离散数学及其应用(课后习题)

合集下载

离散数学及其应用集合论部分课后习题答案

离散数学及其应用集合论部分课后习题答案
证明:
34、设A,B为集合,证明:如果 ,则 。
证明:(反证法)
设 ,则 ,
所以 ;
所以
但是 。
与 矛盾。
37、设A,B,C为任意集合,证明: 。
证明:
对任意 ,由于 ,所以 且 所以
因此, 。
P121:习题七
5、设A,B为任意集合,证明
若 ,则 。
证明:
所以有
9、设 ,列出下列关系R
(2)
(3)
解答:
(2)不是,由于 集合较小,
①自反性:
②对称性,
但是传递性不满足, ,但是 。
(3)不是,满足对称性、传递性,但是不满足自反性
取 ,但是 不为奇数,所以 。
(5)满足
①自反性:
②对称性:
③传递性:
下面证明
若 ,则 ,所以
若 ,则 ,所以
所以 ,同理可证,
所以
所以 。因此满足传递性。
27、设 A上的等价关系
(2)不存在反函数,因为不是双射函数;
(3)
22、对于以下集合A和B,构造从A到B的双射函数。
(1)
(2)
(3)
(4)
解答:
(1)
(2)
(3)
(4)
作业答案:集合论部分
P90:习题六
5、确定下列命题是否为真。
(2)
(4)
(6)
解答:(2)假(4)真(6)真
8、求下列集合的幂集。
(5)
(6)
解答:
(5)集合的元素彼此互不相同,所以 ,所以该题的结论应该为
(6)
9、设 , , , ,求下列集合。
(1)
(2)
解答:
(1)

离散数学课后习题答案(最新)

离散数学课后习题答案(最新)

习题参考解答习题1.11、(3)P:银行利率降低Q:股价没有上升P∧Q(5)P:他今天乘火车去了北京Q:他随旅行团去了九寨沟PQ(7)P:不识庐山真面目Q:身在此山中Q→P,或~P→~Q(9)P:一个整数能被6整除Q:一个整数能被3整除R:一个整数能被2整除T:一个整数的各位数字之和能被3整除P→Q∧R ,Q→T2、(1)T (2)F (3)F (4)T (5)F(6)T (7)F (8)悖论习题 1.31(3))()()()()()(R P Q P R P Q P R Q P R Q P →∨→⇔∨⌝∨∨⌝⇔∨∨⌝⇔∨→(4)()()()(())()(()())(())()()()()P Q Q R R P P R Q R P P R R P Q R P P R P R Q R Q P ∧∨∧∨∧=∨∧∨∧=∨∨∧∧∨∧=∨∧∨∧∨∧∨=右2、不, 不, 能习题 1.41(3) (())~((~))(~)()~(~(~))(~~)(~)P R Q P P R Q P P R T P R P R Q Q P R Q P R Q →∧→=∨∧∨=∨∧=∨=∨∨∧=∨∨∧∨∨、主合取范式)()()()()()()()()()()()()()())(())(()()(())()())(()((Q P R P Q R P Q R R Q P R Q P R Q P Q P R Q P R P Q R P Q R R Q P R Q P R Q P R Q P Q Q P R P P Q R R R Q Q P P R Q R P P Q R P P Q R P ∧∧∨∧⌝∧∨⌝∧⌝∧∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧⌝=∧∧∨⌝∧∧∨∧⌝∧∨⌝∧⌝∧∨∧⌝∧⌝∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧⌝=∨⌝∧∧∨∨⌝∧⌝∧∨∨⌝∧∨⌝∧⌝=∧∨⌝∧∨⌝=∨⌝∧∨⌝=→∧→ ————主析取范式(2) ()()(~)(~)(~(~))(~(~))(~~)(~)(~~)P Q P R P Q P R P Q R R P R Q Q P Q R P Q R P R Q →∧→=∨∧∨=∨∨∧∧∨∨∧=∨∨∧∨∨∧∨∨ 2、()~()(~)(~)(~~)(~)(~~)P Q R P Q R P Q P R P Q R P Q R P R Q →∧=∨∧=∨∧∧=∨∨∧∨∨∧∨∨∴等价3、解:根据给定的条件有下述命题公式:(A →(C ∇D ))∧~(B ∧C )∧~(C ∧D )⇔(~A ∨(C ∧~D )∨(~C ∧D ))∧(~B ∨~C )∧(~C ∨~D )⇔((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨(~A ∧~C )∨(C ∧~D ∧~C )∨(~C ∧D ∧~C ))∧(~C ∨~D )⇔((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨(~A ∧~C )∨(~C ∧D ∧~C )) ∧(~C ∨~D )⇔(~A ∧~B ∧~C )∨(C ∧~D ∧~B ∧~C )∨(~C ∧D ∧~B ∧~C )∨ (~A ∧~C ∧~C )∨(~C ∧D ∧~C ∧~C )∨(~A ∧~B ∧~D )∨(C ∧~D ∧~B ∧~D )∨(~C ∧D ∧~B ∧~D )∨(~A ∧~C ∧~D )∨ (~C ∧D ∧~C ∧~D )(由题意和矛盾律)⇔(~C ∧D ∧~B )∨(~A ∧~C )∨(~C ∧D )∨(C ∧~D ∧~B )⇔(~C ∧D ∧~B ∧A )∨ (~C ∧D ∧~B ∧~A )∨ (~A ∧~C ∧B )∨ (~A ∧~C ∧~B )∨ (~C ∧D ∧A )∨ (~C ∧D ∧~A )∨(C ∧~D ∧~B ∧A )∨(C ∧~D ∧~B ∧~A )⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨ (~A ∧~C ∧B ∧~D )∨(~A ∧~C ∧~B ∧D )∨ (~A ∧~C ∧~B ∧~D )∨(~C ∧D ∧A ∧B )∨ (~C ∧D ∧A ∧~B )∨ (~C ∧D ∧~A ∧B )∨ (~C ∧D ∧~A ∧~B )∨(C ∧~D ∧~B ∧A )∨(C ∧~D ∧~B ∧~A ) ⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨ (~C ∧D ∧A ∧~B )∨ (~C ∧D ∧~A ∧B ) ∨(C ∧~D ∧~B ∧A )⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨(C ∧~D ∧~B ∧A ) 三种方案:A 和D 、 B 和D 、 A 和C习题 1.51、 (1)需证()(())P Q P P Q →→→∧为永真式()(())~(~)(~())~~(~)(()(~))~(~)(~)()P Q P P Q P Q P P Q P P P Q P Q TP Q P Q T P Q P P Q →→→∧=∨∨∨∧∨=∨∨∧∨=∨∨∨=∴→⇒→∧(3)需证S R P P →∧⌝∧为永真式SR P P T S F S R F S R P P ⇒∧⌝∧∴⇔→⇔→∧⇔→∧⌝∧3A B A B ⇒∴→ 、为永真式。

离散数学课后习题答案(第三章)(doc)

离散数学课后习题答案(第三章)(doc)
R={<a,b>,<b,a>,<b,c>,<c,d>}
a) 用矩阵运算和作图方法求出 R 的自反、对称、传递闭包; b) 用 Warshall 算法,求出 R 的传递闭包。
解 a) 0 1 00
MR= 1 0 1 0 0 0 01
0 0 00
R 的关系图如图所示。
a
b
d
c
MR+MIA=
0 1 00 1 0 10
反之,若 S∩ScIX,设<x,y>∈S 且 <y,x>∈S,则 <x,y>∈S∧<x,y>∈Sc <x,y>∈S∩Sc <x,y>∈IX 故 x=y,即 S 是反对称的。
3-7.3 设 S 为 X 上的关系,证明若 S 是自反和传递的,则 S○S=S,其逆为真 吗?
证明 若 S 是 X 上传递关系,由习题 3-7.2a)可知(S○S)S, 令<x,y>∈S,根据自反性,必有< x,x> ∈S, 因此有< x,y >∈S○S, 即 SS○S。得到 S=S○S.
自反的; b)若 R1 和 R2 是反自反的,则 R1○R2 也
是反自反的; c)若 R1 和 R2 是对称的,则 R1○R2 也是
对称的; d)若 R1 和 R2 是传递的,则 R1○R2 也是
传递的。
证明 a)对任意 a∈A,设 R1 和 R2 是自 反的,则<a,a>∈R1,<a,a>∈R2 所以,<a,a>∈R1○R2,即 R1○R2 也是 自反的。
解:L= {<1,2>,<1,3>,<1,6>,<2,3>,<2,6>, <3,6>,<1,1>,<2,2>,<3,3>,<6,6>} D={<1,2>,<1,3>,<1,6>, <2,6>,<3,6>,<1, 1>,<2,2>,<3,3>,<6,6>} L∩D= {<1,2>,<1,3>,<1,6>,<2,6>,<3,6>,<1,1>, <2,2>,<3,3>,<6,6>}

