SPSS处理多元方差分析报告例子

合集下载

spss多因素方差分析报告例子

spss多因素方差分析报告例子

作业8:多因素方差分析1,data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打开spss软件,打开data0806-height数据,点击Analyze->General Linear Model->Univariate打开:把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model打开:选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择,结果输出:因无法计算MM M rror,即无法分开MM intercept 和MM error,无法检测interaction 的影响,无法进行方差分析,重新Analyze->General Linear Model->Univariate打开:选择好Dependent Variable和Fixed Factor(s),点击Model打开:点击Custom,把主效应变量species和plot送入Model框,点击Continue回到Univariate 主对话框,点击Plots:把date送入Horizontal Axis,把depth送入Separate Lines,点击Add,点击Continue 回到Univariate对话框,点击Options:把OVERALL,species, plot送入Display Means for框,选择Compare main effects,Bonferroni,点击Continue回到Univariate对话框,输出结果:可以看到:SS species=33.165,df species=7,MS species=4.738;SS plot=33.165,df plot=7,MS plot=4.738;SS error=21.472,df error=14,MS error=1.534;Fspecies=3.089,p=0.034<0.05;Fplot=12.130,p=0.005<0.01;所以故认为在5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。

spss 方差分析(多因素方差分析)实验报告

spss 方差分析(多因素方差分析)实验报告

大学经济管理学院学生实验报告实验课程名称:统计软件及应用专业工商管理班级学号姓名成绩实验地点实验性质:演示性 验证性综合性设计性实验项目名称方差分析(多因素方差分析)指导教师一、实验目的掌握利用SPSS 进行单因素方差分析、多因素方差分析的基本方法,并能够解释软件运行结果。

二、实验内容及步骤(包括实验案例及基本操作步骤)实验案例:为研究某商品在不同地区和不同日期的销售差异性,调查收集了以下日平均销售量数据。

销售量日期周一至周三周四至周五周末地区一5000 6000 40006000 8000 30004000 7000 5000地区二700080008000 500050006000500060004000地区三300020004000 600060005000800090006000(1)选择恰当的数据组织方式建立关于上述数据的SPSS数据文件。

在SPSS输入数据。

(2)利用多因素方差分析法,分析不同地区和不同日期对该商品的销售是否产生了显著影响。

1. 选择菜单Analyze,General Linear Model,Univariate;2. 指定观测变量销售额到Dependant Variable框中;3. 指定固定效应的控制变量到Fixed Factors框中,4. OK,得到分析结果。

(3)地区和日期是否对该商品的销售产生了交互影响?若没有显著的交互影响,则试建立非饱和模型进行分析,并与饱和模型进行对比。

三、实验结论(包括SPSS输出结果及分析解释)。

多元方差分析spss实例

多元方差分析spss实例

多元方差分析1992年美国总统选举的三位候选人为布什、佩罗特、克林顿。

从支持三位候选人的选民中分别分析:该题自变量为三位候选人,因变量为年龄段和受教育程度。

从自变量来看要进行方差分析,从因变量来看是二元分析,所以最终确定使用多变量分析具体操作(spss)1、打开spss,录入数据,定义变量和相应的值在此不作详述。

结果如图1图1 被投票人:1、布什2、佩罗特3、克林顿2、在spss窗口中选择分析——一般线性模型——多变量,调出多变量分析主界面,将年龄段和受教育程度移入因变量框中,被投票人移入固定因子框中。

如图2图2 多变量分析主界面3、点击选项按钮在输出框中选择方差齐性分析(既包括协方差矩阵等同性分析也包括误差方差齐性分析),其它使用默认即可,点击继续返回主界面。

如图3图3 选项子对话框4、点击确定,运行多变量分析过程。

结果解释1、协方差矩阵等同性的Box检验结果,如图4图4 协方差矩阵检验结果说明:此Box检验的协方差矩阵为三位候选人每个人的支持者的年龄段和受教育程度的协方差矩阵。

因为sig>0.05,所以差异不显著,即各个因变量的协方差矩阵在所有三个候选人组中是相等的。

可以对其进行多元方差分析。

2、多变量检验结果,如图5图5 多变量检验结果说明:被投票人在四种统计方法中的sig均小于0.05,所以差异显著,即三组的总体均值有显著性差异3、误差方差等同性的Levene检验结果,如图6图6 Levene检验结果说明:只考虑单个变量,年龄段或者受教育程度,每位候选人的20名支持者的随机误差是否有显著性差异。

