生物化学简答题35566

合集下载

生物化学简答题

生物化学简答题

2.简述三羧酸循环的生理意义是什么?它有哪些限速步骤?生理意义:三羧酸循环是机体获取能量的主要方式;为生物合成提供原料;影响果实品质糖;脂肪和蛋白质代谢的枢纽限速步骤:1)在柠檬酸合酶的作用下,由草酰乙酸和乙酰-CoA合成柠檬酸2)在异柠檬酸脱氢酶催化下,异柠檬酸脱氢形成草酰琥珀酸。

3)在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸氧化、脱羧,生成琥珀酰-CoA、NADH+H+和CO2。

4.什么是转氨作用?简述转氨作用的两步反应过程?为什么它在氨基酸代谢中有重要作用?概念:转氨作用是指在转氨酶催化下将α-氨基酸的氨基转给另一个α-酮酸,生成相应的α-酮酸和一种新的α-氨基酸的过程。

磷酸吡哆醛是转氨酶的辅酶,起到携带NH2基的作用。

这一过程分为两步反应:-H2O+H2O+H2O-H2O转氨作用的生理意义:a)通过转氨作用可以调节体内非必需氨基酸的种类和数量,以满足体内蛋白质合成时对非必需氨基酸的需求。

b)转氨作用可使由糖代谢产生的丙酮酸、α-酮戊二酸、草酰乙酸变为氨基酸,因此,对糖和蛋白质代谢产物的相互转变有其重要性。

c)由于生物组织中普遍存在有转氨酶,而且转氨酶的活性又较强,故转氨作用是氨基酸脱氨的重要方式。

d)转氨作用的另一重要性是因肝炎病人血清的转氨酶活性有显著增加,测定病人血清的转氨酶含量大有助于肝炎病情的诊断。

转氨基作用还是联合脱氨基作用的重要组成部分,从而加速了体内氨的转变和运输,勾通了机体的糖代谢、脂代谢和氨基酸代谢的互相联系。

5.简述磷酸戊糖途径概念及生理意义概念:以6-磷酸葡萄糖开始,在6-磷酸葡萄糖脱氢酶催化作用下形成6-磷酸葡萄糖酸,进而代谢生成磷酸戊糖作为中间代谢产物,故将此过程称为磷酸戊糖途径。

1)产生大量的NADPH,为细胞的各种合成反应提供还原力2)途径中的中间物为许多化合物的合成提供原料:PPP途径可以产生多种磷酸单糖,如磷酸核糖、4-磷酸赤藓糖与磷酸烯醇式丙酮酸等。

3)提高植物的抗病能力:这主要是因为4-磷酸赤藓糖与磷酸烯醇式丙酮酸可合成莽草酸,进而合成绿原酸、咖啡酸等与抗病能力有关的物质。

生物化学(简答题、问答题)

生物化学(简答题、问答题)

简答题、问答题1.组成蛋白质的氨基酸有多少种?其结构特点是什么?答:组成蛋白质的氨基酸有20种。

结构特点:(1)除脯氨酸是α-亚氨基酸外,所有氨基酸均为α-氨基酸;(2)除甘氨酸外,其它氨基酸的α-碳原子(分子中第二个碳,Cα)均为不对称碳原子,D-型和L-型两种立体异构体,但天然蛋白质中的氨基酸都是L-型氨基酸;(3)氨基酸之间的不同,主要在于侧链R 的不同。

2.蛋白质分子结构可分为几级?维持各级结构的化学键是什么?答:蛋白质分子结构分为一、二、三、四级;维持各级结构的化学键分别是肽键、二硫键,氢键,次级键(疏水键),次级键(疏水键)。

3、酶作为一种生物催化剂有何特点?答:酶具有高效性、专一性、活性可调性。

4、解释酶的活性部位、必需基团二者之间的关系。

答:必需基团5、说明米氏常数的意义及应用。

答:米氏常数等于酶促反应速度为最大反应速度一半时的底物浓度。

应用:(1)米氏常数是酶的特征性常数,每一种酶都有它的Km 值,与酶的性质、催化的底物和酶促反应条件(如温度、pH 、有无抑制剂等)有关,而与酶浓度无关。

(2)K m 值可用于表示酶和底物亲和力的大小。

(3)当使用酶制剂时,可以根据K m 值判断使酶发挥一定反应速度时需要多大的底物浓度;在已规定底物浓度时,也可根据K m 值估算出酶能够获得多大的反应速度。

6、什么是竞争性和非竞争性抑制?试用一两种药物举例说明不可逆抑制剂和可逆抑制剂对酶的抑制作用?答:竞争性抑制:抑制剂结构与底物的结构相似,它和底物同时竞争酶的活性中心,因而妨碍了底物与酶的结合,减少了酶分子的作用机会,从而降低了酶的活性。

非竞争性抑制:抑制剂和底物不在酶的同一部位结合,抑制剂与底物之间无竞争性,酶与底物结合后,还可与抑制剂结合,或者酶和抑制剂结合后,也可再同底物结合,其结果是形成了三元复合物(ESI)。

可逆抑制剂:增效联磺的杀菌作用:增效联磺抑制细菌的二氢叶酸合成酶、二氢叶酸还原酶德活性,使细菌体内四氢叶酸的合成受到双重抑制,使细菌因核酸的合成受阻而死亡。

生物化学简答题

生物化学简答题

生物化学简答题生物化学是研究生物体内的化学成分和生物体内化学反应过程的科学。

它涉及到很多重要的概念和原理,下面我将依次回答几个简答题,以帮助您更好地理解生物化学的基本知识。

1. 什么是酶?酶在生物体中起到什么作用?酶是一类催化生物化学反应的蛋白质分子。

它们能够加速化学反应的速率,使反应达到生物体内所需的程度。

酶可以在非常温和的条件下,提高化学反应的速度。

生物体内的代谢、合成反应、分解反应等都离不开酶的催化作用。

2. DNA和RNA有什么区别?DNA(脱氧核糖核酸)和RNA(核糖核酸)是生物体内两种重要的核酸分子。

它们在结构上和功能上存在着一些差异。

首先,在结构上,DNA是由两条螺旋结构的链组成,而RNA则是单链结构。

其次,在碱基组成上,DNA包含腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C),而RNA则包含腺嘌呤(A)、鸟嘌呤(G)、尿嘧啶(U)和胞嘧啶(C)。