离散数学及其应用第8版答案1

离散数学及其应用第8版答案1

离散数学及其应用第8版答案1.4节1、16.5-(-3)-2的计算结果为()[单选题] *A.3B.4C.0D.6(正确答案)2、50.式子(2+1)(22+1)(24+1)(28+1)…(21024+1)+1化简的结果为()[单选题] *A.21024B.21024+1C.22048(正确答案)D.22048+13、42.已知m、n均为正整数,且2m+3n=5,则4m?8n=()[单选题] *A.16B.25C.32(正确答案)D.644、函数f(x)=-2x+5在(-∞,+∞)上是()[单选题] *A、增函数B、增函数(正确答案)C、不增不减D、既增又减5、9.已知关于x,y的二元一次方程组的解满足x+y=8,则k的值为( ) [单选题] *A.4B.5C.-6D.-8(正确答案)6、f(x)=-2x+5在x=1处的函数值为()[单选题] *A、-3B、-4C、5D、3(正确答案)7、5.将△ABC的三个顶点的横坐标乘以-1,纵坐标不变,则所得图形与原图的关系是( ) [单选题] *A.关于x轴对称B.关于y轴对称(正确答案)C.关于原点对称D.将原图向x轴的负方向平移了1个单位长度8、25.{菱形}∩{矩形}应()[单选题] *A.{正方形}(正确答案)B.{矩形}C.{平行四边形}D.{菱形}9、11.11点40分,时钟的时针与分针的夹角为()[单选题] * A.140°B.130°C.120°D.110°(正确答案)10、8.如图,在数轴上表示的点可能是()[单选题] * A.点PB.点Q(正确答案)C.点MD.点N11、x? ?1·()=x? ?1,括号内应填的代数式是( ) [单选题] *A. x? ?1B. x? ?1C. x2(正确答案)D. x12、29.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()[单选题] *A.ab=cB.a+b=c(正确答案)C.a:b:c=1:2:10D.a2b2=c213、1.(必修1P5B1改编)若集合P={x∈N|x≤2 022},a=45,则( ) [单选题] *A.a∈PB.{a}∈PC.{a}?PD.a?P(正确答案)14、13.不等式x+3>5的解集为()[单选题] *A. x>1B. x>2(正确答案)C. x>3D. x>415、30°角是()[单选题] *A、第一象限(正确答案)B、第一象限C、第三象限D、第四象限16、1.计算-20+19等于()[单选题] *A.39B.-1(正确答案)C.1D.3917、设函数在闭区间[0,1]上连续,在开区间(0,1)上可导,且(x)>0 则()[单选题] *A、f(0)<0B、f(0)<1C、f(1)>f(0)D、f(1)<f(0)(正确答案)18、15、如果m/n<0,那么点P(m,n)在()[单选题] *A. 第二象限B. 第三象限C. 第四象限D. 第二或第四象限(正确答案)19、8.数轴上一个数到原点距离是8,则这个数表示为多少()[单选题] * A.8或﹣8(正确答案)B.4或﹣4C.8D.﹣420、23.将x-y-6=0改写成用含x的式子表示y的形式为()[单选题] *A. x=y+6B. y=x-6(正确答案)C. x=6-yD. y=6=x21、12.下列方程中,是一元二次方程的为()[单选题] *A. x2+3xy=4B. x+y=5C. x2=6(正确答案)D. 2x+3=022、下面哪个式子的计算结果是9﹣x2() [单选题] *A. (3﹣x)(3+x)(正确答案)B. (x﹣3)(x+3)C. (3﹣x)2D. (3+x)223、如果平面a和平面β有公共点A,则这两个平面就相交()[单选题] *A、经过点A的一个平面B、经过点A的一个平面(正确答案)C、点AD、无法确定24、为筹备班级联欢会,班长对全班同学爱吃哪几种水果做了民意调查,然后决定买什么水果,最值得关注的应该是统计调查数据的( ) [单选题] *A.中位数B.平均数C.众数(正确答案)D.方差25、3.如果两个数的和是正数,那么[单选题] *A.这两个数都是正数B.一个为正,一个为零C.这两个数一正一负,且正数的绝对值较大D.必属上面三种情况之一(正确答案)26、8.一实验室检测A、B、C、D四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是()[单选题] *A.+2B.-3C.+9D.-8(正确答案)27、直线2x+y+m=0和x+2y+n=0的位置关系是()[单选题] *A、平行B、平行C、相交但不垂直(正确答案)D、不能确定28、2005°角是()[单选题] *A、第二象限角B、第二象限角(正确答案)C、第二或第三象限角D、第二或第四象限角29、f(x)=-2x+5在x=1处的函数值为()[单选题] *A、-3B、-4C、5D、3(正确答案)30、下列表示正确的是()[单选题] *A、0={0}B、0={1}C、{x|x2 =1}={1,-1}(正确答案)D、0∈φ。

离散数学及应用课后习题答案

离散数学及应用课后习题答案

离散数学及应用课后习题答案【篇一:离散数学及其应用图论部分课后习题答案】p165:习题九1、给定下面4个图(前两个为无向图,后两个为有向图)的集合表示,画出它们的图形表示。

(1)g1??v1,e1?,v1?{v1,v2,v3,v4,v5},e1?{(v1,v2),(v2,v3),(v3,v4),(v3,v3),(v4,v5)} (2)g2??v2,e2?,v2?v1,e1?{(v1,v2),(v2,v3),(v3,v4),(v4,v5),(v5,v1)} (3)d1??v3,e3?,v3?v1,e3?{?v1,v2?,?v2,v3?,?v3,v2?,?v4,v5?,?v5,v 1?} (4)d2??v4,e4?,v4?v1,e3?{?v1,v2?,?v2,v5?,?v5,v2?,?v3,v4?,?v4,v 3?} 解答:(1)(2)10、是否存在具有下列顶点度数的5阶图?若有,则画出一个这样的图。

(1)5,5,3,2,2;(2)3,3,3,3,2;(3)1,2,3,4,5;(4)4,4,4,4,4 解答:(1)(3)不存在,因为有奇数个奇度顶点。

14、设g是n(n?2)阶无向简单图,g是它的补图,已知?(g)?k1,?(g)?k2,求?(g),(g)。

解答:?(g)?n?1?k2;?(g)?n?1?k1。

15、图9.19中各对图是否同构?若同构,则给出它们顶点之间的双射函数。

解答:(c)不是同构,从点度既可以看出,一个点度序列为4,3,3,3,3而另外一个为4,4,3,3,1(d)同构,同构函数为12f(x)345解答:(1)三条边一共提供6度;所以点度序列可能是x?ax?bx?c x?dx?e16、画出所有3条边的5阶简单无向图和3条边的3阶简单无向图。

①3,3,0,0,0,0;②3,2,1,0,0,0;③3,1,1,1,0,0;④2,2,2,0,0,0;⑤2,2,1,1,0,0;⑥2,1,1,1,1,0;⑦1,1,1,1,1,1;由于是简单图,①②两种情形不可能图形如下:(2)三条边一共提供6度,所以点度序列可能为①3,3,0;②3,2,1;③2,2,2 由于是简单图,①②两种情形不可能21、在图9.20中,下述顶点序列是否构成通路?哪些是简单通路?哪些是初级通路?哪些是回路?哪些是简单回路?哪些是初级回路?(1)a,b,c,d,b,e;(2)a,b,e,d,b,a;(3)a,d,c,e,b;(4)d,b,a,c,e;(5)a,b,c,d,e,b,d,c;(6)a,d,b,e,c,b,d;(7)c,d,a,b,c;(8)a,b,c,e,b 解答:(1)构成通路,且为初级通路,因为点不重复(2)构成了回路,但是不为简单回路和初级回路,因为有重复的边(a,b) (3)构成了初级通路,因为点不重复;(4)不构成通路,因为边(a,c)不存在;(5)构成通路,但是不为简单通路和初级通路,因为有重复的边(d,c) (6)构成了回路,但是不为简单回路和初级回路,因为有重复的边(d,b) (7)构成了初级通路;(8)简单通路,但是不为初级通路,有重复边。

离散数学及其应用张剑妹课后答案

离散数学及其应用张剑妹课后答案

离散数学及其应用张剑妹课后答案1、14.在防治新型冠状病毒的例行体温检查中,检查人员将高出37℃的部分记作正数,将低于37℃的部分记作负数,体温正好是37℃时记作“0”。

记录一被测人员在一周内的体温测量结果分别为+1,-3,-5,+1,-6,+2,-4,那么,该被测者这一周中测量体温的平均值是(??)[单选题] *A.1℃B.31℃C.8℃(正确答案)D.69℃2、37、已知A(3,﹣2),B(1,0),把线段AB平移至线段CD,其中点A、B分别对应点C、D,若C(5,x),D(y,0),则x+y的值是()[单选题] *A.﹣1B.0C.1(正确答案)D.23、下列计算正确的是()[单选题] *A. a2+a2=2a?B. 4x﹣9x+6x=1C. (﹣2x2y)3=﹣8x?y3(正确答案)D. a6÷a3=a24、如果四条不共点的直线两两相交,那么这四条直线()[单选题] *A、必定在同一平面内B、必定在同一平面内C可能在同一平面内,也可能不在同一平面内(正确答案)D、无法判断5、-330°是第()象限角?[单选题] *第一象限(正确答案)第二象限第三象限第四象限6、6.若x是- 3的相反数,|y| = 5,则x + y的值为()[单选题] *A.2B.8C. - 8或2D.8或- 2(正确答案)7、18.下列说法正确的是()[单选题] *A.“向东10米”与“向西10米”不是相反意义的量B.如果气球上升25米记作+25米,那么-15米的意义就是下降-15米C.如果气温下降6℃,记为-6℃,那么+8℃的意义就是下降8℃D.若将高1米设为标准0,高20米记作+20米,那么-05米所表示的高是95米(正确答案)8、下列计算正确的是( ) [单选题] *A. 9a3·2a2=18a?(正确答案)B. 2x?·3x?=5x?C. 3 x3·4x3=12x3D. 3y3·5y3=15y?9、计算的结果是( ) [单选题] *A. -p2?(正确答案)B. p2?C. -p1?D. p1?10、已知二次函数f(x)=2x2-x+2,那么f(0)的值为()。

