七年级数学下册《旋转》知识点归纳湘教版

合集下载

湘教版7下数学 旋转

湘教版7下数学 旋转

B.奔跑中的骏马 D.拧紧螺丝
归纳:类似于上述实例,将一个平面图形F上的每一个点,绕这个平面内一 定点O旋转同一个角α,得到图形F′,图形的这种变换叫 旋转 .这个点O叫做
旋转中心 ,角a叫做 旋转角 . 如果图形上的点P经过旋转变为点P′,那么这两点叫做在这个旋转下的一对
对应点 .
活动3 自主探究2
2.如图,线段AB, CD关于直线EF对称,则AC ⊥ E F, BD⊥ E F , AO= CO , BO′= DO′ .
四、自学互研
活动1 自主探究1 阅读教材P119“观察”,思考: (1)钟表上的指针是怎样走动的呢? (2)电风扇启动后,它的叶片是怎样运动的呢? (3)汽车上的雨刮器是怎样运动的呢? 答:(1)钟叶片绕电机的轴旋转; (3)汽车的雨刮器绕支点旋转.
阅读教材P120“探究”: 如图,将△ABC绕点O旋转后得到△A′B′C′,用刻度尺和量角 器测量后你会发现,AO=A′O,∠AOA′ =∠BOB′= ∠COC′, AB = A′B′,∠A= ∠A′, S△ABC = S△A′B′C′.
归纳:(1)对应点到旋转中心的距离 相等 ; (2)两组对应点分别与旋转中心的连线所成的角 相等 ; (3)旋转不改变图形的 形状 和 大小 .
活动2 合作探究1
1.如图,将左边的长方形绕点P旋转一定角度后,得到位置如右边的长方形,
则旋转的角度是( C )
A.30°
B.60°
C.90°
D.180°
(第1题图)
(第2题图)
2.如图,△ABC是由△EBD旋转得到的,旋转中心是点 B .
3.下列现象中,属于旋转的是( D ) A.在上升的电梯中的人 C.冉冉升起的旗帜
练习

旋转知识点总结

旋转知识点总结

把一个图形绕着某一 O 转动一个角度的图形变换叫做旋转点 O 叫做旋转中心,转动的角叫做旋转角。

如果图形上的点 A 经过旋转变为点 A′,那么,这两个点叫做这个旋转的对应点.重点突出旋转的三个要素:旋转中心、旋转方向和旋转角度。

( 1 )对应点到旋转中心的距离相等;( 2 )对应点与旋转中心所连线段的夹角等于旋转角;( 3 )旋转前后的图形全等在画旋转图形时,要把握旋转中心与旋转角这两个元素。

确定旋转中心的关键是看图形在旋转过程中某一点是“动 "还是“不动" ,不动的点则是旋转中心;确定旋转角度的方法是根据已知条件确定一组对应边,看其始边与终边的夹角即为旋转角作图的步骤:1)连接图形中的每一个关键点与旋转中心 ;( 2 )把连线按要求绕旋转中心旋转一定的角度(旋转角) ;( 3 )在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点 .把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.旋转知识点总结( 1)关于中心对称的两个图形,对称点所连线段都经过对称中心 ,而且被对称中心所平分.( 2)关于中心对称的两个图形是全等图形.把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.中心对称中心对称图形区别①指两个全等图形之间的相互位置关系①指一个图形本身成中心对称②对称中心不定②对称中心是图形自身或内部的点联系:如果将中心对称的两个图形看成一个整体 (一个图形),那么这个图形就是中心对称图形.如果把中心对称图形对称的部分看成是两个图形,那么它们又关于中心对称..即 P (x,y)关于原点的对称点 Q ( —x,—y)的坐标为,反之也成立1。

湘教版七年级数学下册_5.2 旋转

湘教版七年级数学下册_5.2 旋转

感悟新知
特别提醒 1. 要注意区分旋转角与对应角、对应点到旋转中心
的距离与对应线段的长度 . 旋转角是指图形旋转 过的角度,而非图形中的角度,对应角是指图形 旋转前、后能够互相重合的角,是图形中的角; 对应点到旋转中心的距离是图形上的点到旋转中 心的距离,对应线段的长度则是图形的边长 .
知2-讲
感悟新知
对应点都旋转相同的角度 .
感悟新知
2. 旋转作图的一般步骤:
知3-讲
(1)确定旋转中心、旋转方向和旋转角 .
(2)找出图形的关键点,一般是图形中的转折点 .
(3)作旋转后的对应点,方法如下:
①连: 连接图形的每个关键点与旋转中心;
②转: 把连线绕旋转中心按旋转方向旋转相同的角度
(作旋转角) ;
感悟新知
感悟新知
解法提醒 三角形 ACE 经过旋转后得到三角形DCB. (1)三角形在旋转过程中不动的点是旋转中心; (2)两个三角形的对应边所夹的角即为旋转角.
知1-练
感悟新知
知识点 2 测量质量
知2-讲
一个图形和它经过旋转所得到的图形中,具有如下性质: (1)对应点到旋转中心的距离相等 . (2)两组对应点分别与旋转中心的连线所成的角相等 . (3)旋转不改变图形的形状和大小 .
第五章 轴对称与旋转
5.2 旋转
学习目标
1 课时讲解 2 课时流程
旋转的相关概念 旋转的性质 旋转作图
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 旋转的相关概念
知1-讲
1.图形旋转的概念: 将一个平面图形上的每一个点,绕这个平面内一定点
旋转同一个角α (即把图形上每一个点与定点的连线绕定点 旋转角α ) ,得到新图形,图形的这种变换叫做旋转 .