此外,DNA在存储和传递遗传信息方面起到关键作用,而RNA则在蛋白质合成中发挥重要作用。

3. 核糖酸循环是什么?它在生物体内的作用是什么?核糖酸循环,也称为三羧酸循环或Krebs循环,是生物体内的一种重要的代谢途径。

它是将碳源分解为能够供应细胞产生能量所需的化合物的过程。

核糖酸循环主要发生在线粒体中,通过一系列的反应,将葡萄糖、脂肪酸等有机物分解为二氧化碳和水,并在此过程中产生三氧化磷(ATP)等高能化合物。

核糖酸循环是细胞内能量代谢的重要组成部分,也是产生细胞需要的能量的关键过程。

4. 蛋白质是生物体内重要的有机物质,它有什么功能和结构特点?蛋白质是生物体内功能最为多样复杂的有机分子,具有多种重要的功能。

首先,蛋白质是生物体内大部分酶的组成部分,能够催化和调控许多关键的生化反应。

其次,蛋白质在细胞结构和功能的维持中发挥着重要的作用,例如构成细胞骨架、参与免疫反应等。

此外,蛋白质还可以作为激素、抗体和运输分子等。

蛋白质的结构特点包括四级结构:一级结构指由氨基酸残基的线性序列组成;二级结构指由α螺旋和β折叠等基本结构单元组成;三级结构指蛋白质折叠成三维结构的形态;四级结构指多个蛋白质亚单位组合形成功能性蛋白质复合物。

生物化学简答题

生物化学简答题

2 什么是蛋白质的二级结构,主要包括哪几种,各有什么结构特征?3 变性概念、本质、特征及在日常生活中应用。

4 热变性DNA 具有什么特征?5 试说明DNA 双螺旋结构模型的要点及与DNA 生物学功能的关系。

6 核酸杂交技术的基础是什么?有哪些应用价值?7 简述蛋白质的一、二、三、四级结构。

8 固定化酶的概念、优点、制备方法。

9 酶的特点及其高效作用机理。

10 酶的活性中心和必需基团及其关系。

11 辅酶与辅基有何不同?维生素(3 种以上)与辅酶(辅基)的关系?在代谢中的应用。

12 简述蛋白质酶和修饰酶在新药研究中的应用以及核酶和抗体酶对新药设计的指导意义。

13 请从各个方面比较糖酵解和糖的有氧氧化的异同。

14 比较糖酵解和糖的有氧氧化的异同。

15 比较DNA 、RNA 在化学组成、结构、功能上各有何特点、16 比较原核细胞的mRNA 和真核细胞的mRNA 的结构特点。

17比较哺乳动物脂肪酸B氧化和合成的主要区别。

18脂肪酸B氧化和合成。

19 糖酵解和糖的有氧氧化。

20 糖在机体内主要代谢途径及重要生物学意义。

21 酮体的生成、利用和意义。

22 简述乙酰CoA 的体内来源与去路及其细胞定位。

23 什么是尿素循环、过程?有什么生理意义?24 大肠杆菌DNA 复制过程。

25 蛋白质生物合成过程。

26 何谓抗代谢物?简述磺胺药、氨甲喋呤等药物作用机制。

27 生物技术主要研究内容及在现代药学新药研究应用。

28 简述基因工程的基本原理和一般过程及在制药领域应用。

29 有哪些生物化学研究成果被用于新药设计和筛选研究?试分别举例说明之。

30 简述蛋白质纯化的常用方法及其基本原理。

31 利用蛋白质电离性质可采用哪些方法将其分离纯化?举例说明。

2 什么是蛋白质的二级结构,主要包括哪几种,各有什么结构特征?3 变性概念、本质、特征及在日常生活中应用4 热变性DNA 具有什么特征?5 试说明DNA 双螺旋结构模型的要点及与DNA 生物学功能的关系6 核酸杂交技术的基础是什么?有哪些应用价值?7 简述蛋白质的一、二、三、四级结构。

(完整word)生物化学常用简答题

(完整word)生物化学常用简答题

1、简述血氨的来源和去路。

(1)血氨来源:①氨基酸脱氨基作用,是血氨的主要来源;②肠道产氨,由腐败作用产生的氨或肠道尿素经肠道细菌尿素酶水解产生的氨;③肾脏产氨,主要来自谷氨酰胺的水解;④胺类、嘌呤、嘧啶等含氮物质的分解产生氨。

(2)血氨去路①在肝脏经鸟氨酸循环合成尿素,随尿液排出体外;②合成谷氨酰胺③参与合成非必需氨基酸;④合成其它含氮物质2、磷酸戊糖途径分哪两个阶段,此代谢途径的生理意义是什么?磷酸戊糖途径分为氧化反应和非氧化反应两个阶段(1)是机体生成NADPH的主要代谢途径:NADPH在体内可用于:,参与体内代谢:如参与合成脂肪酸、胆固醇等.②参与羟化反应:作为加单氧酶的辅酶,参与对代谢物的羟化。

③维持谷胱甘肽的还原状态,还原型谷胱甘肽可保护含—SH的蛋白质或酶免遭氧化,维持红细胞膜的完整性,由于6-磷酸葡萄糖脱氢酶遗传性缺陷可导致蚕豆病,表现为溶血性贫血。

(2)是体内生成5-磷酸核糖的主要途径:体内合成核苷酸和核酸所需的核糖或脱氧核糖均以5—磷酸葡萄糖的形式提供,其生成方式可以由G-6—P脱氢脱羧生成,也可以由3-磷酸甘油醛和F—6—P经基团转移的逆反应生成。