因为sig>0.05,差异不显著,所以三位候选人的20名支持者的随机误差相等。

可以进行单因素方差分析。

4、主体间效应的检验结果,如图7图7 主体间效应的检验结果说明:被投票人一行中,年龄段的sig<0.05,差异显著,即支持三位候选人的选民中,年龄段之间存在显著差异;而受教育程度的sig>0.05,差异不显著,即支持三位候选人的选民中,受教育程度差异不显著。

spss多因素方差分析报告例子

spss多因素方差分析报告例子

作业8:多因素方差分析1,data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打开spss软件,打开data0806-height数据,点击Analyze->General Linear Model->Univariate 打开:把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model 打开:选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择,结果输出:因无法计算rror,即无法分开intercept和error,无法检测interaction的影响,无法进行方差分析,重新Analyze->General Linear Model->Univariate打开:选择好Dependent Variable和Fixed Factor(s),点击Model打开:点击Custom,把主效应变量species和plot送入Model框,点击Continue回到Univariate主对话框,点击Plots:Univariate对话框,点击Options:把OVERALL,species, plot送入Display Means for框,选择Compare main effects,Bonferroni,点击Continue回到Univariate对话框,输出结果:可以看到:SS species=33.165,df species=7,MS species=4.738;SS plot=33.165,df plot=7,MS plot=4.738;SS error=21.472,df error=14,MS error=1.534;Fspecies=3.089,p=0.034<0.05;Fplot=12.130,p=0.005<0.01;所以故认为在5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。

spss方差分析报告操作示范-步骤-例子

spss方差分析报告操作示范-步骤-例子

第五节方差分析的SPSS操作一、完全随机设计的单因素方差分析1.数据采用本章第二节所用的例1中的数据,在数据中定义一个group变量来表示五个不同的组,变量math表示学生的数学成绩。

数据输入格式如图6-3(为了节省空间,只显示部分数据的输入):图 6-3 单因素方差分析数据输入将上述数据文件保存为“6-6-1.sav”。

2.理论分析要比较不同组学生成绩平均值之间是否存在显著性差异,从上面数据来看,总共分了5个组,也就是说要解决比较多个组(两组以上)的平均数是否有显著的问题。

从要分析的数据来看,不同组学生成绩之间可看作相互独立,学生的成绩可以假设从总体上服从正态分布,在各组方差满足齐性的条件下,可以用单因素的方差分析来解决这一问题。

单因素方差分析不仅可以检验多组均值之间是否存在差异,同时还可进一步采取多种方法进行多重比较,发现存在差异的究竟是哪些均值。

3.单因素方差分析过程(1)主效应的检验假如我们现在想检验五组被试的数学成绩(math)的均值差异是否显著性,可依下列操作进行。

①单击主菜单Analyze/Compare Means/One-Way Anova…,进入主对话框,请把math选入到因变量表列(Dependent list)中去,把group选入到因素(factor)中去,如图6-4所示:图6-4:One-Way Anova主对话框②对于方差分析,要求数据服从正态分布和不同组数据方差齐性,对于正态性的假设在后面非参数检验一章再具体介绍;One-Way Anova可以对数据进行方差齐性的检验,单击铵钮Options,进入它的主对话框,在Homogeneity-of-variance项上选中即可。

设置如下图6-5所示:图6-5:One-Way Anova的Options对话框点击Continue,返回主对话框。

③在主对话框中点击OK,得到单因素方差分析结果4.结果及解释(1)输出方差齐性检验结果Test of Homogeneity of VariancesMATHLevene Statistic df1 df2 Sig.1.238 4 35 .313上表结果显示,Levene方差齐性检验统计量的值为1.238,Sig=0.313>0.05,所以五个组的方差满足方差齐性的前提条件,如果不满足方差齐性的前提条件,后面方差分析计算F统计量的方法要稍微复杂,本章我们只考虑方差齐性条件满足的情况。