初中几何旋转知识点总结

初中几何旋转知识点总结

初中几何旋转知识点总结一、基本概念1. 旋转的基本概念旋转是一种平移,比如将一张纸围绕桌子中心旋转,不移动位置但是角度改变。

可以定义一个点O为旋转中心,角度为θ,则旋转变换R(O,θ)将点P绕点O旋转θ度。

2. 旋转的表示方法通常用旋转中心和旋转的角度来表示一个旋转变换,如R(O,θ)表示以点O为旋转中心,按照角度θ进行旋转变换。

3. 旋转的方向根据旋转的角度正负可以表示旋转的方向,当角度为正时,表示顺时针旋转;当角度为负时,表示逆时针旋转。

二、旋转的性质1. 旋转中心的不变性对于任意一个固定的点P,在平面上做旋转变换后,点P相对于旋转中心O的距离不变,即OP'=OP。

2. 旋转中心的互易性两点围绕各自为中心的旋转之后,它们的连接线也围绕旋转后的两个点为中心进行旋转。

3. 旋转的对称性对于一个平面图形,绕着一个点做旋转变换之后,原来的平面图形与旋转后的图形具有对称性。

4. 旋转的组合性对于两个旋转变换R(O1,θ1)和R(O2,θ2),它们的组合旋转变换是R(O1,θ1) ◦R(O2,θ2)=R(O1O2,θ1+θ2),即先以O2为中心旋转θ2度,再以O1为中心旋转θ1度,等效于以点O1O2为中心旋转θ1+θ2度。

三、旋转的定理1. 旋转角度的性质(1)相等角度的旋转等效于一次旋转;(2)逆时针旋转θ度等效于顺时针旋转360-θ度;(3)旋转360度等效于不旋转。

2. 旋转的运动规律旋转的运动规律由旋转角度的规律和旋转方向的规律组成,它描述了一个点或者平面图形在旋转中的变化规律。

3. 旋转的应用(1)旋转的应用:如地球自转产生了昼夜交替、太阳绕地球公转产生了四季交替等;(2)旋转对称性:通过旋转对称性,可以简化问题的解决和推理过程。

四、常见问题解析1. 旋转的基本操作(1)绕平面上任一点旋转θ度的变换,可以用旋转矩阵R来表示,即对任意点(A, B),有(A', B') = R(A, B)。

初中旋转知识点归纳总结

初中旋转知识点归纳总结

初中旋转知识点归纳总结一、旋转概念1. 旋转的定义旋转是物体围绕某一固定轴线或固定点,按照一定规律旋转。

在数学中,旋转通常是指平面内或空间内一个点围绕一个中心点旋转。

2. 旋转的要素旋转有固定轴线或固定点、旋转方向以及旋转的角度等要素。

3. 旋转的表现形式旋转可以通过旋转图形、旋转坐标轴等形式来表现。

4. 旋转的应用旋转在日常生活中有着广泛的应用,比如舞蹈中的旋转动作、工程中的旋转零件等。

二、旋转的基本性质1. 旋转的不变性旋转操作不改变原图形的大小和形状,这是旋转的基本性质之一。

2. 旋转的对称性旋转是一种对称操作,旋转后的图形与原图形是对称的。

3. 旋转的交换律两次旋转操作是可以交换顺序的,即先旋转图形A再旋转图形B,与先旋转图形B再旋转图形A是等价的。

4. 旋转的倍数问题同一图像旋转180°、360°等倍数角度后,它们之间是等价的。

三、旋转的基本步骤1. 旋转的基本步骤a. 确定旋转中心和旋转方向。

b. 以旋转中心为原点,旋转方向为正方向,建立新的坐标系。

c. 利用坐标系的变换规则进行计算,得到旋转后的新坐标。

2. 旋转坐标点的计算公式a. 绕原点旋转:新的坐标(x', y') = (x*cosθ - y*sinθ, x*sinθ + y*cosθ)b. 绕其他点旋转:新的坐标(x', y') = (x0 + (x - x0)*cosθ - (y - y0)*sinθ, y0 + (x - x0)*sinθ + (y - y0)*cosθ)四、旋转的常见图形1. 点的旋转点围绕旋转中心旋转后,它的位置由原来的坐标经过旋转计算公式得到新的坐标。

2. 直线的旋转直线围绕旋转中心旋转后,它变成一条新的直线,其方程可以通过旋转坐标点的方法来得到。

3. 图形的旋转不规则图形围绕旋转中心旋转后,保持图形的大小和形状不变。

五、旋转的应用1. 图像处理中的旋转在图像处理中,旋转可以改变图像的朝向和方位,使得图像更加美观。

旋转知识点总结

旋转知识点总结

旋转知识点总结旋转知识点归纳知识点1:旋转的定义及其有关概念在平面内,将一个图形绕一个定点O沿某个方向转动一个角度,这样的图形运动称为旋转。

定点O称为旋转中心,转动的角称为旋转角。

如果图形上的点P经过旋转到点P',那么这两个点叫做这个旋转的对应点。

如图1,线段AB绕点O顺时针转动90度得到AB',这就是旋转,点O就是旋转中心,∠BOB'和∠AOA'都是旋转角。

说明:旋转的范围是在平面内旋转,否则有可能旋转为立体图形,因此“在平面内”这一条件不可忽略。

决定旋转的因素有三个:一是旋转中心;二是旋转角;三是旋转方向。

知识点2:旋转的性质由旋转的定义可知,旋转不改变图形的大小和形状,这说明旋转前后的两个图形是全等的。

由此得到如下性质:⑴经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,对应点的排列次序相同。

⑵任意一对对应点与旋转中心的连线所成的角都是旋转角。

⑶对应点到旋转中心的距离相等。

⑷对应线段相等,对应角相等。

例1:如图2,D是等腰Rt△ABC内一点,BC是斜边,如果将△ADB绕点A逆时针方向旋转到△ADC的位置,则∠ADD'的度数是()。

分析:抓住旋转前后两个三角形的对应边相等、对应角相等等性质,本题就很容易解决。

由△ADC是由△ADB旋转所得,可知△ADB≌△ADC,∴AD=AD',∠DAB=∠D'AC,∵∠DAB+∠___,∴∠D'AC+∠___,∴∠ADD'=45,故选D。

评注:旋转不改变图形的大小与形状,旋转前后的两个图形是全等的,紧紧抓住旋转前后图形之间的全等关系,是解决与旋转有关问题的关键。

知识点3:旋转作图1.明确作图的条件:(1)已知旋转中心;(2)已知旋转方向与旋转角。

2.理解作图的依据:(1)旋转的定义:在平面内,将一个图形绕一个定点O沿某个方向转动一个角度的图形变换叫做旋转;(2)旋转的性质:经过旋转,图形上的每一点都绕旋转中心沿相同的方向转动了相同的角度,任意一对对应点与旋转中心的连线所组成的角都是旋转角,对应点到旋转中心的距离相等。