(完整版)离散数学及其应用(课后习题)

(完整版)离散数学及其应用(课后习题)

习题1.12. 指出下列命题是原子命题还是复合命题。

(3)大雁北回,春天来了。

(4)不是东风压倒西风,就是西风压倒东风。

(5)张三和李四在吵架。

解:(3)和(4)是复合命题,(5)是原子命题。

习题1.21. 指出下列命题的真值:(1)若224+>,则太阳从西方升起。

解:该命题真值为T (因为命题的前件为假)。

(3)胎生动物当且仅当是哺乳动物。

解:该命题真值为F (如鸭嘴兽虽是哺乳动物,但不是胎生动物)。

2. 令P :天气好。

Q :我去公园。

请将下列命题符号化。

(2)只要天气好,我就去公园。

(3)只有天气好,我才去公园。

(6)天气好,我去公园。

解:(2)P Q →。

(3)Q P →。

(6)P Q ↔。

习题1.32. 将下列命题符号化(句中括号内提示的是相应的原子命题的符号表示): (1)我去新华书店(P ),仅当我有时间(Q )。

(3)只要努力学习(P ),成绩就会好的(Q )。

(6)我今天进城(P ),除非下雨(Q )。

(10)人不犯我(P ),我不犯人(Q );人若犯我,我必犯人。

解:(1)P Q →。

(3)P Q →。

(6)Q P ⌝→。

(10)()()P Q P Q ⌝→⌝∧→。

习题1.41. 写出下列公式的真值表: (2)()P Q R ∨→。

解:该公式的真值表如下表:2. 证明下列等价公式:(2)()()()P Q P Q P Q ∨∧⌝∧⇔⌝↔。

证明:()(()()) ()()) ()() ()()P Q P Q P Q P Q P Q P Q P Q P Q P Q ⌝↔⇔⌝∧∨⌝∧⌝⇔⌝∧∧⌝⌝∧⌝⇔⌝∧∧∨⇔∨∧⌝∧(4)()()()P Q P R P Q R →∧→⇔→∧。

证明:()()()() () ()P Q P R P Q P R P Q R P Q R →∧→⇔⌝∨∧⌝∨⇔⌝∨∧⇔→∧3. 甲、乙、丙、丁4人参加考试后,有人问他们谁的成绩最好,甲说,不是我。

离散数学及其应用(原书第8版本科教学版)肯尼思奇数题答案

离散数学及其应用(原书第8版本科教学版)肯尼思奇数题答案

离散数学及其应用(原书第8版本科教学版)肯尼思奇数题答案1. 引言离散数学是数学的一个重要分支,研究的对象是离散的数学结构,包括集合、逻辑、代数、图论等。

离散数学在计算机科学、信息技术、密码学等领域有着广泛的应用。

本文主要介绍《离散数学及其应用(原书第8版本科教学版)》一书中的肯尼思奇数题答案。

2. 肯尼思奇数题肯尼思奇数题是《离散数学及其应用》一书中的习题(Chapter 8, Exercise 52)。

题目如下:肯尼思有一袋子里装有若干只标有0或1的球。

每次他从袋子里取出一只球,查看其上的数字,并且将其放回袋子内。

他这样做999次。

最后,他从袋子里取出一个球独立地、查看其上的数字,并根据这个数字决定选课还是买彩票。

假设他在这999次中取出的数字的比例非常接近他最后一次取出的数字的比例:- 如果比例大于等于0.5,则他选择选课;- 如果比例小于0.5,则他选择买彩票。

试问肯尼思选择选课的概率是多少?3. 解答为了解决这个问题,我们可以应用一个离散数学中的概率理论的知识:大数定律(The Law of Large Numbers)。

大数定律指出,对于一个随机试验,若试验次数足够多,那么实验结果呈现的相对频率就接近于该事件的概率。

首先,我们定义一些符号: - N:在肯尼思进行999次试验后,比例大于等于0.5的次数。

- n:在肯尼思进行999次试验后,总共取出的球的数量。

- p:从袋子中取出一只球之后,它上面标有1的概率。

我们的目标是求解肯尼思选择选课的概率。

根据大数定律,我们可以得出以下等式:lim(N/n) = p这里,lim表示随着试验次数趋近无穷大,我们求得的相对频率趋近于概率。

根据题目信息,我们已经知道最后一次取出的球的数字将成为肯尼思决定选课还是买彩票的依据。

因此,我们可以得出以下等式:lim(N/n) = lim(N/(n+1)) = p注意,这个等式的右边是固定的,我们希望求解的是左边的lim(N/n)。

离散数学课后习题答案 (2)

离散数学课后习题答案 (2)

离散数学课后习题答案1. 第一章习题答案1.1 习题一答案1.1.1 习题一.1 答案根据题意,设集合A和B如下:Set A and BSet A and B在此情况下,我们可以得出以下结论:•A的幂集为{ {}, {a}, {b}, {a, b} };•B的幂集为{ {}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} };•A和B的笛卡尔积为{ (a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3) }。

因此,习题一.1的答案为:•A的幂集为{ {}, {a}, {b}, {a, b} };•B的幂集为{ {}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} };•A和B的笛卡尔积为{ (a, 1), (a, 2), (a, 3), (b, 1), (b,2), (b, 3) }。

1.1.2 习题一.2 答案根据题意,集合A和B如下所示:Set A and BSet A and B根据集合的定义,习题一.2要求我们判断以下命题的真假性:a)$A \\cap B = \\{ 2, 3 \\}$b)$\\emptyset \\in B$c)$A \\times B = \\{ (a, 2), (b, 1), (b, 3) \\}$d)$B \\subseteq A$接下来,我们来逐个判断这些命题的真假性。

a)首先计算集合A和B的交集:$A \\cap B = \\{ x\\,|\\, x \\in A \\, \\text{且} \\, x \\in B \\} = \\{ 2, 3 \\}$。

因此,命题a)为真。

b)大家都知道,空集合是任意集合的子集,因此空集合一定属于任意集合的幂集。

根据题意,$\\emptyset \\in B$,因此命题b)为真。

c)计算集合A和B的笛卡尔积:$A \\times B = \\{ (x, y) \\,|\\, x \\in A \\, \\text{且} \\, y \\in B \\} = \\{ (a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3) \\}$。

离散数学课后习题答案

离散数学课后习题答案

1-1,1-2(1) 解:a) 是命题,真值为T。

b) 不是命题。

c) 是命题,真值要根据具体情况确定。

d) 不是命题。

e) 是命题,真值为T。

f) 是命题,真值为T。

g) 是命题,真值为F。

h) 不是命题。

i) 不是命题。

(2) 解:原子命题:我爱北京天安门。

复合命题:如果不是练健美操,我就出外旅游拉。

(3) 解:a) (┓P ∧R)→Qb) Q→Rc) ┓Pd) P→┓Q(4) 解:a)设Q:我将去参加舞会。

R:我有时间。

P:天下雨。

Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。

b)设R:我在看电视。

Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。

c) 设Q:一个数是奇数。

R:一个数不能被2除。

(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。

(5) 解:a) 设P:王强身体很好。

Q:王强成绩很好。

P∧Qb) 设P:小李看书。

Q:小李听音乐。

P∧Qc) 设P:气候很好。

Q:气候很热。

P∨Qd) 设P: a和b是偶数。

Q:a+b是偶数。

P→Qe) 设P:四边形ABCD是平行四边形。

Q :四边形ABCD的对边平行。

PQf) 设P:语法错误。

Q:程序错误。

R:停机。

(P∨ Q)→ R(6) 解:a) P:天气炎热。

Q:正在下雨。

P∧Qb) P:天气炎热。

R:湿度较低。

P∧Rc) R:天正在下雨。

S:湿度很高。

R∨Sd) A:刘英上山。

B:李进上山。

A∧Be) M:老王是革新者。

N:小李是革新者。

M∨Nf) L:你看电影。

M:我看电影。

┓L→┓Mg) P:我不看电视。

Q:我不外出。

R:我在睡觉。

P∧Q∧Rh) P:控制台打字机作输入设备。

Q:控制台打字机作输出设备。

P∧Q1-3(1)解:a) 不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b) 是合式公式c) 不是合式公式(括弧不配对)d) 不是合式公式(R和S之间缺少联结词)e) 是合式公式。

离散数学及其应用图论部分课后习题答案

离散数学及其应用图论部分课后习题答案
解答:(1)构成通路,且为初级通路,因为点不重复
(2)构成了回路,但是不为简单回路和初级回路,因为有重复的边
(3)构成了初级通路,因为点不重复;
(4)不构成通路,因为边 不存在;
(5)构成通路,但是不为简单通路和初级通路,因为有重复的边
(6)构成了回路,但是不为简单回路和初级回路,因为有重复的边
(7)构成了初级通路;
(8)简单通路,但是不为初级通路,有重复边。
23、用Dijkstra标号法求图9.22中各图从顶点 到其余各点的最短路径和距离。
解答
步骤
1
2
3
4
5
6
7பைடு நூலகம்
到 最短路为 ,路长为6;
到 最短路为 ,路长为3;
到 最短路为 ,路长为5;
到 最短路为 ,路长为6;
到 最短路为 ,路长为12;
到 最短路为 ,路长为7;
那么对于n阶m条边的无向图G是 棵树组成的森林,在任意两棵树中分别找一点进行连一条边,那么得到的图则为n阶m+1条边的无向图G是 棵树组成的森林,
那么 ,所以 。
方法二:设 棵树中,分别有 个顶点和 条边, ,则有
, , ,即可得证。
19、求图10.17中两个带权图的最小生成树。
解答:
P204:习题十一
16、画出所有3条边的5阶简单无向图和3条边的3阶简单无向图。
解答:
(1)三条边一共提供6度;所以点度序列可能是
①3,3,0,0,0,0;②3,2,1,0,0,0;③3,1,1,1,0,0;④2,2,2,0,0,0;⑤2,2,1,1,0,0;⑥2,1,1,1,1,0;⑦1,1,1,1,1,1;
由于是简单图,①②两种情形不可能

