蒋朝晖数字信号处理实验
蒋朝晖数字信号处理实验.
《数字信号处理》实验指导书编写蒋朝辉中南大学信息科学与工程学院2014年4月目录实验一 MATLAB仿真软件的基本操作命令和使用方法 (2)实验二常见离散信号的MATLAB产生和图形显示 (8)实验三离散时间系统的时域分析 (12)实验四离散时间信号的DTFT (16)实验一 MATLAB 仿真软件的基本操作命令和使用方法 实验内容1、帮助命令使用 help 命令,查找 sqrt (开方)函数的使用方法;2、MATLAB 命令窗口(1)在MATLAB 命令窗口直接输入命令行计算31)5.0sin(21+=πy 的值;(2)求多项式 p(x) = x3 + 2x+ 4的根;3、矩阵运算(1)矩阵的乘法已知A=[1 2;3 4],B=[5 5;7 8],求A^2*B(2)矩阵的行列式已知A=[1 2 3;4 5 6;7 8 9],求A(3)矩阵的转置及共轭转置已知A=[1 2 3;4 5 6;7 8 9],求A'已知B=[5+i,2-i,1;6*i,4,9-i], 求B.' , B'(4)特征值、特征向量、特征多项式已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] ,求矩阵A的特征值、特征向量、特征多项式;(5)使用冒号选出指定元素已知:A=[1 2 3;4 5 6;7 8 9];求A 中第3 列前2 个元素;A 中所有列第2,3 行的元素;4、Matlab 基本编程方法(1)编写命令文件:计算1+2+…+n<2000 时的最大n 值;(2)编写函数文件:分别用for 和while 循环结构编写程序,求 2 的0 到15 次幂的和。
5、MATLAB基本绘图命令(1)绘制余弦曲线 y=cos(t),t∈[0,2π](2)在同一坐标系中绘制余弦曲线 y=cos(t-0.25)和正弦曲线 y=sin(t-0.5), t∈[0,2π](3)绘制[0,4π]区间上的 x1=10sint 曲线,并要求:(a)线形为点划线、颜色为红色、数据点标记为加号;(b)坐标轴控制:显示范围、刻度线、比例、网络线(c)标注控制:坐标轴名称、标题、相应文本;>> clear;t=0:pi/10:4*pi;y=10*sin(t);plot(t,y);plot(t,y,'-+r');grid>> xlabel('X'),ylabel('Y');>> title('Plot:y=10*sin(t)');>> text(14,10,'完整图形');实验二常见离散信号的MATLAB产生和图形显示实验内容与步骤1. 写出延迟了np个单位的单位脉冲函数impseq,单位阶跃函数stepseq, n=ns:nf function [x,n]=impseq[np,ns,nf];function [x,n]=stepseq[np,ns,nf];2. 产生一个单位样本序列x1(n),起点为ns= -10, 终点为nf=20, 在n0=0时有一单位脉冲并显示它。
数字信号 实验四
一、 实验目的和要求:(1)进一步掌握线性卷积的计算机编程方法,利用卷积的方法观察系统响应的时域特性。
(2)掌握循环卷积的计算机编程方法,并比较与线性卷积的差别,验证二者之间的关系。
利用循环卷积的方法观察、分析系统响应的时域特性。
二、 实验内容与原理:1.实验原理:(1)线性卷积:线性时不变系统(Linear Time-Invariant System, or L. T. I 系统)输入、输出间的关系为:当系统输入序列为)(n x ,系统的单位脉冲响应为)(n h ,输出序列为)(n y ,则系统输出为:∑∞-∞=-=*=m m n h m x n h n x n y )()()()()(;上式称为线性卷积。
(2)循环卷积设两个有限长序列)(1n x 和)(2n x ,长度分别为1N 和2N ,)()(11k X n x D FTN −−−→←点 )()(22k X n x D F T N −−−→←点。
如果)()()(21k X k X k X ⋅=,则∑---==121)())(()()]([)(N m N N n R m n x m x k X IDFT n x上式称为)(1n x 和)(2n x 的循环卷积。
(3)两个有限长序列的线性卷积序列)(1n x 和)(2n x ,长度分别为L 点和P 点,)(3n x 为这两个序列的线性卷积,则)(3n x 为∑∞-∞=-=*=m m n xm x n x n x n x )()()()()(21213且线性卷积)(3n x 的非零值长度为1-+P L 点。
(4)循环卷积与线性卷积的关系序列)(1n x 为L 点长,序列)(2n x 为P 点长,若序列)(1n x 和)(2n x 进行N 点的循环卷积)(n x c ,其结果是否等于该两序列的线性卷积)(n x l ,完全取决于循环卷积的长度。
由教材相关推导,得∑∞-∞=+=q Nlc n RqN n x n x )()()(,也就是说,循环卷积是线性卷积的周期延拓序列再取主值区间。
数字信号处理实验(设计性实验修改)
《数字信号处理》实验指导书(实验报告)Digital Signal Processing Laboratory湛柏明编蒋伟荣审班级:姓名:湖北汽车工业学院电子信息科学系二〇〇六年十二月修订前言《信号与系统》、《数字信号处理》是电子信息类专业的两门主要技术基础课程,是电子信息类专业本科生的必修课程,也是电子信息类专业硕士研究生入学必考课程。
该课程的任务在于研究信号与系统理论的基本概念和基本分析方法,使学生初步认识如何建立信号与系统的数学模型,如何经适当的数学分析求解,并对所得结果给予物理解释,赋予物理意义。
该课程的基本理论和方法大量用于计算机信息处理的各个领域,特别是通信、数字语音处理、数字图像处理、数字信号分析等领域应用更为广泛。
通过实验,配合《信号与系统》和《数字信号处理》课程的教学、加强学生对信号与系统理论的感性认识、提高学生的综合能力具有重要的意义。
长期以来,《信号与系统》和《数字信号处理》课程一直采用黑板式的单一教学方式,学生仅依靠做习题来巩固和理解教学内容,对课程中大量的应用性较强的内容不能实际动手设计、调试、分析,严重影响和制约了教学效果。
由于黑板式教学,课程中大量的信号分析结果缺乏可视化的直观表现,学生自己设计系统也不能直观地得到系统特性的可视化测试结果,学生将大量的时间和精力用于繁杂的手工数学运算,而未真正理解所得结果在信号处理中的实际意义。
近年来,计算机多媒体教序手段的运用逐步普及,大量优秀的科学计算和系统仿真软件不断涌现,为我们实现计算机辅助教学和学生上机实验提供了很好的平台。
通过对这些软件的分析和对比,我们选择MATLAB语言作为辅助教学工具,借助MATLAB强大的计算能力和图形表现能力,将《信号与系统》和《数字信号处理》中的概念、方法和相应的结果,以图形的形式直观地展现给学生,大大的方便学生迅速掌握和理解教学内容。
然而,我们意识到,按照之前的《信号与系统》和《数字信号处理》课程的各8个实验学时进行实验,实验效果比较不尽如人意,由于实验学时数太少,没有给学生更的时间先去了解MATLAB语言,以至于使实验课流于形式,由于实验学时太少,也导致我们无法安排更为细致的具有综合型和设计型的实验项目。
数字信号处理实验报告(二)
数字信号处理第二次实验报告学院:信息工程学院班级:2012级电子信息工程*班姓名:学号:20125507**指导老师:实验四:IIR数字滤波器设计及软件实现一、实验目的1、熟悉双线性变换设计IIR滤波器的原理与方法2、掌握IIR滤波器的MATLAB实现方法二、实验原理简述IIR数字滤波器间接法基本设计过程:1、将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;2、设计过渡模拟滤波器;3、将过渡模拟滤波器系统函数转换成数字滤波器的系统函数三、程序与图形1、%-----------------信号产生函数mstg---------------function st=mstg %功能函数的写法%产生信号序列向量st,并显示st的时域波形和频谱%st=mstg 返回三路调幅信号相加形成的混合信号,长度N=1600N=1600 %N为信号st的长度。