3、试述成熟红细胞糖代谢特点及其生理意义。

成熟红细胞不仅无细胞核,而且也无线粒体、核蛋白体等细胞器,不能进行核酸和蛋白质的生物合成,也不能进行有氧氧化,不能利用脂肪酸。

血糖是其唯一的能源。

红细胞摄取葡萄糖属于易化扩散,不依赖胰岛素.成熟红细胞保留的代谢通路主要是葡萄糖的酵解和磷酸戊糖通路以及2.3一二磷酸甘油酸支路。

通过这些代谢提供能量和还原力(NADH,NADPH)以及一些重要的代谢物,对维持成熟红细胞在循环中约120的生命过程及正常生理功能均有重要作用。

4、血糖正常值是多少,机体是如何进行调节的。

3。

89~6。

11mmol/L7、在糖代谢过程中生成的丙酮酸可进入哪些代谢途径?答:(1)在供氧不足时,丙酮酸在乳酸脱氢酶的催化下,有还原型的辅酶Ⅰ供氢,还原成乳酸.(2)在供氧充足时,丙酮酸进入线粒体在丙酮酸脱氢酶系的作用下,氧化脱羧生成乙酰辅酶A, 乙酰辅酶A进入三羧酸循环被氧化为二氧化碳和水及ATP。

生物化学简答题

生物化学简答题

⽣物化学简答题第⼆章蛋⽩质1、组成蛋⽩质的基本单位是什么?结构有何特点?氨基酸是组成蛋⽩质的基本单位。

结构特点:①组成蛋⽩质的氨基酸仅有20种,且均为α-氨基酸②除⽢氨酸外,其Cα均为不对称碳原⼦③组成蛋⽩质的氨基酸都是L-α-氨基酸2、氨基酸是如何分类的?按其侧链基团结构及其在⽔溶液中的性质可分为四类:①⾮极性疏⽔性氨基酸7种②极性中性氨基酸8种③酸性氨基酸2种④碱性氨基酸3种3、简述蛋⽩质的分⼦组成。

蛋⽩质是由氨基酸聚合⽽成的⾼分⼦化合物,氨基酸之间通过肽键相连。

肽键是由⼀个氨基酸的α-羧基和另⼀个氨基酸的α-氨基脱⽔缩合形成的酰胺键4、蛋⽩质变性的本质是什么?哪些因素可以引起蛋⽩质的变性?蛋⽩质特定空间结构的改变或破坏。

化学因素(酸、碱、有机溶剂、尿素、表⾯活性剂、⽣物碱试剂、重⾦属离⼦等)和物理因素(加热、紫外线、X射线、超声波、⾼压、振荡等)可引起蛋⽩质的变性5、简述蛋⽩质的理化性质。

①两性解离-酸碱性质②⾼分⼦性质③胶体性质④紫外吸收性质⑤呈⾊反应6、蛋⽩质中的氨基酸根据侧链基团结构及其在⽔溶液中的性质可分为哪⼏类?各举2-3例。

①⾮极性疏⽔性氨基酸7种:蛋氨酸,脯氨酸,缬氨酸②极性中性氨基酸8种:丝氨酸,酪氨酸,⾊氨酸③酸性氨基酸2种:天冬氨酸,⾕氨酸②碱性氨基酸3种:赖氨酸,精氨酸,组氨酸第三章核酸1.简述DNA双螺旋结构模型的要点。

①两股链是反向平⾏的互补双链,呈右⼿双螺旋结构②每个螺旋含10bp,螺距3.4nm,直径2.0nm。

每个碱基平⾯之间的距离为0.34nm,并形成⼤沟和⼩沟——为蛋⽩质与DNA相互作⽤的基础③脱氧核糖和磷酸构成链的⾻架,位于双螺旋外侧④碱基对位于双螺旋内侧,碱基平⾯与双螺旋的长轴垂直;两条链位于同⼀平⾯的碱基以氢键相连,满⾜碱基互补配对原则:A=T,G≡C⑤双螺旋的稳定:横向—氢键,纵向—碱基堆积⼒⑥DNA双螺旋的互补双链预⽰DNA 的复制是半保留复制2、从组成、结构和功能⽅⾯说明DNA和RNA的不同。

生物化学简答题

生物化学简答题

1、酮体生成和利用的生理意义。

(1)酮体是脂酸在肝内正常的中间代谢产物,是甘输出能源的一种形式;(2)酮体是肌肉尤其是脑的重要能源。

酮体分子小,易溶于水,容易透过血脑屏障。

体内糖供应不足(血糖降低)时,大脑不能氧化脂肪酸,这时酮体是脑的主要能源物质。

2、试述人体胆固醇的来源与去路?来源:⑴从食物中摄取⑵机体细胞自身合成去路:⑴在肝脏可转换成胆汁酸⑵在性腺,肾上腺皮质可以转化为类固醇激素⑶在欺负可以转化为维生素D3⑷用于构成细胞膜⑸酯化成胆固醇酯,储存在细胞液中⑹经胆汁直接排除肠腔,随粪便排除体外。

3、酶的催化作用有何特点?①具有极高的催化效率,如酶的催化效率可比一般的催化剂高108~1020 倍;②具有高度特异性:即酶对其所催化的底物具有严格的选择性,包括:绝对特异性、相对特异性、立体异构特异性;③酶促反应的可调节性:酶促反应受多种因素的调控,以适应机体不断变化的内外环境和生命活动的需要。

4、何谓酶的不可逆抑制作用?试举例说明某些抑制剂通常以共价键与酶蛋白中的必需基团结合,而使酶失活,抑制剂不能用透析、超滤等物理方法除去,有这种作用的不可逆抑制剂引起的抑制作用称不可逆抑制作用举例:①有机磷抑制胆碱酯酶:与酶活性中心的丝氨酸残基结合,可用解磷定解毒②重金属离子和路易士气抑制巯基酶:与酶分子的巯基结合,可用二巯丙醇解毒。

5、试述竞争性抑制作用的特点,并举例其临床应用特点:①抑制剂与底物化学结构相似②抑制剂以非抑制剂可逆地结合酶的活性中心,但不被催化为产物③由于抑制剂与酶的结合是可逆的,抑制作用大小取决于抑制剂浓度与底物浓度的相对比例④当抑制剂浓度不变时,逐渐增加底物浓度,抑制作用减弱,甚至解除,因而酶的V不变⑤抑制剂的存在使酶的km的值明显增加。