离散数学及其应用答案徐凤生

离散数学及其应用答案徐凤生

习题1.判断下列语句是否是命题,为什么?若是命题,判断是简单命题还是复合命题?(1)离散数学是计算机专业的一门必修课。

(2)李梅能歌善舞。

(3)这朵花真美丽!(4)3+2>6。

(5)只要我有时间,我就来看你。

(6)x=5。

(7)尽管他有病,但他仍坚持工作。

(8)太阳系外有宇宙人。

(9)小王和小张是同桌。

(10)不存在最大的素数。

解在上述10个句子中,(3)是感叹句,因此它不是命题。

(6)虽然是陈述句,但它没有确定的值,因此它也不是命题。

其余语句都是可判断真假的陈述句,所以都是命题。

其中:(1)、(4)、(8)、(9)、是简单命题,、(2)、(5)、(7)、(10)是复合命题。

2.判断下列各式是否是命题公式,为什么?(1)(P→(P∨Q))。

(2)(⌝P→Q)→(Q→P)))。

(3)((⌝P→Q)→(Q→P))。

(4)(Q→R∧S)。

(5)(P∨QR)→S。

(6)((R→(Q→R)→(P→Q))。

解(1)是命题公式。

(2)不是命题公式,因为括号不配对。

(3)是命题公式。

(4)是命题公式。

(5)不是命题公式,因为QR没有意义。

(6)不是命题公式,因为R→(Q→R)→(P→Q)没有意义。

3.将下列命题符号化:(1)我们不能既划船又跑步。

(2)我去新华书店,仅当我有时间。

(3)如果天下雨,我就不去新华书店。

(4)除非天不下雨,我将去新华书店。

(5)张明或王平都可以做这件事。

(6)“2或4是素数,这是不对的”是不对的。

(7)只有休息好,才能工作好。

(8)只要努力学习,成绩就会好的。

(9)大雁北回,春天来了。

(10)小张是山东人或河北人。

解(1)符号化为⌝(P∧Q),其中,P:我们划船,Q:我们跑步。

(2)符号化为Q→R,其中,R:我有时间,Q:我去新华书店。

(3)符号化为P→⌝Q,其中,P:天下雨,Q:我去新华书店。

(4)符号化为⌝P→Q,其中,P:天下雨,Q:我去新华书店。

(5)符号化为P∧Q,其中,P:张明可以做这件事,Q:王平可以做这件事。

DMA#1《离散数学及其应用》第一章部分习题解答(自做,随时可能打脸)

DMA#1《离散数学及其应用》第一章部分习题解答(自做,随时可能打脸)

DMA#1《离散数学及其应⽤》第⼀章部分习题解答(⾃做,随时可能打脸)我读《离散数学及其应⽤》⼀书,所做习题将记录在此,随时打脸,看到哪做到哪写到哪。

本⽂记载第⼀章《基础:逻辑和证明》的练习第⼀章的内容范围很⼴,⽽且从⾼中必修三的基本逻辑学开始,逐渐加深,但开始⼏节的题⽬还不算难(希望后⾯别打脸)1.1 命题逻辑1# a,b,c,d是命题,e,f不是。

其中c是TRUE,d是FALSE,ab请⾃⼰搜索,我是不知道.......2# 命题只有c,e。

其中c⼤概是FALSE吧,e是FALSE。

d和f都不是命题,因为n和x都没有被赋值,因⽽⽆从谈论。

3# a) Linda不⽐Sanjay年轻; b) Mei并不⽐Isabella挣得多(对⽴的是相等和少,写起来⿇烦); c)Moshe不⽐Monica⾼; d) Abby不⽐Ricardo富有。

8# TTFFT9# FTTTT10# a) 本周我没有买彩票(或者买了两张以上);b) 本周我买了⼀张彩票,要么我赢得了百万⼤奖; c) 如果本周我买了⼀张彩票,那么我就赢得百万⼤奖;d) 本周我买了⼀张彩票并且赢得了百万⼤奖;e)我赢的百万⼤奖的充要条件是本周我买了⼀张彩票;f)如果我本周没有买彩票,就不会赢得百万⼤奖;g)我不仅没有在这周买彩票,也没有中奖;h)我要么这周没买彩票,要么就买了⽽且中了奖。

13# (cnblog在哪⾥可以⽤latex,挺难受的。

“与”表⽰为&&,“或”表⽰为||,“⾮”表⽰为not)a) p && q; b) p && (not q); c) not p && not q; d) p||q; e)p → q; f) (p||q)&&(p→not q); g)p ←→ q。

18# TFTT21# 兼或:b,c ; 异或:a,d。

31# 2,16,64,16。

离散数学及应用习题及答案5-2

离散数学及应用习题及答案5-2

§5.2 图的连通性习题5.21.证明或否定:(1)简单图G 中有从点u 到点v 的两条不同的通路,则G 中有基本回路。

(2)简单图G 中有从点u 到点v 的两条不同的基本通路,则G 中有基本回路。

解:(1)简单图G 中有从点u 到点v 的两条不同的通道,则G 中有回路。

(2)简单图G 中有从点u 到点v 的两条不同的路,则G 中有回路。

解 (1)不一定:如下图,点1与点3之间有两条通道:(1、2、3)和(1、2、1、2、3),但图中没有回路。

(2)一定:设两条路分别为),,,,,(211v x x x u L m =和),,,,,(212v y y y u L n =。

若对m i ≤≤1,n j ≤≤1有j i y x ≠,则),,,,,,,,,,(12121u y y y y v x x x u n n m -是一条回路。

否则假设l k y x =且是离u 最近的一对(即对k i ≤≤1,l j ≤≤1,不存在j i y x =),则),,,,,,,,,(12121v y y y x x x u l k -是一条回路。

2.设G 是简单图,)(G δ≥2,证明G 中存在长度大于或等于1)(+G δ的基本回路。

证:以图G 中一点v 1出发,与之相邻的点设为v 2,由于)(G δ≥2,则v 2至少还有一个邻接点,设为v 3,若v 3与v 1邻接,则形成长度为1)(+G δ的基本回路,则若v 3不与v 1邻接,则至少还有一个邻接点,设为v 4,若v 4与v 1或v 2邻接,则形成长度为大于或等于1)(+G δ的基本回路,若v 4与v 1和v 2都不邻接,至少还有一个邻接点,设为v 5,…,依次类推,一定可以到达最后一个顶点v i ,由于)(G δ≥2,则除了v i -1外,一定会与前面的某个顶点邻接,就会形成长度为大于或等于1)(+G δ的基本回路。

3.证明:若连通图G 不是完全图,则G 中存在三个点w v u ,,,使E v u ∈)(,,E w v ∈)(,,E w u ∉)(,。

离散数学及其应用课后习题答案

离散数学及其应用课后习题答案

离散数学及其应用课后习题答案【篇一:离散数学及其应用(课后习题)】出下列命题是原子命题还是复合命题。

(3)大雁北回,春天来了。

(4)不是东风压倒西风,就是西风压倒东风。

(5)张三和李四在吵架。

解:(3)和(4)是复合命题,(5)是原子命题。

习题1.21. 指出下列命题的真值:(1)若2?2?4,则太阳从西方升起。

解:该命题真值为t(因为命题的前件为假)。

(3)胎生动物当且仅当是哺乳动物。

解:该命题真值为f(如鸭嘴兽虽是哺乳动物,但不是胎生动物)。

2. 令p:天气好。

q:我去公园。

请将下列命题符号化。

(2)只要天气好,我就去公园。

(3)只有天气好,我才去公园。

(6)天气好,我去公园。

解:(2)p?q。

(3)q?p。

(6)p?q。

习题1.32. 将下列命题符号化(句中括号内提示的是相应的原子命题的符号表示):(1)我去新华书店(p),仅当我有时间(q)。

(3)只要努力学习(p),成绩就会好的(q)。

(6)我今天进城(p),除非下雨(q)。

(10)人不犯我(p),我不犯人(q);人若犯我,我必犯人。

解:(1)p?q。

(3)p?q。

(6)?q?p。

(10)(?p??q)?(p?q)。

习题1.41. 写出下列公式的真值表:(2)p?(q?r)。

解:该公式的真值表如下表:2. 证明下列等价公式:(2)(p?q)??(p?q)??(p?q)。

证明:?(p?q)??((p?q)?(?p??q))??(p?q)??(?p??q))??(p?q)?(p?q) ?(p ?q)??(p?q)(4)(p?q)?(p?r)?p?(q?r)。

证明:(p?q)?(p?r)?(?p?q)?(?p?r)??p?(q?r)?p?(q?r)3. 甲、乙、丙、丁4人参加考试后,有人问他们谁的成绩最好,甲说,不是我。