旋转的知识点总结

旋转的知识点总结

旋转的知识点总结一、旋转的基本概念1. 旋转的定义旋转是物体绕着某一点或某一条轴心进行的运动。

在旋转运动中,物体的各个部分绕着轴心或转动中心做圆周运动,同时保持相对位置不变。

2. 旋转的基本术语(1)轴心:旋转的固定点或固定轴。

(2)转动中心:物体绕轴心旋转时,轴心在物体外部的点称为转动中心。

(3)转动轴:绕着轴心旋转的直线称为转动轴。

(4)转动惯量:物体绕轴心旋转时所具有的惯性度量。

(5)角速度:描述物体旋转的速度大小和方向的物理量。

(6)角加速度:描述物体旋转的加速度大小和方向的物理量。

二、旋转的数学描述1. 转动角度旋转的大小通常用角度或弧度来描述。

角度是一种常用的角度单位,表示一个圆心角所占的平面角度为360度。

弧度是一种物理角度单位,表示一个圆心角所对应的圆弧长度等于半径的长度。

2. 旋转的向量描述在物理学中,旋转通常被描述为一个向量。

这个向量被称为“角速度向量”,它表示物体垂直于转动平面的旋转方向和速度大小。

3. 旋转的运动方程旋转的运动方程描述了物体在旋转运动中的运动规律。

通常包括角速度、转动半径、转动角度、角加速度等物理量之间的关系。

三、旋转的力学原理1. 物体的转动惯量转动惯量是描述物体绕轴心旋转时所具有的惯性度量。

转动惯量取决于物体的形状和质量分布。

通常用符号I表示,单位是千克·米平方。

2. 物体的角动量物体的角动量是描述物体旋转运动状态的物理量。

它与物体的转动惯量和角速度有关。

通常用符号L表示,单位是千克·米平方/秒。

3. 牛顿第二定律在旋转运动中的应用牛顿第二定律(F=ma)在旋转运动中的形式为τ=Iα,其中τ表示力矩,I表示物体的转动惯量,α表示角加速度。

这个公式描述了物体在受力作用下的转动运动规律。

四、旋转的应用1. 刚体旋转刚体旋转是刚体围绕轴心或转动中心进行的旋转运动。

刚体旋转的应用广泛,包括汽车的转向、水泵的旋转、风车的旋转等。

2. 陀螺运动陀螺是一种常见的旋转运动装置,可以应用于导航、稳定、测量等领域。

湘教版初中数学七年级下册5.2 旋转

湘教版初中数学七年级下册5.2 旋转

湘教版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!湘教版初中数学和你一起共同进步学业有成!ED CB A5.2 旋 转学习目标:1、了解生活中图形的旋转;2、了解旋转变换的概念;3、理解图形变换中旋转变换的性质.重点:会按要求作简单平面图形旋转后的图形预习导学——不看不讲学一学:阅读教材P119至P121的内容,解决下面的问题: 说一说:1. 图形的这种变换叫做旋转。

2. 叫做旋转中心, 3. 叫做旋转角。

4.什么是旋转下的对应点?议一议:旋转具有那些性质:【归纳总结】请思考轴对称、平移和旋转的异同点填一填:2、如下图,△ABC 与△ADE 都是等腰直角三角形,∠C 和∠AED 都是直角,点E 在AB 上,如果△ABC 经旋转后能与△ADE 重合,点 是旋转中心,旋转了 度 点B 的对应点是点 ;线段AB 的对应线段是 ;∠ABC 的对应角是选一选:2、把下列各英文字母旋转1800后,仍是原来英文字母的是()V H L Z W B I ① ② ③ ④ ⑤ ⑥ ⑦ A . ② ④ ⑤ ⑦ B. ② ③ ⑦ C. ① ③ ⑤ ⑦ D. ② ④ ⑦合作探究——不议不讲互动探究一:在方格纸上作出 “小旗子”绕 O 点按顺时针方向旋转90度后的图案 ,并简述理由。

互动探究二:3、如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在位置,A 点落在位B 'A '置,若,则的度数是( ) B A AC ''⊥BAC ∠A .50° B .60° C .70°D .80°互动探究三:4.如图,O 是边长为的正方形ABCD 的中心,将一块半径足够长,圆心a DC为直角的扇形纸板的圆心放在O 点处,并将纸板的圆心绕O 旋转,求正方形ABCD 的边被纸板覆盖部分的面积为( ) A.B. C.D.213a 214a 212a 14a相信自己,就能走向成功的第一步教师不光要传授知识,还要告诉学生学会生活。

旋转知识点总结

旋转知识点总结

旋转知识点总结一、旋转1.旋转的概念:在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转.这个定点叫做旋转中心,转动的角叫做旋转角.2.旋转三要素:①旋转中心;②旋转方向;③旋转角度3.旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角(3)旋转前后的图形全等.4.网格中的旋转:①确定旋转中心、旋转方向及旋转角;②找原图形的关键点;③连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;④按原图形依次连接各关键点的对应点,得到旋转后的图形.二、中心对称1.中心对称:中心对称是指把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.三、尺规作图(旋转)1.作图方法:以旋转点为中心找出各点旋转对应角度后得到的对应点,再顺次连接得到旋转后的图形.四、关于原点对称的点的坐标1.关于原点对称后点的坐标:若对称前的点坐标为(x,y),那么对称后的点坐标为(-x,-y).五、旋转90°的点的坐标1.绕原点旋转90°后的点的坐标:(1)顺时针旋转:若对称前的点坐标为(x,y),那么对称后的点坐标为(y,-x).(2)逆时针旋转:若对称前的点坐标为(x,y),那么对称后的点坐标为(-y,x).六、常见全等模型(手拉手模型)1.手拉手模型:两个等腰三角形共顶点时,就有全等三角形.结论:(1)△ABE≌△DBC(2)AE=DC(3)AE交DC于点H,∠AHD=∠ABD(4)HB平分∠AHC七、常见全等模型(半角模型)1.半角模型:共顶点的两个角度,当一个角等于另一个角的一半时,可以将三角形旋转,得到全等三角形.结论:(1)△AEF≌△AGF(2)EF=BF+DEDA CB八、常见全等模型(对角互补四边形旋转模型)1.对角互补四边形旋转模型:四边形对角互补且有一组邻边相等时,可以将三角形旋转,得到等腰三角形或正方形.。