《2024年使用SPSS软件进行多因素方差分析》范文

《2024年使用SPSS软件进行多因素方差分析》范文

《使用SPSS软件进行多因素方差分析》篇一一、引言在社会科学研究中,多因素方差分析是一种常用的统计方法,用于探究多个自变量对一个因变量的影响。

这种分析方法能够帮助研究者理解多个因素如何同时作用于因变量,以及它们之间是否存在交互效应。

本文将详细介绍如何使用SPSS软件进行多因素方差分析,以期为相关领域的研究提供方法和参考。

二、方法2.1 研究设计本部分首先介绍了研究目的、研究问题和研究对象等基本情况。

针对特定问题,研究者应事先进行适当的文献回顾,以便更好地理解和把握所研究问题的现状。

接着确定了使用多因素方差分析作为主要的统计分析方法,因为它能够探究多个因素同时作用于因变量的影响及其之间的交互效应。

2.2 数据收集在数据收集阶段,应遵循科学的研究设计和样本选择原则,确保数据的可靠性和有效性。

收集的数据应包括自变量和因变量的观测值,以及可能影响分析结果的协变量。

此外,还需要收集有关样本特征的信息,如性别、年龄、教育背景等。

2.3 SPSS软件操作(1)数据录入:将收集到的数据录入SPSS软件中,确保数据格式正确、无缺失值和异常值。

(2)定义变量:在SPSS中定义自变量、因变量和协变量,为后续分析做好准备。

(3)多因素方差分析:选择“分析”菜单中的“一般线性模型”选项,进行多因素方差分析。

在分析过程中,需要设置好因素、水平、因变量和协变量等参数。

(4)结果解读:根据SPSS输出的结果,解读各因素对因变量的影响程度、交互效应以及统计显著性等信息。

三、结果与分析3.1 描述性统计首先对数据进行描述性统计分析,包括计算各变量的均值、标准差、最大值、最小值等统计量,以便初步了解数据的分布特征和变化规律。

3.2 多因素方差分析结果通过SPSS软件进行多因素方差分析后,得到以下结果:(1)各因素对因变量的影响:从输出结果中可以看出,哪些因素对因变量的影响显著,哪些因素的影响不显著。

这有助于研究者了解各因素对因变量的独立作用。

spss多元回归分析报告案例

spss多元回归分析报告案例

企业管理对居民消费率影响因素的探究---以湖北省为例改革开放以来,我国经济始终保持着高速增长的趋势,三十多年间综合国力得到显著增强,但我国居民消费率一直偏低,甚至一直有下降的趋势。

居民消费率的偏低必然会导致我国内需的不足,进而会影响我国经济的长期健康发展。

本模型以湖北省1995年-2010年数据为例,探究各因素对居民消费率的影响及多元关系。

(注:计算我国居民的消费率,用居民的人均消费除以人均GDP,得到居民的消费率)。

通常来说,影响居民消费率的因素是多方面的,如:居民总收入,人均GDP,人口结构状况1(儿童抚养系数,老年抚养系数),居民消费价格指数增长率等因素。

(注:数据来自《湖北省统计年鉴》)总消费(C:亿元) 总GDP(亿元)消费率(%)1995 1095.97 2109.38 51.96 1997 1438.12 2856.47 50.35 2000 1594.08 3545.39 44.96 2001 1767.38 3880.53 45.54 2002 1951.54 4212.82 46.32 2003 2188.05 4757.45 45.99 2004 2452.62 5633.24 43.54 2005 2785.42 6590.19 42.27 2006 3124.37 7617.47 41.02 2007 3709.69 9333.4 39.75 2008 4225.38 11328.92 37.30 2009 4456.31 12961.1 34.38 2010 5136.78 15806.09 32.50一、计量经济模型分析(一)、数据搜集根据以上分析,本模型在影响居民消费率因素中引入6个解释变量。

X1:居民1.人口年龄结构一种比较精准的描述是:儿童抚养系数(0-14岁人口与 15-64岁人口的比值)、老年抚养系数(65岁及以上人口与15-64岁人口的比值〉或总抚养系数(儿童和老年抚养系数之和)。

spss方差分析报告操作示范-步骤-例子

spss方差分析报告操作示范-步骤-例子

第五节方差分析的SPSS操作一、完全随机设计的单因素方差分析1.数据采用本章第二节所用的例1中的数据,在数据中定义一个group变量来表示五个不同的组,变量math表示学生的数学成绩。

