苏教版数学高二-高中数学(苏教版选修1-2学案 合情推理
苏教版高中数学选修1-2《合情推理》教案
2.1.1 合情推理一、三维目标:(一)知识与能力:1. 通过对已学知识的回顾,进一步体会合情推理这种基本的分析问题法,认识归纳推理和类比推理这两种合情推理的基本方法,并把它们用于对问题的发现中去。
2. 明确归纳推理的一般步骤和类比推理的一般步骤,并把这些方法用于实际问题的解决中去。
(二)过程与方法:1. 归纳推理是从特殊到一般的推理方法,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。
2. 类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质,类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。
(三)情感态度与价值观:1. 正确认识合情推理在数学中的重要作用,养成从小开始认真观察事物、分析问题、发现事物之间的质的联系的良好个性品质,善于发现问题,探求新知识。
2. 认识数学在日常生产生活中的重要作用,培养学生学数学,用数学,完善数学的正确数学意识。
二、教学重点:了解合情推理的含义,能利用归纳和类比进行简单的推理。
三、教学难点:用归纳和类比进行推理,做出猜想。
四、教学过程:【问题探究:】(1) 已知数列{}n a 的通项公式)()1(12+∈+=N n n a n ,记)1()1)(1()(21n a a a n f -⋅⋅⋅--=,试通过计算)3(),2(),1(f f f 的值,推测出)(n f的值。
(2) 若数列{}n a 为等差数列,且),,(,+∈≠==N n m n m y a x a n m ,则nm ny mx a n m --=+。
现已知数列{}),0(+∈>N n b b n n 为等比数列,且),,(,+∈≠==N n m n m y b x b n m ,类比以上结论,可得到什么结论?你能说明结论的正确性吗?【学生讨论:】(学生讨论结果预测如下)(1)434111)1(1=-=-=a f64329843)911()1()1)(1()2(21==⋅=-⋅=--=f a a f 85161532)1611()2()1)(1)(1()3(321=⋅=-⋅=---=f a a a f 由此猜想,)1(22)(++=n n n f (2)结论:n m n m nm y x b -+=1)( 证明:设等比数列}{n b 的公比为q ,则n m n m q b b -⋅=,所以n m n m n m yx b b q --==11)()( 所以n m n m n m n n m n m y x y x x q b b --+=⋅=⋅=1)()( 【学生回答:】(学生思考并回答)【归纳总结:】(学生回答后归纳总结)教师总结:一、归纳推理我们再看几个类似的推理实例:1.蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的.因为蛇,鳄鱼,海龟,蜥蜴都是爬行动物,所以我们猜想所有的爬行动物都是用肺呼吸的.2.三角形的内角和是180︒,凸四边形的内角和是360︒,凸五边形的内角和是540︒.由此我们猜想:凸边形的内角和是(2)180n ︒-×.3.221222221331332333+++ +++<,<,<,,由此我们猜想:a a m b b m+<+(a ,b ,m 均为正实数).这种由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者从个别事实中推演出一般性的结论的推理,称为归纳推理 (简称:归纳) .归纳推理的一般步骤:(1)对有限的资料进行观察、分析、归纳 整理;(2)提出带有规律性的结论,即猜想;(3)检验猜想.二、类比推理根据等式的性质猜想不等式的性质.等式与不等式有不少相似的属性,例如:(1)a b a c b c a b a c b c ⇒⇒=+=+猜想>+>+;(2)a b ac bc a b ac bc ⇒⇒==猜想>>;(3)2222a b a b a b a b ⇒⇒==猜想>>.问 这样猜想出的结论是否一定正确?上述几个例子均是根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,像这样的推理通常称为类比推理(reasoning by analogy ),简称类比法.类比推理的一般步骤:(1)找出两类对象之间可以确切表述的相似特征;(2)用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;(3)检验猜想,归纳推理的思维过程.七、教学小结:1. 归纳推理是由部分到整体,从特殊到一般的推理。
高中数学(合情推理)教案1 苏教版选修1-2 教案
合情推理(1)●三维目标:(1)知识与技能:掌握归纳推理的技巧,并能运用解决实际问题。
(2)过程与方法:通过“自主、合作与探究”实现“一切以学生为中心”的理念。
(3)情感、态度与价值观:感受数学的人文价值,提高学生的学习兴趣,使其体会到数学学习的美感。
●教学重点:归纳推理及方法的总结。
●教学难点:归纳推理的含义及其具体应用。
●教具准备:与教材内容相关的资料。
●课时安排:1课时●教学过程:(1)原理初探①引入:“阿基米德曾对国王说,给我一个支点,我将撬起整个地球!”②提问:大家认为可能吗?他为何敢夸下如此某某?理由何在?③探究:他是怎么发现“杠杆原理”的?从而引入两则小典故:(图片展示-阿基米德的灵感)A:一个小孩,为何轻轻松松就能提起一大桶水?B:修筑河堤时,奴隶们是怎样搬运巨石的?正是基于这两个发现,阿基米德大胆地猜想,然后小心求证,终于发现了伟大的“杠杆原理”。
④思考:整个过程对你有什么启发?⑤启发:在教师的引导下归纳出:“科学离不开生活,离不开观察,也离不开猜想和证明”。
(2)皇冠明珠追逐先辈的足迹,接触数学皇冠上最璀璨的明珠—“歌德巴赫猜想”。
:思考:其他偶数是否也有类似的规律?③讨论:组织学生进行交流、探讨。
④检验:2和4可以吗?为什么不行?⑤归纳:通过刚才的探究,由学生归纳“归纳推理”的定义及特点。
●把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳). 注:归纳推理的特点;简言之,归纳推理是由部分到整体、由特殊到一般的推理。
●归纳推理的一般步骤:例1 前提:蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。
蛇、鳄鱼、海龟、蜥蜴都是爬行动物.结论:所有的爬行动物都是用肺呼吸的。
例2 前提:三角形的内角和是1800,凸四边形的内角和是3600,凸五边形的内角和是5400,…… 结论:凸n 边形的内角和是(n —2)×1800。
例3,333232,232232,131232++<++<++<探究:上述结论都成立吗?强调:归纳推理的结果不一定成立! ——“ 一切皆有可能!”{}数列的通项公式。
苏教版数学高二- 选修1-2试题 合情推理
2.1.1合情推理双基达标限时15分钟1.经计算发现下列不等式:2+18<210, 4.5+15.5<210,3+2+17-2<210,…,根据以上不等式的规律,试写出一个对正实数a,b成立的条件不等式________________________________________________________________________.答案若a+b=20,则a+b<210(其中a,b为正实数)2.观察下列等式:C15+C55=23-2C19+C59+C99=27+23C113+C513+C913+C1313=211-25C117+C517+C917+C1317+C1717=215+27由以上等式推测到一个一般的结论:对于n∈N*,C14n+1+C54n+1+C94n+1+…+C4n+14n+1=________________.解析由类比推理,每一个等式的结论由两项组成,第一项2的指数为(4n+1)-2=4n -1,第二项前有(-1)n,指数为2n-1,即有24n-1+(-1)n·22n-1.答案24n-1+(-1)n·22n-13.若三角形的内切圆半径为r,三边的长分别为a,b ,c,则三角形的面积S=12r(a+b+c),根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1,S2,S3,S4,则此四面体的体积V=__________.解析运用分割法思想,设四面体S -ABC的内切球的球心为O,连接OS、OA、OB、OC,将四面体分成四个三棱维,则V S -ABC=V O -SAC+V O -SAB+V O -SBC+V O -ABC=13S1R+13S2R+13S3R+13S4R=13(S1+S2+S3+S4)R.答案13(S1+S2+S3+S4)R4.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.解析V1V2=13S1h113S2h2=⎝⎛⎭⎫S1S2·h1h2=14×12=18.答案 1∶8 5.观察下列各式 9-1=8,16-4=12,25-9=16,36-16=20,….这些等式反映了自然数间的某种规律,设n 表示自然数,用关于n 的等式表示为__________________.答案 (n +2)2-n 2=4n +4(n ∈N *)6.若数列{a n }的通项公式a n =1n +12,记f(n)=(1-a 1)·(1-a 2)…(1-a n ),试通过计算f(1),f(2),f(3)的值,推测出f(n)的值.解 f(1)=1-a 1=1-14=34, f(2)=(1-a 1)(1-a 2)=f(1)·⎝⎛⎭⎫1-19 =34·89=23=46, f(3)=(1-a 1)(1-a 2)(1-a 3)=f(2)·⎝⎛⎭⎫1-116 =23·1516=58. 由此猜想,f(n)=n +22n +1. 综合提高 限时30分钟7.将全体正整数排成一个三角形数阵:12 34 5 67 8 9 10……按照以上排列的规律,第n 行(n≥3)从左向右的第3个数为__________.解析 前n -1行共有正整数1+2+3+…+(n -1)个,即有n 2-n 2个,因此第n 行第3个数是全体正整数中第n 2-n 2+3个,即为n 2-n +62. 答案 n 2-n +628.对于等差数列{a n }有如下命题:“若{a n }是等差数列,a 1=0,s 、t 是互不相等的正整数,则有(s-1)a t-(t-1)a s=0”.类比此命题,给出等比数列{b n}相应的一个正确命题是:“___________________”.答案若{b n}是等比数列,b1=1,s、t是互不相等的正整数,则有b s-1tb t-1s=1 9.由图(1)有面积关系:S△PA′B′S△PAB=PA′·PB′PA·PB,则由图(2)有体积关系:V PA′B′C′V P-ABC =____________.解析由三棱锥的体积公式V=13Sh及相似比可知:V PA′B′C′V P-ABC=PA′·PB′·PC′PA·PB·PC.答案PA′·PB′·PC′PA·PB·PC10.五位同学围成一圈依序循环报数,规定:①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;②若报出的是3的倍数,则报该数的同学需拍手一次,当第30个数被报出时,五位同学拍手的总次数为________.解析这个数列的变化规律是:从第三个数开始递增,且是前两项之和,即有1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,…将该数列的每一项除以3得余数分别为:1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,…由此可见余数的变化规律是按1,1,2,0,2,2,1,0循环,周期是8,且一个周期中第四个数与第八个数都是3的倍数,即在三个周期中有6个报出的数是3的倍数,后面6个数中除以3的余数为1,1,2,0,2,2,只有一个是3的倍数,故共有7个是3的倍数,共拍手7次.答案711.从大、小正方形的数量关系上,观察如右图所示的几何图形,试归纳可得出什么结论?解从大、小正方形的数量关系上,容易发现1=12,1+3=2×2=22,1+3+5=3×3=32,1+3+5+7=4×4=42,1+3+5+7+9=5×5=52,1+3+5+7+9+11=6×6=62.观察上述算式的结构特征,我们可以猜想:1+3+5+7+…+(2n -1)=n 2.12.在等差数列{a n }中,若a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n<19, n ∈N +)成立.类比上述性质,相应地,在等比数列{b n }中,若b 9=1,则有怎样的等式成立?解 由此,猜测本题的答案为b 1b 2…b n =b 1b 2…b 17-n (n<17,n ∈N +).事实上,对于等差数列{a n },如果a k =0,则a n +1+a 2k -1-n =a n +2+a 2k -2-n =…=a k +a k =0.所以有a 1+a 2+…+a n =a 1+a 2+…+a n +(a n +1+a n +2+…+a 2k -2-n +a 2k -1-n )(n<2k -1,n ∈N +)从而对等比数列{b n },如果b k =1,则有等式b 1b 2…b n =b 1b 2…b 2k -1-n (n<2k -1,n ∈N +)成立.∵b 9=1,∴b 1b 2…b n =b 1b 2…b 17-n (n<17,n ∈N +)成立.13.(创新拓展)我们已经学过了等差数列,你是否想过有没有等和数列呢?①类比“等差数列”给出“等和数列”的定义;②探索等和数列{a n }的奇数项与偶数项各有什么特点,并加以说明;③在等和数列{a n }中,如果a 1=a ,a 2=b ,求它的前n 项的和S n .解 ①如果一个数列从第2项起,每一项与它的前一项的和等于同一个常数,那么这个数列就叫做等和数列.②由①知a n +a n +1=a n +1+a n +2,∴a n +2=a n ,∴等和数列的奇数项相等,偶数项也相等.③当n 为奇数时,令n =2k -1,k ∈N +,则S n =S 2k -1=S 2k -2+a 2k -1=2k -22(a +b)+a =n -12(a +b)+a =n +12a +n -12b , 当n 为偶数时,令n =2k ,k ∈N +,则S n =S 2k =k(a +b)=n 2(a +b). ∴它的前n 项的和S n =⎩⎨⎧ n +12a +n -12b n 为奇数,n 2a +b n 为偶数.。