Fs=10000;T=1/Fs;Tp=N*T; %采样频率Fs=10kHz,Tp为采样时间t=0:T:(N-1)*T;k=0:N-1;f=k/Tp;fc1=Fs/10; %第1路调幅信号的载波频率fc1=1000Hz,fm1=fc1/10; %第1路调幅信号的调制信号频率fm1=100Hzfc2=Fs/20; %第2路调幅信号的载波频率fc2=500Hzfm2=fc2/10; %第2路调幅信号的调制信号频率fm2=50Hzfc3=Fs/40; %第3路调幅信号的载波频率fc3=250Hz,fm3=fc3/10; %第3路调幅信号的调制信号频率fm3=25Hzxt1=cos(2*pi*fm1*t).*cos(2*pi*fc1*t); %产生第1路调幅信号xt2=cos(2*pi*fm2*t).*cos(2*pi*fc2*t); %产生第2路调幅信号xt3=cos(2*pi*fm3*t).*cos(2*pi*fc3*t); %产生第3路调幅信号st=xt1+xt2+xt3; %三路调幅信号相加fxt=fft(st,N); %计算信号st的频谱%-------绘制st的时域波形和幅频特性曲线-----subplot(2,1,1)plot(t,st);grid;xlabel('t/s');ylabel('s(t)');axis([0,Tp/8,min(st),max(st)]);title('(a) s(t)的波形')subplot(2,1,2)stem(f,abs(fxt)/max(abs(fxt)),'.');grid;title('(b) s(t)的频谱') axis([0,Fs/5,0,1.2]);xlabel('f/Hz');ylabel('幅度')-10123t/ss (t )(b) s(t)的频谱f/Hz幅度2、%-------实验4-2--------- clear all;close allFs=10000;T=1/Fs; %采样频率%调用信号产生函数mstg 产生由三路抑制载波调幅信号相加构成的复合信号st st=mstg;fp=280;fs=450; %下面wp,ws,为fp,fs 的归一化值范围为0-1wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF 指标(低通滤波器的通、阻带边界频)[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord 计算椭圆DF 阶数N 和通带截止频率wp[B,A]=ellip(N,rp,rs,wp); %调用ellip 计算椭圆带通DF 系统函数系数向量B 和A[h,w]= freqz(B,A);y1t=filter(B,A,st); %滤波器软件实现 figure(2);subplot(2,1,1); plot(w,20*log10(abs(h))); axis([0,1,-80,0]) subplot(2,1,2);t=0:T:(length(y1t)-1)*T; plot(t,y1t);%axis([0,1,-80,0])-10123t/ss (t )(b) s(t)的频谱f/Hz幅度-80-60-40-20000.020.040.060.080.10.120.140.16-1-0.500.511.53、%-------实验4-3---------fpl=440;fpu=560;fsl=275;fsu=900;wp=[2*fpl/Fs,2*fpu/Fs];ws=[2*fsl/Fs,2*fsu/Fs];rp=0.1;rs=60;[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord 计算椭圆DF 阶数N 和通带截止频率wp[B,A]=ellip(N,rp,rs,wp); %调用ellip 计算椭圆带通DF 系统函数系数向量B 和A[h,w]= freqz(B,A); y2t=filter(B,A,st);figure(3);subplot(2,1,1);plot(w,20*log10(abs(h))); axis([0,1,-80,0]) subplot(2,1,2);t=0:T:(length(y2t)-1)*T; plot(t,y2t);00.20.40.60.81-80-60-40-20000.020.040.060.080.10.120.140.16-2-10124、%-------实验4-4--------- fp=900;fs=550;wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF 指标(低通滤波器的通、阻带边界频)[N,wp]=ellipord(wp,ws,rp,rs);%调用ellipord 算椭圆DF 阶数N 通带截止频率 [B,A]=ellip(N,rp,rs,wp,'high'); %调用ellip 计算椭圆带通DF 系统函数系数向量B 和A[h,w]= freqz(B,A); y3t=filter(B,A,st);figure(4);subplot(2,1,1); plot(w,20*log10(abs(h))); axis([0,1,-80,0]) subplot(2,1,2);t=0:T:(length(y3t)-1)*T; plot(t,y3t);-80-60-40-20000.020.040.060.080.10.120.140.16-2-1012四、实验结果分析由图可见,三个分离滤波器指标参数选取正确,损耗函数曲线达到所给指标。
《数字信号处理》上机实验指导书
《数字信号处理》上机实验指导书一、引言“数字信号处理”是一门理论和实验密切结合的课程,为了深入地掌握课程内容,应当在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助学生深入地理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
所以,根据本课程的重点要求编写了四个实验。
第一章、二章是全书的基础内容,抽样定理、时域离散系统的时域和频域分析以及系统对输入信号的响应是重要的基本内容。
由于第一、二章大部分内容已经在前期《信号与系统》课程中学习完,所以可通过实验一帮助学生温习以上重要内容,加深学生对“数字信号处理是通过对输入信号的一种运算达到处理目的”这一重要概念的理解。
这样便可以使学生从《信号与系统》课程顺利的过渡到本课程的学习上来。
第三章、四章DFT、FFT是数字信号处理的重要数学工具,它有广泛的使用内容。
限于实验课时,仅采用实验二“用FFT对信号进行谱分析”这一实验。
通过该实验加深理解DFT的基本概念、基本性质。
FFT是它的快速算法,必须学会使用。
所以,学习完第三、四章后,可安排进行实验二。
数字滤波器的基本理论和设计方法是数字信号处理技术的重要内容。
学习这一部分时,应重点掌握IIR和FIR两种不同的数字滤波器的基本设计方法。
IIR滤波器的单位冲激响应是无限长的,设计方法是先设计模拟滤波器,然后再通过S~Z平面转换,求出相应的数字滤波器的系统函数。
这里的平面转换有两种方法,即冲激响应不变法和双线性变换法,后者没有频率混叠的缺点,且转换简单,是一种普遍应用的方法。
学习完第六章以后可以进行实验三。
FIR滤波器的单位冲激响应是有限长的,设计滤波器的目的即是求出符合要求的单位冲激响应。
窗函数法是一种基本的,也是一种重要的设计方法。
学习完第七章后可以进行实验四。
以上所提到的四个实验,可根据实验课时的多少恰当安排。
例如:实验一可根据学生在学习《信号与系统》课程后,掌握的程度来确定是否做此实验。
若时间紧,可以在实验三、四之中任做一个实验。
(完整版)数字信号处理实验三
3.41;3.42 由教材可知: ,即序列的偶部分的傅立叶变换是序列的傅立叶变换的实部。
5、实验步骤
1、进行本实验,首先必须熟悉matlab的运用,所以第一步是学会使用matlab。
2、学习相关基础知识,根据《数字信号处理》课程的学习理解实验内容和目的。
plot(w/pi,angle(h1));grid
xlabel('\omega/\pi');ylabel('以弧度为单位的相位');
title('原序列的相位谱')
subplot(2,2,4)
plot(w/pi,angle(h2));grid
xlabel('\omega/\pi');ylabel('以弧度为单位的相位');
grid;
title('相位谱arg[H(e^{j\omega})]');
xlabel('\omega/\pi');
ylabel('以弧度为单位的相位');
3.4
clf;
w=-4*pi:8*pi/511:4*pi;
num1=[1 3 5 7 9 11 13 15 17];
h=freqz(num,1,w);
Q3.32 通过加入合适的注释语句和程序语句,修改程序P3.8,对程序生成的图形中的两个轴加标记。时移量是多少?
