数量。
计算需要的树的数量
根据周长和间距计算树的数量
根据封闭图形的周长和每两棵树之间的间距,可以计算出需要的树的数量。
考虑实际情况
在计算过程中,需要考虑实际情况,如土地的可用性、树木的生长环境等,以确 保植树计划的可行性。

五年级上册植树问题之封闭图形 ppt课件

五年级上册植树问题之封闭图形  ppt课件

方法一:
5×4=20(盆)
方法二:
5×3=pp1t课5件(盆)
方法三:
4×4+3=19(盆)
44
(1)15-1=14(个) 14×4=56(个)
(2)15×15 =225(名)
答:……ppt课件
45
ppt课件
46
19
最外层每边摆 3个,最外层 一共可以摆多 少个棋子?
8个 3×4-4=8(个) 2×4=8(个)
ppt课件
20
最外层每边摆 4个,4角都摆, 最外层一共可
以摆多少个棋 子?
4-1=3(个)
3×4=12(个)
ppt课件
21
最外层每边摆 5个,4角都摆, 最外层一共可
以摆多少个棋 子?
5-1=4(个) 4×4=16(个)
(每边棋子数-1)×边数=
最外层的总数
ppt课件
25
围 棋 棋 盘 最 外 层 每 边 能 放
19



ppt课件
26
棋盘的最外层每边能放19个棋子,最外层 一共可以摆放多少棋子?
ppt课件
27
18×4=72
ppt课件
你 还 有 其 它 方 法 吗 ? 试 试 看 !
28
19
17
19×2+17×2=72 17
48÷6=8(棵)
48÷6=8(棵)
封闭图形,各角上种一棵,和
不封闭图形只种一端相同,棵数=间隔

ppt课件
10
点数是(3), 点数是( 4 ), 间隔数是(3)。 间隔数是( 4 )。
点数是( 6 ),
点数是( 8 ),
间隔数是( 6 )。 间隔数是( 8 )。

人教版五年级上册数学广角封闭图形的植树问题ppt课件

人教版五年级上册数学广角封闭图形的植树问题ppt课件

你能说说棵数与间隔数之间的关系吗? 为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能 棵数=间隔数+1 棵数=间隔数 棵数=间隔数—1
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
48 ÷4 +1
=12+1
=13(名)
社区有一块正五边形水池,要在 为深入学习习近平新时代中国特色社会主义思想和党的十九大精神,贯彻全国教育大会精神,充分发挥中小学图书室育人功能
每边都摆4盆花,五个角各摆一盆,
可以怎样摆放?最少需要多少盆 花?
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
棋盘的最外层每边能放19个棋子。
最外层一共可以摆放多少棋子?
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
(4-1)×4=12
4×2+3×2=14
4×4=16
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
点数是(3), 间隔数是(3)。
点数是(4) 段数是(4)
点数是( 6 ), 间隔数是( 6 )。
点数是( 8 ), 间隔数是( 8 )。

三年级奥数植树问题不封闭、封闭

三年级奥数植树问题不封闭、封闭

植树问题知识结构一、植树问题分两种情况:(一)不封闭的植树路线.①若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、株距之间的关系就为:棵数=段数1+=全长÷株距1+全长=株距⨯(棵数1-)株距=全长÷(棵数1-)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长=株距⨯棵数;棵数=段数=全长÷株距;株距=全长÷棵数.③如果植树路线的两端都不植树,则棵数就比②中还少1棵.全长、棵数、株距之间的关系就为:棵数=段数1-=全长÷株距1-.株距=全长÷(棵数1+).全长=株距⨯(棵数+1)(二)封闭的植树路线.在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数.全长、棵数、株距之间的关系就为:棵数=段数=周长÷株距.二、解植树问题的三要素(1)总路线长(2)间距(棵距)长(3)棵数,只要知道这三个要素中任意两个要素,就可以求出第三个.例题精讲一、不封闭植树问题【例 1】大头儿子的学校旁边的一条路长500米,在路的一边从头到尾每隔4米种一棵树,一共能种几棵树?【考点】直线上的植树问题【难度】1星【题型】解答【解析】从图上可以看出,每隔4米种一棵树,如果20米长的路的一边共种了6棵树,这是因为我们首先要在这条路的一端种上一棵,就是说种树的棵树要比间距的个数多1,所以列式为:500÷4+1=126(棵).【答案】126棵【巩固】在一条长200米的路上植树,每隔5米植1棵。