苏教版数学高二-高中数学(苏教版选修1-2学案 2.1.2演绎推理
2.1.2演绎推理[学习目标] 1.理解演绎推理的意义.2.掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的区别和联系.[知识链接]1.演绎推理的结论一定正确吗?答演绎推理的结论不会超出前提所界定的范围,所以在演绎推理中,只要前提和推理形式正确,其结论就一定正确.2.如何分清大前提、小前提和结论?答在演绎推理中,大前提描述的是一般原理,小前提描述的是大前提里的特殊情况,结论是根据一般原理对特殊情况作出的判断,这与平时我们解答问题中的思考是一样的,即先指出一般情况,从中取出一个特例,特例也具有一般意义.例如,平行四边形对角线互相平分,这是一般情况;矩形是平行四边形,这是特例;矩形对角线互相平分,这是特例具有一般意义.3.演绎推理一般是怎样的模式?答“三段论”是演绎推理的一般模式,它包括:(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况做出的判断.[预习导引]1.演绎推理由一般性的命题推演出特殊性命题的推理方法,通常称为演绎推理.演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等),按照严格的逻辑法则得到新结论的推理过程.三段论是演绎推理的主要形式.2.三段论(1)三段论的组成①大前提——提供了一个一般性的原理.②小前提——指出了一个特殊对象.③结论——揭示了一般原理与特殊对象的内在联系.(2)三段论的常用格式为M-P(M是P)S-M(S是M)S-P(S是P)要点一用三段论的形式表示演绎推理例1把下列演绎推理写成三段论的形式.(1)在一个标准大气压下,水的沸点是100 ℃,所以在一个标准大气压下把水加热到100 ℃时,水会沸腾;(2)一切奇数都不能被2整除,2100+1是奇数,所以2100+1不能被2整除;(3)三角函数都是周期函数,y=tan α是三角函数,因此y=tan α是周期函数.解(1)在一个标准大气压下,水的沸点是100 ℃,大前提在一个标准大气压下把水加热到100 ℃,小前提水会沸腾.结论(2)一切奇数都不能被2整除,大前提2100+1是奇数,小前提2100+1不能被2整除.结论(3)三角函数都是周期函数,大前提y=tan α是三角函数,小前提y=tan α是周期函数.结论规律方法用三段论写推理过程时,关键是明确大、小前提,三段论中的大前提提供了一个一般性的原理,小前提指出了一种特殊情况,两个命题结合起来,揭示了一般原理与特殊情况的内在联系.一般可省略大前提,有时甚至也可大前提与小前提都省略.在寻找大前提时,可找一个使结论成立的充分条件作为大前提.跟踪演练1试将下列演绎推理写成三段论的形式:(1)太阳系的大行星都以椭圆形轨道绕太阳运行,海王星是太阳系中的大行星,所以海王星以椭圆轨道绕太阳运行;(2)所有导体通电时发热,铁是导体,所以铁通电时发热;(3)一次函数是单调函数,函数y=2x-1是一次函数,所以y=2x-1是单调函数;(4)等差数列的通项公式具有形式a n=pn+q(p,q是常数),数列1,2,3,…,n是等差数列,所以数列1,2,3,…,n的通项具有a n=pn+q的形式.解(1)大前提:太阳系的大行星都以椭圆形轨道绕太阳运行;小前提:海王星是太阳系里的大行星;结论:海王星以椭圆形轨道绕太阳运行.(2)大前提:所有导体通电时发热;小前提:铁是导体;结论:铁通电时发热.(3)大前提:一次函数都是单调函数;小前提:函数y=2x-1是一次函数;结论:y=2x-1是单调函数.(4)大前提:等差数列的通项公式具有形式a n=pn+q;小前提:数列1,2,3,…,n是等差数列;结论:数列1,2,3,…,n的通项具有a n=pn+q的形式.要点二演绎推理的应用例2正三棱柱ABC-A1B1C1的棱长均为a,D、E分别为C1C与AB的中点,A1B交AB1于点G.(1)求证:A1B⊥AD;(2)求证:EC∥平面AB1D.证明(1)连结BD.∵三棱柱ABC-A1B1C1是棱长均为a的正三棱柱,∴A1ABB1为正方形,∴A1B⊥AB1.∵D是C1C的中点,∴△A1C1D≌△BCD,∴A1D=BD,∵G为A1B的中点,∴A 1B ⊥DG ,又∵DG ∩AB 1=G ,∴A 1B ⊥平面AB 1D .又∵AD ⊂平面AB 1D ,∴A 1B ⊥AD .(2)连结GE ,∵EG ∥A 1A ,∴GE ⊥平面ABC .∵DC ⊥平面ABC ,∴GE ∥DC ,∵GE =DC =12a ,∴四边形GECD 为平行四边形, ∴EC ∥GD .又∵EC ⊄平面AB 1D ,DG ⊂平面AB 1D ,∴EC ∥平面AB 1D .规律方法 (1)应用三段论解决问题时,应当首先明确什么是大前提和小前提,但为了叙述的简洁,如果前提是显然的,则可以省略.(2)数学问题的解决与证明都蕴含着演绎推理,即一连串的三段论,关键是找到每一步推理的依据——大前提、小前提,注意前一个推理的结论会作为下一个三段论的前提.跟踪演练2 求证:函数y =2x -12x +1是奇函数,且在定义域上是增函数. 证明 y =(2x +1)-22x +1=1-22x +1, 所以f (x )的定义域为R .f (-x )+f (x )=⎝ ⎛⎭⎪⎫1-22-x +1+⎝ ⎛⎭⎪⎫1-22x +1 =2-⎝ ⎛⎭⎪⎫22x +1+22-x +1=2-⎝ ⎛⎭⎪⎫22x +1+2·2x 2x +1 =2-2(2x +1)2x +1=2-2=0. 即f (-x )=-f (x ),所以f (x )是奇函数.任取x 1,x 2∈R ,且x 1<x 2.则f (x 1)-f (x 2)=12222121x x ⎛⎫⎛⎫- ⎪ ⎪++⎝⎭⎝⎭1-1-=221222121x x ⎛⎫- ⎪++⎝⎭=2·122122(21)(21)x x x x -++ 由于x 1<x 2,从而121222,220x x x x <-<所以f (x 1)<f (x 2),故f (x )为增函数.要点三 合情推理、演绎推理的综合应用例3如图所示,三棱锥A -BCD 的三条侧棱AB ,AC ,AD 两两互相垂直,O 为点A 在底面BCD 上的射影.(1)求证:O 为△BCD 的垂心;(2)类比平面几何的勾股定理,猜想此三棱锥侧面与底面间的一个关系,并给出证明. 解 (1)证明 ∵AB ⊥AD ,AC ⊥AD ,AB ∩AC =A ,∴AD ⊥平面ABC ,又BC ⊂平面ABC .∴AD ⊥BC ,又∵AO ⊥平面BCD ,AO ⊥BC ,∵AD ∩AO =A ,∴BC ⊥平面AOD ,∴BC ⊥DO ,同理可证CD ⊥BO ,∴O 为△BCD 的垂心.(2)解 猜想:S 2△ABC +S 2△ACD +S 2△ABD =S 2△BCD .证明:连结DO 并延长交BC 于E ,连结AE ,由(1)知AD ⊥平面ABC ,AE ⊂平面ABC ,∴AD ⊥AE ,又AO ⊥ED ,∴AE 2=EO ·ED ,∴⎝⎛⎭⎫12BC ·AE 2=⎝⎛⎭⎫12BC ·EO ·⎝⎛⎭⎫12BC ·ED , 即S 2△ABC =S △BOC ·S △BCD .同理可证:S 2△ACD =S △COD ·S △BCD ,S 2△ABD =S △BOD ·S △BCD .∴S 2△ABC +S 2△ACD +S 2△ABD =S △BCD ·(S △BOC +S △COD +S △BOD )=S △BCD ·S △BCD =S 2△BCD .规律方法 合情推理仅是“合乎情理”的推理,它得到的结论不一定真.但合情推理常常帮助我们猜测和发现新的规律,为我们提供证明的思路和方法.而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下).跟踪演练3 已知命题:“若数列{a n }是等比数列,且a n >0,则数列b n =n a 1a 2…a n (n ∈N *)也是等比数列”.类比这一性质,你能得到关于等差数列的一个什么性质?并证明你的结论. 解 类比等比数列的性质,可以得到等差数列的一个性质是:若数列{a n }是等差数列,则数列b n =a 1+a 2+…+a n n也是等差数列. 证明如下:设等差数列{a n }的公差为d ,则b n =a 1+a 2+…+a n n =na 1+n (n -1)d 2n =a 1+d 2(n -1),所以数列{b n }是以a 1为首项,d 2为公差的等差数列.1.“因对数函数y =log a x 是增函数(大前提),而y =log 13x 是对数函数(小前提),所以y =log 13x 是增函数(结论).”上面推理的错误是________.答案 大前提错导致结论错2.下面几种推理过程是演绎推理的是______(只填序号).①两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行直线的同旁内角,则∠A +∠B =180°②由平面三角形的性质,推测空间四面体的性质③某校高三共有10个班,1班有51个,2班有53个,3班有52人,由此推测各班都超过50人④在数列{a n}中,a1=1,a n=12(a n-1+1a n-1)(n≥2),由此归纳出{a n}的通项公式答案①3.把“函数y=x2+x+1的图象是一条抛物线”恢复成三段论,则大前提:________________;小前提:________________;结论:____________________.答案二次函数的图象是一条抛物线函数y=x2+x+1是二次函数函数y=x2+x+1的图象是一条抛物线4.指出下列推理中的错误,并分析产生错误的原因:(1)因为中国的大学分布在中国各地,大前提北京大学是中国的大学,小前提所以北京大学分布在中国各地.结论(2)因为所有边长都相等的凸多边形是正多边形,大前提而菱形是所有边长都相等的凸多边形,小前提所以菱形是正多边形.结论解(1)推理形式错误.大前提中的M是“中国的大学”,它表示中国的各所大学,而小前提中M虽然也是“中国的大学”,但它表示中国的一所大学,二者是两个不同的概念,故推理形式错误.(2)结论是错误的,原因是大前提错误.因为所有边长都相等,内角也都相等的凸多边形才是正多边形.1.演绎推理是从一般性原理出发,推出某个特殊情况的推理方法;只要前提和推理形式正确,通过演绎推理得到的结论一定正确.2.在数学中,证明命题的正确性都要使用演绎推理,推理的一般模式是三段论,证题过程中常省略三段论的大前提.一、基础达标1.下列表述正确的是________.①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.答案①③⑤解析根据归纳推理,演绎推理,类比推理的概念特征可以知道①③⑤正确.2.《论语·学路》篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足.”上述推理用的是________.答案演绎推理解析这是一个复合三段论,从“名不正”推出“民无所措手足”,连续运用五次复式三段论,属演绎推理形式.3.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数.以上推理________.答案小前提不正确解析由于函数f(x)=sin(x2+1)不是正弦函数.故小前提不正确.4.“∵四边形ABCD是矩形,∴四边形ABCD的对角线相等.”以上推理的大前提是________________________________________________________________________.答案矩形都是对角线相等的四边形解析利用三段论分析:大前提:矩形都是对角线相等的四边形;小前提:四边形ABCD是矩形;结论:四边形ABCD的对角线相等.5.三段论:“①小宏在2014年的高考中考入了重点本科院校;②小宏在2014年的高考中只要正常发挥就能考入重点本科院校;③小宏在2014年的高考中正常发挥”中,“小前提”是________(填序号).答案③解析在这个推理中,②是大前提,③是小前提,①是结论.6.在求函数y=log2x-2的定义域时,第一步推理中大前提是当a有意义时,a≥0;小前提是log2x-2有意义;结论是________________________________________________________________________.答案y=log2x-2的定义域是[4,+∞)解析由大前提知log2x-2≥0,解得x≥4.7.①因为对数函数y =log a x 是增函数(大前提),而y =log 13x 是对数函数(小前提),所以y =log 13x 是增函数(结论). ②因为过不共线的三点有且仅有一个平面(大前提),而A 、B 、C 为空间三点(小前提),所以过A 、B 、C 三点只能确定一个平面(结论).③因为金属铜、铁、铝能够导电(大前提),而金是金属(小前提),所以金能导电(结论). 上述三个推理形式中,推理的结论正确吗?为什么?解 三个结论都不正确.①推理形式是正确的,但大前提是错误的.因为对数函数y =log a x 的单调性与底数a 的取值范围有关,若0<a <1,则y =log a x 为减函数;若a >1,则y =log a x 为增函数.②推理形式是正确的,但小前提是错误的.因为若三点共线可确定无数个平面,只有不共线的三点可满足结论.③推理形式是错误的,因为演绎推理是从一般到特殊的推理、铜、铁、铝仅是金属的代表,这是特殊事例,这是由特殊到特殊的推理.二、能力提升8.在推理“因为y =sin x 是[0,π2]上的增函数,所以sin 3π7>sin 2π3”中,大前提为________________________________________________________________________; 小前提为________________________________________________________________________; 结论为____________________________________.