说明底物和酶的亲和力明显下降。

举例:①磺胺类药物与对氨基苯甲酸竞争抑制二氢叶酸合成酶②丙二酸与琥珀酸竞争抑制琥珀酸脱氢酶③核苷酸的抗代谢物与抗肿瘤药物6、何谓酶原及酶原激活?简述其生理意义有些酶在细胞内合成时,或初分泌时,没有催化活性,这种无活性状态的酶的前身物称为酶原,酶原向活性的酶转化的过程称为酶原的激活。

医学生物化学的简答题

医学生物化学的简答题

医学生物化学的简答题1、简述糖的有氧氧化及三羧酸循环的生理意义。

答:(1)糖的有氧氧化的生理意义:基本意义是为机体的生理活动提供能量,1mol葡萄糖彻底氧化成h2o和co2时可净生成38或36molatp,它是机体获得能量的主要方式;代谢过程中许多中间产物是体内合成其它物质的原料,所以与其它物质代谢密切联系;它与糖的其它代谢途径亦有密切联系。

(2)三羧酸循环的生理意义:三羧酸循环是糖、脂肪和蛋白质三大营养素分解代谢的共同途径,也就是糖、脂肪、氨基酸新陈代谢联系的枢纽。

2、什么是酮体?如何产生,又如何被利用?答:(1)酮体是脂肪酸在肝内分解代谢产生的一类中间产物,包括乙酰乙酸、β―羟丁酸和丙酮。

(2)酮体的产生:制备部位:肝细胞线粒体。

制备原料:乙酰coa。

反应过程及限速酶:关键步骤是2分子乙酰coa缩合成1分子乙酰乙酰coa,后者再与1分子乙酰coa缩合成hmg―coa;关键酶是hmg―coa合成酶。

(3)酮体的利用:肝内生酮肝外用。

乙酰乙酸硫激酶β―羟丁酸→乙酰乙酸―――――――――→2×乙酰coa→进入三羧酸循环氧化供能琥珀酰coa转硫酶3、详述体内氨基酸就是如何维持动态平衡的。

答:氨基酸(aminoacid)是构成蛋白质(protein)的基本单位,赋予蛋白质特定的分子结构形态,使它的分子具有生化活性。

蛋白质是生物体内重要的活性分子,包括催化新陈代谢的酶。

(一)水解退氨基:第一步,过氧化氢,分解成亚胺;第二步,水解。

分解成的h2o2有害,在过氧化氢酶催化剂下,分解成h2oo2,中止对细胞的毒害。

(二)非水解退氨基促进作用:①还原成退氨基(严苛无氧条件下);②水证悟氨基;③水解退氨基;④退巯基退氨基;⑤水解-还原成退氨基,两个氨基酸互相出现水解还原成反应,分解成有机酸、酮酸、氨;⑥退酰胺基作用。

(三)转回氨基促进作用。

转氨促进作用就是氨基酸脱氨的关键方式,除gly、lys、thr、pro外,大部分氨基酸都能够参予转回氨基促进作用。

生物化学复习题(简答题答案)

生物化学复习题(简答题答案)

生物化学复习题第一章绪论1.简述生物化学的定义及生物化学的研究范围。

(P1)答:定义:生物化学就是从分子水平上阐明生命有机体化学本质的一门学科。

研究范围:第一方面是关于生命有机体的化学组成、生物分子,特别的生物大分子的结构、相互关系及其功能。

第二方面是细胞中的物质代谢与能量代谢,或称中间代谢,也就是细胞中进行的化学过程。

第三方面是组织和器官机能的生物化学。

2.简述生物化学的发展概况(了解)答:生物化学经历了静态生化—动态生化—机能生化这几个历程。

生物化学的发展经历了真理与谬误斗争的曲折道路,同时也是化学、微生物学、遗传学、细胞学和其他技术科学互相交融的结果。

展望未来,以生物大分子为中心的结构生物学、基因组学和蛋白质组学、生物信息学、细胞信号传导等研究显示出无比广阔的前景。

现代生物化学从各个方面融入生命科学发展的主流当中,同时也为动物生产实践和动物疫病防治提供了必不可缺的基本理论和研究技术。

3、简述生物化学与其他学科的关系。

(了解)答:生物化学的每个进步与其他学科,如物理学、化学等的发展紧密联系,先进的技术和研究手段,如电子显微镜,超离心、色谱、同位素示踪、X-射线衍射、质谱以及核磁共振等技术为生物化学的发展提供了强有力的工具。

4.简述动物生物化学与动物健康和动物生产的关系。

答:1)在饲养中,了解畜禽机体内物质代谢和能量代谢状况,掌握体内营养物质间相互转变和相互影响的规律,是提高饲料营养作用的基础。

2)在兽医中可有效防治疾病,如:代谢的紊乱可导致疾病,所以了解紊乱的环节并纠正之,是有效治疗疾病的依据;通过生化的检查,可帮助疾病的诊断。

第二章蛋白质1.蛋白质在生命活动中的作用有哪些?(了解)答:1.催化功能。

2.贮存于运输功能。

3.调节功能.。

4.运动功能。

5.防御功能。

6.营养功能。

7.作为结构成分。

8.作为膜的组成成分。

9.参与遗传活动2.何谓简单蛋白和结合蛋白?(P23-24)答:简单蛋白:(又称单纯蛋白质)经过水解之后,只产生各种氨基酸。

关于生物化学简答题

关于生物化学简答题

生化习题简答题1.试简三羧酸循环的意义是氧化功能的主要代谢门路,是三大物质(糖,脂肪,氨基酸)代谢互相联系的枢纽,是三大物质代谢最后的共同通道。

2.与酶高效催化作用相关的要素有哪些?1). 周边定向效应2). 底物的形变和引诱切合3). 亲核催化 / 亲电催化(共价催化4). 酸碱催化5). 微环境的影响3.酶的辅因子依据化学实质可分哪几类 , 请举例说明?1)无机金属元素,如镁离子,己糖激酶的辅因子2)小分子有机物,如 NAD+,脱氢酶的辅因子3)蛋白质类辅酶,如硫氧还蛋白,而磷酸核糖核苷酸复原酶的辅因子4.请列举遗传密码的基本特色,并分别予以解说。