两端都植,共植树多少棵?【考点】直线上的植树问题【难度】1星【题型】解答【解析】200÷5+1=41(棵)【答案】41棵【例 2】从小猫家到小鹿家有一条小路,每隔45米种一棵树,加上两端共种53棵;现在改成每隔60米种一棵树.求可余下多少棵树?【考点】直线上的植树问题【难度】2星【题型】解答【解析】该题含植树问题、相差关系两组数量关系.从小熊家到小猪家的距离是:45×(53-1)=2340(米),间隔距离变化后,两地之间种树:2340÷60+1=40(棵),所以可余下树:53-40=13(棵) ,综合算式为:53-[45×(53-1)÷60+1]=13(棵).【答案】13棵【巩固】从甲地到乙地每隔30米安装一根电线杆,加上两端共31根;现在改成每隔45米安装一根电线杆.求还余下多少根电线杆?【考点】直线上的植树问题【难度】2星【题型】解答【解析】该题含植树问题、相差关系两组数量关系.解:①从甲地到乙地距离多少米?30×(31-1)=900 (米)②间隔距离变化后,甲乙两地之间安装多少根电线杆?900÷45=20(根),20+1=21(根)③还需要下多少根电线杆?31-21=10(根)【答案】10根【例 3】小亮上楼,从第一层走到第三层需要走20级台阶.如果从第一层走到第六层需要走多少级台阶?(各层楼之间的台阶数相同)【考点】直线上的植树问题【难度】2星【题型】解答【解析】 题意的实质反映的是一线段上的点数与间隔数之间的关系.线段示意图如下:①每相邻两层楼之间有多少级台阶?20÷(3-1)=10(级)②从第一层走到第六层共多少级台阶?10×(6-1)=50(级)【答案】50级【巩固】 丁丁和爸爸两个人比赛跑楼梯,从一层开始比赛,丁丁到四层时,爸爸到三层,如此算来,丁丁到16层时,爸爸跑到了几层?【考点】直线上的植树问题 【难度】2星 【题型】解答【解析】 丁丁实际跑了三层的距离,爸爸跑了两层的距离,到16层需要跑15层的距离,所以丁丁跑了1535÷=(个)三层的距离,爸爸同时跑了5个两层的距离.所以爸爸跑到了52111⨯+=(层). 【答案】11层【例 4】 有一个报时钟,每敲响一下,声音可持续2秒.如果敲响6下,那么从敲响第一下到最后一下持续声音结束,一共需要42秒.现在敲响12下,从敲响第一下到最后一下持续声音结束,一共需要多长时间?【考点】直线上的植树问题 【难度】3星 【题型】解答【解析】 每次敲完以后,声音持续2秒,那么从敲完第一下到敲完第6下,一共经历的时间是42-2=40(秒),而这之间只有615-=(个)间隔,所以每个间隔时间是4058÷=(秒),现在要敲响12下,所以一共经历的时间是11个间隔和2秒的持续时间,一共需要时间是:11×8+2=90(秒).【答案】90秒【例 5】 元宵节到了,实验中学学校大门上挂了红绿两种颜色的彩灯,从头到尾一共挂了21只,每隔30分米挂一只红灯,相邻的2只红灯之间挂了一只绿灯,问实验中学学校的大门有多宽?【考点】直线上的植树问题 【难度】2星 【题型】解答【解析】 一共挂了21只彩灯说明彩灯中间的间距有:21-1=20(个),每隔30分米挂一只红灯,相邻的2只红灯之间挂了一只绿灯,说明每个间距的长是:30÷2=15(分米),所以学而思学校的大门宽度为:15×20=300(分米)【答案】300分米【巩固】 校门口放着一排花,共10盆.从左往右数茉莉花摆在第6,从右往左数,月季花摆在第8, 一串红花全都摆在了茉莉花和月季花之间.算一算,一串红花一共有多少盆?【考点】直线上的植树问题【难度】1星 【题型】解答【解析】 从左往右数茉莉花摆在第6,那么从右往左数茉莉花就是第:10(61)5--=(盆)花,从右往左数,月季花摆在第8,从左往右数月季花就是第:10(81)3--=(盆)花,一串红花全都摆在了茉莉花和月季花之间,一串红花一共有:10532--=(盆).【答案】2盆【例 6】 裁缝有一段20米长的呢子,每天剪去2米,第几天剪去最后一段?【考点】直线上的植树问题 【难度】2星 【题型】解答【解析】 如果呢子有2米,不需要剪;如果呢子有4米,第一天就可以剪去最后一段,4米里有2个2米,只用1天;如果呢子有6米,第一天剪去2米,还剩4米,第二天就可以剪去最后一段,6米里有3个2米,只用2天;如果呢子有8米,第一天剪去2米,还剩6米,第二天再剪2米,还剩4米,这样第三天即可剪去最后一段,8米里有4个2米,用3天,……我们可以从中发现规律:所用的天数比2米的个数少1.因此,只要看20米里有几个2米,问题就可以解决了.20米中包含2米的个数:20÷2=10(个)剪去最后一段所用的天数:10-1=9(天),所以裁缝第9天剪去最后一段.【答案】9天【巩固】 一根木料在25秒内被锯成了6段,用同样的速度锯成5段,需要多少秒?【考点】直线上的植树问题 【难度】2星 【题型】解答【解析】 锯的次数总比锯的段数少1.因此,在25秒内锯了6段,实际只锯了5次,这样我们就可以求出锯一次所用的时间了,又由于用同样的速度锯成5段;实际上锯了4次,这样锯成5段所用的时间就可以求出来了.所以锯一次所用的时间:25÷(6-1)=5(秒),锯5段所用的时间:5×(5-1)=20(秒). 【答案】20秒【例 7】 有三根木料,打算把每根锯成3段,每锯开一处需用3分钟,全部锯完需要多少分钟?【考点】直线上的植树问题 【难度】2星 【题型】解答【解析】 求锯的次数属植树问题思路.一根木料锯成了3段,只要锯312-=次,锯3根木料要236⨯=次,问题随之可求.解:①一根木料要锯成3段,共要锯多少次?312-=(次)②锯开三根木料要多少次?236⨯=(次)③锯三根木料要多少时间?3618⨯=(分钟)综合算式:3[(31)3]18⨯-⨯=(分钟)或3(31)318⨯-⨯=(分钟)【答案】18分钟二、封闭植树问题【例 8】在一个长345米、宽240米的长方形草坪四周等距离地栽一些松树,要求四个顶点和每边中点都正好栽一棵松树,则最少要买松树苗棵。