答案 y =sin x 是[0,π2]上的增函数 37π,2π5∈[0,π2]且3π7>2π5 sin 3π7>sin 2π59.已知三条不重合的直线m 、n 、l ,两个不重合的平面α、β,有下列命题:①若m ∥n ,n ⊂α,则m ∥α;②若l ⊥α,m ⊥β且l ∥m ,则α∥β;③若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β;④若α⊥β,α∩β=m ,n ⊂β,n ⊥m ,则n ⊥α.其中正确的命题是________.答案 ②④解析 ①中,m 还可能在平面α内,①错误;②正确;③中,m 与n 相交时才成立,③错误;④正确.10.关于函数f(x)=lg x2+1|x|(x≠0),有下列命题:①其图象关于y轴对称;②当x>0时,f(x)是增函数;当x<0时,f(x)为减函数;③f(x)的最小值是lg 2;④当-1<x<0或x>1时,f(x)是增函数;⑤f(x)无最大值,也无最小值.其中所有正确结论的序号是______.答案①③④解析显然f(-x)=f(x),∴f(x)为偶函数,其图象关于y轴对称.当x>0时,f(x)=lg x2+1x=lg(x+1x).设g(x)=x+1x,可知其在(0,1)上是减函数,在(1,+∞)上是增函数,∴f(x)在(0,1)上是减函数,在(1,+∞)上是增函数.f(x)min=f(1)=lg 2.∵f(x)为偶函数,∴f(x)在(-1,0)上是增函数.11.已知函数f(x),对任意x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(1)=-2.(1)求证f(x)是奇函数;(2)求f(x)在[-3,3]上的最大值和最小值.(1)证明因为x,y∈R时,f(x+y)=f(x)+f(y),所以令x=y=0,得f(0)=f(0)+f(0)=2f(0),所以f(0)=0.令y=-x,则f(x-x)=f(x)+f(-x)=0,所以f(-x)=-f(x),所以f(x)为奇函数.(2)解设任意的x1,x2∈R且x1<x2,f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1),因为x>0时,f(x)<0,所以f(x2-x1)<0,即f(x2)-f(x1)<0,所以f(x)为减函数,所以f(x)在[-3,3]上的最大值为f(-3),最小值为f(3).因为f(3)=f(2)+f(1)=3f(1)=-6,f(-3)=-f(3)=6,所以函数f (x )在[-3,3]上的最大值为6,最小值为-6.12.S 为△ABC 所在平面外一点,SA ⊥平面ABC ,平面SAB ⊥平面SBC .求证:AB ⊥BC . 证明如图,作AE ⊥SB 于E .∵平面SAB ⊥平面SBC ,平面SAB ∩平面SBC =SB ,AE ⊂平面SAB .∴AE ⊥平面SBC ,又BC ⊂平面SBC .∴AE ⊥BC .又∵SA ⊥平面ABC ,∴SA ⊥BC .∵SA ∩AE =A ,SA ⊂平面SAB ,AE ⊂平面SAB ,∴BC ⊥平面SAB .∵AB ⊂平面SAB .∴AB ⊥BC .三、探究与创新13.设f (x )=a x +a -x 2,g (x )=a x -a -x 2(其中a >0且a ≠1) (1)5=2+3请你推测g (5)能否用f (2),f (3),g (2),g (3)来表示;(2)如果(1)中获得了一个结论,请你推测能否将其推广.解 (1)由f (3)g (2)+g (3)f (2)=a 3+a -32·a 2-a -22+a 3-a -32·a 2+a -22=a 5-a -52, 又g (5)=a 5-a -52.因此,g (5)=f (3)g (2)+g (3)f (2). (2)由g (5)=f (3)g (2)+g (3)f (2),即g (2+3)=f (3)g (2)+g (3)f (2),于是推测g (x +y )=f (x )g (y )+g (x )f (y ).证明如下:因为f (x )=a x +a -x 2,g (x )=a x -a -x 2(大前提),所以g (x +y )=a x +y -a -(x +y )2,g (y )=a y -a -y 2,f (y )=a y +a -y 2(小前提及结论), 所以f (x )g (y )+g (x )f (y )=a x +a -x 2·a y -a -y 2+a x -a -x 2·a y +a -y 2=a x +y -a -(x +y )2=g (x +y ).。
高中数学新苏教版精品教案《苏教版高中数学选修1-2 2.1.1 合情推理》
类比推理江苏省泗阳县众兴中学蔡月禄一、教学目标1知识与技能:〔1〕结合已学过的数学实例,了解类比推理的含义;〔2〕能利用类比进行简单的推理;〔3〕体会并认识类比推理在数学发现和生活中的作用。
2方法与过程:递进的了解、体会类比推理的思维过程;体验类比法在探究活动中:类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。
3情感态度与价值观:体会类比法在数学发现中的根本作用:即通过类比,发现新问题、新结论;通过类比,发现解决问题的新方法。
培养分析问题的能力、学会解决问题的方法;增强探索问题的信心、收获论证成功的喜悦;体验数学发现的乐趣、领略数学方法的魅力!同时培养学生学数学、用数学,完善数学的正确数学意识。
二、教学重点:了解类比推理的含义,能利用类比进行简单的推理。
教学难点:培养学生“发现—猜测—证明〞的推理能力。
三、教学方法:探析归纳,讲练结合四、教学过程〔一〕复习:归纳推理的概念:根据一类事物中局部事物具有某种属性,推断该类事物中每一个事物都具有这种属性。
我们将这种推理方式称为归纳推理。
注意:利用归纳推理得出的结论不一定是正确的。
1归纳推理的要点:由局部到整体、由个别到一般;2典型例子方法归纳。
〔二〕引入新课:问题一:从一个传说说起:春秋时代鲁国的公输班〔后人称鲁班,被认为是木匠业的祖师〕一次去林中砍树时被一株齿形的茅草割破了手,这桩倒霉事却使他创造了锯子他的思路是这样的:茅草是齿形的;茅草能割破手我需要一种能割断木头的工具;它也可以是齿形的这个推理过程是归纳推理吗?问题二:书本上的类比1、矩形对角线的平方等于长、宽的平方和;长方体的对角线的平方与长、宽、高具有怎样的关系呢答:长方体对角线的平方等于长、宽、高的平方和。
变式::“正三角形内一点到三边的距离之和是一个定值〞,将空间与平面进行类比,空间中什么样的图形可以对应三角形?在对应图形中有与上述定理相应的结论吗?答:将空间与平面类比,正三角形对应正四面体,三角形的边对应四面体的面。
高中数学 第二章《推理与证明》第1节教学设计 苏教版选修1-2-苏教版高二选修1-2数学教案
课题:归纳推理第二章《推理与证明》第1节教学目标:1.了解合情推理的含义;理解归纳推理的概念,能利用归纳的方法进行一些简单的推理.2.培养学生的归纳探索能力,提高学生的创新意识.3.培养学生勇于创新而又不失严谨的思维习惯和在探索真理时锲而不舍的钻研精神.重点与难点:本节课的教学重点是归纳推理的概念理解和应用;教学难点是提高学生从特殊到一般的归纳能力. 教学方式:本节课采用的是启发式教学,综合使用了讲授、问答、活动等多种教学方式.教学工具:多媒体、圆纸片、硬币.教学过程:三问:对比(1)、(3)这两个推理,你能发现它们的相同点和不同点吗?3. 归纳推理的概念形成幻灯片:看下面的例子,试写出一般性结论.(1)1+3=4;1+3+5=9;1+3+5+7=16.(2)一元一次方程有一个实数根;一元二次方程最多有两个实数根;一元三次方程最多有三个实数根.提问:什么是归纳推理?学生发言,教师点评.总结:根据一类事物的部分对象具有某种性质,推出该类事物的所有对象都具有这种性质的推理,称为归纳推理(简称归纳).回顾给出定义的过程,其本身就是归纳(从特殊到一般)的过程,所以可以说“我们归纳出了归纳”. (这两个“归纳”上有点区别,第一个重在归纳总结,第二个才是归纳推理.)合情推理的概念.三问的目的是:引出归纳推理(不必出现类比推理这个名词).纯数学的实例,使学生体会归纳推理的含义.引导学生概括归纳推理的概念.现学现用,而且这句话本身很有趣,有利于激发学生的兴趣.三. 经典探究,深化新知幻灯片:汉诺塔问题如图,有三根针和套在一根针上的若干金属片,按下列规则,把金属片从一根针上全部移到另一根针上. 汉诺塔问题的探索,完整体现了归纳推理的过程,很具有代表性.使学生充分体验从个别情况看起,发现规律,归纳总2111112222n n -个个222223333n n =个2个3.*N n ∈,计算)10(,),f 的值,并归纳一般性结论。
高中数学新苏教版精品教案《苏教版高中数学选修1-2 2.1.1 合情推理》2
《类比推理》教学设计江苏省太湖高级中学何英一、教学内容解析“推理与证明”是数学的基本思维过程,它贯穿于整个数学课程,但在教材中独立成一章内容却是首次,对之进行系统学习是这次课程的一个变化。
它把过去渗透在具体数学内容中的思维方法,以显现的形式呈现出来,使学生更明确这些方法,有益于学生了解数学的价值,体会数学问题的一般规律。
本章介绍了两种基本的推理:合情推理和演绎推理。
合情推理是根据已有的事实和正确的结论、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程。
归纳、类比是合情推理常用的思维方法。
本节课是合情推理中的类比推理,是学生在学习归纳推理概念后学习的另外一种推理方法,此时学生已经经历了研究归纳推理基本形式的过程,初步体会了合情推理在数学发展中的作用,本节课要在此基础上研究类比推理的推理形式,比较类比推理和归纳推理这两种形式的异同点,从而归纳出合情推理的共同特征和价值。
本节课的教学重点是了解类比推理的含义,难点是能利用类比进行简单的推理并给予证明。
二、教学目标设置课程目标:(1)通过对已学知识的回顾,进一步体会合情推理的推理形式的本质特征;(2)感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的习惯。
单元教学目标:(1)结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用;(2)结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单的推理;(3)通过具体实例,了解合情推理和演绎推理之间的联系和差异。
结合以上分析,设置本节课的课堂教学目标为:知识与技能目标:(1)了解类比推理的含义、特点,能利用类比进行简单的推理;(2)体会并认识类比推理在数学发现中的作用。
过程与方法目标:(1)通过已已学过的数学实例和生活中的实例创设情境,引导探究,体会类比推理的含义;(2)学生经历观察、分析、提出猜想、抽象概括的过程,提高观察猜想、抽象概括的能力,渗透类比的思想方法。
苏教版数学高二-高中数学选修1-2教案 合情推理2
,解决生活中的实际问题。
教材分析
重难点
了解合情推理的含义,能利用归纳和类比等进行简单的推理
教学设想
教法
三主互位导学法
学法
小组合作交流
教具
多媒体
课堂设计
一、目标展示
1. 练习:已知 ,考察下列式子: ; ; . 我们可以归纳出,对 也成立的类似不等式为.
2. 猜想数列 的通项公式是.
二、预习检测
课题
2.1.1合情推理(二)
授课时间
2015.3.
课型
新授
二次修改意见
课时
1
授课人
科目
数学
主备
韩雅雅
教学目标
知识与技能
结合已学过的数学实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用.
过程与方法
引导学生自主完成自学任务,给出问题现有学生自己解决,再小组讨论后师生共同解决;
(iii)由圆的一些特征,类比得到球体的相应特征.小结:平面→空间,圆→球,线→面.
③讨论:以平面向量为基础学习空间向量,试举例其中的一些类比思维.
三、质疑探究
类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想.
小结:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,统称为合情推理.
①概念:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.简言之,类比推理是由特殊到特殊的推理.
②类比练习:
(i)圆有切线,切线与圆只交于一点,切点到圆心的距离等于半径.由此结论如何类比到球体?
(ii)平面内不共线的三点确定一个圆,由此结论如何类比得到空间的结论?
苏教版数学高二-高中数学选修1-2教案 2.1合情推理1
2. 复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据 作散点图 求回归直线方程 利用方程进行预报
二.预习检测
1. 提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?
2. 复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据 作散点图 求回归直线方程 利用方程进行预报
三质疑探究
出示例题:已知数列 的第1项 ,且 ,试归纳出通项公式.
(分析思路:试值n=1,2,3,4 → 猜想 →如何证明:将递推公式变形,再构造新数列)
思考:证得某命题在n=n 时成立;又假设在n=k时命题成立,再证明n=k+1时命题也成立. 由这两步,可以归纳出什么结论? (目的:渗透数学归纳法原理,即基础、递推关系)
课题
2.1.1合情推理(一)
授课时间
2015.
课型
新授
二次修改意见
课时
1
授课人
科目
数学
主备
韩雅雅
教学目标
知识与技能
结合已学过的数学实例,了解归纳推理的含义,能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用.
过程与方法
引导学生自主完成自学任务,给出问题现有学生自己解决,再小组讨论后师生共同解决;
情感态度价值观
解决生活中的实际问题。
教材分析
重难点
能利用归纳进行简单的推理.