Q3.33 运行修改后的程序并验证离散傅里叶变换的圆周时移性质。
Q3.36 运行程序P3.9并验证离散傅里叶变换的圆周卷积性质。
Q3.38 运行程序P3.10并验证线性卷积可通过圆周卷积得到。
数字信号处理上机实验答案(第三版,第十章)[自己整理完善的]
第十章 上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一 系统响应及系统稳定性。
实验二 时域采样与频域采样。
实验三 用FFT 对信号作频谱分析。
实验四 IIR 数字滤波器设计及软件实现。
实验五 FIR 数字滤波器设计与软件实现实验六 应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR 数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB 语言的工具箱函数filter 函数。
也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
数字信号处理实验2
数字信号处理实验2 ——离散系统频率响应和零极点分布姓名:李倩学号:班级:通信四班指导教师:周争一.实验原理离散时间系统的常系数线性差分方程:求一个系统的频率响应:H(e^jw)是以2pi为周期的连续周期复函数,将其表示成模和相位的形式:H(e^jw)=|H(e^jw)|*e^(jarg[H(e^jw)])其中|H(e^jw)|叫做振幅响应(幅度响应),频率响应的相位arg[H(e^jw)]叫做系统的相位响应。
将常系数线性差分方程的等式两边求FT,可以得到系统的频率响应与输入输出的频域关系式:H(e^jw)=Y(e^jw)/X(e^jw)将上式中的e^jw用z代替,即可得系统的系统函数:H(z)=Y(z)/X(z)H(z)=∑h(n)*z^(-n)(n的取值从负无穷到正无穷)将上式的分子、分母分别作因式分解,可得到LTI系统的零极点增益表达式为:H(z)=g∏(1-zr*z^(-1))/∏(1-pk*z^(-1))其中g为系统的增益因子,pk(k=1,2,3,…,N)为系统的极点,zr(r=1,2,3,…,M)为系统的零点。
通过系统的零极点增益表达式,可以判断一个系统的稳定性,对于一个因果的离散时间系统,若所有的极点都在单位圆内,则系统是稳定的。
二.实验内容一个LTI离散时间系统的输入输出差分方程为y(n)-1.6y(n-1)+1.28y(n-2)=0.5x(n)+0.1x(n-1)(1)编程求此系统的单位冲激响应序列,并画出其波形。
(2)若输入序列x(n)=&(n)+2&(n-1)+3&(n-2)+4&(n-3)+5&(n-4),编程求此系统输出序列y(n),并画出其波形。
(3)编程得到系统频响的幅度响应和相位响应并画图。
(4)编程得到系统的零极点分布图,分析系统的因果性和稳定性。
三.程序与运行结果(1)编程求此系统的单位冲激响应序列,并画出其波形。
程序:clear;N=100;b=[0.5 0.1];a=[1 -1.6 1.28];h1=impz(b,a,N); %计算系统的冲激响应序列的前N个取样点x1=[1 zeros(1,N-1)]; %生成单位冲激序列h2=filter(b,a,x1); %计算系统在输入单位冲激序列时的输出subplot(2,1,1);stem(h1);xlabel('时间序号n');ylabel('单位冲激响应序列值');title('单位冲激响应序列h1(n)');subplot(2,1,2);stem(h2);xlabel('时间序号n');ylabel('单位冲激响应序列值');title('单位冲激响应序列h2(n)');运行结果:0102030405060708090100-10125时间序号n单位冲激响应序列值单位冲激响应序列h1(n)0102030405060708090100-10125时间序号n单位冲激响应序列值单位冲激响应序列h2(n)结果说明:可以用impz 函数直接求出系统的单位冲激响应序列,也可输入单位冲激序列,用filter 函数求出系统的单位冲激响应序列,两者求得的结果相同。
数字信号处理实验报告
数字信号处理实验报告一、实验目的本次数字信号处理实验的主要目的是通过实际操作和观察,深入理解数字信号处理的基本概念和方法,掌握数字信号的采集、处理和分析技术,并能够运用所学知识解决实际问题。
二、实验设备与环境1、计算机一台,安装有 MATLAB 软件。
2、数据采集卡。
三、实验原理1、数字信号的表示与采样数字信号是在时间和幅度上都离散的信号,可以用数字序列来表示。
在采样过程中,根据奈奎斯特采样定理,为了能够准确地恢复原始信号,采样频率必须大于信号最高频率的两倍。
2、离散傅里叶变换(DFT)DFT 是将时域离散信号变换到频域的一种方法。
通过 DFT,可以得到信号的频谱特性,从而分析信号的频率成分。
3、数字滤波器数字滤波器是对数字信号进行滤波处理的系统,分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。
FIR 滤波器具有线性相位特性,而 IIR 滤波器则在性能和实现复杂度上有一定的优势。
四、实验内容与步骤1、信号的采集与生成使用数据采集卡采集一段音频信号,或者在 MATLAB 中生成一个模拟信号,如正弦波、方波等。
2、信号的采样与重构对采集或生成的信号进行采样,然后通过插值算法重构原始信号,观察采样频率对重构信号质量的影响。
3、离散傅里叶变换对采样后的信号进行DFT 变换,得到其频谱,并分析频谱的特点。
4、数字滤波器的设计与实现(1)设计一个低通 FIR 滤波器,截止频率为给定值,观察滤波前后信号的频谱变化。
(2)设计一个高通 IIR 滤波器,截止频率为给定值,比较滤波前后信号的时域和频域特性。
五、实验结果与分析1、信号的采集与生成成功采集到一段音频信号,并在MATLAB 中生成了各种模拟信号,如正弦波、方波等。
通过观察这些信号的时域波形,对不同类型信号的特点有了直观的认识。
2、信号的采样与重构当采样频率足够高时,重构的信号能够较好地恢复原始信号的形状;当采样频率低于奈奎斯特频率时,重构信号出现了失真和混叠现象。
《数字信号处理》实验指导书学生版
2015-2016学年第1学期学院物理与电子信息学院教研室信息与通信工程教研室课程名称数字信号处理授课班级13电信本、13电信卓越主讲教师黄隆胜职称副教授2014年03月目录前言 (1)实验一熟悉MATLAB环境 (4)实验二用MATLAB进行离散系统的Z域分析 (6)实验三傅立叶变换 (8)实验四IIR及FIR滤波器的MATLAB实现 (11)前言MATLAB是由美国Math Works公司推出的软件产品。
MATLAB是“Matrix Laboratory”的缩写,意及“矩阵实验室”。
MATLAB是一完整的并可扩展的计算机环境,是一种进行科学和工程计算的交互式程序语言。
它的基本数据单元是不需要指定维数的矩阵,它可直接用于表达数学的算式和技术概念,而普通的高级语言只能对一个个具体的数据单元进行操作。
因此,解决同样的数值计算问题,使用MATLAB要比使用Basic、Fortran和C语言等提高效率许多倍。
许多人赞誉它为万能的数学“演算纸”。
MATLAB采用开放式的环境,你可以读到它的算法,并能改变当前的函数或增添你自己编写的函数。