植树问题

植树问题

一排同学之 间有7个间隔, 这一排有( 8 ) 个同学。
活 学 活 用
林老师家里时钟 5点敲响5下,每 下相隔2秒,敲完 5下需要(8 )秒。
活 学 活 用
广场上的大钟5时敲 响5下,8秒敲完。12 时敲12下,需要多长 时间?
8秒
8÷(5-1)=2(秒) 2×(12-1)=22(秒)
答:需要22秒。
活 学 活 用
小红住的楼房 每上一层要走20 个台阶,从一楼 到四楼要走( 60 ) 个台阶。
活 老师从一楼开始一共走了72个台阶。 学 老师走到了第几层? 活 72÷24+1 用 =3+1
=4(层)
学校教学楼每层楼梯有24个台阶,
活 学 起点站 12 千米 活 1千米 用 12÷1=12(段)
5路公共汽车行驶路线全长 12千米,相邻两站的距离 是1千米。一共有几个车站?
终点站
12+1=13(个) 答:一共有13个车站。
BACK
点 一根10米长的木头,把它平均分 成5段,每锯下一段需要8分钟, 击 锯完一共需要多少分钟? 生 活(5-1)×8=32(分)
思考:
在一个周长为30米的花池周围,每隔5米 栽1株月季花,然后在相邻的两株之间放2盆 丁香花,花池周围月季花和丁香花各有多少?
二号院小学
刘里莉
学校计划在20米长的小路一边植树, 每隔5米栽一棵。一共需要栽多少棵树苗?
棵数=间隔数+1
棵数=间隔数
棵数=间隔数-1
封闭图形: 如果在一个20米长的圆形花坛周边,每隔 5米栽一棵树苗。一共需要栽多少棵树苗?
封闭图形:
棵数=间隔数
类型
关系
棵数=间隔数+1 棵数=间隔数 棵数=间隔数-1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