乙说:是丁。

丙说:是乙。

丁说:不是我。

已知4个人的回答只有一个人符合实际,问成绩最好的是谁?解:设a:甲成绩最好。

b:乙成绩最好。

离散数学及其应用习题答案

离散数学及其应用习题答案

离散数学及其应用习题答案离散数学是一门研究离散结构的数学学科,它在计算机科学、信息科学、电子工程等领域中有着广泛的应用。

通过学习离散数学,我们可以培养出逻辑思维、抽象思维和解决问题的能力。

在学习离散数学的过程中,习题是不可或缺的一部分。

本文将回答一些离散数学中的常见习题,帮助读者更好地理解和应用离散数学的知识。

1. 集合论习题1.1 求解集合的交、并、差运算对于给定的集合A={1,2,3,4}和B={3,4,5,6},求解A∩B、A∪B和A-B。

解答:A∩B={3,4},A∪B={1,2,3,4,5,6},A-B={1,2}。

1.2 判断集合关系对于给定的集合A={1,2,3,4}和B={3,4,5,6},判断A是否是B的子集。

解答:A不是B的子集,因为A中的元素2不属于B。

2. 图论习题2.1 判断图的连通性给定一个无向图G,其顶点集合为V={1,2,3,4},边集合为E={(1,2),(2,3),(3,4)},判断图G是否连通。

解答:图G是连通的,因为任意两个顶点之间都存在一条路径。

2.2 求解最短路径给定一个有向图G,其顶点集合为V={A,B,C,D},边集合为E={(A,B,2),(A,C,3),(B,D,4),(C,D,1)},求解从顶点A到顶点D的最短路径。