在欧美的大学和研究机构中,MATLAB是一种非常流行的计算机语言,许多重要的学术刊物上发表的论文均是用MATLAB来分析计算以及绘制出各种图形。
它还是一种有利的教学工具,它在大学的线性代数课程以及其它领域的高一级课程的教学中,已成为标准的教学工具。
最初的MATLAB是用FORTRAN编写的,在DOS环境下运行。
新版的MATLAB 是C语言编写的高度集成系统。
它在几乎所有流行的计算机机种,诸如PC、MACINTOSH、SUN、VAX上都有相应的MATLAB版本。
新版的MATLAB增强了图形处理功能,并在WINDOWS环境下运行。
现今,MATLAB的发展已大大超出了“矩阵实验室”的范围,在许多国际一流专家学者的支持下,Maths Works公司还为MATLAB 配备了涉及到自动控制、信息处理、计算机仿真等种类繁多的工具箱(Tool Box),这些工具箱有数理统计、信号处理、系统辨识、最优化、稳健等等。
《数字信号处理》实验指导书
数字信号处理实验指导书电子与信息工程学院二○一二年前言数字信号处理(DSP)研究数字序列信号的表示方法,并对信号进行运算,以提取包含在其中的特殊信息。
数字信号处理是一门技术基础课程,实验是该课程教学的重要内容,是理论联系实际的重要手段。
学生通过实验,可以验证和巩固所学的理论知识,掌握数字信号处理实验的基本技能,提高分析和解决实际问题的能力,培养认真、严谨、实事求是的工作作风。
我们根据当前通信类新课程体系的流行趋势,充分考虑通信工程类专业的特殊要求,编写了这门实验课程指导书。
在内容安排上,我们在自身的教学基础上,吸收了兄弟院校的先进经验。
我们把重点放在对学生理论联系实际、分析和解决问题能力的训练上,力求丰富实验内容,简化实验方法与步骤,化抽象为具体,让学生通过实验能够举一反三,融会贯通,提高信息处理和信息加工的能力,为以后在信息领域的发明和创造打下牢固的基础。
在实验的具体编排上,我们按照循序渐进的原则,逐步加深实验内容,注意前后实验之间的连贯性,强化基本实验技能的培养,保证实验内容的丰富性、生动性,增强学生对数字信号处理实验课程的兴趣。
目录实验一信号的谱分析 (1)实验二基-2FFT算法的软件实现 (6)实验三 IIR数字滤波器的设计 (12)实验四 FIR数字滤波器的设计 (16)实验一 信号的谱分析一、实验目的1、熟练掌握快速离散傅里叶变换(FFT )的原理及用FFT 进行频谱分析的基本方法;2、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;3、进一步了解离散傅里叶变换的主要性质及FFT 在数字信号处理中的重要作用。
二、基本原理1、离散傅里叶变换(DFT )及其主要性质DFT 表示离散信号的离散频谱,DFT 的主要性质中有奇偶对称特性,虚实特性等。
通过实验可以加深理解。
例如:实序列的DFT 具有偶对称的实部和奇对称的虚部,这可以证明如下: 由定义∑-==10)()(N n knNW n x k X∑∑-=-=-=1010)2sin()()2cos()(N n N n kn N n x j kn N n x ππ ∑-=-=-10)()()(N n nk N NW n x k N X∑-=-=1)(N n kn NNnW Wn x∑-=-=10)(N n knN W n x∑∑-=-=+=1010)2sin()()2cos()(N n N n kn N n x j kn N n x ππ)(*)(k N X k X -=∴对于单一频率的三角序列来说它的DFT 谱线也是单一的,这个物理意义我们可以从实验中得到验证,在理论上可以推导如下: 设:)()2sin()(n R n N n x N π=其DFT 为:∑-=-=102)()(N n kn Njen x k X πkn Nj N n e n N ππ210)2sin(--=∑=kn N j N n n Nj nN j e e e j πππ21022)(21--=-∑-=∑-=+----=10)1(2)1(2)(21N n k n Nj k n N j e e j ππ从而∑-=-=-=10220)(21)0(N n n Nj nN j e e j X ππ∑-=--==-=10422)1(21)1(N n n Nj N j j N e j X π0)2(=X0)2(=-N X22)(21)1(102)2(2N j j N e e j N X N n n j n N N j =-=-=-∑-=--ππ以上这串式中)0(X 反映了)(n x 的直流分量,)1(X 是)(n x 的一次谐波,又根据虚实特性)1()1(X N X -=-,而其它分量均为零。
数字信号处理--实验三
一、实验目的1.了解工程上两种最常用的变换方法:脉冲响应不变法和双线性变换法。
2.掌握双线性变换法设计IIR 滤波器的原理及具体设计方法,熟悉用双线性设计法设计低通、带通和高通IIR 数字滤波器的计算机程序.3.观察用双线性变换法设计的滤波器的频域特性,并与脉冲响应不变法相比较,了解双线性变换法的特点。
4.熟悉用双线性变换法设计数字Butterworth 和Chebyshev 滤波器的全过程。
5.了解多项式乘积和多项式乘方运算的计算机编程方法。
二、实验原理与方法从模拟滤波器设计IIR 数字滤波器具有四种方法:微分-差分变换法、脉冲响应不变法、双线性变换法、z 平面变换法。
工程上常用的是其中的两种:脉冲响应不变法、双线性变换法。
脉冲响应不变法需要经历如下基本步骤:由已知系统传输函数H(S)计算系统冲激响应h(t);对h(t)等间隔采样得到h (n )=h (n T);由h (n )获得数字滤波器的系统响应H (Z)。
这种方法非常直观,其算法宗旨是保证所设计的IIR 滤波器的脉冲响应和模拟滤波器的脉冲响应在采样点上完全一致。
而双线性变换法的设计准则是使数字滤波器的频率响应与参考模拟滤波器的频率响应相似。
脉冲响应不变法一个重要的特点是频率坐标的变换是线性的(),其确定是有频谱的周期延拓效应,存在频谱混叠的现象。
为了克服脉冲响应不变法可能产生的频谱混叠,提出了双线性变换法,它依靠双线性变换式:, , 其中 ,建立其S 平面和Z 平面的单值映射关系,数字域频率和模拟域频率的关系是: , (3-1) 由上面的关系式可知,当时,终止在折叠频率处,整个轴单值的对应于单位圆的一周。
因此双线性变换法不同于脉冲响应不变法,不存在频谱混叠的问题。
从式(3-1)还可以看出,两者的频率不是线性关系。
这种非线性关系使得通带截至频率、过渡带的边缘频率的相对位置都发生了非线性畸变。
这种频率的畸变可以通过预畸变来校正。
用双线性变换法设计数字滤波器时,一般总是先将数字滤波器的个临界频率经过式(3-1)的频率预畸变,求得相应参考模拟滤波器的个临界频率,然后设计参考模拟滤波器的传递函数,最后通过双T Ω=ω1111--+-=z z s s s z -+=11Ω+=j s σωj re z =)2/(ωtg =Ω)(2Ω=arctg ω∞→Ωωπω=Ωj线性变换式求得数字滤波器的传递函数。
《数字信号处理实验》指导书
《数字信号处理实验》实验1 常用信号产生实验目的:学习用MATLAB编程产生各种常见信号。