数据输入格式如图6-3(为了节省空间,只显示部分数据的输入):图 6-3 单因素方差分析数据输入将上述数据文件保存为“6-6-1.sav”。

2.理论分析要比较不同组学生成绩平均值之间是否存在显著性差异,从上面数据来看,总共分了5个组,也就是说要解决比较多个组(两组以上)的平均数是否有显著的问题。

从要分析的数据来看,不同组学生成绩之间可看作相互独立,学生的成绩可以假设从总体上服从正态分布,在各组方差满足齐性的条件下,可以用单因素的方差分析来解决这一问题。

单因素方差分析不仅可以检验多组均值之间是否存在差异,同时还可进一步采取多种方法进行多重比较,发现存在差异的究竟是哪些均值。

3.单因素方差分析过程(1)主效应的检验假如我们现在想检验五组被试的数学成绩(math)的均值差异是否显著性,可依下列操作进行。

①单击主菜单Analyze/Compare Means/One-Way Anova…,进入主对话框,请把math选入到因变量表列(Dependent list)中去,把group选入到因素(factor)中去,如图6-4所示:图6-4:One-Way Anova主对话框②对于方差分析,要求数据服从正态分布和不同组数据方差齐性,对于正态性的假设在后面非参数检验一章再具体介绍;One-Way Anova可以对数据进行方差齐性的检验,单击铵钮Options,进入它的主对话框,在Homogeneity-of-variance项上选中即可。

设置如下图6-5所示:图6-5:One-Way Anova的Options对话框点击Continue,返回主对话框。

③在主对话框中点击OK,得到单因素方差分析结果4.结果及解释(1)输出方差齐性检验结果Test of Homogeneity of VariancesMATHLevene Statistic df1 df2 Sig.1.238 4 35 .313上表结果显示,Levene方差齐性检验统计量的值为1.238,Sig=0.313>0.05,所以五个组的方差满足方差齐性的前提条件,如果不满足方差齐性的前提条件,后面方差分析计算F统计量的方法要稍微复杂,本章我们只考虑方差齐性条件满足的情况。

spss多因素方差分析报告例子

spss多因素方差分析报告例子

作业8:多因素方差分析1,data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打开spss软件,打开data0806-height数据,点击Analyze->General Linear Model->Univariate打开:把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model打开:选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择,结果输出:因无法计算MM M rror,即无法分开MM intercept 和MM error,无法检测interaction 的影响,无法进行方差分析,重新Analyze->General Linear Model->Univariate打开:选择好Dependent Variable和Fixed Factor(s),点击Model打开:点击Custom,把主效应变量species和plot送入Model框,点击Continue回到Univariate 主对话框,点击Plots:把date送入Horizontal Axis,把depth送入Separate Lines,点击Add,点击Continue 回到Univariate对话框,点击Options:把OVERALL,species, plot送入Display Means for框,选择Compare main effects,Bonferroni,点击Continue回到Univariate对话框,输出结果:可以看到:SS species=33.165,df species=7,MS species=4.738;SS plot=33.165,df plot=7,MS plot=4.738;SS error=21.472,df error=14,MS error=1.534;Fspecies=3.089,p=0.034<0.05;Fplot=12.130,p=0.005<0.01;所以故认为在5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。

spss多元回归分析报告案例

spss多元回归分析报告案例

企业管理对居民消费率影响因素的探究---以湖北省为例改革开放以来,我国经济始终保持着高速增长的趋势,三十多年间综合国力得到显著增强,但我国居民消费率一直偏低,甚至一直有下降的趋势。

居民消费率的偏低必然会导致我国内需的不足,进而会影响我国经济的长期健康发展。

本模型以湖北省1995年-2010年数据为例,探究各因素对居民消费率的影响及多元关系。

(注:计算我国居民的消费率,用居民的人均消费除以人均GDP,得到居民的消费率)。

通常来说,影响居民消费率的因素是多方面的,如:居民总收入,人均GDP,人口结构状况1(儿童抚养系数,老年抚养系数),居民消费价格指数增长率等因素。

(注:数据来自《湖北省统计年鉴》)总消费(C:亿元) 总GDP(亿元)消费率(%)1995 1095.97 2109.38 51.96 1997 1438.12 2856.47 50.35 2000 1594.08 3545.39 44.96 2001 1767.38 3880.53 45.54 2002 1951.54 4212.82 46.32 2003 2188.05 4757.45 45.99 2004 2452.62 5633.24 43.54 2005 2785.42 6590.19 42.27 2006 3124.37 7617.47 41.02 2007 3709.69 9333.4 39.75 2008 4225.38 11328.92 37.30 2009 4456.31 12961.1 34.38 2010 5136.78 15806.09 32.50一、计量经济模型分析(一)、数据搜集根据以上分析,本模型在影响居民消费率因素中引入6个解释变量。

X1:居民1.人口年龄结构一种比较精准的描述是:儿童抚养系数(0-14岁人口与 15-64岁人口的比值)、老年抚养系数(65岁及以上人口与15-64岁人口的比值〉或总抚养系数(儿童和老年抚养系数之和)。

spss相关分析案例多因素方差分析及SPSS检验车辆运行速度案例分析

spss相关分析案例多因素方差分析及SPSS检验车辆运行速度案例分析

本次实验采用2005年东部、中部和西部各地区省份城镇居民月平均消费类型划分的数据(课本139页),将东部、中部和西部看作三个不同总体,31个数据分别来自于这三个总体。