苏教版高中数学选修1-2《推理案例赏析》参考教案1
2.1.3 推理案例赏析教学目标:1. 了解合情推理和演绎推理的含义;2. 能正确地运用合情推理和演绎推理进行简单的推理;3. 了解合情推理与演绎推理之间的联系与差别. 教学重点:了解合情推理与演绎推理之间的联系与差别教学难点:了解合情推理和演绎推理是怎样推进数学发现活动的. 教学过程: 一.问题情境复习合情推理和演绎推理 二.数学运用例1. 正整数平方和公式的推导.(课本P40例1) 提出问题我们知道,前n 个正整数的和为),1(21321)(1+=++++=n n n n S ① 那么,前n 个正整数的平方和=)(2n S ?3212222=++++n ②数学活动思路1(归纳的方案) (参见课本)思考 :上面的数学活动是由哪些环节构成的? 在这个过程中提出了哪些猜想? 提出猜想时使用了哪些推理方法?合情推理和演绎推理分别发挥了什么作用? 思路2 (演绎的方案)(参见课本)思考: 上面的数学活动是由哪些环节构成的? 在这个过程中提出了哪些猜想? 提出猜想时使用了哪些推理方法?合情推理和演绎推理分别发挥了什么作用。
例2.棱台体积公式的推导.(课本P43阅读探究)例3. 已知表中的对数值有且只有两个是错误的.给出判断过程;(2)试将两个错误的对数值均指出来并加以改正.(不要求证明)答案:(1)由lg5=a+c,得lg2=1-a-c.∴lg6=lg2+lg3=1-a-c+2a-b=1+a-b-c,满足表中数值,也就是lg6在假设下是正确的.(2)lg1.5是错误的,正确值应为3a-b+c-1.lg7是错误的,正确值应为2b+c.注意: 表中的数据,lg5与lg7至少有一个错误的.本题旨在考查数据处理、推理与证明的能力,考查对数的运算。
问题背景新颖,具有公平性,体现新课标的理念,体现创新性.三.回顾小结:(1)数学发现过程是一个探索创造的过程.是一个不断地提出猜想验证猜想的过程,合情推理和论证推理相辅相成,相互为用,共同推动着发现活动的进程. (2)合情推理是富于创造性的或然推理,在数学发现活动中,它为演绎推理确定了目标和方向,具有提出猜想、发现结论,提供思路的作用.(3)演绎推理是形式化程度较高的必然推理,在数学发现活动中,它具有类似于“实验”的功能,它不仅为合情推理提供了前提,而且可以对猜想作出“判决”和证明,从而为调控探索活动提供依据.四. 推理与证明作业:1、在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表.观察表中数据的特点,用适当的数填入表中"( )"内. 140, 852.由数列的前四项:2,1 ,8,8,……归纳出通项公式na=___ _.n23.在下列表格中,每格填上一个数字后,使每一行成等差数列,每一列成等比数列,则a+b+c 的值是___ . 14.由“等腰三角形的两腰相等”可以类比推出正棱锥的类似属性是 . 侧面都是全等的三角形5.下列推理中属于合情推理的序号是_____________.(2)(3)(1)小孩见穿"白大褂"就哭; (2)凡偶数必能被2整除,因为0能被2整除,所以0是偶数; (3)因为光是波,所以光具有衍射性质; (4)鲁班被草划破了手而发明了锯.6.将正偶数按下表排成5列,则2006在第 行、第 列. 第251行、第4列7.===,...,)a b R =∈ 试推测=a ,=b . 6,358.数列{}n a 中,a 1=1,S n 表示前n 项和,且S n ,S n+1,2S 1成等差数列,通过计算S 1,S 2,S 3,猜想当n≥1时,S n = . 1212--n n9. 如图,已知P 为正△ABC 内部一点,P 到边BC 、AC 、AB 的距离分别为a p ,b p ,c p ,正△ABC 的高为h.(1)求证:h=a p +b p +c p ,(2)试通过类比,写出在空间中的类似结论, 并证明之. 解(1)连PA,PB,PC,设正三角形ABC 的边长为a , ∵ ABC PBC PAC PAB S S S S ∆∆∆∆=++ ∴11112222a b c a h a p a p a p ⋅=⋅+⋅+⋅ ∴ h=a p +b p +c p .(2)如图,设P 为正四面体内部一点,P 到面BCD 、面ACD 、面ABD 、面ABC 的距离分别为,,,a b c d p p p p ,正四面体的高为h , 猜想:h=a p +b p +c p +d p .证明:连PA,PB,PC,PD ,设正四面体各个面的面积为S ,则: 由P ABC P BCD P ACD P ABD P ABC V V V V V -∆-∆-∆-∆-∆=+++ 得:1111133333a b c d S h S p S p S p S p ⋅=⋅+⋅+⋅+⋅ ∴ h=a p +b p +c p +d p .。
2.1《合情推理-归纳推理》教案(苏教版选修1-2)
苏教版选修1-2(2-2)新课程教学案合情推理—归纳推理●江苏省睢宁县菁华学校(221200) 卢清莲一、学习要求:1、通过生活中的实例和已学过的数学实例,了解推理、归纳推理的含义;2、能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的应用;3、通过已学知识感受和体会归纳推理的思维方法,进一步培养创新意识.二、互动课堂:(一)自学评价:1、识记:___________________________的思维过程称为推理.解:从一个或几个已知命题得出另一个新的命题.巧记方法:“推出道理”即“推理”.2、识记:根据一类事物的_________具有某种性质,推出这一类事物的_______都具有这种性质的推理叫归纳推理,简称归纳法.解:部分对象,所有对象;巧记方法:由“特殊”到“一般”的推理.3、已知一数列:2,4,8,16,gg g g g g ,则它的通项公式是____________. 解:2()n a n n N =∈.4、已知一数列:3g g g g g g ,则它的通项公式是____________.解:)n a n N =∈.5、归纳推理的一般步骤是:①___________;②___________;③_____________.解:观察、实验;概括、推广;猜想.6、思考:归纳推理的特点是什么?解:简要地说是:①特殊—一般;②猜测的或然性;③创造性.(二)新课引入:意大利数学家斐波那契(L g Fibonacci )在他的1228年版的《算经》一书中记述了有趣的兔子问题:假定每对成年兔子每月能生一对小兔子,而每对小兔子过了一个月就长成了成年兔子,如果不发生死亡,那么由一对成年兔子开始,一年后能有多少对成年兔子呢?在学生无法解决的情况下,提出怎样解决这个问题呢?先深入学习本节知识吧!(三)互动探究:1、见本节开头的三个推理案例,回答几个推理各有什么特点? 解答:共同点:都是由前提与结论两部分组成.不同点:(1)是由特殊到一般的推理;(2)是由特殊到特殊的推理;(3)是由一般到特殊的推理.2、列举几个归纳推理的的例子,并检查当n =6,7,8,9,10,11时本节开头的推理案例中结论的正确性.由此你能得出什么结论?解答:(1)在一次数学测验中,甲、乙同学都考得及格,由此得出其他同学也考得及格;(2)凸四边形有2条对角线,凸五边形有5条对角线,凸六边形有9条对角线,由此我们猜想:凸n 有1(3)2n n -条对角线;等等 其中(1)的结论不正确,(2)正确.当n =6时,211n n -+=41;当n =7时,211n n -+=53;当n =8时,211n n -+=67;当n =9时,211n n -+=83;当n =10时,211n n -+=101;当n =11时,211n n -+=121;121不是质数,从而得出结论:对于小于11的自然数n ,211n n -+的值都是质数.(四)经典范例:例1、已知数列{}n a 的通项公式21()(1)n a n N n +=∈+,12()(1)(1)(1)n f n a a a =--⋅⋅⋅-,试通过计算(1),(2),(3)f f f 的值,推测出()f n 的值.【学生讨论:】(学生讨论结果预测如下)(1)113(1)1144f a =-=-= 1213824(2)(1)(1)(1)(1)94936f a a f =--=⋅-=⋅== 12312155(3)(1)(1)(1)(2)(1)163168f a a a f =---=⋅-=⋅= 由此猜想,2()2(1)n f n n +=+ 解题回顾:虽然由归纳推理所得的结论未必正确,但它所具有的特殊到一般,由具体到抽象的认识功能,对于数学发现,科学家的发明是十分有用的.(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性的命题(猜想);是解决上述问题的根据.例2、解答新课引入问题:解:从具体问题出发,经过观察、分析再进行归纳.本题提出的问题就需要我们去观察和分析,我们依次给出各个月的成年兔子对数,并一直推算下去到无尽的月数,可得数列:1,1,2,3,5,8,13,21,34,55,89,144,233,g g g ,这就是斐波那契数列,此数列中,11a =,你能归纳出,当3n ≥时,n a 的递推关系吗?从第3项开始,逐项观察分析每项与其前面几项的关系易得,从第3项起,它的每一项等于它前面两项之和,即*12(3,)n n n a a a n n N --=+≥∈.(五)追踪训练:1、设1111122334(1)n s n n =++++⨯⨯⨯+g g g ,写出1s =_____,2s =_____,3s =_____,4s =_____,归纳推理出n s =______________. 解:12;23;34;45;1n n +. 2、已知13a =,26a =,且21n n n a a a ++=-,则33a =(A )A. 3B. -3C. 6D. -6解:3213a a a =-=,4323a a a =-=-,5436a a a =-=-,6543a a a =-=-,7653a a a =-=,8766a a a =-=,故{}n a 是以6项为一个周期的数列,所以333a a =.3、观察:1(1201)12⨯-⨯=,1(2312)22⨯-⨯=,1(3423)32⨯-⨯=,1(4534)42⨯-⨯=,g g g g g g .你能做出什么猜想? 解: []1(1)(2)(1)12n n n n n ++-+=+. 三、拓展延伸:通过计算215,225,235,245,g g g ,你能很快算出21995吗?分析:2152251001(11)25==⨯⨯++;2256251002(21)25==⨯⨯++;24520251004(41)25==⨯⨯++;由此,归纳出21995100199(1991)25=⨯⨯++.解题回顾:首先考察得出个位上的数字为5的自然数的平方数的末两们是25,只需要探索其百们以上的数的规律,并归纳,猜想出结论.四、总结回顾:1.归纳推理是由部分到整体,从特殊到一般的推理.通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.2.归纳推理的一般步骤:1)通过观察个别情况发现某些相同的性质.2)从已知的相同性质中推出一个明确表述的一般命题(猜想).五、课外练习与检测1、下面的几个推理是归纳推理的是(C )①教室内有一把椅子坏了,则该教室内的所有椅子都坏了;②由直角三角形,等腰三角形,等边三角形的内角和是180o ,归纳出所有三角形的内角和都是180o ;③由圆的性质得出球的有关性质.A. ①②③B. ②③C. ①②D. ①③2、平面上有(3)k k ≥条直线,其中1k -条直线互相平行,剩下一条与它们不平行,则这k 条直线将平面分成区域的个数为(C ).A. kB. k +2C. 2kD. 2k +23、设2222121234(1)n n s n -=-+-++-gg g ,通过计算1s ,2s ,3s ,4s ,g g g 可以猜测n s 等于(D ) A. (1)2n n + B. (1)2n n +- C. (1)(1)2n n n +- D.1(1)(1)2n n n -+- 4、设等差数列{}n a 的公差是d ,那么21a a d =+;3212a a d a d =+=+;4313a a d a d =+=+;g g g g g g由此猜想等差数列的通项公式是n a =________.解:观察d 的系数与序号的关系可得: 1(1)n a a n d =+-.5、设0()sin f x x =,/10()()f x f x =,/21()()f x f x =,g g g ,/1()()n n f x f x +=.n N ∈,则2005()f x =__________________________.解://10()()sin cos f x f x x x ===;//21()()cos sin f x f x x x ===-;//32()()(sin )cos f x f x x x ==-=-;//43()()(cos )sin f x f x x x==-=;//541()()sin cos ()f x f x x x f x ====;62()()f x f x =,g g g ,44()()n f x f x +=,故可知()n f x 是以4为周期的函数.所在20051()()cos f x f x x ==.6、设2()41f n n n =++,*n N ∈,计算(1)f ,(2)f ,(3)f ,(4)f ,g g g ,(10)f 的值,同时作出归纳推理,并验证猜想是否正确.解:2(1)114143f =++=,2(2)224147f =++=,2(3)334153f =++=,2(4)444161f =++=,2(5)554171f =++=,2(6)664183f =++=,2(7)774197f =++=,2(8)8841113f =++=,2(9)9941131f =++=,2(10)101041151f =++=.因为43,47,53,61,71,83,97,113,131,151都是质数.所以归纳为:当n 取任何非负整数时,2()41f n n n =++都是质数.因为2(40)4040414141f =++=⨯,所以(40)f 是合数.因此上面的归纳是错误的.。
苏教版数学高二- 选修1-2学案 2.1.2演绎推理
2.1.2 演绎推理课前预习学案一、预习目标结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单的推理.二,预习内容1,对于任意正整数n,猜想(2n-1)与(n+1)2的大小关系?2,讨论:以上推理属于什么推理,结论一定正确吗?3,思考:有什么推理形式能使结论一定正确呢?三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中课内探究学案一,学习目标结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单推理。
二、学习过程1. 填一填:①所有的金属都能够导电,铜是金属,所以;② 太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此 ; ③ 奇数都不能被2整除,2007是奇数,所以 .2.讨论:上述例子的推理形式与我们学过的合情推理一样吗?3.小结:① 概念:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为____________.要点:由_____到_____的推理.② 讨论:演绎推理与合情推理有什么区别?③ 思考:“所有的金属都能够导电,铜是金属,所以铜能导电”,它由几部分组成,各部分有什么特点?小结:“三段论”是演绎推理的一般模式:第一段:_________________________________________;第二段:_________________________________________;第三段:____________________________________________.④ 举例:举出一些用“三段论”推理的例子.例1:证明函数 log ()log log a a a x y x y +=+在 sin()x y +上是增函数.例2:在锐角三角形ABC 中, sin()sin sin x y x y +=+,D ,E 是垂足. 求证:AB 的中点M 到D ,E 的距离相等.当堂检测:讨论:因为指数函数 ()n ab 是增函数, ()n a b +是指数函数,则结论是什么?讨论:演绎推理怎样才能使得结论正确?比较:合情推理与演绎推理的区别与联系?课堂小结。