实验内容:1、矩阵操作:输入矩阵:x=[1 2 3 4;5 4 3 2;3 4 5 6;7 6 5 4]引用 x的第二、三行;引用 x的第三、四列;求矩阵的转置;求矩阵的逆;2、单位脉冲序列:产生δ(n)函数;产生δ(n-3)函数;3、产生阶跃序列:产生U(n)序列;产生U(n-n0)序列;4、产生指数序列:x(n)=0.5n⎪⎭⎫⎝⎛4 35、产生正弦序列:x=2sin(2π*50/12+π/6)6、产生取样函数:7、产生白噪声:产生[0,1]上均匀分布的随机信号:产生均值为0,方差为1的高斯随机信号:8、生成一个幅度按指数衰减的正弦信号:x(t)=Asin(w0t+phi).*exp(-a*t)9、产生三角波:实验要求:打印出程序、图形及运行结果,并分析实验结果。
实验2 利用MATLAB 进行信号分析实验目的:学习用MATLAB 编程进行信号分析实验内容:1数字滤波器的频率响应:数字滤波器的系统函数为:H(z)=21214.013.02.0----++++z z z z , 求其幅频特性和相频特性:2、离散系统零极点图:b =[0.2 0.1 0.3 0.1 0.2];a=[1.0 -1.1 1.5 -0.7 0.3];画出其零极点图3、数字滤波器的冲激响应:b=[0.2 0.1 0.3 0.1 0.2];a=[1.0 -1.1 1.5 -0.7 0.3];求滤波器的冲激响应。
4、 计算离散卷积:x=[1 1 1 1 0 0];y=[2 2 3 4];求x(n)*y(n)。
5、 系统函数转换:(1)将H(z)=)5)(2)(3.0()1)(5.0)(1.0(------z z z z z z 转换为直接型结构。
(2)将H (z )=3213210.31.123.7105.065.06.11-------+--+-zz z z z z 转换为级联型结构。
《数字信号处理》实验指导书(全)
数字信号处理实验指导书电子信息工程学院2012年6月目录实验一离散信号产生和基本运算 (3)实验二基于MATLAB的离散系统时域分析 (7)实验三基于ICETEK-F2812-A 教学系统软件的离散系统时域分析 (9)实验四基于MATLAB 的FFT 算法的应用 (16)实验五基于ICETEK-F2812-A 的FFT 算法分析 (18)实验六基于ICETEK-F2812-A 的数字滤波器设计 (20)实验七基于ICETEK-F2812-A的交通灯综合控制 (24)实验八基于BWDSP100的步进电机控制 (26)实验一离散信号产生和基本运算一、实验目的(1)掌握MATLAB最基本的矩阵运算语句。
(2)掌握对常用离散信号的理解与运算实现。
二、实验原理1.向量的生成a.利用冒号“:”运算生成向量,其语句格式有两种:A=m:nB=m:p:n第一种格式用于生成不长为1的均匀等分向量,m和n分别代表向量的起始值和终止值,n>m 。
第二种格式用于生成步长为p的均匀等分的向量。
b.利用函数linspace()生成向量,linspace()的调用格式为:A=linspace(m,n)B=linspace(m,n,s)第一种格式生成从起始值m开始到终止值n之间的线性等分的100元素的行向量。
第二种格式生成从起始值m开始到终止值n之间的s个线性等分点的行向量。
2.矩阵的算术运算a.加法和减法对于同维矩阵指令的A+BA-B对于矩阵和标量(一个数)的加减运算,指令为:A+3A-9b.乘法和除法运算A*B 是数学中的矩阵乘法,遵循矩阵乘法规则A.*B 是同维矩阵对应位置元素做乘法B=inv(A)是求矩阵的逆A/B 是数学中的矩阵除法,遵循矩阵除法规则A./B 是同维矩阵对应位置元素相除另'A表示矩阵的转置运算3.数组函数下面列举一些基本函数,他们的用法和格式都相同。
sin(A),cos(A),exp(A),log(A)(相当于ln)sqrt(A)开平方 abs(A)求模 real(A)求实部 imag(A)求虚部 式中A 可以是标量也可以是矩阵 例: 利用等差向量产生一个正弦值向量 t=0:0.1:10 A=sin(t) plot(A)这时候即可看到一个绘有正弦曲线的窗口弹出 另:每条语句后面加“;”表示不要显示当前语句的执行结果 不加“;”表示要显示当前语句的执行结果。
数字信号处理实验报告
数字信号处理实验报告数字信号处理实验报告一、实验目的本实验旨在通过数字信号处理的方法,对给定的信号进行滤波、频域分析和采样率转换等操作,深入理解数字信号处理的基本原理和技术。
二、实验原理数字信号处理(DSP)是一种利用计算机、数字电路或其他数字设备对信号进行各种处理的技术。
其主要内容包括采样、量化、滤波、变换分析、重建等。
其中,滤波器是数字信号处理中最重要的元件之一,它可以用来提取信号的特征,抑制噪声,增强信号的清晰度。
频域分析是指将时域信号转化为频域信号,从而更好地理解信号的频率特性。
采样率转换则是在不同采样率之间对信号进行转换,以满足不同应用的需求。
三、实验步骤1.信号采集:首先,我们使用实验室的信号采集设备对给定的信号进行采集。
采集的信号包括噪声信号、含有正弦波和方波的混合信号等。
2.数据量化:采集到的信号需要进行量化处理,即将连续的模拟信号转化为离散的数字信号。
这一步通常通过ADC(模数转换器)实现。
3.滤波处理:将量化后的数字信号输入到数字滤波器中。
我们使用不同的滤波器,如低通、高通、带通等,对信号进行滤波处理,以观察不同滤波器对信号的影响。
4.频域分析:将经过滤波处理的信号进行FFT(快速傅里叶变换)处理,将时域信号转化为频域信号,从而可以对其频率特性进行分析。
5.采样率转换:在进行上述处理后,我们还需要对信号进行采样率转换。
我们使用了不同的采样率对信号进行转换,并观察采样率对信号处理结果的影响。
四、实验结果及分析1.滤波处理:经过不同类型滤波器处理后,我们发现低通滤波器可以有效抑制噪声,高通滤波器可以突出高频信号的特征,带通滤波器则可以提取特定频率范围的信号。
这表明不同类型的滤波器在处理不同类型的信号时具有不同的效果。
2.频域分析:通过FFT处理,我们将时域信号转化为频域信号。
在频域分析中,我们可以更清楚地看到信号的频率特性。
例如,对于噪声信号,我们可以看到其频率分布较为均匀;对于含有正弦波和方波的混合信号,我们可以看到其包含了不同频率的分量。
数字信号处理实验报告(自己的实验报告)
数字信号处理实验报告西南交通大学信息科学与技术学院姓名:伍先春学号:20092487班级:自动化1班指导老师:张翠芳实验一序列的傅立叶变换实验目的进一步加深理解DFS,DFT 算法的原理;研究补零问题;快速傅立叶变换(FFT )的应用。
实验步骤1. 复习DFS 和DFT 的定义,性质和应用;2. 熟悉MATLAB 语言的命令窗口、编程窗口和图形窗口的使用;利用提供的程序例子编写实验用程序;按实验内容上机实验,并进行实验结果分析;写出完整的实验报告,并将程序附在后面。
实验内容1. 周期方波序列的频谱试画出下面四种情况下的的幅度频谱,并分析补零后,对信号频谱的影响。
2. 有限长序列x(n)的DFT(1) 取x(n)(n=0:10)时,画出x(n)的频谱X(k) 的幅度;(2) 将(1)中的x(n)以补零的方式,使x(n)加长到(n:0~100)时,画出x(n)的频谱X(k) 的幅度;(3) 取x(n)(n:0~100)时,画出x(n)的频谱X(k) 的幅度。
利用FFT进行谱分析 已知:模拟信号以t=0.01n(n=0:N-1)进行采样,求N 点DFT 的幅值谱。
请分别画出N=45; N=50;N=55;N=60时的幅值曲线。