七年级数学下册《旋转》知识点归纳湘教版

七年级数学下册《旋转》知识点归纳湘教版

七年级数学下册《旋转》知识点归纳湘教版第五章旋转一.知识框架二.知识概念1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。

这个定点叫做旋转中心,转动的角度叫做旋转角。

(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。

)2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。

3.中心对称图形与中心对称:中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。

中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。

4.中心对称的性质:关于中心对称的两个图形是全等形。

关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。

一、精心选一选1.下面的图形中,是中心对称图形的是()c2.平面直角坐标系内一点P(-2,3)关于原点对称的点的坐标是()A.(3,-2)B..A.1对B.2对c.3对D.4对8.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是()A30B45c60D909.如图5所示,图中的一个矩形是另一个矩形顺方向旋转90°后形成的个数是()A.l个B.2个△ABc互得到时针c.3个D.4个10.如图6,ΔABc和ΔADE都是等腰直角三角形,∠c和∠ADE都是直角,点c在AE上,ΔABc绕着A点经过逆时针旋转后能够与ΔADE重合得到图7,再将图23—A—4作为“基本图形”绕着A点经过逆时针连续旋转得到图7.两次旋转的角度分别为()图6A.45°,90°B.90°,45°c.60°,30°D.30°,60二、耐心填一填(每小题3分,共24分)11.关于中心对称的两个图形,对称点所连线段都经过,而且被_____________平分.12.在平行四边形、矩形、菱形、正方形、等腰梯形这五种图形中,既是轴对称图形,又是中心对称图形的是_____________.图713.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是_____________.14.如图8,△ABc以点A为旋转中心,按逆时针方向旋转60°,得△AB′c′,则△ABB′是三角形.15.已知a<0,则点P(a2,-a+3)关于原点的对称点P1在第___象限16.如图9,△coD是△AoB绕点o顺时针方向旋转40°后所得的图形,点c恰好在AB上,∠AoD=90°,则∠D的度数是.17.如图10,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积是___.18.如图,四边形ABcD中,∠BAD=∠c=90º,AB=AD,AE⊥Bc于E,若线段AE=5,则S四边形ABcD=。

湘教版数学七年级下册_学好旋转三注意

湘教版数学七年级下册_学好旋转三注意

学好旋转三注意旋转在实际生活中随处可见.因此,学好旋转的知识有利于我们解决实际问题,学习时应注意把握好以下几点:一、正确理解旋转的概念在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点叫做旋转中心.旋转不改变图形的形状和大小.理解这个概念应注意以下两点:1.旋转和平移一样,是图形的一种基本变换;2.图形旋转的决定因素是旋转中心和旋转的角度.例1 如图1,ABC △是等腰直角三角形,90AB AC BAC ==︒,∠,D 是BC 上一点,ACD △经过旋转后到达ABE △的位置.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若P 是AC 的中点,那么经过上述旋转后,点P 旋转到了什么位置? 解:(1)点A 是旋转中心;(2)顺时针旋转了90︒;(3)点P 旋转到了AB 的中点.二、掌握旋转的特征图形中每一点都绕着旋转中心旋转了同样大小的角度;对应点到旋转中心的距离相等,对应线段、对应角都相等;旋转前后图形的大小、形状都不发生变化.例2 如图2所示,是国际奥林匹克运动会会旗(五环旗)的标志图案,它是由五个半径相同的圆组成的,它象征着五大洲的体育健儿,为发展奥林匹克精神而团结起来,携手拼搏.观察此图案,结合我们所学习的图形变换知识,完成下列题目:(1)整个图案可以看做是什么图形?(2)此图案可以看做是把一个圆经过多次什么变换运动得到的?解:(1)这个图案是轴对称图形.(2)既可以看做是由一个圆经过4次平移得到的,又可以看做是一个圆经A C DB EP 图1图2过4次旋转得到的(你能分析吗,提示:旋转中心可以不在图案上).三、会寻找旋转中心知道了旋转中心及旋转角,可以作出一个图形旋转后的图形.那么知道一个图形及其旋转后的图形时,如何确定旋转中心呢?确定旋转中心的关键是确定两个图形上的两组对应点构成的对应线段的旋转中心,由旋转特征可知,这两组对应点的旋转中心就是整个图形的旋转中心.由旋转特征可知,如果已知图形上点A 关于旋转中心O 的对应点是A ',则有OA OA '=,所以点O 必在线段AA '的垂直平分线上;如果图形上点B 关于旋转中心O 的对应点是B ',则OB OB '=,所以点O 必在线段BB '的垂直平分线上.这样两个对应点A 和A '以及B 和B '连线的垂直平分线的交点就是旋转中心.例3 如图3所示,四边形ABCD 绕某点旋转后到四边形A B C D '''',你能确定旋转中心吗?试一试.分析:我们可以用待定位置法.假定点O 就是旋转中心,由于对应点到旋转中心的距离相等,则有OA OA OB OB ''==,,从而O 一定是线段AA '和线段BB '的垂直平分线的交点上.解:如图3所示,连结AA BB '',.分别作AA BB '',的垂直平分线,两直线交于点O .则点O 就是旋转中心.例4 如图4,ABC △是等边三角形,点D G ,分别是AB AC ,的中点,四边形BDEF 和四边形AGHK 都是正方形.(1)试确定正方形AGHK 绕某点旋转得正方形EFBD 的旋转中心.(2)正方形BDEF 旋转多少度时可以与正方形AGHK 重合?分析:因为四边形AGHK 和四边形BDEF 都是正方形,所以情况较多,我们只选择其中一个讲解,其它情况请同学们自己探索,欢迎你把自己的探索成果告图 3图4诉我们.解:(1)选择BD 和GH 作为对应线段(点B 对应点G ,点D 的对应点为点H ). 连接DG DH BG ,,,则易知DB DG GH ==,连接点D 与线段BG 的中点M 并延长,连接点G 与线段DH 的中点并延长,两直线相交于点O ,则有GO 垂直平分DH DO ,垂直平分BG ,则点O 就是旋转中心.BOG ∠为旋转角.(2)150DGH DGA AGH =+=︒∠∠∠,1752NGH DGH ==︒∠∠, 75MGO NGH ==︒∠∠(对顶角). 又90GMO =︒∠,所以15MOG =︒∠. 所以旋转角230BOG MOG ==︒∠∠. 所以当正方形BDEF 绕点O 顺时针旋转30︒时,可与正方形GHKA 重合.。