1)连续性 :mRNA的读码方向从 5' 端至 3' 端方向,两个密码子之间无任何核苷酸分开。

mRNA 链上碱基的插入、缺失和重叠,均造成框移突变。

2)简并性 : 指一个氨基酸拥有两个或两个以上的密码子。

密码子的第三位碱基改变常常不影响氨基酸翻译。

3)摇动性 :mRNA上的密码子与转移 RNA(tRNA)J 上的反密码子配对辨识时,大部分状况恪守间几乎不配对原则,但也可出现不严格配对,特别是密码子的第三位碱基与反密码子的第一位碱基配对经常出现不严格碱基互补,这种现象称为摇动配对。

4)通用性 : 无论高等或低等生物,从细菌到人类都拥有一套共同的遗传密码5.真核细胞与原核细胞 DNA复制过程的主要差别有哪些?1)真核生物有多个复制开端位点——复制原点,而原核只有一个复制原点。

2)真核生物复制一旦启动,在达成本次复制前,不可以在再启动新的复制,而原核复制开端位点能够连续开始新的复制,特别是迅速生殖的细胞。

3)真核生物和原核生物的复制调控不一样。

原核生物的调控集中在复制子(一个复制单位)水平的调控,而真核生物不只有复制子水平的调控还有染色体水平的调控和细胞水平的调控。

4)原核的 DNA聚合酶 III复制时形成二聚体复合物,而真核的聚合酶保持分别状态。

生物化学全部简答题

生物化学全部简答题

1.合成的多肽多聚谷氨酸,当处在PH3.0以下时,在水溶液中形成α螺旋,而在PH5.0以上时却为伸展状态。

A.解释该现象。

B.在哪种PH条件下多聚赖氨酸会形成α-螺旋?答:(a)由可离子化侧链的氨基酸残基构成的α-螺旋对pH值的变化非常敏感,因为溶液的pH值决定了侧链是否带有电荷,由单一一种氨基酸构成的聚合物只有当侧链不带电荷时才能形成α-螺旋,相邻残基的侧链上带有同种电荷会产生静电排斥力从而阻止多肽链堆积成α-螺旋构象.Glu侧链的pKa约为4.1,当pH值远远低于4.1(大约3左右)时,几乎所有的多聚谷氨酸侧链为不带电荷的状态,多肽链能够形成α-螺旋.在pH值为5或更高时,几乎所有的侧链都带负电荷,邻近电荷之间的静电排斥力阻止螺旋的形成,因此使同聚物呈现出一种伸展的构象.(b)Lys侧链的pK为10.5,当pH值远远高于10.5时,多聚赖氨酸大多数侧链为不带电荷的状态,该多肽可能形成一种α-螺旋构象,在较低的pH值时带有许多正电荷的分子可能会呈现出一种伸展的构象.2.为什么说蛋白质水溶液是一种稳定的亲水胶体?答:①蛋白质表面带有很多极性基因,比如:-NH3,-COO-,-OH,-SH,-CONH2等,和水有高度亲和性,当蛋白质与水相遇时,水很容易被蛋白质吸引,在蛋白质外面形成一种水膜,水膜的存在使蛋白颗粒相互隔开,蛋白之间不会碰撞而聚成大颗粒,因此蛋白质在水溶液中比较稳定而不易沉淀。

②蛋白质颗粒在非等电点状态时带有相同电荷,蛋白质颗粒之间相互排斥保持一定距离,不易沉淀。

3. R侧链对α-螺旋的影响。

答:侧链大小和带电荷性决定了能否形成α-螺旋,即形成α-螺旋的稳定性,肽链上连续出现带有相同电荷的氨基酸,如赖氨酸,天冬氨酸,谷氨酸;由于静电排斥不能形成链内氢键,从而不能形成稳定的α-螺旋,R基较小且不带电荷的氨基酸有利于α-螺旋的形成,R基越大,如异亮氨酸,不易形成α-螺旋,脯氨酸终止α-螺旋。

生物化学简答题汇总

生物化学简答题汇总

生物化学简答题汇总
1. 什么是生物化学?
生物化学是研究生物体内化学反应和化学组成的学科。

它探讨了生物体内各种分子的结构、功能和相互关系,从而揭示了生命现象的化学基础。

2. 生物大分子有哪些类别?
生物大分子主要包括碳水化合物、脂质、蛋白质和核酸。

3. 什么是酶?
酶是一类生物催化剂,能够加速化学反应速度。

它们通常是蛋白质,具有高度特异性和高效率。

4. DNA和RNA有什么区别?
DNA是脱氧核糖核酸,而RNA是核糖核酸。

它们在化学组成上的主要差异在于核糖的氧原子数目不同,以及DNA中的胸腺嘧啶(T)替代了RNA中的尿嘧啶(U)。

5. ATP是什么?有什么功能?
ATP是腺苷三磷酸,是细胞内广泛存在的一种高能化合物。

它储存并释放细胞所需的能量,参与许多生命活动和代谢过程。

6. 什么是基因?
基因是生物体中遗传信息的基本单位,由DNA编码。

它传递遗传信息,决定了生物体的遗传特性和功能。

7. 糖酵解是什么过程?主要产物是什么?
糖酵解是一种产生能量的代谢过程,将葡萄糖分解为产生ATP 的有机酸,并释放二氧化碳和水。

主要产物包括乳酸或乙醛、丙酮酸和ATP。

8. 光合作用是什么过程?主要产物是什么?
光合作用是植物等自养生物利用光能将二氧化碳和水转化为有机物(如葡萄糖)的过程。

主要产物是葡萄糖和氧气。

以上是对生物化学简答题的汇总,希望对您有所帮助。

生物化学简答题

生物化学简答题

生物化学简答题编辑:刘晓刚 梁有财注:本文本仅供复习参考,如超出规定范围使用,一切与本作者无关!谢谢合作! 盗版必究一 蛋白质的分子结构:一级结构:多肽链中氨基酸残基的排列顺序。