本人对这三个不同地区的城镇居民月平均消费水平进行比较,并选取人均粮食支出、副食支出、烟酒及饮料支出、其他副食支出、衣着支出、日用杂品支出、水电燃料支出和其他非商品支出八个指标来衡量城镇居民月平均消费情况。

在进行比较分析之前,首先对个数据是否服从多元正态分布进行检验,输出结果为:表一如表一,因为该例中样本数n=31<2000,所以此处选用Shapiro-Wilk统计量。

由正态性检验结果的sig.值可以看到,人均粮食支出、烟酒及饮料支出、其他副食支出、水电燃料支出和其他非商品支出均明显不遵从正态分布(Sig.值小于0.05,拒绝服从正态分布的原假设),因此,在下面分析中,只对人均副食支出、衣着支出和日用杂品支出三项指标进行比较,并认为这三个变量组成的向量都遵从正态分布,并对城镇居民月平均消费状况做出近似的度量。

另外,正态性的检验还可以通过Q-Q图来实现,此时应判别数据点是否与已知直线拟合得好。

如果数据点均落在直线附近,说明拟合得好,服从正态分布,反之,不服从。

具体情况这里不再赘述。

下面进行多因素方差分析:一、多变量检验表二由地区一栏的(即第二栏)所列几个统计量的Sig.值可以看到,无论从那个统计量来看,三个地区的城镇居民月平均消费水平都是有显著差别的(Sig.值小于0.05,拒绝地区取值不同,对Y,即城镇居民月平均消费水平的取值没有显著影响的原假设)。

二、主体间效应检验表三如表三,可以看到三个指标地区一栏的(即第三栏)Sig.值分别为0.001、0.017、0.790,说明三个地区在人均衣着支出指标上没有明显的差别(Sig.值大于0.05,不拒绝地区取值不同,对指标的取值没有显著影响的原假设),反之,而在人均副食支出和日用杂品支出指标上有显著差别。

spss多因素方差分析报告报告材料例子

spss多因素方差分析报告报告材料例子

作业8:多因素方差分析1,data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打开spss软件,打开data0806-height数据,点击Analyze->General Linear Model->Univariate打开:把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model打开:选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择,结果输出:因无法计算MM M rror,即无法分开MM intercept 和MM error,无法检测interaction的影响,无法进行方差分析,重新Analyze->General Linear Model->Univariate打开:选择好Dependent Variable和Fixed Factor(s),点击Model打开:点击Custom,把主效应变量species和plot送入Model框,点击Continue回到Univariate主对话框,点击Plots:把date送入Horizontal Axis,把depth送入Separate Lines,点击Add,点击Continue 回到Univariate对话框,点击Options:把OVERALL,species, plot送入Display Means for框,选择Compare main effects,Bonferroni,点击Continue回到Univariate对话框,输出结果:可以看到:SS species=33.165,df species=7,MS species=4.738;SS plot=33.165,df plot=7,MS plot=4.738;SS error=21.472,df error=14,MS error=1.534;Fspecies=3.,p=0.034<0.05;Fplot=12.130,p=0.005<0.01;所以故认为在5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。

spss相关分析案例多因素方差分析

spss相关分析案例多因素方差分析

本次实验采用2005年东部、中部和西部各地区省份城镇居民月平均消费类型划分的数据(课本139页),将东部、中部和西部看作三个不同总体,31个数据分别来自于这三个总体。

本人对这三个不同地区的城镇居民月平均消费水平进行比较,并选取人均粮食支出、副食支出、烟酒与饮料支出、其他副食支出、衣着支出、日用杂品支出、水电燃料支出和其他非商品支出八个指标来衡量城镇居民月平均消费情况。

在进行比较分析之前,首先对个数据是否服从多元正态分布进行检验,输出结果为:表一如表一,因为该例中样本数n=31<2000,所以此处选用Shapiro-Wilk统计量。

由正态性检验结果的sig.值可以看到,人均粮食支出、烟酒与饮料支出、其他副食支出、水电燃料支出和其他非商品支出均明显不遵从正态分布(Sig.值小于0.05,拒绝服从正态分布的原假设),因此,在下面分析中,只对人均副食支出、衣着支出和日用杂品支出三项指标进行比较,并认为这三个变量组成的向量都遵从正态分布,并对城镇居民月平均消费状况做出近似的度量。