解答:最短路径为A-C-D,路径长度为4。

3. 命题逻辑习题3.1 判断命题的真假给定命题P: "如果今天下雨,那么我就带伞",命题Q: "我带了伞",判断P→Q 的真假。

解答:由于P和Q都是真命题,且"真命题→真命题"为真命题,所以P→Q为真命题。

3.2 求解命题的合取范式给定命题P: "如果今天下雨,那么我就带伞",命题Q: "我没有带伞",将P∧Q 转化为合取范式。

解答:P∧Q的合取范式为"(¬P∨¬Q)"。

离散数学及其应用_英文版第6版_课后答案(美_Kennenth H.Rosen 著) 机械工业出版社

离散数学及其应用_英文版第6版_课后答案(美_Kennenth H.Rosen 著) 机械工业出版社

1.14.f) If I did not buy a lottery ticket this week, then I did not win the million dollar jackpot on Friday.g) I did not buy a lottery ticket this week, and I did not win the million dollar jackpot on Friday.h ) Either I did not buy a lottery ticket this week, or else I did buy one and won the million dollar jackpot on Friday.10.a) r ∧┐q b) p ∧ q∧ r c)r → pd) p ∧┐q ∧ r e) (p ∧q) → r f) r↔ ( q ∨ p)20.a) If I am to remember to send you the address, then you will have to send me ane-mail message.(This has been slightly reworded so that the tenses make more sense.)b) If you were born in the United States, then you are a citizen of this country.c) If you keep your textbook, then it will be a useful reference in your future courses.(The word "then" is understood in English, even if omitted.)d) If their goaltender plays well, then the Red Wings will win the Stanley Cup.e) If you get the job, then you had the best credentials.f) If there is a storm, then the beach erodes.g) If you log on to the server, then you have a valid password.h) If you don’t begin your climb too late, then you will reach the summit.c)P.261.28.a) Kwame will not take a job in industry and he will not go to graduate school.b) Yoshiko doesn’t know Java or she doesn’t know calculus.c) James is not young or he is not strong.d) Rita will not move to Oregon and she will not move to Washington.10.a)c)a) Assume the hypothesis is true. Then p is false. Since p∨q is true, we conclude that q must be true.Here is a more "algebraic" solution:[┐p∧(p ∨q)]→q <=> ┐[┐p∧(p ∨q)]∨q <=> ┐┐p∨┐(p∨q)∨q <=> p∨┐(p∨q)∨q <=> (p ∨q)∨┐(p∨q) <=> Tc) Assume the hypothesis is true. Then p is true, and since the second part of the hypothesis is ture, we conclude that q is also true, as desired.51.((p ↓ p) ↓ q )↓((p ↓ p) ↓ q )9.77.The graph is planar.20.The graph is not homeomorphic to K3,3, since by rerouting the edge between a and h we seethat it is planar.22.Replace each vertex of degree two and its incident edges by a single edge. Then the result isK3,3 : the parts are {a,e,i} and {c,g,k}. Therefore this graph is homeomorphic to K3,3.23.The graph is planar.25. The graph is not planar.9.83. 3F E8. 39. 210.417. time slot 1: Math 115, Math 185; time slot 2: Math 116, CS 473;time slot 3: Math 195, CS 101; time slot 4: CS 102time slot 5: CS 273P.461.33. a) true b) false c) false d) false5. a) There is a student who spends more than 5 hours every weekday in class.b) Every student spends more than 5 hours every weekday in class.c) There is a student who does not spend more than 5 hours every weekday in class.d) No student spends more than 5 hours every weekday in class.9. a) x(P(x)∧Q(x)) b) x(P(x)∧﹁Q(x))c) x(P(x)∨Q(x)) d) x﹁(P(x)∨Q(x))16. a) true b) false c) true d) false24. Let C(x) be the propositional function “x is in your class.”a)x P(x) and x(C(x)→P(x)), where P(x) is “x has a cellular phone.”b) x F(x) and x(C(x)∧F(x)), where F(x) is “x has seen a foreign movie.”c)x﹁S(x) and x(C(x)∧﹁S(x)), where S(x) is “x can swim.”d)x E(x) and x(C(x)→E(x)), where E(x) is “x can solve quadratic equations.”e)x﹁R(x) and x(C(x)∧﹁R(x)), where R(x) is “x wants to be rich.”62.a) x (P(x)→﹁S(x)) b)x(R(x)→S(x))c) x (Q(x)→P(x))d)x(Q(x)→﹁R(x))e) Yes. If x is one of my poultry, then he is a duck (by part(c)), hence not willing to waltz (part (a)). Since officers are always willing to waltz (part (b)), x is not an officer.P.591.412.d)x┐C(x, Bob)h)x y (I(x) ∧((x≠y) →┐ I(y)))k)x y( I(x) ∧┐C(x, y))n)x y z ((x≠y) ∧┐ (C(x, z) ∧ C(y, z)))14.a) x H(x), where H(x) is “x can speak Hindi”and the universe of the discourse consists of all students in this class.b) x y P(x, y), where P(x, y) is “x plays y.” and the universe of the discourse for xconsists of all students in this class, and the universe of the discourse for y consists of all sports.c) x A(x) ∧┐H(x) , where A(x) is “x has visited Alaska.” , H(x) is “x has visited Hawaii” and the universe of the discourse for x consists of all students in this class.d) x y L(x, y), where L(x, y) is “x has learned programming language y” and theuniverse of the discourse for x consists of all students in this class, and the universe of the discourse for y consists of all programming languages.e) x z y (Q(y,z) →P(x, y)), where P(x, y) is“x has taken course y.”, Q(y, z) is“course y is offered by department z.”, and the universe of the discourse for x consists of all students in this class, the universe of the discourse for y consists of all courses in this school, and the universe of the discourse for z consists of all departments in this school.f)x y z ( (x≠y) ∧P(x, y)∧ ((x≠y≠z) →┐P(x, z))), where P(x, y) is “x andy grew up in the same town.” and the universe of the discourse for x, y, z consists of all students in this class.g) x y z C(x, y) ∧G(y, z), where C(x, y) is “x has chatted with y”, G(y, z) is “yis in chat group z”, the universe of the discourse for x, y consists of all students in this class, and the universe of the discourse for z consists of all chat group in this class.24.a) There is an additive identity for the real numbers.d) The product of two nonzero numbers is nonzero for the real numbers.38.b) There are no students in this class who have never seen a computer.d) There are no students in this class who have taken been in at least one room of every building on campus.1.5(1)(┐r∧(q→p))→(p→(q∨r)) <=> ┐(┐r∧(┐q∨p))∨(┐p∨(q∨r)) <=>(q∧┐p)∨(┐p∨q∨r)<=> (┐p∨q∨r∨q)∧(┐p∨q∨r∨┐p) <=> (┐p∨q∨r) <=> ∏3 <=> ∑0,1,2,4,5,6,7 (2) P.726. Let r be the proposition "It rains", let f be the proposition "It is foggy", let s be the proposition "The sailing race will be held", let l be the proposition "The lifesaving demonstration will go on", and let t be the proposition "The trophy will be awarded". We are given premises (┐r∨┐f)→(s∧l), s→t, and ┐t. We want to conclude r. We set up the proof in two columns, with reasons. Note that it is valid to replace subexpressions by other expressions logically equivalent to them.Step Reason1. ┐t Hypothesis2. s→t Hypothesis3. ┐s Modus tollens using Steps 1 and 24. (┐r∨┐f)→(s∧l) Hypothesis5. (┐(s∧l))→┐(┐r∨┐f) Contrapositive of step 46. (┐s∨┐l)→(r∧f) De Morgan's law and double negative7. ┐s∨┐l Addition, using Step 38. r∧f Modus ponens using Step 6 and 79. r Simplification using Step 812.First, using the conclusion of Exercise 11, we should show that the argument form with premises (p ∧t) → (r ∨s), q→ (u ∧t), u→p, ┐s, q, and conclusion r is valid. Then, we use rules of inference from Table 1.Step Reason1. q Premise2. q→ (u ∧t)P remise3. u ∧t Modus ponens using Steps 1 and 24. u Simplification using Step 35. u→p Premise6. p Modus ponens using Steps 3 and 47. t Simplification using Step 38. p ∧t Conjunction using Steps 6 and 79. (p ∧t) → (r ∨s) Premise10. r ∨s Modus ponens using Steps 8 and 911. ┐s Premise12. r Disjunctive syllogism using Steps 10 and 11 14.b)Let R(x) be “x is one of the five roommates,” D(x) be “x has taken a course in discrete mathematics,” and A(x) be “x can take a course in algorithms.” The premises are x (R(x) → D(x)), x (D(x) → A(x)) and R(Melissa). Using the first premise andUniversal Instantiation, R(Melissa) → D(Melissa) follows. Using the third premise and Modus Ponens, D(Melissa) follows. Using the second premise and Universal Instantiation, A(Melissa) follows. So do the other roommates.d) Let C(x) be “x is in the class,”F(x) be “x has been to France,” and L(x) be “x hasvisited Louvre.” The premises are x(C(x) ∧F(x)) and x (F(x) → L(x)). From thefirst premise and Existential Instantiation imply that C(y) ∧F(y) for a particular person y. Using Simplification, F(y) follows. Using the second premise and Universal Instantiation F(y) → L(y) follows. Using Modus Ponens, L(y) follows. UsingExistential Generalization, x(C(x) ∧L(x)) follows.24. The errors occur in steps (3), (5) and (7).For steps (3) and (5), we cannot assume, as is being done here, that the c that makes P(x) true is the same as the c that makes Q(x) true at the same time. For step (7), it is not a conjunction and there is no such disjunction rule.29.Step Reason1. x ┐P(x) Premise2. ┐P(c) Existential instantiation from (1)3. x (P(x) ∨Q(x)) Premise4. P(c) ∨Q(c) Universal instantiation from (3)5. Q(c) Disjunctive syllogism from (2) and (4)6. x (┐Q(x) ∨S(x)) Premise7. ┐Q (c) ∨S(c) Universal instantiation from (6)8. S(c) Disjunctive syllogism from (5) and (7)9. x (R(x) →┐S(x)) Premise10. R(c) →┐S(c) Universal instantiation from (9)11. ┐R(c) Modus tollens from (8) and (10)12. x ┐R(x) Existential generalization from (11)P.861.637.Suppose that P1→P4→P2→P5→P3→P1. To prove that one of these propositions implies any of the others, just use hypothetical syllogism repeatedly.P.1031.713.a) This statement asserts the existence of x with a certain property. If we let y=x, then we see that P(x) is true. If y is anything other than x, then P(x) is not true. Thus, x is the unique element that makes P true.b) The first clause here says that there is an element that makes P true. The second clause says that whenever two elements both make P true, they are in fact the same element. Together these say that P is satisfied by exactly one element.c) This statement asserts the existence of an x that makes P true and has the further property that whenever we find an element that makes P true, that element is x. In other words, x is the unique element that makes P true.P.1202.19.T T F T T F16. Since the empty set is a subset of every set, we just need to take a set B that contains Φ as an element. Thus we can let A = Φ and B = {Φ} as the simplest example.20 .The union of the sets in the power set of a set X must be exactly X. In other words, we can recover X from its power set, uniquely. Therefore the answer is yes.22.a) The power set of every set includes at least the empty set, so the power set cannot be empty. Thus Φ is not the power set of any set.b) This is the power set of {a}c) This set has three elements. Since 3 is not a power of 2, this set cannot be the power set of any set.d) This is the power set of {a,b}.28.a) {(a,x,0), (a,x,1), (a,y,0), (a,y,1), (b,x,0), (b,x,1), (b,y,0), (b,y,1), (c,x,0), (c,x,1), (c,y,0), (c,y,1)}c) {(0,a,x), (0,a,y), (0,b,x), (0,b,y), (0,c,x), (0,c,y), (1,a,x), (1,a,y), (1,b,x), (1,b,y), (1,c,x), (1,c,y)}P.1302.214. Since A = (A - B)∪(A∩B), we conclude that A = {1,5,7,8}∪{3,6,9} ={1,3,5,6,7,8,9}. Similarly B = (B - A)∪(A ∩ B) = {2,10}∪{3,6,9} = {2,3,6,9,10}. 