维持其稳定的主要因素肽键、二硫键。

二级结构:肽键平面间的相互旋转使主链主链多种构象主要是阿尔法螺旋、贝塔折叠、贝塔转角、不规则卷曲维稳因素氢键。

三级结构:在二级结构基础上,pr 多肽链的主链原子和侧链原子相互作用进一步卷曲折叠所形成的更复杂的具有一定规律的空间结构。

维稳因素氢键盐键疏水键万德华力二硫键。

四级:两条及两条以上具有独立结构的多肽链通过非共价键相互缔合所形成的空间结构。

二 pr 的理化性质:1pr 的两性电离。

2pr 的高分子性:(1)球状pr 的亲水胶体性质。

(2)pr 的扩散与沉降(3)pr 溶液的粘度(4)不能透过半透膜。

3pr 的变性。

4pr 的沉淀(1)盐析(2)有机溶剂(3)重金属盐类(4)生物碱试剂。

5pr 的显色反应。

三 Vc 的生化功能:1参与羟化反应---促进胶原蛋白的合成,促进芳香族氨基酸的代谢,促进胆固醇转化。

2参与氧化还原反应---抗氧自由基损伤,促进抗体生成,促进造血作用。

3防癌抗癌。

四 酶催化特点:1高度的催化效率2高度的专一性---绝对专一性,相对,立体异构3酶活性的可调节性。

4酶的不稳定性。

五 酶的化学组成及功能:1单纯酶,全由氨基酸残基组成催化活性仅仅取决于酶蛋白本身。

2结合酶:酶蛋白---决定没的特异性。

辅因子---(1)辅酶或辅基---传递电子。

(2)金属离子---酶活性中心的组成部分,连接底物和酶分子的桥梁,稳定酶分子结构所必需。

六 km 的意义:1 km 值等于酶反应速度为最大速度一半时的底物浓度。

2 km 近似酶与底物亲和力大小。

3 判断酶的种类。

4 计算底物浓度和相对速度。

5 反应激活剂与抑制剂的存在七 磺胺药的作用机理:为竞争性抑制,抑制了细菌叶酸的合成,磺胺药的结构与对氨基苯甲酸非常相似,是二氢叶酸合成酶的竞争性抑制剂,阻止了该酶与对氨基苯甲酸的结合,从而抑制细菌的生长繁殖。

生物化学简答题

生物化学简答题

生物化学简答题生物化学简答题1.产生A TP的途径有哪些?试举例说明。

产生ATP的途径主要有氧化磷酸化和底物水平磷酸化两条途径。

如糖酵解中1,3-二磷酸甘油酸生成3-磷酸甘油酸时,生成的ATP 是底物水平磷酸化,丙酮酸脱氢通过线粒体呼吸链氧化生成ATP是氧化磷酸化。

2.简述酶作为生物催化剂与一般化学催化剂的共性及其特性。

共性:降低反应的活化能, 加快反应的速度,但不改变反应的平衡点,反应前后不发生变化。

特性:催化能力高、专一性强、活力受到调节3.什么是乙醛酸循环,有何生物学意义?乙醛酸循环是有机酸代谢循环,它存在于植物和微生物中,可分为五步反应,由于乙醛酸循环与三羧酸循环有一些共同的酶系和反应,将其看成是三羧酸循环的一个支路。

循环每一圈消耗2分子乙酰CoA,同时产生1分子琥珀酸。

琥珀酸产生后,可进入三羧酸循环代谢,或经糖异生途径转变为葡萄糖乙醛酸循环的意义:(1)乙酰CoA经乙醛酸循环可以和三羧酸循环相偶联,补充三羧酸循环中间产物的缺失。

(2)乙醛酸循环是微生物利用乙酸作为碳源的途径之一。

(3)乙醛酸循环是油料植物将脂肪转变为糖和氨基酸的途径。

4.简述氨基酸代谢的途径。

1.合成各种组织蛋白,酶和激素;2.通过氨基转换作用形成人体的非必需氨基酸;3.通过脱氨基作用形成含氮部分和不含氮部分,其中含氮部分在肝脏中转化成尿素排出体外,不含氮部分又有两条代谢途径,一是氧化分解成二氧化碳和水,释放能量,二是转化成糖和脂肪。

5.简述尿素循环的反应场所、基本过程、原料、产物、能量情况和限速酶、生理意义。

尿素循环是在人体肝脏细胞的线粒体和胞液中进行的一项重要的代谢途径。

在消耗ATP的情况下,在线粒体中利用CO2和游离NH3先缩合形成氨甲酰磷酸,再与鸟氨酸缩合形成瓜氨酸,瓜氨酸从线粒体中转移到胞液,与另一分子氨(贮存在天冬氨酸内)结合生成精氨酸,精氨酸再在精氨酸酶的催化下水解生成尿素和鸟氨酸,鸟氨酸又能再重复上述反应,组成一个循环途径。

生物化学-简答题

生物化学-简答题
四、pH对反应速度的影响
酶促反应介质的pH可影响酶分子中的极性基团、影响底物和辅酶的解离状态,从而影响酶与底物的结合。
最适pH(optimum pH)酶催化活性最大时的环境pH。五、激活剂对反应速度的影响
激活剂(activator):使酶活性增加的物质。
六、抑制剂对反应速度的影响
抑制剂(inhibitor):能选择地使酶活性降低或丧失但不能使酶蛋白变性的物质。
试题编号
试题类型
问答
试题难度

试题水平
记忆
试题结构
03swhx08
题干
简述线粒体呼吸链的组成。
答案
复合体
酶名称
辅基
复合体Ⅰ
NADH-Q还原酶
FMN,Fe-S
复合体Ⅱ
琥珀酸-Q还原酶
FAD,Fe-S
复合体Ⅲ
Q-CytC还原酶
铁卜啉,Fe-S
复合体Ⅳ
CytC氧化酶
铁卜啉,Cu
试题编号
试题类型
问答
试题难度
试题编号
试题类型
问答
试题难度