苏教版数学高二- 选修1-2教案 2.1.2演绎推理
2.1.2演绎推理●三维目标1.知识与技能(1)让学生知道演绎推理的含义,以及演绎推理与合情推理的联系与差异.(2)能运用演绎推理的基本方法“三段论”进行一些简单的推理.2.过程与方法(1)结合已学过的数学实例和生活中的实例,引出演绎推理的概念.(2)通过对实际例子的分析,从中概括出演绎推理的推理过程.(3)通过一些证明题的实例,让学生体会“三段论”的推理形式.3.情感、态度与价值观让学生体会演绎推理的逻辑推理美,让学生亲身经历数学研究的过程,感受数学的魅力,进而激发自身的求知欲.了解演绎推理在数学证明中的重要地位和日常生活中的作用,养成言之有理,论证有据的思维习惯.●重点难点重点:了解演绎推理的含义,理解合情推理与演绎推理的区别与联系,能利用“三段论”进行简单的推理.难点:利用三段论证明一些实际问题.通过比较合情推理与演绎推理的区别与联系,加深学生对概念的理解,在演绎推理的应用中要注意大前提、小前提的应用方法与技巧,注意推理形式的正确性.可将常见的证明题型分类研究,探究每种题型的特点,总结证明方法的特征,学以致用使所证问题化难为易.●教学建议建议本课运用自学指导法,通过创设问题情境,引导学生自学探究演绎推理与合情推理的区别与联系,了解演绎推理的作用和应用方式方法.教师指导重点应放在“三段论”的理解与应用上,师生共同研讨大前提、小前提、结论之间的关系,帮助学生分析大前提、小前提的作用及应用方法,引导学生挖掘证明过程包含的推理思路,明确演绎推理的基本过程,总结规律方法,使学生能举一反三、触类旁通.本部分的练习题不在“多”,而在“精”,关键在理解.●教学流程创设问题情境,引出问题,引导学生认识演绎推理的概念,了解演绎推理与合情推理的区别与联系.利用填一填的形式,使学生自主学习本节基础知识,并反馈了解,对理解有困难的概念加以讲解.引导学生在学习基础知识的基础上完成例题1,总结三段论的特点.通过变式训练,总结此类问题易犯的错误.师生共同分析探究例题2的证明方法:找出大前提、小前提,利用三段论给出证明.引导学生完成互动探究.完成当堂双基达标,巩固所学知识及应用方法.并进行反馈矫正.归纳整理,进行课堂小结,整体认识本节所学知识,强调重点内容和规律方法.学生自主完成例题3变式训练,老师抽查完成情况,对出现问题及时指导.让学生自主分析例题3,老师适当点拨解题思路,学生分组讨论给出解法.老师组织解法展示.引导学生总结解题规律.课标解读 1.理解演绎推理的意义.(重点)2.掌握演绎推理的基本模式,并能运用它们进行一些简单推理.(难点)3.了解合情推理和演绎推理之间的区别和联系.演绎推理【问题导思】看下面两个问题:(1)一切奇数都不能被2整除,(22 012+1)是奇数,所以(22 012+1)不能被2整除;(2)两个平面平行,则其中一个平面内的任意直线必平行于另一个平面,如果直线a是其中一个平面内的一条直线,那么a平行于另一个平面.1.这两个问题中的第一句都说的是什么?【提示】都说的是一般原理.2.第二句又说的是什么?【提示】都说的是特殊示例.3.第三句呢?【提示】由一般原理对特殊示例作出判断.1.演绎推理(1)含义:从一般性的原理出发,推出某个特殊情况下的结论的推理. (2)特点:由一般到特殊的推理. 2.三段论一般模式 常用格式 大前提 已知的一般原理 M 是P 小前提 所研究的特殊情况 S 是M 结论根据一般原理,对特 殊情况做出的判断S 是P把演绎推理写成三段论形式将下列推理写成“三段论”的形式:(1)向量是既有大小又有方向的量,故零向量也有大小和方向; (2)矩形的对角线相等,正方形是矩形,所以正方形的对角线相等; (3)0.332·是有理数;(4)y =sin x(x ∈R )是周期函数.【思路探究】 首先分析出每个题的大前提、小前提及结论,再写成三段论的形式. 【自主解答】 (1)向量是既有大小又有方向的量, 大前提零向量是向量,小前提所以零向量也有大小和方向.结论 (2)每一个矩形的对角线都相等,大前提 正方形是矩形,小前提 正方形的对角线相等.结论(3)所有的循环小数都是有理数,大前提 0.332·是循环小数,小前提 0.332·是有理数.结论(4)三角函数是周期函数,大前提 y =sin x 是三角函数,小前提 y =sin x 是周期函数.结论用三段论写推理过程时,关键是明确大、小前提,三段论中的大前提提供了一个一般性的原理,小前提指出了一种特殊情况,两个命题结合起来,揭示一般原理与特殊情况的内在联系.有时可省略小前提,有时甚至也可大前提与小前提都省略.在寻找大前提时,可找一个使结论成立的充分条件作为大前提.指出下列推理中的错误,并分析产生错误的原因: (1)整数是自然数,大前提 -3是整数,小前提 -3是自然数.结论(2)常数函数的导函数为0,大前提 函数f(x)的导函数为0,小前提 f(x)为常数函数.结论(3)无理数是无限不循环小数,大前提 13(0.333 33…)是无限不循环小数,小前提 13是无理数结论 【解】 (1)结论是错误的,原因是大前提错误.自然数是非负整数.(2)结论是错误的,原因是推理形式错误.大前提指出的一般原理中结论为“导函数为0”,因此演绎推理的结论也应为“导函数为0”.(3)结论是错误的,原因是小前提错误.13(0.333 33…)是循环小数而不是无限不循环小数.三段论在证明几何问题中的应用图2-1-4已知在梯形ABCD 中(如图2-1-4),DC =DA ,AD ∥BC.求证:AC 平分∠BCD.(用三段论证明)【思路探究】 观察图形→DC =DA ⇒∠1=∠2→AD ∥BC ⇒∠1=∠3→∠2=∠3 【自主解答】 ∵等腰三角形两底角相等,大前提 △ADC 是等腰三角形,∠1和∠2是两个底角, 小前提∴∠1=∠2.结论∵两条平行线被第三条直线截得的内错角相等,大前提∠1和∠3是平行线AD、BC被AC截得的内错角,小前提∴∠1=∠3.结论∵等于同一个角的两个角相等,大前提∠2=∠1,∠3=∠1,小前提∴∠2=∠3,即AC平分∠BCD.结论1.三段论推理的根据,从集合的观点来理解,就是:若集合M的所有元素都具有性质P,S是M的子集,那么S中所有元素都具有性质P.2.数学问题的解决和证明都蕴含着演绎推理,即一连串的三段论,关键是找到每一步推理的依据——大前提、小前提,注意前一个推理的结论可作为下一个三段论的前提.试用更简洁的语言书写本例的证明过程.【解】在△DAC中,∵DA=DC,∴∠1=∠2,又∵AD∥BC,∴∠1=∠3,∴∠2=∠3,即AC平分∠BCD.合情推理、演绎推理的综合应用图2-1-5如图2-1-5所示,三棱锥A-BCD的三条侧棱AB,AC,AD两两互相垂直,O为点A在底面BCD上的射影.(1)求证:O为△BCD的垂心;(2)类比平面几何的勾股定理,猜想此三棱锥侧面与底面间的一个关系,并给出证明.【思路探究】(1)利用线面垂直与线线垂直的转化证明O为△BCD的垂心.(2)先利用类比推理猜想出一个结论,再用演绎推理给出证明.【自主解答】 (1)∵AB ⊥AD ,AC ⊥AD , ∴AD ⊥平面ABC , ∴AD ⊥BC ,又∵AO ⊥平面BCD ,AO ⊥BC , 且AD∩AO =A ,∴BC ⊥平面AOD ,∴BC ⊥DO ,同理可证CD ⊥BO , ∴O 为△BCD 的垂心.(2)猜想:S 2△ABC +S 2△ACD +S 2△ABD =S 2△BCD .证明:连接DO 并延长交BC 于E ,连接AE , 由(1)知AD ⊥平面ABC , AE ⊂平面ABC ,∴AD ⊥AE ,又AO ⊥ED , ∴AE 2=EO·ED ,∴(12BC·AE)2=(12BC·EO)·(12BC·ED), 即S 2△ABC =S △BOC ·S △BCD . 同理可证:S 2△ACD =S △COD ·S △BCD ,S 2△ABD=S △BOD ·S △BCD . ∴S 2△ABC +S 2△ACD +S 2△ABD =S △BCD ·(S △BOC +S △COD +S △BOD )=S △BCD ·S △BCD =S 2△BCD .合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.但合情推理常常帮助我们猜测和发现新的规律,为我们提供证明的思路和方法,而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下).二者结合可以利用合情推理去发现问题,然后用演绎推理进行论证.已知命题:“若数列{a n }是等比数列,且a n >0,则数列b n =na 1a 2…a n (n ∈N *)也是等比数列”.类比这一性质,你能得到关于等差数列的一个什么性质?并证明你的结论.【解】 类比等比数列的性质,可以得到等差数列的一个性质是:若数列{a n }是等差数列,则数列b n =a 1+a 2+…+a nn也是等差数列.证明如下:设等差数列{a n }的公差为d ,则b n =a 1+a 2+…+a nn =na 1+n n -1d2n=a 1+d2(n -1),所以数列{b n }是以a 1为首项,d2为公差的等差数列.数形结合思想在演绎推理中的应用数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻画与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合.应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决.若函数f(x)=log 2(x +1),且c>b>a>0,则f a a 、f b b 、f cc的大小关系是( )A.f a a >f b b >f c cB.f c c >f b b >f aaC.f b b >f a a >f c c D .f a a >f c c >f b b【思路点拨】 作出函数f(x)=log 2(x +1)的图象―→找三点(a ,f(a)),(b ,f(b)),(c ,f(c))―→结论的几何意义―→结论【规范解答】 作出函数f(x)=log 2(x +1)的图象如图所示,f a a 、f b b 、f c c 可看作三点与原点的连线的斜率.由图知A 项正确.【答案】 A运用数形结合思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征.本题巧妙地应用了直线的斜率的几何意义,平凡中见神奇!1.演绎推理是从一般性原理出发,推出某个特殊情况的推理方法;只要前提和推理形式正确,通过演绎推理得到的结论一定正确.2.在数学中,证明命题的正确性都要使用演绎推理,推理的一般模式是三段论,证题过程中常省略三段论的大前提.1.正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数.以上推理()A.结论正确B.大前提不正确C.小前提不正确D.全不正确【解析】函数f(x)=sin(x2+1)不是正弦函数,故小前提不正确,故选C.【答案】 C2.三段论“①只有船准时起航,才能准时到达目的港,②这艘船是准时到达目的港的,③这艘船是准时起航的.”中的小前提是()A.①B.②C.①②D.③【解析】本题中①为大前提,③为小前提,②为结论.【答案】 D3.“一切奇数都不能被2整除,35不能被2整除,所以35是奇数.”把此演绎推理写成三段论的形式为:大前提:________________________________________________________________________ 小前提:________________________________________________________________________ 结论:________________________________________________________________________ 【解析】根据题意可知,此三段论的大前提、小前提和结论分别为:不能被2整除的整数是奇数;35不能被2整除;35是奇数.【答案】不能被2整除的整数是奇数35不能被2整除35是奇数4.用三段论的形式写出下列命题:(1)Rt△ABC的内角和为180°;(2)通项公式a n=2n+3的数列{a n}是等差数列.【解】(1)三角形的内角和是180°,大前提Rt△ABC是三角形,小前提Rt△ABC的内角和为180°.结论(2)若n≥2时,a n-a n-1为常数,则{a n}是等差数列,大前提a n=3n+2,a n-a n-1=3,小前提则{a n}是等差数列.结论一、选择题1.已知△ABC中,∠A=30°,∠B=60°,求证a<b.证明:∵∠A=30°,∠B=60°,∴∠A<∠B,∴a<b,画线部分是演绎推理的() A.大前提B.小前提C.结论D.三段论【解析】结合三段论的特征可知,该证明过程省略了大前提“在同一个三角形中大角对大边”,因此画线部分是演绎推理的小前提.【答案】 B2.“指数函数y=a x(a>0且a≠1)是R上的增函数,而y=(12)x是指数函数,所以y=(12)x是R上的增函数”,上述三段论推理过程中导致结论错误的是()A.大前提B.小前提C.大、小前提D.推理形式【解析】指数函数y=a x在a>1时在R上是增函数,当0<a<1时,在R上是减函数,故上述三段论的证明中“大前提”出错.【答案】 A3.在不等边三角形中,a为最大边.要想得到∠A为钝角的结论,三边a,b,c应满足的条件是()A.a2<b2+c2B.a2=b2+c2C.a2>b2+c2D.a2≤b2+c2【解析】 ∵cos A =b 2+c 2-a 22bc<0, ∴b 2+c 2-a 2<0,∴a 2>b 2+c 2.【答案】 C4.下面几种推理过程是演绎推理的是( )A .两条直线平行,同旁内角互补,因为∠A 和∠B 是两条平行直线被第三条直线所截所得的同旁内角,所以∠A +∠B =180°B .我国地质学家李四光发现中国松辽地区和中亚细亚的地质结构类似,而中亚细亚有丰富的石油,由此,他推断松辽平原也蕴藏着丰富的石油C .由6=3+3,8=3+5,10=3+7,12=5+7,14=7+7,…,得出结论:一个偶数(大于4)可以写成两个素数的和D .在数列{a n }中,a 1=1,a n =12(a n -1+1a n -1)(n≥2),由此归纳出{a n }的通项公式 【解析】 B 、C 、D 选项是合情推理,A 选项是演绎推理.【答案】 A5.“∵四边形ABCD 是矩形,∴四边形ABCD 的对角线相等.”以上推理的大前提是( )A .正方形都是对角线相等的四边形B .矩形都是对角线相等的四边形C .等腰梯形都是对角线相等的四边形D .矩形都是对边平行且相等的四边形【解析】 大前提为矩形都是对角线相等的四边形.【答案】 B二、填空题6.在求函数y =log 2x -2的定义域时,第一步推理中大前提是“当a 有意义时,a≥0”;小前提是“log 2x -2有意义”;结论是________________________________________________________________________.【解析】 由log 2x -2≥0得x≥4.【答案】 “y =log 2x -2的定义域是[4,+∞)”7.已知推理:因为△ABC 的三边长依次为3,4,5,所以△ABC 是直角三角形.若将其恢复成完整的三段论,则大前提是________________________________________________________________________.【解析】 大前提:一条边的平方等于其他两条边平方和的三角形是直角三角形;小前提:△ABC 的三边长依次为3,4,5,满足32+42=52;结论:△ABC 是直角三角形.【答案】一条边的平方等于其他两条边的平方和的三角形是直角三角形图2-1-68.如图2-1-6所示,因为四边形ABCD是平行四边形,所以AB=CD,BC=AD.又因为△ABC和△CDA的三边对应相等,所以△ABC≌△CDA.上述推理的两个步骤中应用的推理形式是________.【答案】演绎推理三、解答题9.把下列演绎推理写成三段论的形式.(1)在一个标准大气压下,水的沸点是100 ℃,所以在一个标准大气压下把水加热到100 ℃时,水会沸腾;(2)一切奇数都不能被2整除,(2100+1)是奇数,所以(2100+1)不能被2整除;(3)三角函数都是周期函数,y=tan α是三角函数,因此y=tan α是周期函数.