数字信号处理实验一1.(1) L=5;N=20;60,7)4(;60,5)3(;40,5)2(;20,5)1()](~[)(~,2,1,01)1(,01,1)(~=========±±=⎩⎨⎧-+≤≤+-+≤≤=N L N L N L N L n x DFS k X m N m n L mN L mN n mN n x )52.0cos()48.0cos()(n n n x ππ+=)8cos(5)4sin(2)(t t t x ππ+=n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(1)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=20');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(2)L=5;N=40;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(2)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=40');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(3)L=5;N=60;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(3)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=5,N=60');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');(4)L=7;N=60;n=1:N;xn=[ones(1,L),zeros(1,N-L)];Xk=dfs(xn,N);magXk=abs([Xk(N/2+1:N) Xk(1:N/2+1)]);k=[-N/2:N/2];figure(4)subplot(2,1,1);stem(n,xn);xlabel('n');ylabel('xtide(n)'); title('DFS of SQ.wave:L=7,N=60');subplot(2,1,2);stem(k,magXk);axis([-N/2,N/2,0,16]);xlabel('k');ylabel('Xtide(k)');2. (1)M=10;N=10;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(1)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=10');axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');(2)M=10;N=100;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(2)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=10');axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');(3)M=100;N=100;n=1:M;xn=cos(0.48*pi*n)+cos(0.52*pi*n);n1=[0:1:N-1];y1=[xn(1:1:M),zeros(1,N-M)]; figure(3)subplot(2,1,1);stem(n1,y1);xlabel('n'); title('signal x(n),0<=n<=100');axis([0,N,-2.5,2.5]);Y1=fft(y1);magY1=abs(Y1(1:1:N/2+1));k1=0:1:N/2;w1=2*pi/N*k1;subplot(2,1,2);title('Samples of DTFT Magnitude');stem(w1/pi,magY1); axis([0,1,0,10]);xlabel('frequency in pi units');3.figure(1)subplot(2,2,1)N=45;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))stem(q,abs(y))title('FFT N=45')%subplot(2,2,2)N=50;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=50')%subplot(2,2,3)N=55;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=55')%subplot(2,2,4)N=16;n=0:N-1;t=0.01*n;q=n*2*pi/N;x=2*sin(4*pi*t)+5*cos(8*pi*t); y=fft(x,N);plot(q,abs(y))title('FFT N=16')function[Xk]=dfs(xn,N)n=[0:1:N-1];k=[0:1:N-1];WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;实验二 用双线性变换法设计IIR 数字滤波器 一、 实验目的1. 熟悉用双线性变换法设计IIR 数字滤波器的原理与方法; 2. 掌握数字滤波器的计算机仿真方法;3.通过观察对实际心电图的滤波作用,获得数字滤波器的感性知识。
《数字信号处理》实验指导书
的相角, Ai 就是极点 pi 到单位圆上的点 e jω 的矢量长度(距离),而θ i 就是该矢量 的相角,因此有:
M
∏ B e j(ψ1 +ψ 2 +⋅⋅⋅⋅+ψ M ) j
H (e jω ) =
j =1 N
= H (e jω ) e jϕ (ω )
∏ A e j(θ1+θ2 +⋅⋅⋅⋅+θ N ) i
(1) 设有直流信号 g(t)=1,现对它进行均匀取样,形成序列 g(n)=1。试讨 论若对该序列分别作加窗、补零,信号频谱结构有何变化。 四、实验过程及结果(含程序)
12
13
14
15
16
实验三 IIR 数字滤波器的设计
一、实验目的 (1)掌握双线性变换法及脉冲相应不变法设计 IIR 数字滤波器的具体设计 方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和 带通 IIR 数字滤波器的计算机编程。 (2)观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双 线性变换法及脉冲响应不变法的特点。 (3)熟悉 Butterworth 滤波器、Chebyshev 滤波器和椭圆滤波器的频率特 性
《数字信号处理》
实验指导书
班级: 学号: 姓名: 苏州科技学院 电子教研室
实验一 信号、系统及系统响应
一、实验目的
(1) 熟悉 MATLAB 平台的使用,掌握离散信号、离散系统的 MATLAB 实现。 (2)掌握根据系统函数绘制系统零极点分布图的基本原理和方法。 (3)理解离散系统频率特性分析的基本原理,掌握根据系统函数零极点分布来分 析离散系统频率响应的几何矢量法。
17
变换类型 低通
Байду номын сангаас