24. First suppose x is in the left-hand side. Then x must be in A but in neither B nor C. Thus x∈A - C, but x B - C, so x is in the right-hand side. Next suppose that x is in the right-hand side. Thus x must be in A - C and not in B - C. The first of theseimplies that x∈A and x C. But now it must also be the case that x B, since otherwise we would have x∈B - C. Thus we have shown that x is in A but in neitherB nor C, which implies that x is in the left-hand side.40. This is an identity; each side consists of those things that are in an odd number of the sets A,B,and C.P147.2.335a) This really has two parts. First suppose that b is in f(S∪T). Thus b=f(a) for somea∈S∪T. Either a ∈S, in which case b∈f(S), or a∈T, in which case b∈f(T). Thus in either case b∈ f(S) ∪f(T). This shows that f(S∪T) ⊆f(S) ∪f(T), Conversely, suppose b∈f(S) ∪f(T). Then either b∈f(S) or b∈f(T). This means either that b=f(a) for some a∈S or that b=f(a) for some a ∈T. In either case, b=f(a) for some a∈S∪T, so b∈f(S∪T). This shows that f(S) ∪f(T) ⊆f(S∪T), and our proof is complete. b)Suppose b∈f(S∩T). Then b=f(a) for some a∈S∩T. This implies that a∈S anda∈T , so we have b∈f(S) and b∈f(T). Therefore b∈f(S)∩f(T), as desired.52In some sense this question is its own answer—the number of integers between a and b, inclusive, is the number of integers between a and b, inclusive. Presumably we seek an express involving a, b, and the floor and/or ceiling function to answer this question. If we round a up and round b down to integers, then we will be looking at the smallest and largest integers just inside the range of the integers we want to count, respectively. These values are of course ⎡⎤a and ⎣⎦b, respectively. Then the answer isb-+1 (just think of counting all the integers between these two values, ⎣⎦⎡⎤aincluding both ends—if a row of fenceposts one foot apart extends for k feet, then there are k +1 fenceposts). Note that this even works when, for example, a=0.3 and b=0.7 .P1622.434.a) This is countable. The integers in the set are ±1,±2,±4,±5,±7,andso on. We can listthese numbers in the order 1, -1 , 2, -2, 4, -4,…, thereby establishing the desired correspondence. In other words, the correspondence is given by 1↔1,2↔-1,3↔2,4↔-2,5↔4,and so on.b) This is similar to part(a);we can simply list the elements of the set in order ofincreasing absolute value, listing each positive term before its correspondingnegative:5,-5,10,-10,15,-15,20,-20,30,-30,40,-40,45,-45,50,-50,……c) This is countable but a little tricky. We can arrange the numbers in a 2-dimensionaltable as follows:1..1 0.11 0.111 0.1111 0.11111 ……1.1 1 1.1 1.11 1.111 1.1111 ……1111 11.1 11.11 11.111 11.1111 ……1.1111.111 111.1 111.11 111.111 111.1111 ……………………………………d) This set is not countable. We can prove it by the same diagonalization argument aswas used to prove that the set of all reals is uncountable in Example 21.All we need to do is choose d i=1 when d ii=9 and choose d i=9 when d ii=1 or d ii is blank(if the decimal expansion is finite)46.We know from Example 21 that the set of real numbers between 0 and 1 is uncountable. Let us associate to each real number in this range(including 0 but excluding 1) a function from the set of positive integers to the set {0,1,2,3,4,5,6,7,8,9} as follows: If x is a real number whose decimal representation is 0.d1d2d3…(with ambiguity resolved by forbidding the decimal to end with an infinite string of9's),then we associate to x the function whose rule is given by f(n)=d n. clearly this is a one-to-one function from the set of real numbers between 0 and 1 and a subset of the set of all functions from the set of positive integers the set {0,1,2,3,4,5,6,7,8,9}.Two different real numbers must have different decimal representations, so the corresponding functions are different.(A few functions are left out, because of forbidding representations such as 0.239999…)Since the set of real numbers between 0 and 1 is uncountable, the subset of functions we have associated with them must be uncountable. But the set of all such functions has at least this cardinality, so it, too, must be uncountable.P1913.21. The choices of C and k are not unique.a) Yes C = 1, k = 10 b) Yes C = 4, k = 7 c) Nod) Yes C = 5, k = 1 e) Yes C = 1, k = 0 f) Yes C = 1, k = 29. x2+4x+17 ≤ 3x3 for all x>17, so x2+4x+17 is O(x3), with witnesses C = 3, k=17. However, if x3 were O(x2+4x+17), then x3≤C(x2+4x+17) ≤ 3Cx2for some C, for all sufficiently large x, which implies that x≤ 3C, for all sufficiently large x, which is impossible.P2093.4a) no b) no c) yes d) no31.a) GR QRW SDVV JRb) QB ABG CNFF TBc) QX UXM AHJJ ZXP2183.513.a) Yes b) No c) Yes d) Yes17a) 2 b) 4 c) 12P2804.122.A little computation convinces us that the answer is that n2 ≤ n! for n= 0, 1, and all n≥ 4. (clearly the inequality doesn’t hold for n=2 or n=3) We will prove by mathematical induction that the inequality holds for all n≥ 4. The base case is clear, since 16 ≤ 24. Now suppose that n2 ≤ n! for a given n≥ 4. We m ust show that (n+1)2≤ (n+1)!. Expanding the left-hand side, applying the inductive hypothesis, and then invoking some valid bounds shows this:n2 + 2n+ 1 ≤ n! + 2n + 1≤ n! + 2n + 1 = n! + 3n≤ n! + n·n≤ n! + n·n!≤ (n+1)n! = (n+1)!P2934.2Assume that the well-ordering property holds. Suppose that P(1) is true and that the conditional statement [P(1)∧P(2) ∧···∧P(n)] →P(n+1) is true for every positive integer n. Let S be the set of positive integers n for which P(n) is false. We will show S=Ø. Assume that S≠Ø, then by the well-ordering property there is a least integer m in S. We know that m cannot be 1 because P(1) is true. Because n=m is the least integer such that P(n) is false, P(1), P(2),…,P(m-1) are true, and m-1 ≥1. Because [P(1)∧P(2) ∧···∧P(m-1)] →P(m) is true, it follows that P(m) must also be true, which is a contradiction. Hence, S= Ø.P3084.310.The base case is that S m(0)=m. The recursive part is that S m(n+1) is the successor of S m(n)(i.e., S m(n)+1)12.The base case n=1 is clear, since f12=f1f2=1. Assume the inductive hypothesis. Thenf12+f22+…+f n2+f n+12 = f n+12+f n f n+1= f n+1(f n+1+f n)= f n+1f n+2, as desired.31.If x is a set or variable representing set, then x is well-formed formula. if x and y are all well-formed formulas, then x, (x∪y), (x∩y) and (x-y) are all well-formed formulas.50.Let P(n) be “A(1, n) = 2n .”BASIC STEP: P(1) is true, because P(1) = A(1, 1) = 2 = 21.INDCUTIVE STEP: Assume that P(m) is true, that is A(1, m) = 2m and m≥1. Then P(m+1) = A(1, m+1) = A(0, A(1, m))= A(0, 2m)=2·2m=2m+1.So A(1, n) = 2n whenever n≥159.b) Not well defined. F(2) is not defined since F(0) isn’t.Also, F(2) is ambiguous.d) Not well defined. The definition is ambiguous about n=1.P3445.1a) 104b) 10512.We use the sum rule, adding the number of bit strings of each length up to 6. If we include the empty string, then we get 20 + 21 + 22 + 23 + 24 + 25 + 26= 27–1=12720.a) Every seventh number is divisible by 7. Therefore there are 999 / 7=142such numbers. Note that we use the floor function, because the k th multiple of 7 does not occur until the number 7k has been reached.b) For solving this part and the next four parts, we need to use the principle of inclusion-exclusion. Just as in part(a), there are 999/11=90 numbers in our range divisible by 11, and there are 999/77=12 numbers in our range divisible by both 7 and 11 (the multiples of 77 are the numbers we seek). If we take these 12 numbers are away from the 142 numbers divisible by 7, we see that there are 130 numbers in our range divisible by 7 but not by 11.c) as explained in part(b), the answer is 12.d) By the principle of inclusion-exclusion, the answer, using the data from part (b), is 142+90-12=220.e) If we subtract from the answer to part(d) the number of numbers divisible by neither of them; so the answer is 220-12=208.f) If we subtract the answer to part(d) from the total number of positive integers less than 1000, we will have the number of numbers divisible by exactly one of them; so the answer is 999-220=779.g) If we assume that numbers are written without leading 0s, then we should break the problem down into three cases-one-digit numbers, two-digit numbers. Clearly there are 9 one-digit numbers, and each of them has distinct digits. There are 90 two-digit numbers (10 through 99), and all but 9 of them have distinct digits. An alternative way to compute this is to note that the first digit must be 1 through 9 (9 choices) and the second digit must be something different from the first digit (9 choices out of the 10 possible digits), so by the product rule, we get 9*9=81 choices in all. This approach also tells us that there are 9*9*8=648 three-digit numbers with distinct digits (again, work from left to right-in the ones place, one 8 digits are left to choose from). 80 the final answer is 9+81+648=738.h) It turns out to be easier to count the odd numbers with distinct digits and subtract from our answer to part(g), so let us proceed that way. There are 5 odd one-digit numbers. For two-digit numbers, first choose the one digit (5 choices), then choose the tens digits (8 choices), since neither the ones digit value not 0 is available); therefore there are 40 such two-digit numbers. (Note that this is not exactly half of 81.) For the three-digit numbers, first choose the ones digit (5 choices), then the hundreds digit (8 choices), then the tens digit (8 choices), giving us 320 in all. So there are 5+40+320=365 odd numbers with distinct digits. Thus the final answer is 738-365=373.35.a) 若n=1, 为2;若n=2, 为2; 若n>=3, 为0b) 对于n>1, 为22 n;若n=1, 为1;c) 2(n-1) (注:n可映射到0,1两种可能)44.First we count the number of bit strings of length 10 that contain five consecutive 0’s. We will base the count on where the string of five or more consecutive 0’s starts. If it starts in the first bit, then the first five bits are all 0’s, but there is free choice for the last five bits; therefore there are 25 = 32 such strings. If it starts in the second bit, then the first bit must be a 1, the next five bits are all 0’s, but there is free choice for the last four bits; therefore there are 24 = 16 such strings. If it starts in the third bit, then the second bit must be a 1 but the first bit and the last three bits are arbitrary; therefore there are 24= 16 such strings. Similarly, there are 16 such strings that have the consecutive 0’s starting in each of positions four, five ,and six. This gives us a total of 32+5×16=112 strings that contain five consecutive 0’s. Symmetrically, there are 112 strings that contain five consecutive 1’s. Clearly there are exactly two strings that contain both (0000011111,1111100000). Therefore by the inclusion-exclusion principle, the answer is 2*(112)-2=222.52.We draw the tree, with its root at the top. We show a branch for each of thepossibilities 0 and 1, for each bit in order, except that we do not allow three consecutive 0’s. Since there are 13 leaves, the answer is 13.second bitthird bitfourth bitP3535.26.There are only d possible remainders when an integer is divided by d, namely 0, 1, …, d-1. By the pigeonhole principle, if we have d+1 remainders, then at least two must be the same.10.The midpoint of the segment whose endpoints are (a,b) and (c,d) is ( ( a + c ) / 2, ( b + d ) / 2). We are concerned only with integer values of the original coordinates. Clearly the coordinates of these fractions will be integers as well if and only if a and c have the same parity (both odd or both even) and b and d have the same parity. Thus what matters in this problem is the parities of coordinates. There are four possible pairs of parities: (odd,odd), (odd, even), (even, even) and (even,odd). Since we are given five points, the pigeonhole principle guarantees that at least two of them will have the same pair of parties. The midpoint of the segment joining these two points will therefore have integer coordinates.38.a) T b) Tc) T1 ≤a1< a2 < …< a75≤ 125 , and 26 ≤a1 + 25 < a2 + 25 < …< a75 + 25 ≤ 150.Now either of these 150 numbers are precisely all the number from 1 to 150, or else by the pigeonhole principle we get, as in Exercise 37, a i = a j + 25 for some i and j and we are done. In the former case, however, since each of the number a i + 25 is greater than or equal to 26, thenumbers 1, 2, … , 25 must all appear among the a i’s. But since the a i’s are increasing, the only way this can happen is if a1=1, a2 =2 , …, a25=25. Thus there were exactly 25 matches in the first25 hours.d) TWe need a different approach for this part, an approach, incidentally, that works for many numbers besides 30 in this setting. Let a1, a2 , …a75 be as before, and note that 1 ≤a1< a2 < …< a75≤ 125. By the pigeonhole principle two of the numbers among a1, a2 , …a 31 are congruent modulo 30. If they differ by 30, then we have our solution. Otherwise they differ by 60 or more, so a 31 ≥ 61. Similarly, among a 31through a 61 ,either we find a solution, or two numbers must differ by 60 or more; therefore we assume that a 61 ≥ 121. But this means that a 66 ≥ 126, a contradiction.注:38题d 因为30大于25,不能用解决a,b,c的方法解决,所以适用一种新的方法(这种方法对前面3问同样适用的)。