另外,正态性的检验还可以通过Q-Q图来实现,此时应判别数据点是否与已知直线拟合得好。

如果数据点均落在直线附近,说明拟合得好,服从正态分布,反之,不服从。

具体情况这里不再赘述。

下面进行多因素方差分析:一、多变量检验表二由地区一栏的(即第二栏)所列几个统计量的Sig.值可以看到,无论从那个统计量来看,三个地区的城镇居民月平均消费水平都是有显著差别的(Sig.值小于0.05,拒绝地区取值不同,对Y,即城镇居民月平均消费水平的取值没有显著影响的原假设)。

二、主体间效应检验如表三,可以看到三个指标地区一栏的(即第三栏)Sig.值分别为0.001、0.017、0.790,说明三个地区在人均衣着支出指标上没有明显的差别(Sig.值大于0.05,不拒绝地区取值不同,对指标的取值没有显著影响的原假设),反之,而在人均副食支出和日用杂品支出指标上有显著差别。

(整理)SPSS生物统计分析示例4-多因素方差分析.

(整理)SPSS生物统计分析示例4-多因素方差分析.

SPSS 生物统计分析示例3 (多因素方差分析)例一:番薯种植的两因素方差分析通过SPSS 统计分析推断种植密度(因素一)、品种(因素二)对亩产量(鲜重)的影响数据文件“sweetpotato-wet.sav ”品种5532304徐薯18 胜利百号 红东 利丰3号 二黄C-17C-3039(脱毒胜百)1)方差分析:Analyze→ General linear model→Univariate…结果输出:方差分析表Tests of Between-Subjects Effects Dependent Variable: 每亩鲜产a R Squared = .747 (Adjusted R Squared = .502)无交互效应,密度因素不显著,品种因素极显著2)多重比较(Post Hoc)结果LSD法:Multiple Comparisons Dependent Variable: 每亩鲜产Based on observed means.* The mean difference is significant at the .05 level.2304553C-17C-3023040.0580.394徐薯180.276黄色阴影为差异极显著(P<0.01**),绿色阴影为差异显著(P<0.05*),其余无显著差异Duncan法:每亩鲜产品种NSubset1 2 3 4 5红东 6 982.982509C-30 6 1183.224658 1183.224658C-17 6 1246.833306 1246.83330639(脱毒胜百) 6 1378.033689 1378.033689 1378.033689553 6 1469.473579 1469.473579胜利百号 6 1717.694931 1717.694931二黄 6 1764.122633 1764.1226332304 6 1819.723120 1819.723120 1819.723120 徐薯18 6 1999.091807 1999.091807 利丰3号 6 2229.200327 Sig. .090 .218 .065 .225 .070 Means for groups in homogeneous subsets are displayed.Based on Type III Sum of SquaresThe error term is Mean Square(Error) = 128993.994.a Uses Harmonic Mean Sample Size = 6.000.b Alpha = .05.每亩鲜产Duncan品种NSubset1 2 3 4红东 6 982.982509C-30 6 1183.224658 1183.224658C-17 6 1246.833306 1246.83330639(脱毒胜百) 6 1378.033689 1378.033689 1378.033689553 6 1469.473579 1469.473579 1469.473579胜利百号 6 1717.694931 1717.694931 1717.694931 二黄 6 1764.122633 1764.122633 1764.122633 2304 6 1819.723120 1819.723120 1819.723120 徐薯18 6 1999.091807 1999.091807 利丰3号 6 2229.200327 Sig. .042 .010 .011 .033 Means for groups in homogeneous subsets are displayed.Based on Type III Sum of SquaresThe error term is Mean Square(Error) = 128993.994.a Uses Harmonic Mean Sample Size = 6.000.b Alpha = .01.汇总表:品种每亩产率Alpha=0.01 Alpha=0.05红东982.982509 a AC-30 1183.224658 ab ABC-17 1246.833306 ab AB39(脱毒胜百) 1378.033689 abc ABC553 1469.473579 abc BC胜利百号1717.694931 bcd CD二黄1764.122633 bcd CD2304 1819.723120 bcd CDE徐薯18 1999.091807 cd DE利丰3号2229.200327 d E注:不同字母代表用邓肯新复极差法多重比较中差异显著利丰3号徐薯18 2304 二黄胜利百号553 39(脱毒胜百) C-17 C-30二黄2304徐薯18黄色阴影为差异极显著(P<0.01**),绿色阴影为差异显著(P<0.05*),其余无显著差异。