试题水平
记忆
试题结构
03swhx11
题干
图示嘌呤中原子的来源。
答案
试题编号
试题类型
问答
试题难度

试题水平
记忆
试题结构
03swhx12
题干
简述遗传密码的特性
答案
(1)方向性:mRNA分子中三联体遗传密码的阅读是有方向性的,即5′→3′。mRNA遗传密码阅读的方向性(5′端→3′端)决定了翻译生成蛋白质氨基酸的排列顺序(N端→C端)。(2)连续性:mRNA分子的三联体密码子阅读既无间断又无重叠。(3)简并性:同一种氨基酸可以有一组不同的遗传密码,这些密码子的第一和第二位碱基大多相同,只是第三位碱基有一定的摆动性。(4)通用性与例外:从原核生物到人类都共用同一套遗传密码。(5)兼职性; (6)实用的偏爱性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.简述三羧酸循环的生理意义是什么?它有哪些限速步骤?生理意义:三羧酸循环是机体获取能量的主要方式;为生物合成提供原料;影响果实品质糖;脂肪和蛋白质代谢的枢纽限速步骤:1)在柠檬酸合酶的作用下,由草酰乙酸和乙酰-CoA合成柠檬酸2)在异柠檬酸脱氢酶催化下,异柠檬酸脱氢形成草酰琥珀酸。

3)在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸氧化、脱羧,生成琥珀酰-CoA、NADH+H+和CO2。

4.什么是转氨作用?简述转氨作用的两步反应过程?为什么它在氨基酸代谢中有重要作用?概念:转氨作用是指在转氨酶催化下将α-氨基酸的氨基转给另一个α-酮酸,生成相应的α-酮酸和一种新的α-氨基酸的过程。

磷酸吡哆醛是转氨酶的辅酶,起到携带NH2基的作用。

这一过程分为两步反应:-H2O+H2O+H2O-H 2O转氨作用的生理意义:a)通过转氨作用可以调节体内非必需氨基酸的种类和数量,以满足体内蛋白质合成时对非必需氨基酸的需求。

b)转氨作用可使由糖代谢产生的丙酮酸、α-酮戊二酸、草酰乙酸变为氨基酸,因此,对糖和蛋白质代谢产物的相互转变有其重要性。

c)由于生物组织中普遍存在有转氨酶,而且转氨酶的活性又较强,故转氨作用是氨基酸脱氨的重要方式。

d)转氨作用的另一重要性是因肝炎病人血清的转氨酶活性有显著增加,测定病人血清的转氨酶含量大有助于肝炎病情的诊断。

转氨基作用还是联合脱氨基作用的重要组成部分,从而加速了体内氨的转变和运输,勾通了机体的糖代谢、脂代谢和氨基酸代谢的互相联系。

5.简述磷酸戊糖途径概念及生理意义概念:以6-磷酸葡萄糖开始,在6-磷酸葡萄糖脱氢酶催化作用下形成6-磷酸葡萄糖酸,进而代谢生成磷酸戊糖作为中间代谢产物,故将此过程称为磷酸戊糖途径。

1)产生大量的NADPH,为细胞的各种合成反应提供还原力2)途径中的中间物为许多化合物的合成提供原料:PPP途径可以产生多种磷酸单糖,如磷酸核糖、4-磷酸赤藓糖与磷酸烯醇式丙酮酸等。

3)提高植物的抗病能力:这主要是因为4-磷酸赤藓糖与磷酸烯醇式丙酮酸可合成莽草酸,进而合成绿原酸、咖啡酸等与抗病能力有关的物质。

4)提高植物的适应能力:当植物处于逆境条件下(干旱、染病、受损等),内外因素均不利于EMP途径的涉及的酶,而PPP途径不受影响,能够顺利进行,因而可以提高植物的适应力。

6.简述尿素循环的基本过程及发生部位A、部位肝脏是尿素合成的主要器官,肾脏是尿素排泄的主要器官。

B、原料尿素的生物合成需要NH3、CO2(或H2CO3)、鸟氨酸、天冬氨酸、ATP、Mg2+和相关酶的参加。

C、过程全部反应过程可分为3个阶段:Ⅰ、CO2、NH3与鸟氨酸作用合成瓜氨酸。

(线粒体)Ⅱ、瓜氨酸与天冬氨酸作用产生精氨酸。

(细胞液)Ⅲ、精氨酸被精氨酸水解酶水解后放出尿素,并形成鸟氨酸。

(细胞液)7.代谢调节有哪几个水平?它们与生物进化程度的对应情况如何?在生物进化过程中,生物体内的调节机制也随之发展。

进化程度越高,期代谢调节机制越复杂。

就整个生物界而言,代谢调解可分为四个水平:酶水平调节、细胞水平调节、激素水平调节、神经水平调节。

其中,酶水平和细胞水平调节是生物体内最基本的调节方式,为单细胞生物、植物、动物所共有;激素水平调节和神经水平调节是随生物进化而发展起来的高级水平调节方式。

但是,高级水平的激素调节和神经调节,仍然以酶水平和细胞水平的调节为基础。

8.脂肪酸在生物体内经β-氧化作用分解为乙酰CoA需要经过哪些过程?分别发生在细胞的什么部位?A、脂肪酸的活化——脂酰CoA的生成脂肪酸进行氧化前必须活化,活化在线粒体外进行。

内质网及线粒体外膜上的脂酰CoA 合成酶在ATP、CoA-SH、Mg2+存在的条件下,催化脂肪酸活化,生成脂酰CoA。

B、脂酰CoA进入线粒体脂肪酸的活化在细胞液中进行,而催化脂肪酸氧化的酶系存在于线粒体的基质内,因此活化的脂酰CoA必须进入线粒体内才能代谢。

长链脂酰CoA不能直接透过线粒体内膜。

它进入线粒体需肉碱[ L-(CH3)3N+CH2CH(OH)CH2COO-, L-β羟- -三甲氨基丁酸]的转运。

C、脂肪酸的β-氧化脂酰-CoA进入线粒体基质后,在线粒体基质中疏松结合的脂酸β-氧化多酶复合体的催化下,从脂酰基的β-碳原子开始,进行脱氢、加水、再脱氢及硫解等四步连续反应:(1)脱氢:脂酰-CoA在脂酰-CoA脱氢酶的催化下,α、β碳原子各脱下一氢原子,生成反△2烯酰CoA。