(完整版)数字信号处理实验三
实验三 离散时间信号的频域分析实验室名称:信息学院2204 实验时间:2015年10月15日姓 名:蒋逸恒 学号:20131120038 专业:通信工程 指导教师:陶大鹏成绩教师签名:一、实验目的1、 对前面试验中用到的信号和系统在频域中进行分析,进一步研究它们的性质。
2、 学习离散时间序列的离散时间傅立叶变换(DTFT 、离散傅立叶变换(DFT 和z 变换。
二、实验内容Q3.1在程序P3.1中,计算离散时间傅里叶变换的原始序列是什么?Matlab 命令pause的作用是什么?Q3.2运行程序P3.1,求离散时间傅里叶变换得的实部、虚部以及幅度和香相位谱。
离散时间傅里叶变换是 w 的周期函数吗?若是,周期是多少?描述这四个图形表示的 对称性。
Q3.2修改程序P3.1,在范围0W w Wn 内计算如下序列的离散时间傅里叶变换:0.7 0.5e jw 0.3e j2w e j3w1 0.3e jw 0.5e j2w 0.7e j3w并重做习题P3.2,讨论你的结果。
你能解释相位谱中的跳变吗? 可以移除变化。
试求跳变被移除后的相位谱。
Q3.6通过加入合适的注释语句和程序语句,修改程序 两个轴加标记。
哪个参数控制时移量?Q3.10通过加入合适的注释语句和程序语句,修改程序 两个轴加标记。
哪个参数控制频移量?Q3.14通过加入合适的注释语句和程序语句,修改程序 两个轴加标记。
Q3.15运行修改后的程序并讨论你的结果。
Q3.17通过加入合适的注释语句和程序语句,修改程序 两个轴加标记。
Q3.20通过加入合适的注释语句和程序语句,修改程序 两个轴加标记。
试解释程序怎样进行时间反转运算。
Q3.23编写一个MATLAB?序,计算并画出长度为为值,其中L > N,然后计算并画出L 点离散傅里叶逆变换X[k]。
对不同长度N 和不同的 离散傅里叶变换长度L ,运行程序。
讨论你的结果。
U(e jw )MATLAE 命P3.2,对程序生成的图形中的 P3.3,对程序生成的图形中的 P3.4,对程序生成的图形中的P3.5,对程序生成的图形中的 P3.6,对程序生成的图形中的 N 的L 点离散傅里叶变换X[k]的Q3.26在函数circshift 中,命令rem 的作用是什么? Q3.27解释函数circshift 怎样实现圆周移位运算。
数字信号处理实验指导书
《数字信号处理》实验指导书编写:刘梦亭审核:司玉娟阎维和适用专业:电子信息工程电子信息科学与技术通信工程等电子信息与工程系2009年9月目录实验一:离散时间信号分析 (1)实验二:离散时间系统分析 (3)实验三:离散系统的Z域分析 (6)实验四:FFT频谱分析及应用 (9)实验五:IIR数字滤波器的设计 (12)实验六:FIR数字滤波器的设计 (16)附录: MATLAB基本操作及常用命令 (20)实验一:离散时间信号分析实验学时:2学时 实验类型:验证 实验要求:必修 一、实验目的1) 掌握离散卷积计算方法; 2) 学会差分方程的迭代解法;3) 了解全响应、零输入响应、零状态响应和初始状态的物理意义和具体求法; 二、实验内容 1、信号的加数学描述 )()()(21n x n x n x += MATLAB 实现 21X X X +=设[ x10=[1 0.7 0.4 0.1 0]; x20=[0.1 0.3 0.5 0.7 0.9 1];]2、信号的乘数学描述 )()()(21n x n x n x *= MATLAB 实现 2.1X X X *=设[ x10=[1 0.7 0.4 0.1 0]; x20=[0.1 0.3 0.5 0.7 0.9 1];]3、计算卷积用MATLAB 计算序列{-2 0 1 –1 3}和序列{1 2 0 -1}的离散卷积。
首先用手工计算,然后用MATLAB 编程验证。
三、实验组织运行要求1、学生在进行实验前必须进行充分的预习,熟悉实验内容;2、学生根据实验要求,读懂并理解相应的程序;3、学生严格遵守实验室的各项规章制度,注意人身和设备安全,配合和服从实验室人员管理;4、教师在学生实验过程中予以必要的辅导,独立完成实验;5、采用集中授课形式。
四、实验条件1、具有WINDOWS 98/2000/NT/XP 操作系统的计算机一台; 2.、MATLAB 编程软件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数字信号处理》实验指导书编写蒋朝辉中南大学信息科学与工程学院2014年4月目录实验一 MATLAB仿真软件的基本操作命令和使用方法 (2)实验二常见离散信号的MATLAB产生和图形显示 (8)实验三离散时间系统的时域分析 (12)实验四离散时间信号的DTFT (16)实验一 MATLAB 仿真软件的基本操作命令和使用方法 实验内容1、帮助命令使用 help 命令,查找 sqrt (开方)函数的使用方法;2、MATLAB 命令窗口(1)在MATLAB 命令窗口直接输入命令行计算31)5.0sin(21+=πy 的值;(2)求多项式 p(x) = x3 + 2x+ 4的根;3、矩阵运算(1)矩阵的乘法已知A=[1 2;3 4],B=[5 5;7 8],求A^2*B(2)矩阵的行列式已知A=[1 2 3;4 5 6;7 8 9],求A(3)矩阵的转置及共轭转置已知A=[1 2 3;4 5 6;7 8 9],求A'已知B=[5+i,2-i,1;6*i,4,9-i], 求B.' , B'(4)特征值、特征向量、特征多项式已知A=[1.2 3 5 0.9;5 1.7 5 6;3 9 0 1;1 2 3 4] ,求矩阵A的特征值、特征向量、特征多项式;(5)使用冒号选出指定元素已知:A=[1 2 3;4 5 6;7 8 9];求A 中第3 列前2 个元素;A 中所有列第2,3 行的元素;4、Matlab 基本编程方法(1)编写命令文件:计算1+2+…+n<2000 时的最大n 值;(2)编写函数文件:分别用for 和while 循环结构编写程序,求 2 的0 到15 次幂的和。
5、MATLAB基本绘图命令(1)绘制余弦曲线 y=cos(t),t∈[0,2π](2)在同一坐标系中绘制余弦曲线 y=cos(t-0.25)和正弦曲线 y=sin(t-0.5), t∈[0,2π](3)绘制[0,4π]区间上的 x1=10sint 曲线,并要求:(a)线形为点划线、颜色为红色、数据点标记为加号;(b)坐标轴控制:显示范围、刻度线、比例、网络线(c)标注控制:坐标轴名称、标题、相应文本;>> clear;t=0:pi/10:4*pi;y=10*sin(t);plot(t,y);plot(t,y,'-+r');grid>> xlabel('X'),ylabel('Y');>> title('Plot:y=10*sin(t)');>> text(14,10,'完整图形');实验二常见离散信号的MATLAB产生和图形显示实验内容与步骤1. 写出延迟了np个单位的单位脉冲函数impseq,单位阶跃函数stepseq, n=ns:nf function [x,n]=impseq[np,ns,nf];function [x,n]=stepseq[np,ns,nf];2. 产生一个单位样本序列x1(n),起点为ns= -10, 终点为nf=20, 在n0=0时有一单位脉冲并显示它。