spss多因素方差分析报告例子

spss多因素方差分析报告例子

作业8:多因素方差分析1,data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打开spss软件,打开data0806-height数据,点击Analyze->General Linear Model->Univariate打开:把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model打开:选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择,结果输出:因无法计算MM M rror,即无法分开MM intercept 和MM error,无法检测interaction 的影响,无法进行方差分析,重新Analyze->General Linear Model->Univariate打开:选择好Dependent Variable和Fixed Factor(s),点击Model打开:点击Custom,把主效应变量species和plot送入Model框,点击Continue回到Univariate 主对话框,点击Plots:把date送入Horizontal Axis,把depth送入Separate Lines,点击Add,点击Continue 回到Univariate对话框,点击Options:把OVERALL,species, plot送入Display Means for框,选择Compare main effects,Bonferroni,点击Continue回到Univariate对话框,输出结果:可以看到:SS species=33.165,df species=7,MS species=4.738;SS plot=33.165,df plot=7,MS plot=4.738;SS error=21.472,df error=14,MS error=1.534;Fspecies=3.089,p=0.034<0.05;Fplot=12.130,p=0.005<0.01;所以故认为在5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。

SPSS多元方差分析

SPSS多元方差分析

SPSS多元方差分析分析3种药品对2种疾病的疗效是否与性别有关,观测数据如下表。

试进行多元多因素方差分析,分析药品与性别对疗效的影响是否显著。

1. SPSS22.0的分析过程选择【分析】→【一般线性模型】→【多变量】将因子“疗效1”和“疗效2”放入因变量框,将药品和性别放入固定因子框。

并设置各类选项。

模型为默认选项,即“全因子”。

对比选项中对比方法更改为“差值”。

绘制设定中,将药品拖入水平轴,将性别拖入单图,点击添加按钮,绘制“药品*性别”轮廓图。

两两比较选项中,选择药品进行两两比较。

性别只有两个水平,无需再进行多重比较。

选项中选OVERALL,即全部因子,并选择方差齐性检验。

可以根据自己的需求选择输出描述性统计等指标。

2. 结果分析(1)误差方差等同性的Levene检验表疗效1和疗效2在各组总体方差相等。

(2)多元方差分析表多元反差分析药品与性别两个主效应他们的四种检验统计量结果都相同(sig都小于0.05),显著性p值分别0.000和0.013,说明药品与性别两个因素对疗效1和疗效2两个指标影响显著,单其交互作用的影响不显著,p值均大于0.05,说明药品与性别对两个指标的影响不存在协同作用。

(3)主体间效应的检验疗效1在药品与性别两个因素都有差别(p值分别为0.000和0.004),而疗效2只在药品上有差别(p值为0.000),在性别间没有显著性(p值0.056)。

药品与性别交互作用在疗效1和疗效2上都没有显著性。

(4)多重比较结果疗效1和疗效2在药物为1、2间没有显著性差异,而在1与3、2与3之间有显著性差异。

(5)两因素交互影响折线图估值边际均值图中的两条折线基本平行,说明疗效和药品的两因素交互作用均不显著。

多元统计分析——单因素方差分析和多因素方差分析简单实例

多元统计分析——单因素方差分析和多因素方差分析简单实例

单因素方差分析实例[例6-8]在1990 年秋对“亚运会期间收看电视的时间”调查结果如下表所示。

问:收看电视的时间比平日减少了(第一组)、与平日无增减(第二组)、比平日增加了(第三组)的三组居民在“对亚运会的总态度得分”上有没有显著的差异?即要检验从“态度”上看,这三组居民的样本是取自同一总体还是取自不同的总体在SPSS 中进行方差分析的步骤如下:(1)定义“居民对亚运会的总态度得分”变量为X(数值型),定义组类变量为G(数值型),G=1、2、3 表示第一组、第二组、第三组。

然后录入相应数据,如图6-66所示图6-66 方差分析数据格式(2)选择[Analyze]=>[Compare Means]=>[One-Way ANOVA...],打开[One-Way ANOVA]主对话框(如图6-67所示)。