数学旋转知识点总结归纳

数学旋转知识点总结归纳

数学旋转知识点总结归纳一、旋转的基本概念旋转是指让物体按照某个中心点绕轴旋转一定角度的变换过程。

在数学中,我们通常将旋转定义为一个平面内的变换,它可以用一个角度来描述。

旋转变换可以分为逆时针旋转和顺时针旋转两种方式。

逆时针旋转是指物体按照顺时针的方向旋转,角度取正值;而顺时针旋转则是指物体按照逆时针的方向旋转,角度取负值。

二、旋转的表示方式在数学中,我们可以使用不同的表示方式来描述旋转变换。

常用的表示方式有以下几种:1. 旋转矩阵:旋转矩阵是描述旋转变换的一种方式,它可以用一个2x2的矩阵来表示。

在二维平面内,我们可以通过旋转矩阵来描述物体的旋转变换,从而得到旋转后的坐标。

2. 旋转向量:旋转向量是描述旋转变换的另一种方式,它可以用一个三维向量来表示。

在三维空间内,我们可以通过旋转向量来描述物体的旋转变换,从而得到旋转后的坐标。

3. 旋转角度:旋转角度是描述旋转变换的最直观方式,它可以用一个角度值来表示。

在二维平面和三维空间内,我们可以通过旋转角度来描述物体的旋转变换,从而得到旋转后的坐标。

三、旋转的基本性质旋转变换具有一些基本的性质,这些性质对于我们理解旋转变换的特点非常重要。

以下是旋转变换的一些基本性质:1. 旋转变换是线性的:旋转变换是一种线性变换,它满足加法和数乘的性质。

也就是说,如果我们对一个物体进行旋转变换,然后再对旋转后的物体进行一次旋转变换,那么这两次旋转变换的结果等于先将旋转变换合并成一个变换,然后再对原物体进行这个变换。

2. 旋转变换满足结合律:旋转变换满足结合律,也就是说,如果我们对一个物体依次进行三次旋转变换,那么这三次旋转变换的结果等于先将前两次旋转变换合并成一个旋转变换,然后再进行第三次旋转变换。

3. 旋转变换的逆是自身的逆:旋转变换的逆变换就是将原旋转变换的角度取负值,旋转的方向取相反方向。

也就是说,如果我们对一个物体进行旋转变换,然后再对旋转后的物体进行相反方向的旋转变换,那么这两次旋转变换的结果等于恢复到原来的物体。

湘教版数学七年级下册_《5。2旋转》知识全解

湘教版数学七年级下册_《5。2旋转》知识全解

《旋转》知识全解课标要求1.能理解旋转的概念和性质,体验图形旋转的三要素——旋转中心、旋转角和旋转方向;2.会利用旋转的性质进行有关计算.知识结构内容解析1.旋转:在平面内,将一个图形绕一个定点O 转动一个角度的图形变换叫做旋转,定点O 叫做旋转中心,转动的角叫做旋转角.如果图形上的某一点P 经过旋转变为P ',那么这两点叫做这个这个旋转的对应点.如图1所示,△ABC 绕点O 顺时针旋转,得到△A B C ''',这就是旋转,其中,点O 是旋转中心,∠AOA ',∠BOB ',∠COC '都是旋转角.其中,点A ,B ,C 分别与点,,A B C '''为对应点, ∠ABC , ∠ACB , ∠BAC 分别与∠A B C ''',∠A C B ''',∠B A C '''是对应角,线段AB ,BC ,CA 分别与线段,,A B B C C A ''''''为对应边.2.旋转的性质:某个图形经过旋转,图形上的每一点都绕着旋转中心沿着相同的方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等,即图形旋转的特征是:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等. 温馨提示:我们现在研究的旋转是平面旋转,而不是空间旋转,决定旋转的因素有三个:一是旋转中心;二是旋转角;三是旋转方向.在理解旋转的性质时,要体会性质中所说的“对应点”是指“任意一对应点”,旋转前后的两个图形是全等形,具有全等形的一切性质.在利用旋转来解决问题时应抓住以下几点:(1)旋转中的变与不变;(2)找准旋转前后的对应关系;(3)充分挖掘旋转过程中的相等关系.3.旋转与平移(1)旋转的条件:图形旋转,除了要有原图形外,还要有旋转中心、旋转方向和旋转角,这几项缺一不可.(2)旋转与平移的关系:(1)区别:平移是将一个图形沿某个方向移动一定的距离,它满足的条件是:原图形、平移方向、平移距离.旋转是在同一平面内,将一个图形绕一个定点沿某个方向转动一个角度,它满足的条件是:原图形、旋转中心、旋转方向、旋转角度.(2)联系:平移和旋转都是在平面内,图形变换前后的图形是全等的,对应线段、对应边、对应角分别相等,对应点的排列次序相同.4.简单的旋转作图(1)作图依据:旋转图形的旋转角都相等,对应点到旋转中心的距离相等.(2)作图步骤:①分析题目要求,找出旋转中心、旋转角、旋转方向;②分析图形,找出构成图形的关键点;③将图形中的关键点与旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角,得到此关键点的对应点;④按原图形的顺序连接这些对应点,所得到的图形就是旋转后的图形.重点难点本节的重点是:经历由生活现象中抽象出图形的旋转变换,正确理解旋转的概念及其性质.教学重点的解决方法:从日常生活现象入手,循序渐进,引导学生归纳出旋转的概念,借助线段、三角形、四边形的旋转过程来归纳出旋转的性质,学生利用已有的旋转知识,设置一些由浅入深练习题,加深对旋转概念和性质的理解.本节的难点是:旋转概念的形成过程与旋转的性质探究过程.教学难点的解决方法:从生活中的旋转入手,让学生体会生活中的旋转的应用,并通过这种应用对其中的两个量(对应线段和对应角)来理解旋转的性质,最后通过课堂练习得到巩固.教法导引本设计力图以观察为起点,以活动为主线,以培养能力为核心的宗旨;遵照教师为主导、学生为主体的教学原则;遵循特殊到一般、具体到抽象、由浅入深、由易到难的认知规律.具体突出了以下构想:旋转概念的形成过程及旋转性质得到的过程是本节的重点,为了突出概念的形成过程和性质的探究过程教学,首先列举学生熟悉的例子,从生活问题中抽象出数学本质,引导学生观察、分析后归纳;然后提出注意问题,帮助学生把握概念的本质特征,在引导学生运用概念并及时反馈,同时在概念的形成过程中,着重培养学生观察、分析、抽象、概括的能力;例题的展现,特别突出抽象概念的具体化,通俗易懂,引导学生从运动,变化的角度看问题,向学生渗透辩证唯物主义的观点.学法建议学生在已经学习了图形的平移,为后续的图形的旋转的学习做好了铺垫,通过观察生活中的旋转现象,学生借助观察、对比等手段来探究旋转的概念的本质三要素(旋转中心,旋转角和旋转方向),在此基础上,得出旋转的定义,认识旋转中心、旋转角和旋转方向这三个要素.再从点进一步到线段、三角形的旋转,一方面,使学生加深对旋转三要素的理解,另一方,通过画图、度量等活动,共同探索、讨论,归纳出图形旋转的性质,并引导学生利用性质进行正确作图,掌握作图技能,充分调动了学生的积极性和参与性.。