封闭曲线图形植树问题
武宣县实验小学赖永青
教学内容:新人教版数学五年级上册第108页例3。

教学目标:
1.通过动手操作的实践探索活动,研究封闭曲线图形中的植树问题,发现植树棵树和间隔数之间的关系,建立数学模型。

2.通过尝试探索、实验、直观演示、观察、分析、讨论等方法经历和体验“化繁为简、化曲为直”的解题策略,渗透数形结合的思想,培养学生借助图形解决问题的意识。

3.感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养应用意识和解决实际问题的能力。

教学重点:掌握封闭曲线图形植树问题与线段植树问题之间的联系。

教学难点:让学生自主探索解决封闭曲线图形植树问题的方法。

教学准备:有刻度的圆圈(纸条或软塑料胶围成)。

教学过程:
一、复习。

1.在长100米的小道一旁种树,每隔10米种一棵,你想怎样种?
师板书:(三种情况)
①100÷10=10 10+1=11(棵)……(两端种:棵数=间隔数+1)
②100÷10=10(棵)……………(一端种一端不种:棵数=间隔数)
③100÷10=10 10-1=9(棵)…(两端不种:棵数=间隔数-1)
2.小结:在线段上植树,三种植树情况的不同计算方法。

3.揭示课题。

在线段上植树,我们遇到了三种情况,在圆形上植树又会出现什么样的情况呢?今天我们学习另一种不同的植树法。

(板书课题:封闭曲线图形植树问题。


二、探究学习。

1.(出示例3)张伯伯准备在圆形池塘周围栽树。

池塘的周长是120米,如
果每隔10米栽一棵,一共要栽多少棵树?
师:在圆形上植树,棵数与间隔数有什么关系呢?为了帮助我们研究这个问题,大家来试着摆一摆、种一种。

2.小组实践探究。

(1)活动要求:选定棵距;在有刻度的圆上均匀地栽树;再数一数棵数、间隔数。

(2)学生小组操作,师巡看,有困难的适当指导。

(3)小组汇报、交流、展示。

每个小组让一名同学拿上完成的作品上台分别展示,说出棵数、间隔数。

教师板书。

(4)引导学生发现规律:棵数=间隔数
(5)利用“化曲为直”方法,引导学生探究圆形植树与线段植树的联系。

想一想:把圆圈剪断拉直成线段,会有什么发现?
观察发现:间隔数与树一一对应,相当于线段植树中“只栽一端”的一种情况。

(6)小结。

封闭曲线图形植树:棵数=间隔数。

3. 学习例3。

师:题中告诉了我们哪些数学信息?(总长、棵距)你能解决这个问题吗?(指名回答,板书,集体订正。


三、运用知识,解决问题。

1.圆形滑冰场的一周全长是150米。

如果沿着这一圈每隔15米安装一盏灯,
一共需要装几盏灯?
2.在一条环形跑道周围共插了50面彩旗,两面彩旗间的距离是10米,这条环形跑道共长多少米?
四、拓展练习。

湖边春色分外娇,一株杏树一株桃。

平湖周围三千米,六米一株都栽到。

漫步湖畔㬌色美,可知桃杏各多少?
五、课堂总结。

这节课你有哪些收获?
5894516460098716 5702028820093518。

相关文档
最新文档