【解】(1)在一个标准大气压下,水的沸点是100 ℃,大前提在一个标准大气压下把水加热到100 ℃,小前提水会沸腾.结论(2)一切奇数都不能被2整除,大前提(2100+1)是奇数,小前提(2100+1)不能被2整除.结论(3)三角函数都是周期函数,大前提y=tan α是三角函数,小前提y=tan α是周期函数.结论10.如图2-1-7,D,E,F分别是BC,CA,AB上的点,∠BFD=∠A,DE∥BA,求证:ED=AF,写出三段论形式的演绎推理.图2-1-7【证明】因为同位角相等,两条直线平行,大前提∠BFD与∠A是同位角,且∠BFD=∠A,小前提所以FD∥AE.结论因为两组对边分别平行的四边形是平行四边形,大前提 DE ∥BA ,且FD ∥AE ,小前提所以四边形AFDE 为平行四边形.结论因为平行四边形的对边相等,大前提ED 和AF 为平行四边形AFDE 的对边,小前提 所以ED =AF.结论11.已知函数f(x)=a x+bx ,其中a>0,b>0,x ∈(0,+∞),确定f(x)的单调区间,并证明在每个单调区间上的增减性.【解】 设0<x 1<x 2,则f(x 1)-f(x 2)=(a x 1+bx 1)-(a x 2+bx 2) =(x 2-x 1)(a x 1x 2-b). 当0<x 1<x 2≤a b时, 则x 2-x 1>0,0<x 1x 2<a b ,a x 1x 2>b , ∴f(x 1)-f(x 2)>0,即f(x 1)>f(x 2),∴f(x)在(0,a b ]上是减函数, 当x 2>x 1≥a b 时,则x 2-x 1>0,x 1x 2>a b ,a x 1x 2<b , ∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2),∴f(x)在[a b,+∞)上是增函数.已知函数f(x)=a x +x -2x +1(a>1),求证:函数f(x)在(-1,+∞)上为增函数. 【思路探究】 利用三段论证明,题目中的大前提是增函数的定义,小前提是y =f(x)在(-1,+∞)上符合增函数的定义.【自主解答】 设x 1,x 2是(-1,+∞)上的任意两实数,且x 1<x 2,则f(x 1)-f(x 2)=ax 1+x 1-2x 1+1-ax 2-x 2-2x 2+1=ax 1-ax 2+x 1-2x 1+1-x 2-2x 2+1=ax 1-ax 2+3x 1-x 2x 1+1x 2+1. ∵a>1,且x 1<x 2,∴ax 1<ax 2,x 1-x 2<0.又∵x 1>-1,x 2>-1,∴(x 1+1)(x 2+1)>0.∴f(x 1)-f(x 2)<0.∴f(x 1)<f(x 2).∴函数f(x)在(-1,+∞)上为增函数.1.很多代数问题不论解答题,还是证明题都蕴含着演绎推理.2.在解题过程中常省略大前提,本例的大前提是增函数的定义,小前提是y =f(x)在(-1,+∞)上符合增函数的定义.如图所示,A 、B 、C 、D 为空间四点,在△ABC 中,AB =2,AC =BC =2,等边三角形ADB 以AB 为轴转动.(1)当平面ADB ⊥平面ABC 时,求CD ;(2)当△ADB 转动时,是否总有AB ⊥CD ?证明你的结论.【解】 (1)取AB 中点E ,连接DE ,CE.(如图)∵△ADB 为等边三角形,∴DE ⊥AB.又∵平面ADB ⊥平面ABC ,且平面ADB∩平面ABC =AB ,∴DE ⊥平面ABC ,∴DE ⊥EC.由已知可得DE =32AB =3,EC =1. ∴在Rt △DEC 中,CD =DE 2+CE 2=2.(2)当△ADB 以AB 为轴转动时,总有AB ⊥CD.证明如下:①当D在平面ABC内时,∵AC=BC,AD=BD,∴C、D都在AB的垂直平面分线上,∴CD⊥AB.②当D不在平面ABC内时,由(1)知AB⊥DE.又AC=BC,∴AB⊥CE.∵DE∩CE=E,∴AB⊥平面DEC.∵DC⊂面DEC,∴AB⊥CD.综上所述,总有AB⊥CD.。
苏教版数学高二-高中数学选修1-2教案 第二章 推理与证明3
宁县五中导学案课题第二章推理与证明授课时间课型复习二次修改意见课时1 授课人科目数学主备任树峰教学目标知识与技能通过典型案例的探究,了解回归分析的基本思想、方法及初步应用,明确对两个分类变量的独立性检验的基本思想具体步骤,会对具体问题作出独立性检验。
过程与方法对章节知识点进行归纳整理,通过典型例题对本节知识的应用,提高学生对本章知识的掌握程度;情感态度价值观培养学生探究意识,合作意识,应用用所学知识解决生活中的实际问题。
教材分析重难点章节知识点进行归纳整理,典型例题的解决思路及变式训练。
教学设想教法引导归纳,三主互位导学法学法归纳训练教具多媒体, 刻度尺课堂设计一、章节知识网络二、归纳专题专题一归纳推理归纳推理是由部分到整体,由个别到一般的推理,常见的归纳推理题目主要涉及两个类型:数的归纳和形的归纳,其求解思路如下:(1)通过观察个别对象发现某些相同性质;(2)由相同性质猜想得出一般性结论.需特别注意一点,由归纳猜想得出的结论未必正确,常需要严格的推理证明.例 1 在如下数表中,已知每行、每列中的数都成等差数列,第1列第2列第3列…第1行 1 2 3 …第2行 2 4 6 …第3行 3 6 9 ………………那么位于表中的第n行第n+1列的数是________.【解析】由题中数表知:第n行中的项分别为n,2n,3n,…,组成一等差数列,所以第n行第n+1列的数是:n2+n.【答案】n2+n专题二类比推理类比推理是由两类对象具有类似特征和其中一类对象的某些已知特征推出另一类对象也具有这些特征的推理.显然其特征是由特殊到特殊的推理,常见的类比情形有:平面与空间类比,向量与数的类比,不等与相等类比,等差数列同等比数列的类比等等.需注意一点,由类比推理得出的结论也未必正确,也需要严格证明.例2 已知:由图①有面积关系:S△PA′B′S△PAB=PA′·PB′PA·PB.(1)试用类比的思想写出由图②所得的体积关系V P-A′B′C′V P-ABC=______________________.(2)证明你的结论是正确的.【思路点拨】由面积关系,类比推测V P-A′B′C′V P-ABC=PA′·PB′·PC′PA·PB·PC,然后由体积公式证明.【规范解答】(1)VP-A′B′C′VP-ABC=PA′·PB′·PC′PA·PB·PC.(2)过A作AO⊥平面PBC于O,连接PO,则A′在平面PBC内的射影O′落在PO上,从而VP-A′B′C′VP-ABC=VA′PB′C′VA-PBC=13S△PB′C′·A′O′13S△PBC·AO=PB′·PC′·A′O′PB·PC·AO,∵A′O′AO=PA′PA,∴VP-A′B′C′VP-ABC=PA′·PB′·PC′PA·PB·PC.专题三演绎推理演绎推理是由一般到特殊的推理方法,又叫逻辑推理,在前提和推理形式均正确的前提下,得到的结论一定正确,演绎推理的内容一般是通过合情推理获取.演绎推理的形式一般为“三段论”的形式,即大前提、小前提和结论.例3 如图2-2所示,D,E,F分别是BC,CA,AB上的点,∠BFD=∠A,DE∥FA,求证:ED=AF.【思路点拨】分别确定大前提、小前提,利用演绎推理的方法推出结论.【规范解答】同位角相等,两条直线平行,大前提∠BFD与∠A是同位角,且∠BFD=∠A,小前提所以DF∥EA.结论两组对边分别平行的四边形是平行四边形,大前提DE∥FA,且DF∥EA,小前提所以四边形AFDE为平行四边形.结论平行四边形的对边相等,大前提专题四直接证明与间接证明1.直接证明包括综合法和分析法两种,前一种方式是由因导果法,而后一种方式是执果索因法,在解题时常用分析法来探寻思路,用综合法来书写求解过程.2.间接证明,常用的是反证法,其思维过程:否定结论⇒推理过程中引出矛盾⇒否定假设肯定结论,即否定——推理——否定(经过正确的推理导致逻辑矛盾,从而达到新的“否定”(即肯定原命题)).例4 已知α∈(0,π),试求证:2sin 2α≤sin α1-cos α.(综合法)∵α∈(0,π),∴1-cos α>0.∴11-cos α+4(1-cos α)≥211-cos α·41-cos α=4.当且仅当11-cos α=4(1-cos α),即cos α=12,即α=π3时取∴4cos α≤11-cos α.∵α∈(0,π),∴sin α>0.∴4sin αcos α≤sin α1-cos α.∴2sin 2α≤sin α1-cos α.作业布置课本46页第3,5题。
高中数学新苏教版精品教案《苏教版高中数学选修1-2 2.1.1 合情推理》1
“归纳推理〞教学设计江苏省扬州大学附属中学数学组高建国 225002一、教材分析推理与证明是一种数学的根本思维过程,也是人们学习和生活中经常使用的思维方式。
推理与证明思想贯穿于高中数学的整个知识体系,但是作为一章内容出现在高中数学教材中尚属首次,是新课标教材的亮点之一。
本节课是普通高中新课程标准实验教科书?数学?〔选修2—2〕中第二章?推理与证明?第一节合情推理的第一课时〔苏教版P61-63〕。
教材的设计紧密地结合了已学过的数学实例和生活实例,复原了归纳推理的根源,使已学过的数学知识和思想方法系统化、明晰化,操作化,教材中的阅读局部很好的表达了数学文化,能有效激发学生探究的欲望与学习兴趣,本节内容融知识、方法、思维和情感于一体,能够让学生更好地体会数学的本质.二、教学目标:1.知识与技能:了解归纳推理的概念,掌握归纳推理的思维过程、会利用归纳推理的方法和思维方式进行一些简单的探索。
2.过程与方法:通过学生探索活动,引领学生经历归纳推理概念的形成过程,体会并认识利用归纳推理探究和发现新事实、得出新结论的作用。
3.情感、态度、价值观:通过学生主动探究、合作学习、相互交流,培养学生不怕困难、勇于探索的优良思维品质;让学生体会到数学“源于生活,指导实践〞的重要作用;让学生感受数学文化价值,激发学生学习数学的兴趣和探索真理的欲望。
三、教学重点、难点1.重点:归纳推理的概念,归纳推理的一般步骤。
2.难点:归纳推理概念的形成过程和简单应用。
四、教学方法1、探究式教学:在进行本节课的教学时,学生已经有大量的运用归纳推理生活实例和数学实例,这些素材是学生探究本节课内容的重要根底,教学时可以充分利用这一教学条件,引导学生结合已有知识探究新学知识。
2、循环教学法:本学期我校推行教学改革,提倡课堂教学按照“提出问题-自主探究-合作交流-形成结论〞的“循环〞模式进行,本节课思维发散度大,涉及知识面宽,有一定难度,具备了循环教学的条件。
苏教版数学高二-【数学选修1-2】2.1《合情推理与演绎推理》导学案(2)
★链接高考★
9、(2003年高考)在平面几何里,有勾股定理:“设 的两边AB、AC互相垂直,则 。”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面积间的关系,可以得妯的正确结论是:“设三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则”
(3)类比推理以旧的知识作基础,推测性的结果,具有发现的功能。
【典型例题】
例1、类比圆的下列特征,找出球的相关特征
(1)平面内与定点的距离等于定长的点的集合是圆;
(2)平面内不共线的3个点确定一个圆
(3)圆的周长和面积可求
(4)在平面直角坐标系中,以点 为圆心,r为半径的圆的方程为
【解析】:(1)在空间内与定点距离等于定长的点的集合是球;
2.1.2合情推理与演绎推理(2)
1、C 2、D 3、D 4、类比5、(1)圆柱面(2)两个平行平面
6、
7、在等比数列 中,若 , ,则
8、(1)(平面)在平行四边形中,对角线互相平分;(立体)在平行六面体中,对角线相交于同一点,且在这一点互相平分;(2)(平面)在平行四边形中,各对角线长的平方和等于各边长的平方和;(立体)在平行六面体中,各对角线长的平方和等于各棱长的平方和;(3)(平面)圆面积等于圆周长与半径之积的1/2;(立体)球体积等于球面积与半径之积的1/3;(4)(平面)正三角形外接圆半径等于内切圆半径的2倍,(立体)正四面体的外接球半径等于内切球半径的3倍。9、 + + =
2.1.2合情推理与演绎推理(2)
类比推理
苏教版数学高二 选修1-2学案 演绎推理
2.1.2 演绎推理1.理解演绎推理的含义,能利用“三段论”进行简单推理.(重点、难点)2.演绎推理与合情推理的区别和联系.(易误点)[基础·初探]教材整理演绎推理阅读教材P36及P39“练习”以上部分,完成下列问题.1.演绎推理(1)含义:由一般性的命题推演出特殊性命题的推理方法.(2)特点:(1)演绎的前提是一般性原理,演绎所得的结论是蕴涵于前提之中的个别、特殊事实,结论完全蕴涵于前提之中.(2)在演绎推理中,前提与结论之间存在必然的联系.(3)演绎推理是一种收敛性的思维方法,它较少创造性,但却具有条理清晰、令人信服的论证作用,有助于科学的理论化和系统化.2.三段论“三段论”是演绎推理的一般模式一般模式常用格式大前提提供了一个一般性的原理M是P小前提指出了一个特殊对象S是M结论揭示了一般原理与特殊对象的内在联系S是P1.判断正误:(1)演绎推理是由一般到特殊的推理.()(2)演绎推理的结论一定正确.()(3)“三段论”就是演绎推理.()(4)演绎推理得到的结论是否正确与大前提、小前提和推理形式有关.() 【答案】(1)√(2)×(3)×(4)√2.“π是无限不循环小数,∴π是无理数.”以上推理的大前提是________.【导学号:97220013】【解析】大前提为:无限不循环小数是无理数.【答案】无限不循环小数是无理数[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]把演绎推理写成三段论的形式(1)一切奇数都不能被2整除,75不能被2整除,所以75是奇数.(2)三角形的内角和为180°,Rt△ABC的内角和为180°.(3)通项公式为a n=3n+2(n≥2)的数列{a n}为等差数列.【自主解答】(1)一切奇数都不能被2整除. (大前提)75不能被2整除. (小前提)75是奇数. (结论)(2)三角形的内角和为180°. (大前提)Rt△ABC是三角形. (小前提)Rt△ABC的内角和为180°. (结论)(3)数列{a n}中,如果当n≥2时,a n-a n-1为常数,则{a n}为等差数列.(大前提)通项公式a n=3n+2,n≥2时,a n-a n-1=3n+2-[3(n-1)+2]=3(常数). (小前提)通项公式为a n=3n+2(n≥2)的数列{a n}为等差数列. (结论)把演绎推理写成“三段论”的一般方法:(1)用“三段论”写推理过程时,关键是明确大、小前提,三段论中大前提提供了一个一般性原理,小前提提供了一种特殊情况,两个命题结合起来,揭示一般性原理与特殊情况的内在联系.(2)在寻找大前提时,要保证推理的正确性,可以寻找一个使结论成立的充分条件作为大前提.[再练一题]1.将下列演绎推理写成三段论的形式.(1)平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分;(2)等腰三角形的两底角相等,∠A,∠B是等腰三角形的两底角,则∠A=∠B.【解析】(1)平行四边形的对角线互相平分,(大前提)菱形是平行四边形,(小前提)菱形的对角线互相平分. (结论)(2)等腰三角形的两底角相等,(大前提)∠A,∠B是等腰三角形的两底角,(小前提)∠A=∠B. (结论)演绎推理在几何证明中的应用BFD =∠A,DE∥BA,求证:DE=AF.写出“三段论”形式的演绎推理.图2-1-14【精彩点拨】用三段论的模式依次证明:(1)DF∥AE,(2)四边形AEDF为平行四边形,(3)DE=AF.【自主解答】(1)同位角相等,两直线平行,(大前提)∠BFD和∠A是同位角,且∠BFD=∠A,(小前提)所以DF∥AE. (结论)(2)两组对边分别平行的四边形是平行四边形,(大前提)DE∥BA且DF∥EA,(小前提)所以四边形AFDE为平行四边形. (结论)(3)平行四边形的对边相等,(大前提)DE和AF为平行四边形的对边,(小前提)所以DE=AF. (结论)1.用“三段论”证明命题的步骤(1)理清楚证明命题的一般思路;(2)找出每一个结论得出的原因;(3)把每个结论的推出过程用“三段论”表示出来.2.几何证明问题中,每一步都包含着一般性原理,都可以分析出大前提和小前提,将一般性原理应用于特殊情况,就能得出相应结论.[再练一题]2.证明:如果梯形的两腰和一底相等,那么它的对角线必平分另一底上的两个角.【解】已知在梯形ABCD中(如图所示),AB=DC=AD,AC和BD是它的对角线,求证:CA平分∠BCD,BD平分∠CBA.