七年级数学下册《旋转》知识点归纳湘教版

七年级数学下册《旋转》知识点归纳湘教版

旋转是指物体绕定点旋转或者移动的过程。

在七年级数学下册湘教版中,关于旋转的知识点主要包括旋转的定义、旋转的性质和旋转的应用等方面。

以下是对这些知识点进行详细归纳的内容。

一、旋转的定义:1.旋转:物体绕着一个固定点进行旋转,该固定点称为旋转中心。

2.旋转角度:物体绕旋转中心旋转的角度,可以用顺时针或逆时针表示,单位是度(°)。

二、旋转的性质:1.旋转是一种刚体运动:在旋转过程中,物体的形状、大小和各部分之间的相对位置保持不变。

2.旋转的方向:顺时针旋转和逆时针旋转。

3.旋转角度的添加性和减性:若物体A在两次旋转中分别旋转了α°和β°,则总的旋转角度为α+β°。

4.旋转角度的相等性:若两个物体互为旋转,它们的旋转角度相等。

三、旋转的应用:1.确定物体旋转中心:通过观察物体的旋转,找出旋转中心的位置。

2.旋转图形:通过旋转一个给定的图形,得到新的图形。

a.利用旋转对称性:若图形A相对于旋转中心旋转了α°后与图形B重合,则称图形A和图形B互为旋转对称图形。

b.选择合适的旋转中心:对于一些图形,可以选择不同的旋转中心,使得图形旋转后更易判断和绘制。

四、旋转的例题:1.判断正方形是否具有旋转对称性。

2.若图形A绕旋转中心旋转了72°后与图形B重合,求旋转角度。

3.如何用旋转来构造一个正三角形。

4.给定一个矩形ABCD,通过旋转可以得到几种特殊的图形,分别是什么形状?5.利用旋转的对称性,画出一个条件是等腰直角三角形的图形。

在七年级数学下册《旋转》的学习中,我们不仅需要掌握旋转的定义、性质和应用,还需要通过解题来加深对旋转的理解和灵活运用。

通过实际的练习和思考,可以提高我们的数学思维能力和创造性思维能力,并应用到实际生活中。

同时,还要注意与其他几何性质相结合,形成更加全面的数学知识体系。

旋转知识点总结以及练习

旋转知识点总结以及练习

旋转知识点总结以及练习一、旋转的基本概念1. 旋转的定义旋转是指围绕一个中心点进行旋转运动的现象。

在数学中,旋转可以用一种简单的方式来描述:将任意点绕着某个固定点进行旋转。

2. 旋转的要素旋转有三个基本要素:旋转中心、旋转方向和旋转角度。

- 旋转中心:围绕哪一个点进行旋转。

- 旋转方向:是顺时针还是逆时针。

- 旋转角度:旋转的角度大小。

3. 旋转的表示方法在数学中,旋转可以用代数方式进行描述,通常使用旋转矩阵或者旋转向量来表示。

二、旋转的应用1. 旋转在几何变换中的应用在几何变换中,旋转是一种重要的变换方式。

通过旋转,可以改变形状的朝向和位置,在计算机图形学中,旋转是常用的操作之一。

2. 旋转在物理学中的应用在物理学中,旋转是指物体以某一点为中心进行旋转运动。

例如地球的自转、地球绕太阳的公转等都是旋转的现象。

三、旋转的相关定理和公式1. 旋转矩阵旋转矩阵是表示旋转变换的一种方式。

对于二维空间中的点(x,y)绕原点逆时针旋转角度θ的变换公式为:```x' = x*cos(θ) - y*sin(θ)y' = x*sin(θ) + y*cos(θ)```在三维空间中,绕x轴、y轴、z轴的旋转矩阵分别为:```绕x轴旋转:|1 0 0||0 cos(θ) -sin(θ)||0 sin(θ) cos(θ)|绕y轴旋转:| cos(θ) 0 sin(θ)|| 0 1 0||-sin(θ) 0 cos(θ)|绕z轴旋转:|cos(θ) -sin(θ) 0||sin(θ) cos(θ) 0|| 0 0 1|```2. 旋转的性质- 旋转变换是一个保持向量长度和夹角不变的线性变换。

- 旋转矩阵乘法满足结合律:R1(R2(x)) = (R1*R2)(x)。

四、旋转的练习题1. 试计算下列向量关于指定旋转中心和旋转角度的旋转后的坐标:(1) 向量(2,3)关于原点逆时针旋转90°;(2) 向量(-1,1)关于点(2,2)逆时针旋转45°。