脱下的2H由FAD接受生成FADH2。

(2)加水:反△2烯酰CoA在△2烯酰水化酶的催化下,加水生成L(+)-β-羟脂酰-CoA。

(3)再脱氢:L(+)-β-羟脂酰CoA在β-羟脂酰-CoA脱氢酶的催化下,脱下2H生成β-酮脂酰-CoA,脱下的2H由NAD+接受,生成NADH及H+。

(4)硫解:β-酮脂酰CoA在β-酮脂酰-CoA硫解酶催化下,加CoA-SH使碳链断裂,生成1分子乙酰CoA和少2个碳原子的脂酰CoA。

9.DNA双螺旋结构有什么基本特点?这些特点能解释哪些最重要的生命现象?答案要点:a. 两条反向平行的多聚核苷酸链沿一个假设的中心轴右旋相互盘绕而形成,螺旋表面有一条大沟和一条小沟。

b. 磷酸和脱氧核糖单位作为不变的骨架组成位于外侧,作为可变成分的碱基位于内侧,链间碱基按A-T配对,之间形成2个氢键,G-C配对,之间形成3个氢键(碱基配对原则,Chargaff定律)。

c. 螺旋直径2nm,相邻碱基平面垂直距离0.34nm,螺旋结构每隔10个碱基对重复一次,间隔为3.4nm。

该模型揭示了DNA作为遗传物质的稳定性特征,最有价值的是确认了碱基配对原则,这是DNA复制、转录和反转录的分子基础,亦是遗传信息传递和表达的分子基础。

该模型的提出是本世纪生命科学的重大突破之一,它奠定了生物化学和分子生物学乃至整个生命科学飞速发展的基石。

12、请列举细胞内乙酰CoA的代谢去向。

答案要点:三羧酸循环;乙醛酸循环;从头合成脂肪酸;酮体代谢;合成胆固醇等。

(各1分)13、为什么说三羧酸循环是糖、脂、蛋白质三大物质代谢的共同通路?哪些化合物可以被认为是联系糖、脂、蛋白质和核酸代谢的重要环节?为什么?答案要点:①三羧酸循环是糖、脂、蛋白质三大物质代谢的共同氧化分解途径(2分);三羧酸循环为糖、脂、蛋白质三大物质合成代谢提供原料(1分),要举例(2分)。

②列举出糖、脂、蛋白质、核酸代谢相互转化的一些化合物(3分),糖、脂、蛋白质、核酸代谢相互转化相互转化途径(2分)。

14.氨中毒原理(3分)1)α酮戊二酸大量转化2)NADPH大量消耗3)三羧酸循环中断,能量供应受阻,某些敏感器官(如神经、大脑)功能障碍。

15.为什么用反应初速度表示酶活力?(3分)答案:1)底物浓度降低,2)酶在一定pH下部分失活3)产物对酶的抑制4)产物浓度增加而加速了逆反应的进行。

16.肽键的特点(4分)1)是氮原子上的孤对电子与羰基具有明显的共轭作用。

2)肽键中的C-N键具有部分双键性质,不能自由旋转。

3)组成肽键的原子C-O-N-H处于同一平面,构成刚性平面。

4)键长(0.132nm)比一般C-N键(0.147nm) 短,而比C=N(0.127nm)长。

5)在大多数情况下,H和O以反式结构存在。

17. 什么是蛋白质的变性,引起蛋白质变性的因素有哪些?蛋白质受理化因素的作用时,次级键受到破坏,导致天然构象的破坏,使蛋白质的生物活性丧失的现象称为蛋白质变性。

(2分)变性的因素,物理因素有:热、紫外线、X射线、超声波、高压、搅拌、据烈振荡、研磨等;化学因素有:强酸、强碱、有机溶剂、尿素、重金属盐、生物碱试剂、去污剂等。

(3分)18、嘌呤核苷酸合成的基本原料有哪些?首先合成的是什么核苷酸?答:体内嘌呤核苷酸合成的原料有二氧化碳、一碳单位、谷氨酰胺、天冬氨酸和戊糖5—磷酸(核糖5`—磷酸)。

首先合成的核苷酸是次黄嘌呤核苷酸。

19. 嘧啶核苷酸合成的基本原料有哪些?首先合成的什么核苷酸?合成胸腺嘧啶时其甲基是由什么物质提供的?答:体内嘧啶核苷酸合成的原料有氨、二氧化碳、天冬氨酸和核糖5-磷酸。

首先合成的是尿嘧啶核苷酸。

合成胸腺嘧啶的甲基是由N2、N10—CH2—FH4提供的。

21.为什么说“三羧酸循环”是三大类物质代谢的枢纽?三羧酸循环是乙酰CoA最终氧化生成CO2和H2O的途径。

糖代谢产生的碳骨架最终进入三羧酸循环氧化。

脂肪分解产生的甘油可通过有氧氧化进入三羧酸循环氧化,脂肪酸经β-氧化产生CoA可进入三羧酸循环氧化。

蛋白质分解产生的氨基酸经脱氨后碳骨架可进入三羧酸循环,同时,三羧酸循环的中间产物可作为氨基酸的碳骨架接受氨后合成必需氨基酸。

所以,三羧酸循环是三大物质代谢的枢纽22何谓氧化磷酸化作用?NADH呼吸链中有个氧化磷酸化偶联部位?答:在线粒体内伴随着电子在呼吸链传递过程中所发生的ADP磷酸化生成ATP的过程称为氧化磷酸化作用。

在NDAH呼吸链中有三个偶联部位,第一个偶联部位是在NADH→CoQ之间;第二个偶联部位是在细胞b→细胞色素c之间;第三个偶联部位是在细胞色素aa3→O2之间。

如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档