证明:(1)等腰三角形的两底角相等,(大前提)△DAC是等腰三角形,DC=DA,(小前提)∠1=∠2. (结论)(2)两条平行线被第三条直线所截,内错角相等,(大前提)∠1和∠3是平行线AD,BC被AC所截的内错角,(小前提)∠1=∠3. (结论)(3)等于同一个量的两个量相等,(大前提)∠2,∠3都等于∠1,(小前提)∠2和∠3相等.即CA平分∠BCD. (结论)④同理BD平分∠CBA.[探究共研型]演绎推理在代数中的应用探究1【提示】演绎推理的结论不会超出前提所界定的范围,所以在演绎推理中,只要前提和推理形式正确,其结论一定正确.探究2 因为对数函数y =log a x (a >0,a ≠1)是增函数,而y =log 13x 是对数函数,所以y =log 13x 是增函数.上面的推理形式和结论正确吗?【提示】 推理形式正确,结论不正确.因为大前提是错误的.已知a ,b ,m 均为正实数,b <a ,用三段论形式证明:b a <b +ma +m .【精彩点拨】 利用不等式的性质证明.【自主解答】 因为不等式(两边)同乘以一个正数,不等号不改变方向,(大前提) b <a ,m >0, (小前提) 所以mb <ma .(结论) 因为不等式两边同加上一个数,不等号方向不变, (大前提) mb <ma ,(小前提) 所以mb +ab <ma +ab ,即b (a +m )<a (b +m ). (结论) 因为不等式两边同除以一个正数,不等号方向不变, (大前提) b (a +m )<a (b +m ),a (a +m )>0, (小前提) 所以b (a +m )a (a +m )<a (b +m )a (a +m ),即b a <b +m a +m.(结论)代数问题中常见的利用三段论证明的命题1.函数类问题:比如函数的单调性、奇偶性、周期性和对称性等.2.导数的应用:利用导数研究函数的单调区间,求函数的极值和最值,证明与函数有关的不等式等.3.三角函数的图象与性质.4.数列的通项公式、递推公式以及求和,数列的性质.5.不等式的证明.[再练一题]3.“由(a2+a+1)x>3,得x>3a2+a+1”的推理过程中,其大前提是__________.【答案】不等式两边同除以一个正数,不等号方向不变.[构建·体系]演绎推理—三段论—⎪⎪⎪⎪—大前提—小前提—结论1.函数y=2x+5的图象是一条直线,用三段论表示为:大前提:_________________________________________________;小前提:_________________________________________________;结论:____________________________________________________.【答案】一次函数的图象是一条直线函数y=2x+5是一次函数函数y=2x+5的图象是一条直线2.“指数函数y=a x(a>1)是增函数,y=xα(α>1)是指函数,所以y=xα(α>1)是增函数”,在以上演绎推理中,下列说法正确的命题序号是________.①推理完全正确;②大前提不正确;③小前提不正确;④推理形式不正确.【解析】∵y=xα(α>1)是幂函数,而不是指数函数.∴小前提错误.【答案】③3.“公差不为零的等差数列{a n}的前n项和为关于n的没有常数项的二次函数,{b n}的前n项和为S n=n2+3n.所以{b n}为等差数列”.上述推理中,下列说法正确的序号是________.①大前提错误;②小前提错误;③结论错误;④正确.【解析】该推理过程中,大前提、小前提、结论都正确.【答案】④4.三段论“①只有船准时起航,才能准时到达目的港,②这艘船是准时到达目的港的,③这艘船是准时起航的.”中的小前提是序号________.【导学号:97220014】【解析】该推理的大前提是①,小前提是③,结论是②.【答案】③5.用三段论的形式写出下列演绎推理.(1)矩形的对角线相等,正方形是矩形,所以正方形的对角线相等;(2)y=cos x(x∈R)是周期函数.【解】(1)因为矩形的对角线相等,(大前提)而正方形是矩形,(小前提)所以正方形的对角线相等. (结论)(2)因为三角函数是周期函数,(大前提)而y=cos x(x∈R)是三角函数,(小前提)所以y=cos x(x∈R)是周期函数. (结论)我还有这些不足:(1)(2)我的课下提升方案:(1)(2)。
苏教版数学高二数学苏教版选修1-2知识必备合情推理
2.1 合情推理与演绎推理2.1.1 合情推理知识梳理1.从一个或几个已知命题得出另一个新命题的思维过程为___________________,任何推理都包含_____________和_____________两部分._____________是推理所依据的命题,它告诉我们已知的知识是什么;______________________________是根据前提推得的命题,它告诉我们_______________________________________;2.从个别事实中推演出一般性的结论,像这样的推理通常称为_________________________它的思维过程大致是___________________________−→−_________________________−→− _____________________________.3.根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,像这样的推理称为_____________________________________________.简称_________________________;它的思维过程大致是_____________________________−→−_______________________________−→−____________________________. 知识导学归纳推理是由部分到整体,由个别到一般的推理,即从所研究的对象全体中抽取一部分进行观测或试验以取得信息,从而对总体作出推断.由归纳推理所获得的结论,仅是一种猜测,不一定可靠,其可靠性需要通过证明.类比推理是由特殊到特殊的推理,由已解决的问题和已经获得的知识出发,通过类比提出新问题和作出新发现.类比的结论具有或然性.即可能真,也可能假.疑难突破1.归纳推理的一般步骤是什么呢?(1)实验、观察.通过观察个别事物发现某些相同性质.(2)概括、推广:从已知的相同性质中推出一个明确表述的一般性命题,并且在一般情况下,如果归纳的个别情况越多,越具有代表性,那么推广的一般性结论也就越可靠.(3)猜测一般性结论:通过实例去分析、归纳问题的一般性命题.2.类比推理的一般步骤是什么呢?(1)找出两类事物之间的相似性或一致性.(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想),一般情况下,如果类比的两类事物的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的结论就越可靠.类比推理的结论具有或然性,即可能真,也可能假,它是一种由特殊到特殊的认识过程,具有十分重要的实用价值,是一种合情推理.典题精讲【例1】 写出下列推理的前提和结论:(1)对顶角相等;(2)a ⊥b,b ⊥c 则a ⊥c.思路分析:先把问题改写成“如果……那么……”,“因为……所以……”的形式,再进行判断,写出前提和结论.解:(1)对顶角相等,可以写成如果两个角为对顶角,那么这两个角相等.由此可知,前提为两个角是对顶角,结论为两个角相等.(2)a ⊥b,b ⊥c 则a ⊥c 改写成如果a ⊥b,b ⊥c 那么a ⊥c ,前提为a ⊥b,b ⊥c ,结论为a ⊥c.【变式训练】 写出下列推理的前提和结论.(1)两直线平行,同位角相等;(2)a >b,b >c 则a >c.解:(1)条件:两条直线平行,结论:同位角相等.(2)条件为:a >b,b >c.结论为:a >c.【例2】 设f(n)=n 2+n+41,n ∈N *,计算f(1),f(2),f(3),f(4), …f(10)的值,同时作出归纳推理,并用n=40验证猜想的结论是否正确.思路分析:首先分析题目的条件,并对n=1,2,3,4,5,6,7,8,9,10的结果进行归纳推理,发现它们之间的共同性质,猜想出一个明确的一般性命题:解:f(1)=12+1+41=43f(2)=22+2+41=47f(3)=32+3+41=53f(4)=42+4+41=61f(5)=52+5+41=71f(6)=62+6+41=83f(7)=72+7+41=97f(8)=82+8+41=113f(9)=92+9+41=131f(10)=102+10+41=151由此猜想,n 为任何正整数时,f(n)=n 2+n+41都是质数.当n=40时,f(40)=402+40+41=41×41;所以f(40)为合数,因此猜想的结论不正确. 【变式训练】观察21×(1×2-0×1)=1, 21×(2×3-1×2)=2, 21×(3×4-2×3)=3, 21×(4×5-3×4)=4, 由上述事实你能得出怎样的结论?解:因为21×(1×2-0×1)=1, 21×(2×3-1×2)=2, 21×(3×4-2×3)=3, 21×(4×5-3×4)=4, …由此猜想,前n(n ∈N *)个式子的结果为:21×[n×(n+1)-(n-1)×n ]=n.【例3】找出三角形和空间四面体的相似性质,并用三角形的下列性质类比出四面体的有关性质.(1)三角形的两边之和大于第三边;(2)三角形的中位线等于第三边的一半,并且平行于第三边;(3)三角形的三条内角平分线交于一点,且这个点是三角形内切圆的圆心;(4)三角形的面积为S=21(a+b+c)r(r为内切圆的半径).思路分析:首先充分认识三角形、空间四面体的相同(或相似)之处,再进行类比,类比时要抓住本质,充分考虑两类事物之间的联系.解:三角形和四面体有下列共同性质.(1)三角形是平面内由线段围成的最简单的封闭图形,四面体是空间中由平面三角形所围成的最简单的封闭图形.(2)三角形可以看作平面上一条线段外一点及这条线段上的各点所形成的图形;四面体可以看作三角形外一点与这个三角形上各点的连线所围成的图形.三角形四面体三角形的两边之和大于第三边[]四面体任意三个面的面积之和大于第四个面的面积.三角形的中位线等于第三边的一半,并且平行于第三边.四面体的中位面的面积第于第四个面面积的41,且平行于第四个面.三角形的三条内角平分线交于一点,且这个点是三角形的内切圆的圆心四面体的六个二面角的平分面交于一点,且这个点是四面体内切线的球心三角形的面积为S=21(a+b+c)r(r为三角形内切圆的半径)四面体的体积为V=31(S1+S2+S3+S4)r,S1、S2、S3、S4为四个面的面积,r为内切球的半径【变式训练】类比平面内直角三角形的勾股定理,试给出空间四面体性质的猜想.解:如下图所示,在Rt△ABC中,∠C=90°,设a、b、c分别表示3条边的长度,由勾股定理得c2=a2+b2,(1) (2)类似地,在四面体P—DEF中,∠PDF=∠PDE=∠EDF=90°,设S1、S2、S3和S分别表示△PDF,△PDE,△EDF和△PEF的面积图(2),相应于图(1)中直角三角形的两条直角边a、b和1条斜边c,图(2)中的四面体有3个“直角面”,S1、S2、S3,和1个“斜面”S,于是,类比勾股定理的结论,我们猜想S2=232221SSS++成立.问题探究如图2-1-1所示,有三根针和套在一根针上的若干金属片.按下规则,把金属片从一根针上全部移到另一根针上.图2-1-11.每次只能移动1个金属片;2.较大的金属片不能放在较小的金属片上面.试推测:把n个金属片从1号针移到3号针,最少需要移动多少次?导思:我们从移动1,2,3,4个金属片的情形入手,探究其中的规律性,进而归纳出移动n 个金属片所需的次数.探究:当n=1时,只需把金属片从1号针移到3号针,用符号(13)表示,共移动了1次.当n=2时,为了避免将较大的金属片放在较小的金属片上面,我们利用2号针作为“中间针”,移动的顺序是:(1)把第1个金属片从1号针移到2号针;(2)把第2个金属片从1号针移到3号针;(3)把第1个金属片从2号针移到3号针.用符号表示为(12)(13)(23),共移动了3次.当n=3时,把上面两个金属片作为一个整体,则归结为n=2的情形,移动的顺序是:(1)把上面两个金属片从1号针移到2号针;(2)把第3个金属片从1号针移到3号针;(3)把上面3个金属片从1号针移到3号针.其中(1)和(3)都需要借助中间针,用符号表示为(13)(12)(32)(13)(21)(23)(13),共移动了7次.当n=4时,把上面3个金属片作为一个整体,移动的顺序是:(1)把上面3个金属片从1号针移到2号针;(2)把第4个金属片从1号针移到3号针;(3)把上面3个金属片从2号针移到3号针.用符号表示为(12)(13)(23)(12)(31)(32)(12)(13)(23)(21)(31)(23)(12)(13)(23).共移动了15次.至此,我们得到依次移动1,2,3,4个金属片所需次数构成的数列1,3,7,15.观察这个数列,可以发现其中蕴含着如下规律:1=21-1,3=22-1,7=23-1,15=24-1.由此我们猜想:若把n个金属片从1号针移到3号针,最少需要移动a n次,则数列{a n}的通项公式为a n=2n-1(n∈N*).通过探究上述n=1,2,3,4时的移动方法,我们可以归纳出对n个金属片都适用的移动方法.当移动n个金属片时,可分为下列3个步骤:(1)将上面(n-1)个金属片从1号针移到2号针;(2)将第n 个金属片从1号针移到3号针;(3)将上面(n-1)个金属片从2号针移到3号针.这样就把移动n 个金属片的任务.转化为移动两次(n-1)个金属片和移动一次第n 个金属片的任务.而移动(n-1)个金属片需要移动两次(n-2)个金属片和移动一次第(n-1)个金属片,移动(n-2)个金属片需要移动两次(n-3)个金属片和移动一次第(n-2)个金属片……如此继续,直到转化为移动1个金属片的情形.根据这个过程,可得递推公式⎩⎨⎧>+==-).1(12,111n a a a n n从这个递推公式出发,可以证明上述通项公式是正确的.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1合情推理与演绎推理2.1.1合情推理[学习目标] 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理.2.了解合情推理在数学发展中的作用.[知识链接]1.归纳推理和类比推理的结论一定正确吗?答归纳推理的结论超出了前提所界定的范围,其前提和结论之间的联系不是必然性的,而是或然性的,结论不一定正确.类比推理是从人们已经掌握了的事物的特征,推测正在被研究中的事物的特征,所以类比推理的结果具有猜测性,不一定可靠.2.由合情推理得到的结论可靠吗?答一般来说,由合情推理所获得的结论,仅仅是一种猜想,未必可靠,例如,费马猜想就被数学家欧拉推翻了.[预习导引]1.归纳推理(1)定义:从个别事实中推演出一般性的结论的推理称为归纳推理.归纳推理的思维过程大致是实验、观察→概括、推广→猜测一般性结论.(2)归纳推理的特点:①归纳推理是从特殊到一般的推理;②由归纳推理得到的结论不一定正确;③归纳推理是一种具有创造性的推理.2.类比推理(1)类比推理的定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,像这样的推理通常称为类比推理,简称类比法.(2)类比推理的思维过程:观察、比较→联想、类推→猜测新的结论3.合情推理合情推理是根据已有的事实、正确的结论、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程.归纳推理和类比推理是数学活动中常用的合情推理.要点一归纳推理的应用例1观察如图所示的“三角数阵”1 (1)2 2 (2)34 3 (3)477 4 (4)5 11 14 11 5 (5)…………记第n(n>1)行的第2个数为a n(n≥2,n∈N*),请仔细观察上述“三角数阵”的特征,完成下列各题:(1)第6行的6个数依次为________、________、________、________、________、________;(2)依次写出a2、a3、a4、a5;(3)归纳出a n+1与a n的关系式.解由数阵可看出,除首末两数外,每行中的数都等于它上一行的肩膀上的两数之和,且每一行的首末两数都等于行数.