湘教版数学七年级下册5.2 旋转.docx

湘教版数学七年级下册5.2 旋转.docx

初中数学试卷鼎尚图文**整理制作5.2 旋转核心笔记: 1.旋转及相关概念:将一个平面图形F上的每一个点,绕这个平面内一定点O旋转同一个角α(即把图形F上每一个点与定点的连线绕定点O旋转角α),得到图形F',图形的这种变换叫做旋转,这个定点O叫旋转中心,角α叫做旋转角.原位置的图形F叫做原像,新位置的图形F'叫做图形F在旋转下的像.图形F上的每一个点P与它在旋转下的像点P'叫做在旋转下的对应点.2.旋转的性质:(1)一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等,两组对应点分别与旋转中心的连线所成的角相等.(2)旋转不改变图形的形状和大小.基础训练1.下列现象中属于旋转的有( )①摩托车急刹车时向前滑动;②公路上高速行驶的汽车;③风车的转动;④荡秋千运动;⑤钟摆的运动.A.2个B.3个C.4个D.5个2.将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是( )A.96B.69C.66D.993.已知如图①所示的四张牌,若将其中一张牌旋转180°后得到图②,则旋转的牌是( )4.如图,将三角形AOB绕点O按逆时针方向旋转55°后得到三角形A'OB',若∠AOB=15°,则∠AOB'的度数是( )A.25°B.40°C.35°D.45°5.如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C'在同一条直线上,则三角板ABC旋转的角度是( )A.60°B.90°C.120°D.150°6.如图,正方形ABCD绕O点旋转后,顶点A的对应点为A1,试确定B,C,D的对应点的位置,以及旋转后的正方形.培优提升1.如图,点A,B,C,D,O都在方格纸的格点上,若三角形AOB绕点O按逆时针方向旋转到三角形COD的位置,则旋转的角度为( )A.30°B.45°C.90°D.135°2.如图所示的图形绕着点O旋转多少度后不能和它自身重合( )A.45°B.60°C.90°D.135°3.如图,如果△ABC旋转后能与△A'B'C重合,且∠B=90°,∠A=30°,那么哪一点是旋转中心,沿什么方向旋转了多少度( )A.C点,逆时针,90°B.C点,逆时针,30°C.B点,逆时针,30°D.B点,逆时针,90°4.关于图形的旋转,下列说法中错误的是( )A.图形上各点的旋转角度相同B.对应点到旋转中心的距离相等C.由旋转得到的图形也一定可以由平移得到D.旋转不改变图形的形状和大小5.如图,△ABC绕着A点经过逆时针旋转后能够与△AED重合得到图①,再将图①绕着A点经过逆时针旋转得到图②,两次旋转的角度分别为( )A.45°,90°B.90°,45°C.60°,30°D.30°,60°6.如图,某战士在训练场上练习射击,发现子弹均击中靶子上的阴影部分,若整个圆形靶子的面积为20,则阴影部分的面积是___________.7.如图,已知在三角形ABC和三角形AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°.(1)试说明∠EAB=∠FAC;(2)三角形AEF可以经过图形的变换得到三角形ABC,请你描述这个变换;(3)求∠AMB的度数.8.如图所示,不用量角器,将方格纸中的四边形绕着点O按逆时针方向旋转90°,画出旋转后的图形.(不用写过程,直接画出图形即可)参考答案【基础训练】1.【答案】B2.【答案】B3.【答案】A4.【答案】B解:因为将三角形AOB绕点O按逆时针方向旋转55°后得到三角形A'OB',所以∠A'OA=55°,∠A'OB'=∠AOB=15°,所以∠AOB'=∠A'OA-∠A'OB'=55°-15°=40°,故选B.5.【答案】D6.解:如图,步骤:(1)连接OA,OA1,OB,OC,OD;(2)分别以OB,OC,OD为一边按顺时针方向作∠BOB',∠COC',∠DOD',使得∠BOB'=∠COC'=∠DOD'=∠AOA1;(3)分别在射线OB',OC',OD'上截取OB1=OB,OC1=OC,OD1=OD.点B1,C1,D1即为B,C,D的对应点;(4)连接B1C1,C1D1,D1A1,A1B1.正方形A1B1C1D1就是旋转后的正方形.【培优提升】1.【答案】C解:观察题图可知,∠DOB为旋转角,而∠DOB=90°,所以旋转的角度为90°,故选C.2.【答案】B3.【答案】A4.【答案】C5.【答案】A6.【答案】5解:通过旋转,阴影部分可以合成四分之一个圆靶,故阴影部分的面积为圆靶面积的四分之一.7.解:(1)在三角形ABC和三角形AEF中,因为∠B=∠E,AB=AE,BC=EF,所以三角形ABC和三角形AEF是以A点为旋转中心,以∠EAB或∠FAC为旋转角组合而成的图形,因为∠EAB和∠FAC都是旋转角,所以∠EAB=∠FAC.(2)由(1)知,三角形ABC是由三角形AEF以A为旋转中心,以∠EAB或∠FAC 为旋转角沿逆时针方向旋转得到的.(3)因为∠EAB=∠FAC=25°,∠F=∠C=57°,在三角形AMC中,∠AMC=180°-25°-57°=98°,而∠AMB+∠AMC=180°,所以∠AMB=82°.8.解:如图所示.四边形A'B'C'D'就是旋转后的图形.。

初中旋转知识点总结

初中旋转知识点总结

初中旋转知识点总结一、基本概念1.1 旋转的概念在数学中,旋转是指绕着固定点进行的转动。

在平面几何中,通常以原点为中心进行旋转,记为O。

1.2 旋转的方向根据旋转的方向,我们可以将旋转分为顺时针旋转和逆时针旋转两种,通常用箭头表示,其中顺时针旋转为逆时针旋转为。

1.3 旋转的角度旋转的角度通常用度数表示,符号为°。

一个完整的旋转为360°,一般用角度的正负来表示旋转的方向,正表示逆时针旋转,负表示顺时针旋转。

二、旋转的性质2.1 旋转的性质(1)旋转不改变图形的大小;(2)旋转前后的图形是全等图形;(3)旋转前后的图形是共形的。

2.2 旋转对称对称轴:图形旋转前后完全重合的轴称为旋转对称轴。

例如正方形、正五边形等都是以中心为中心的旋转对称图形。

2.3 旋转的性质利用在日常生活中,我们常常利用旋转的性质进行问题求解,如寻找物体的镜像、对称等。

三、旋转的公式在旋转的过程中,有一些常见的旋转公式需要初中学生掌握,以便能够快速准确地计算出旋转后的图形。

3.1 旋转的坐标公式对于图形(x, y)绕原点O逆时针旋转θ度后的坐标为(x',y'),则有以下公式:x' = x*cosθ - y*sinθy' = x*sinθ + y*cosθ3.2 旋转的中心公式对于图形(x, y)绕点(A, B)逆时针旋转θ度后的坐标为(x',y'),其中A的横坐标为a,B的纵坐标为b,则有以下公式:x' = (x-a)*cosθ - (y-b)*sinθ + ay' = (x-a)*sinθ + (y-b)*cosθ + b四、旋转的应用4.1 旋转的应用范围旋转的应用范围非常广泛,包括几何学、物理学、工程学等各个领域,如在几何学中,我们可以利用旋转的性质求解对称图形的问题,在工程学中,我们可以利用旋转的公式进行图形的设计等。