修改程序,以产生带有延时11个样本的延迟单位样本序列x2(n)= x1(n-11),并显示它。
>> clear;>> ns=-10;nf=20;n0=0;>> [x1,n1]=impseq(n0,ns,nf);>> subplot(1,2,1),stem(n1,x1);title('n0=0时的单位脉冲')>> np=11;>> [x2,n2]=impseq(np,ns,nf);>> subplot(1,2,2),stem(n2,x2);title('延迟11个样本后')3.产生一个序列X(n)= n(u(n)-u(n-8)), 0<=n<=20,并显示。
>> clear>> n=[0:20];>> x=n.*(stepseq(0,0,20)-stepseq(8,0,20));>> stem(n,x);4.编写序列相加,相乘,以及序列翻转、移位的函数文件 function [y,ny] = seqadd(x1,n1,x2,n2);function [y,ny] = seqmult(x1,n1,x2,n2);function [y,ny] = seqfold(x,nx);function [y,ny] = seqshift(x,nx,k);5.已知序列x=[0,1,2,3,4,3,2,1,0],n= -5:3, 产生一个序列y(n) =2*x(n+3)+x(-n);并显示它。
>> x=[0,1,2,3,4,3,2,1,0];>> n=[-5:3];>> y=2*seqshift(x,n,3)+seqfold(x,n);stem(x,y)>> stem(n,y)6.复杂信号的产生:复杂的信号可以通过在简单信号上执行基本的运算来产生 试产生一个振幅调制信号 ,并显示出来。
)1.02cos())01.02cos(4.01()2cos())2cos(1()(n n n f n f m n y H L ⨯⋅⨯⋅+=⋅⋅+=ππππn=0:100>> n=[0:100];>> y=(1+0.4*cos(2*pi*0.01*n)).*cos(2*pi*0.1*n); >> stem(n,y)实验三 离散时间系统的时域分析实验内容与步骤1. 假定一因果系统为y(n)-0.4y(n-1)+0.75y(n-2)=2.2403x(n)+2.4908x(n-1)+2.2403x(n-2) 用MA TLAB 程序仿真该系统,输入三个不同的输入序列:)1.02c o s()(1n n x ⋅=π,)4.02cos()(2n n x ⋅=π,)(3)(221n x n x x -= 计算并并显示相应的输出)(1n y , )(2n y 和)(n y 。
>> n=0:40; a=2; b=-3;x1=cos(2*pi*0.1*n); x2=cos(2*pi*0.4*n); x=a*x1+b*x2;num=[2.2403 2.4908 2.2403]; den=[1 -0.4 0.75];y1=filter(num,den,x1); %计算出y1(n) y2=filter(num,den,x2); %计算出y2(n) y=filter(num,den,x); %计算出y(n) stem(y1);n=0:40; a=2; b=-3;x1=cos(2*pi*0.1*n); x2=cos(2*pi*0.4*n); x=a*x1+b*x2;num=[2.2403 2.4908 2.2403]; den=[1 -0.4 0.75];y1=filter(num,den,x1); %计算出y1(n) y2=filter(num,den,x2); %计算出y2(n) y=filter(num,den,x); %计算出y(n) stem(y1);>> stem(y2);>> stem(y);2.用MA TLAB程序仿真步骤1给出的系统,对两个不同的输入序列x(n)和x(n-10),计算并显示相应的输出序列y3(n)和y4(n)。
n=0:40;x1=2*n;num=[2.2403, 2.4908,2.2403];den=[1,-0.4,0.75];ic=[0 0]; %设置零初始条件y3=filter(num,den,x1,ic); %计算输入为x1(n)时的输出y1(n)[y,ny]=seqshift(x1,n,10)y4=filter(num,den,y,ic);subplot(2,1,1)stem(n,y3);ylabel('振幅');title('y3(n)');subplot(2,1,2)stem(ny,y4);ylabel('振幅');title('y4(n)');3.用MA TLAB 程序仿真计算下列两个有限长序列的卷积和并显示图形。
)2(2)1(3)()(1-+-+=n n n n x δδδ )3()()(2--=n u n u n xfunction[y,ny]=convwthn(x,nx,h,nh) nys=nx(1)+nh(1);nyf=nx(end)+nh(end); y=conv(x,h);ny=[nys:nyf];n=0:20;x1=impseq(0,0,20)+3*impseq(1,0,20)+2*impseq(2,0,20) x2=stepseq(0,0,20)-stepseq(3,0,20) subplot(3,1,1) stem(n,x1); subplot(3,1,2) stem(n,x2);[y,ny]=convwthn( x1,n,x2,n); subplot(3,1,3) stem(ny,y);实验四 离散时间信号的DTFT一、实验目的1. 运用MATLAB 计算离散时间系统的频率响应。
2. 运用MATLAB 验证离散时间傅立叶变换的性质。
二、实验原理(一)、计算离散时间系统的DTFT 已知一个离散时间系统∑∑==-=-Nk k Nk kk n x b k n y a)()(,可以用MA TLAB 函数frequz 非常方便地在给定的L 个离散频率点l ωω=处进行计算。
由于)(ωj e H 是ω的连续函数,需要尽可能大地选取L 的值(因为严格说,在MA TLAB 中不使用symbolic 工具箱是不能分析模拟信号的,但是当采样时间间隔充分小的时候,可产生平滑的图形),以使得命令plot 产生的图形和真实离散时间傅立叶变换的图形尽可能一致。
在MATLAB 中,freqz 计算出序列{M b b b ,,,10 }和{N a a a ,,,10 }的L 点离散傅立叶变换,然后对其离散傅立叶变换值相除得到L l e H lj ,,2,1),( =ω。
为了更加方便快速地运算,应将L 的值选为2的幂,如256或者512。
例3.1 运用MA TLAB 画出以下系统的频率响应。
y(n)-0.6y(n-1)=2x(n)+x(n-1) 程序:clf;w=-4*pi:8*pi/511:4*pi; num=[2 1];den=[1 -0.6]; h=freqz(num,den,w); subplot(2,1,1)plot(w/pi,real(h));gridtitle(‘H(e^{j\omega}的实部’)) xlabel(‘\omega/ \pi ’); ylabel(‘振幅’);subplot(2,1,1)plot(w/pi,imag(h));gridtitle(‘H(e^{j\omega}的虚部’)) xlabel(‘\omega/ \pi ’); ylabel(‘振幅’);(二)、离散时间傅立叶变换DTFT 的性质。