(1)6,16,25,25,16,6(2)a2=2,a3=4,a4=7,a5=11(3)∵a3=a2+2,a4=a3+3,a5=a4+4由此归纳:a n+1=a n+n.规律方法对于数阵问题的解决方法,既要清楚每行、每列数的特征,又要对上、下行,左、右列间的关系进行研究,找到规律,问题即可迎刃而解.跟踪演练1根据下列条件,写出数列中的前4项,并归纳猜想它的通项公式.(1)a1=3,a n+1=2a n+1;(2)a 1=a ,a n +1=12-a n;(3)对一切n ∈N *,a n >0,且2S n =a n +1. 解 (1)由已知可得a 1=3=22-1, a 2=2a 1+1=2×3+1=7=23-1, a 3=2a 2+1=2×7+1=15=24-1, a 4=2a 3+1=2×15+1=31=25-1. 猜想a n =2n +1-1,n ∈N *.(2)由已知可得a 1=a ,a 2=12-a 1=12-a ,a 3=12-a 2=2-a 3-2a ,a 4=12-a 3=3-2a 4-3a .猜想a n =(n -1)-(n -2)a n -(n -1)a (n ∈N *).(3)∵2S n =a n +1,∴2S 1=a 1+1, 即2a 1=a 1+1,∴a 1=1. 又2S 2=a 2+1, ∴2a 1+a 2=a 2+1,∴a 22-2a 2-3=0.∵对一切n ∈N *,a n >0,∴a 2=3. 同理可求得a 3=5,a 4=7, 猜想出a n =2n -1(n ∈N *). 要点二 类比推理的应用 例2如图所示,在△ABC 中,射影定理可表示为a =b ·cos C +c ·cos B ,其中a ,b ,c 分别为角A ,B ,C 的对边.类比上述定理,写出对空间四面体性质的猜想. 解如右图所示,在四面体P -ABC 中,设S 1,S 2,S 3,S 分别表示△P AB ,△PBC ,△PCA ,△ABC 的面积,α,β,γ依次表示面P AB ,面PBC ,面PCA 与底面ABC 所成二面角的大小. 我们猜想射影定理类比推理到三维空间,其表现形式应为S =S 1·cos α+S 2·cos β+S 3·cos γ. 规律方法 (1)类比推理的基本原则是根据当前问题的需要,选择适当的类比对象,可以从几何元素的数目、位置关系、度量等方面入手.由平面中的相关结论可以类比得到空间中的相关结论.(2)平面图形与空间图形的类比:跟踪演练2 已知P (x 0,y 0)P 点的切线方程的斜率可通过如下方式求得:在y 2=2px 两边同时对x 求导,得2yy ′=2p ,则y ′=py ,所以过P 的切线的斜率k =p y 0.类比上述方法求出双曲线x 2-y 22=1在P (2,2)处的切线方程为________.答案 2x -y -2=0解析 将双曲线方程化为y 2=2(x 2-1),类比上述方法两边同时对x 求导得2yy ′=4x ,则y ′=2x y ,即过P 的切线的斜率k =2x 0y 0,由于P (2,2),故切线斜率k =222=2,因此切线方程为y -2=2(x -2),整理得2x -y -2=0. 要点三 平面图形与空间图形的类比 例3 三角形与四面体有下列相似性质:(1)三角形是平面内由直线段围成的最简单的封闭图形;四面体是空间中由三角形围成的最简单的封闭图形.(2)三角形可以看作是由一条线段所在直线外一点与这条线段的两个端点的连线所围成的图形;四面体可以看作是由三角形所在平面外一点与这个三角形三个顶点的连线所围成的图形.通过类比推理,根据三角形的性质推测空间四面体的性质填写下表:规律方法将平面几何中的三角形、长方形、圆、面积等和立体几何中的三棱锥、长方体、球、体积等进行类比,是解决和处理立体几何问题的重要方法.跟踪演练3类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列哪些性质,你认为比较恰当的是________.①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.答案①②③解析由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,叫类比推理,上述三个结论均符合推理结论,故均正确.1.下列推理中,是归纳推理的有________.①A ,B 为定点,动点P 满足P A +PB =2a >AB ,得P 的轨迹为椭圆; ②由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜出数列的前n 项和S n 的表达式; ③由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b 2=1的面积S =πab ; ④科学家利用鱼的沉浮原理制造潜艇. 答案 ②解析 从S 1,S 2,S 3猜想出数列的前n 项和S n 是从特珠到一般的推理.2.下图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子的颜色是________.答案 白色解析 由图知:三白二黑周而复始相继排列,36÷5=7余1.∴第36颗珠子的颜色为白色. 3.将全体正整数排成一个三角形数阵:1 2 3 4 5 67 8 9 1011 12 13 14 15……………………按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为________. 答案 n 2-n +62解析 前n -1行共有正整数1+2+…+(n -1)个,即n 2-n2个,因此第n 行第3个数是全体正整数中第n 2-n 2+3个,即为n 2-n +62.4.古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n ,六边形数 N (n,6)=2n 2-n ………………………………………可以推测N (n ,k )的表达式,由此计算N (10,24)=____________. 答案 1 000解析 由N (n,4)=n 2,N (n,6)=2n 2-n , 可以推测:当k 为偶数时, N (n ,k )=k -22n 2+4-k 2n ,∴N (10,24)=24-22×100+4-242×10=1 100-100=1 000.1.合情推理是指“合乎情理”的推理,数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向.合情推理的过程概括为:从具体问题出发→观察、分析、比较、联想→归纳、类比→提出猜想 一般来说,由合情推理所获得的结论,仅仅是一种猜想,其可靠性还需进一步证明. 2.归纳推理与类比推理都属合情推理:(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理,称为归纳推理.它是一种由部分到整体,由个别到一般的推理.(2)类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,它是一种由特殊到特殊的推理.一、基础达标1.下面几种推理是合情推理的是________. ①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和都是180°,归纳出所有三角形的内角和是180°;③某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸n 边形内角和是(n -2)·180°. 答案 ①②④2.对于平面几何中的命题:“夹在两条平行线之间的平行线段相等”,在立体几何中,类比上述命题,可以得到命题:“__________”,这个类比命题的真假性是__________. 答案 夹在两平行平面间的平行线段相等 真命题 3.观察下列等式:1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,由此推测第n 个等式为________________________________________________________________________ ________________________________________________________________________. 答案 12-22+32-42+…+(-1)n -1·n 2=(-1)n -1·(1+2+3+…+n )4.如图(1)有面积关系:S △P A ′B ′S △P AB =P A ′·PB ′P A ·PB ,则图(2)有体积关系:V P -A ′B ′C ′V P -ABC=________.答案P A ′·PB ′·PC ′P A ·PB ·PC解析 把平面中三角形的知识类比到空间三棱锥中,得V P -A ′B ′C ′V P -ABC =P A ′·PB ′·PC ′P A ·PB ·PC .5.观察下列等式:13+23=(1+2)2,13+23+33 =(1+2+3)2,13+23+33+43=(1+2+3+4)2,…,根据上述规律,第四个等式为________________________________________________________________________. 答案 13+23+33+43+53=(1+2+3+4+5)2(或152)解析 观察前3个等式发现等式左边分别是从1开始的两个数、三个数、四个数的立方和,等式右边分别是这几个数的和的平方,因此可得第四个等式是:13+23+33+43+53=(1+2+3+4+5)2=152. 6.观察下列等式1=12+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49…照此规律,第n 个等式为________________________________________________________________________. 答案 n +(n +1)+…+(3n -2)=(2n -1)27.在△ABC 中,若∠C =90°,则cos 2A +cos 2B =1,用类比的方法,猜想三棱锥的类似性质,并证明你的猜想.解 由平面类比到空间,有如下猜想:“在三棱锥P -ABC 中,三个侧面P AB ,PBC ,PCA 两两垂直,且与底面所成的角分别为α,β,γ,则cos 2α+cos 2β+cos 2γ=1”. 证明 设P 在平面ABC 的射影为O ,延长CO 交AB 于M ,记PO =h , 由PC ⊥P A ,PC ⊥PB 得PC ⊥面P AB ,从而PC ⊥PM ,又∠PMC =α, cos α=sin ∠PCO =h PC ,cos β=h P A ,cos γ=h PB ,∵V P -ABC =16P A ·PB ·PC =13⎝⎛12P A ·PB cos α+ 12PB ·⎭⎫PC cos β+12PC ·P A cos γ·h ,∴⎝⎛⎭⎫cos αPC +cos βP A +cos γPB h =1, 即cos 2 α+cos 2 β+cos 2 γ=1. 二、能力提升8.设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c,类比这个结论可知:四面体S -ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为r ,四面体S -ABC 的体积为V ,则r =________. 答案3VS 1+S 2+S 3+S 4解析设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为V 四面体A -BCD =13(S 1+S 2+S 3+S 4)R ,∴R =3V S 1+S 2+S 3+S 4. 9.观察分析下表中的数据:答案 F +V -E =2解析 观察F ,V ,E 的变化得F +V -E =2. 10.观察下列等式:12=1 12-22=-3 12-22+32=6 12-22+32-42=-10 …照此规律, 第n 个等式可为________________________________________________________________________. 答案12-22+32-…+(-1)n -1n 2=(-1)n +12n (n +1) 解析 分n 为奇数、偶数两种情况. 当n为偶数时,分组求和:(12-22)+(32-42)+…+[(n -1)2-n 2]=-n (n +1)2. 当n 为奇数时,第n 个等式=-n (n -1)2+n 2=n (n +1)2.综上,第n个等式:12-22+32-…+(-1)n -1n 2=(-1)n +12n (n +1). 11.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin 13°cos 17°; ②sin 215°+cos 215°-sin 15°cos 15°; ③sin 218°+cos 212°-sin 18°cos 12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos 48°;⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.解 (1)选择②式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30° =1-14=34. (2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α·(cos 30°·cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α =34sin 2α+34cos 2α=34. 12.(1)椭圆C :x 2a 2+y 2b2=1(a >b >0)与x 轴交于A 、B 两点,点P 是椭圆C 上异于A 、B 的任意一点,直线P A 、PB 分别与y 轴交于点M 、N ,求证:AN →·BM →为定值b 2-a 2.(2)类比(1)可得如下真命题:双曲线x 2a 2-y 2b2=1(a >0,b >0)与x 轴交于A 、B 两点,点P 是双曲线C 上异于A 、B 的任意一点,直线P A 、PB 分别与y 轴交于点M 、N ,求证AN →·BM →为定值,请写出这个定值(不要求写出解题过程).(1)证明 设点P (x 0,y 0)(x 0≠±a ),依题意,得A (-a,0),B (a,0),所以直线P A 的方程为y =y 0x 0+a(x +a ). 令x =0,得y M =ay 0x 0+a, 同理得y N =-ay 0x 0-a, 所以y M y N =a 2y 20a 2-x 20.又点P (x 0,y 0)在椭圆上,所以x 20a 2+y 20b 2=1, 因此y 20=b 2a 2(a 2-x 20), 所以y M y N =a 2y 20a 2-x 20=b 2. 因为AN →=(a ,y N ),BM →=(-a ,y M ),所以AN →·BM →=-a 2+y M y N =b 2-a 2.(2)解 定值为-(a 2+b 2).三、探究与创新13.在平面几何中,对于Rt △ABC ,设BC =a ,CA =b ,AB =c ,C =90°.则(1)a 2+b 2=c 2;(2)cos 2A +cos 2B =1;(3)Rt △ABC 的外接圆的半径r =12a 2+b 2;(4)S △ABC =12ab .把上面的结论类比到空间,写出相类似的结论.解 (1)设三个两两垂直的侧面的面积分别为S 1,S 2,S 3,底面面积为S ,则S 21+S 22+S 23=S 2. (检验:设P A ,PB ,PC 两两互相垂直,P A =m ,PB =n ,PC =t ,PE ⊥AB 于点E ,则 S 2=14(m 2+n 2)·(t 2+m 2n 2m 2+n 2)=S 21+S 22+S 23) (2)设三个两两垂直的侧面与底面所成的角分别为α,β,γ,则cos 2α+cos 2β+cos 2γ=1. (检验:因为S 1=S cos α,S 2=S cos β,S 3=S cos γ)(3)设三个两两垂直的侧面形成的侧棱长分别为m 、n 、t ,则这个直四面体的外接球的半径R =m 2+n 2+t 22.(检验:补形为长、宽、高分别为m 、n 、t 的长方体) (4)设三个两两垂直的侧面形成的侧棱长分别为m 、n 、t ,则这个直四面体的体积为V =16mnt .。