离散数学及其应用(徐凤生版)数学习题答案

离散数学及其应用(徐凤生版)数学习题答案

习题一1.判断下列语句是否是命题,为什么?若是命题,判断是简单命题还是复合命题?(1)离散数学是计算机专业的一门必修课。

(2)李梅能歌善舞。

(3)这朵花真美丽!(4)3+2>6。

(5)只要我有时间,我就来看你。

(6)x=5。

(7)尽管他有病,但他仍坚持工作。

(8)太阳系外有宇宙人。

(9)小王和小张是同桌。

(10)不存在最大的素数。

解在上述10个句子中,(3)是感叹句,因此它不是命题。

(6)虽然是陈述句,但它没有确定的值,因此它也不是命题。

其余语句都是可判断真假的陈述句,所以都是命题。

其中:(1)、(4) 、(8) 、(9) 、是简单命题,、(2) 、(5) 、(7)、(10) 是复合命题。

2.判断下列各式是否是命题公式,为什么?(1)(P→(P∨Q))。

(2)(⌝P→Q)→(Q→P)))。

(3)((⌝P→Q)→(Q→P))。

(4)(Q→R∧S)。

(5)(P∨QR)→S。

(6)((R→(Q→R)→(P→Q))。

解 (1)是命题公式。

(2)不是命题公式,因为括号不配对。

(3)是命题公式。

(4)是命题公式。

(5)不是命题公式,因为QR没有意义。

(6)不是命题公式,因为R→(Q→R)→(P→Q) 没有意义。

3.将下列命题符号化:(1)我们不能既划船又跑步。

(2)我去新华书店,仅当我有时间。

(3)如果天下雨,我就不去新华书店。

(4)除非天不下雨,我将去新华书店。

(5)张明或王平都可以做这件事。

(6)“2或4是素数,这是不对的”是不对的。

(7)只有休息好,才能工作好。

(8)只要努力学习,成绩就会好的。

(9)大雁北回,春天来了。

(10)小张是山东人或河北人。

解 (1)符号化为⌝(P ∧Q ),其中,P :我们划船,Q :我们跑步。

(2)符号化为Q →R ,其中,R :我有时间,Q :我去新华书店。

(3)符号化为P →⌝Q ,其中,P :天下雨,Q :我去新华书店。

(4)符号化为⌝P →Q ,其中,P :天下雨,Q :我去新华书店。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题1.1
2.指出下列命题是原子命题还是复合命题。
(3)大雁北回,春天来了。
(4)不是东风压倒西风,就是西风压倒东风。
(5)张三和李四在吵架。
解:(3)和(4)是复合命题,(5)是原子命题。
习题1.2
1.指出下列命题的真值:
(1)若 ,则太阳从西方升起。
解:该命题真值为T(因为命题的前件为假)。
(3)胎生动物当且仅当是哺乳动物。
由握手定理,
解得
故该图有13个节点。
习题7.2
4.分别指出图7-32中的3个图分别属于哪种类型(强连通,单侧连通,弱连通)。
(a)(b) (c)
解:(a)是强连通的,(b)是单侧连通的,(c)是弱连通的。
习题7.3
1.图7-39给出了一个有向图,试求
(1)邻接矩阵。
(2) 、 、 ,并找出从 到 长度
故其最优前缀码为: .
(2)(2(20+25)+3(10+15+15)+45+5(5+5))10000
=28000,
即传输10000个数字需28000个二进制码.
(7) T(2)I
(8) T(6)(7)I
(9) EG(8)
(4)每个大学生不是文科生就是理科生,有的大学生是优等生,小张不是理科生,但他是优等生,因此如果小张是大学生,他就是文科生。
解:设 : 是大学生。 : 是文科生。 : 是理科生。 : 是优等生。 :小张。该命题可符号化为:
, , , 。
证明如下:
逆反式:如果我去,天就不下雨。符号表示为 。
(2)仅当你走我将留下。
解:设 :我留下。 :你走。
逆换式:如果你走,我就留下。符号表示为: 。
逆反式:如果你不走,我就不留下。符号表示为: 。
习题1.6
2.将下列命题公式用只含 和 的等价式表达,并要求尽可能简单。
(1)
解:
(2)
解:
(3)
解:
习题1.7
解:设该树有 个叶节点,则该树的节点数
该树的边数
又由

所以 ,即该树叶节点数为 。
习题7.8
5.对图7-101给出的二元有序树进行3种方式的遍历,并写出遍历结果。
图7-101
解:前序遍历的结果为 ;
中序遍历的结果为 ;
后序遍历的结果为 。
6.在通信中, 、 、 、 、 、 、 、 出现的频率分别是:
解:设 :下雨。 :有球赛。 :春游改期。则上述论断转化为要证明 , ,
证:(1) P
(2) P
(3) T(1)(2)I
(4) P
(5) T(3)(4)I
因此,上述推理正确。
7.证明 是前提 , , 的有效结论。
证明:(1) P
(2) T(1)E
(3) P
(4) T(2)(3)I
(5) P
(6) T(5)E
习题2.5
求下列谓词公式的前束析取范式和前束合取范式:
(1)
解:
(前束析取范式、前束合取范式)
(2)
证明:
(辖域扩张)
(辖域扩张)(前束析取范式)
(前束合取范式)
习题2.6
1.证明下列各式。
(2)
证明:(1) P
(2) US(1)
(3) P
(4) US(3)
(5) T(2)(4)I
(6) P
(7) US(6)
解:该命题真值为F(如鸭嘴兽虽是哺乳动物,但不是胎生动物)。
2.令P:天气好。Q:我去公园。请将下列命题符号化。
(2)只要天气好,我就去公园。
(3)只有天气好,我才去公园。
(6)天气好,我去公园。
解:(2) 。
(3) 。
(6) 。
习题1.3
2.将下列命题符号化(句中括号内提示的是相应的原子命题的符号表示):
(8) T(5)(7)I
(9) UG(8)
2.符号化下列命题并推证其结论。
(3)所有有理数是实数,某些有理数是整数,因此,某些实数是整数。
解:设 : 是有理数。 : 是实数。 : 是整数。则命题可符号化为:
, 。
证明如下:
(1) P
(2) ES(1)
(3) P
(4) US(3)
(5) T(2)I
(6) T(4)(5)I
1
1
1
1
1
1
0 0 1
1
1
1
1
1
1
0 1 0
1
1
0
1
1
1
0 1 1
1
1
1
1
1
1
1 0 0
0
0
1
1
1
1
1 0 1
0
1
1
1
1
1
1 1 0
1
0
0
0
0
1
1 1 1
1
1
1
1
1
1
方法二:等值演算法
方法三:分析法
(1)直接分析法:若前件 为真,分两种情况:
(I) 为假,则 为真, 为真, 为真。
(II) 为真,则 为真,此时若 为真,则 为真,则 为真, 为真, 为真;若 为假,则 为假, 为真。
(1) P
(2) US(3)
(3) 附加前提
(6) T(4)(5)I
(7) P
(8) T(6)(7)I
(9) CP
习题3.1
3.确定下列命题是真还是假,并简要说明为什么。
(1) (2) (3) (4)
解:(1)该命题为真,因为 是任何集合的子集。
(2)该命题为假,因为 不包含任何元素。
(3)该命题为真,因为 属于集合 。
综上,若前件为真,后件必为真,故该蕴含式成立。
(2)间接分析法:若后件 为假,则 为真, 为假。由 为假可知, 为真, 为假。再由 可知, 为真。此时 为假, 为假,即前件为假。故蕴含式成立。
5.叙述下列各个命题的逆换式和逆反式,并以符号写出。
(1)如果下雨,我不去。
解:设 :天下雨。 :我去。
逆换式:如果我不去,天就下雨。符号表示为 。
为1、2、3、4的路各有几条?
(3)可达性矩阵。
图7-39
解:(1)邻接矩阵 。
(2)
从邻接矩阵及其幂可知,从 到 长度为1的路有1条,从 到 长度为2的路有1条,从 到 长度为3的路有2条,从 到 长度为4的路有3条。
(3)令 ,
则 ,可达性矩阵 。
习题7.4
2.确定 取怎样的值,完全图 有一条欧拉回路。
(7) T(4)(6)I
(8) T(7)E
习题2.1
用谓词表达式写出下列命题:
(5)每个有理数是实数。
解: ,其中 : 是有理数。 : 是实数。
(6)有的函数连续。
解: ,其中 : 是函数。 登上过木星。
解:设 : 是人。 : 登上过木星。则命题可表示为
:25%; :20%; :15%; :15%;
:10%; :5%; :5%; :5%.
(1)求传输它们的最佳前缀码.
(2)用最佳前缀码传输10000个按上述频率出现的数字需要多少个二进制码?
解:令 对应的树叶的权 ,则
; ; ; ;
; ; ; .
构造一颗带权5,5,5,10,10,15,20,30的最优二叉树(如下图):
(1) (4)
解:(1) 是反自反的、反对称的、非传递的。因为 但 。
(2) 是自反的、对称的、非传递的。因为 但 。
习题3.7
5.(1)设 , 上关系 的关系矩阵是
试求出 、 。
解: ,

习题3.9
4.设 ,试根据以下 的划分求 上相应的等价关系,并画出关系图。
(3)
解:
关系图如下:
习题3.10
1.对于下列集合上的“整除”关系,画出其哈斯图。
3.符号化下列命题:
(2)尽管有人聪明,但未必一切人都聪明。
解:设 : 是人。 : 聪明。则命题可表示为
习题2.3
2.对下列谓词公式中约束变元进行换名:
(1)
(2)
解:(1)
(2)
3.对下列谓词公式中自由变元进行代入:
(1)
(2)
解:(1)
(2)
习题2.4
3.证明下列等价式:
(1)
证明:
(2)
证明:
(4)该命题为真,因为 是任何集合的子集。
6.求下列集合的幂集:
(2) (3)
解:(2)该集合的幂集为 。
(3)该集合的幂集为
习题3.2
6.证明下列等式:
(4) 。
证明: = =
= = =
因此, 。
(5) 。
证明: =
= = 。
因此, 。
(8) 。
证明:
因此, 。
习题3.4
3.下列等式能否成立?
(3) 。
(1)我去新华书店(P),仅当我有时间(Q)。
(3)只要努力学习(P),成绩就会好的(Q)。
(6)我今天进城(P),除非下雨(Q)。
(10)人不犯我(P),我不犯人(Q);人若犯我,我必犯人。
解:(1) 。
(3) 。
(6) 。
(10) 。
习题1.4
1.写出下列公式的真值表:
(2) 。
解:该公式的真值表如下表:
证明:(1) P(附加前提)
(2) P
(3) T(1)(2)I
(4) P
(5) P
(6) T(4)((5)I
(7) T(3)(6)I
(8) P
(9) T(7)(8)I
相关文档
最新文档