4.2 旋转的几何应用旋转在几何学中应用广泛,如计算旋转图形的坐标、利用旋转的性质寻找对称图形等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册《旋转》知识点归纳湘教

七年级数学下册《旋转》知识点归纳湘教版
第五章旋转
一.知识框架
二.知识概念
1.旋转:在平面内,将一个图形绕一个图形按某个方向
转动一个角度,这样的运动叫做图形的旋转。

这个定点
叫做旋转中心,转动的角度叫做旋转角。

(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度
的位置移动,其中对应点到旋转中心的距离相等,对应
线段的长度、对应角的大小相等,旋转前后图形的大小
和形状没有改变。

) 2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形
叫做旋转对称图形,这个定点叫做旋转对称中心,旋转
的角度叫做旋转角(旋转角小于0°,大于360°)。

3.中心对称图形与中心对称:
中心对称图形:如果把一个图形绕着某一点旋转180度
后能与自身重合,那么我们就说,这个图形成中心对称
图形。

中心对称:如果把一个图形绕着某一点旋转180度后能
与另一个图形重合,那么我们就说,这两个图形成中心
对称。

4.中心对称的性质:
关于中心对称的两个图形是全等形。

关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。

一、精心选一选 (每小题3分,共30分)
1.下面的图形中,是中心对称图形的是()
C
2.平面直角坐标系内一点P(-2,3)关于原点对称的点的坐标是()
A.(3,-2) B. (2,3) C.(-2,-3) D. (2,-3) 3.3张扑克牌如图1所示放在桌子上,小敏把其
中一张旋转180º后得到如图(2)所示,则她所旋
转的牌从左数起是()
A.第一张 B.第二张 C.第三张 D.第四张 4.在下图右侧的四个三角形中,不能由△ABC经过旋转或平移得
到的是()
A A
B
C D
5.如图3的方格纸中,左边图形到右边图形的变换是()A.向右平移7格
B
.以AB的垂直平分线为对称轴作轴对称,再以AB为对称轴作轴对称 0
C.绕AB的中点旋转180,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格
6.从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是()
A.A N E G B.K B X N C.X I H O D.Z D W H
7.如图4,C是线段BD上一点,分别以BC、CD为边在BD同侧作等边和等边△CDE,AD交CE于F,BE交AC于G,则图中可通过旋转而相的三角形对数有( ). A.1对B.2对 C.3对 D.4对
8.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是(

A 30
B 45
C 60
D 90 9.如图5所示,图中的一个矩形是另一个矩形顺方向旋转90°后形成的个数是() A.l个 B.2个
△ABC互得到
时针
C.3个 D.4个
10.如图6,ΔABC和ΔADE都是等腰直角三角形,∠C
和∠ADE 都是直角,点C在AE上,ΔABC绕着A点经过
逆时针旋转后能够与ΔADE重合得到图7,再将图23—A—4作为“基本图形”绕
着A点经过逆时针连续旋转得到图7.两次旋转的角度分
别为()
图6
A.45°,90° B.90°,45° C.60°,30° D.30°,
60
二、耐心填一填(每小题3分,共24分) 11.关于中心对称的两个图形,对称点所连线段都经过,而且被
_____________平分.
12.在平行四边形、矩形、菱形、正方形、等腰梯形这
五种图形中,既是轴对称图形,又是中心对称图形的是
_____________.

7
13.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是_____________.
14.如图8,△ABC以点A为旋转中心,按逆时针方向旋转60°,得△AB′C′,则△ABB′是三角形. 15.已知
a<0,则点P(a2,-a+3)关于原点的对称点P1
在第___象限
16.如图9,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D 的度数是.
17.如图10,在两个同心圆中,三条直径把大圆分成相
等的六部分,若大圆的半径为2,则图中阴影部分的面
积是___.
18.如图,四边形ABCD中,∠BAD=∠C=90º,AB=AD,AE⊥BC于E,若线段AE=5,则S四边形ABCD
=。

A
D
BE
三、细心解一解(共46分)
19.(6分)如图12,四边形ABCD的
∠BAD=∠C=90º,AB=AD,AE⊥BC于E,BEA旋转后能与DFA重合。

(1)旋转中心是哪一点? (2)旋转了多少度?
(3)如果点A是旋转中心,那么点B经过旋转后,点B
旋转到什么位置?
20.(4分)如图13,请画出ABC关于点O点为
对称中心的对称图形
21.(6分)如图14,方格纸中的每个小方格都是边长为
1个单位的正方形,在建立平面直角坐标系后,
△ABC的顶点均在格点上,点C的坐标为(4,1).①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出C1的坐标;②以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出
点C2的坐标.
18.(4分)如图15,方格中有一条美丽可爱的小金鱼. (1)若方格的边长为1,则小鱼的面积为.
(2)画出小鱼向左平移3格后的图形(不要求写作图步骤和过程). 22.(6分)如图16,E、F分别是正方形ABCD 的边CD、DA上一点,且CE+AF=EF,请你用旋转的方法求∠EBF的大小.
23. 19.(8
ABC和△DEF.将这两张三角形胶片的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC与DF相交于点O. A A
C A
E F
B B(E) B(E) D
图① 图② 图③
(1)当△DEF旋转至如图②位置,点B(E),C,D在同一直线上时,AFD与DCA的数量关系是. 2分(2)当△DEF继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由.(3)在图③中,连接BO,AD,探索BO与AD之间有怎样的位置关系,并证明.。

相关文档
最新文档