从主对话框左侧的变量列表中选定X,单击按钮使之进入[DependentList]框,再选定变量G,单击按钮使之进入[Factor]框。

单击[OK]按钮完成。

图6-67 方差分析对话框(3)分析结果如下:因此,收看电视时间不同的三个组其对亚运会的态度是属于三个不同的总体。

多因素方差分析[例6-11]从由五名操作者操作的三台机器每小时产量中分别各抽取1 个不同时段的产量,观测到的产量如表6-31所示。

试进行产量是否依赖于机器类型和操作者的方差分析。

SPSS 的操作步骤为:(1)定义“操作者的产量”变量为X(数值型),定义机器因素变量为G1(数值型)、操作者因素变量为G2(数值型),G1=1、2、3 分别表示第一、二、三台机器,G2=1、2、3、4、5 分别表示第1、2、3、4、5 位操作者。

录入相应数据,如图6-68所示。

图6-68 双因素方差分析数据格式(2)选择[Analyze]=>[General Linear Model]=>[Univariate...],打开[Univariate]主对话框(如图6-69所示)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三多元方差分析一、实验目的用多元方差分析说明民族和城乡对人均收入和文化程度的影响。

二、实验要求调查24个社区,得到民族与城乡有关数据如下表所示,其中人均收入为年均,单位百元。

文化程度指15岁以上小学毕业文化程度者所占百分比。

试依此数据通过方差分析说明民族和城乡对人均收入和文化程度的影响。

三、实验内容1.依次点击“分析”---- “常规线性模型”----“多变量”,将“人均收入”和“文化程度”加到“因变量”中,将“民族”和“居民”加到“固定因子”中,如下图一所示。

民族农村城市人均收入文化程度人均收入文化程度1 46,50,60,68 70,78,90,93 52,58,72,75 82,85,96,982 52,53,63,71 71,75,86,88 59,60,73,77 76,82,92,933 54,57,68,69 65,70,77,81 63,64,76,78 71,76,86,90【图一】2.点击“选项”,将“输出”中的相关选项选中,如下图二所示:【图二】3.点击“继续”,“确定”得到如下表一的输出:【表一】常规线性模型主体间因子值标签N民族 1.00 1 82.00 2 83.00 3 8居民 1.00 农村122.00 城市12描述性统计量民族居民均值标准差N人均收入1 农村56.0000 9.93311 4城市64.2500 11.02648 4总计60.1250 10.66955 8 2 农村59.7500 8.99537 4城市67.2500 9.10586 4总计63.5000 9.28901 8 3 农村62.0000 7.61577 4城市70.2500 7.84750 4总计66.1250 8.40812 8 总计农村59.2500 8.45442 12 城市67.2500 8.89458 12总计63.2500 9.41899 24文化程度1 农村82.7500 10.68878 4城市90.2500 7.93200 4总计86.5000 9.59166 82 农村80.0000 8.28654 4城市85.7500 8.18026 4总计82.8750 8.21910 83 农村73.2500 7.13559 4城市80.7500 8.77021 4总计77.0000 8.41767 8 总计农村78.6667 9.00841 12城市85.5833 8.53291 12总计82.1250 9.27977 24协方差矩阵等同性的 Box 检验(a)Box 的 M 12.397F .587df1 15df2 1772.187Sig. .887检验零假设,即观测到的因变量的协方差矩阵在所有组中均相等。

a 设计: Intercept+A+B+A * B多变量检验(d)效应值 F 假设 df 误差 df Sig. 偏 Eta方非中心。

参数观察到的幂(a)截距Pillai 的跟踪.9951832.265(b)2.000 17.000 .000 .995 3664.530 1.000Wilks 的Lambda .0051832.265(b)2.000 17.000 .000 .995 3664.530 1.000Hotelling的跟踪215.5611832.265(b)2.000 17.000 .000 .995 3664.530 1.000a 使用 alpha 的计算结果 = .05b 精确统计量c 该统计量是 F 的上限,它产生了一个关于显著性级别的下限。

d 设计: Intercept+A+B+A * B Roy 的最大根215.5611832.265(b)2.00017.000.000.9953664.5301.000APillai 的跟踪 .9017.378 4.000 36.000 .000 .450 29.511 .991Wilks 的Lambda .10118.305(b)4.00034.000.000.68373.2211.000Hotelling的跟踪 8.93035.720 4.000 32.000 .000 .817 142.882 1.000Roy 的最大根8.92880.356(c)2.00018.000.000.899160.7121.000BPillai 的跟踪 .205 2.198(b)2.000 17.000 .142 .205 4.397 .386Wilks 的Lambda .795 2.198(b)2.000 17.000 .142 .205 4.397 .386Hotelling的跟踪 .259 2.198(b)2.000 17.000 .142 .205 4.397 .386Roy 的最大根.259 2.198(b)2.000 17.000 .142 .205 4.397 .386A * BPillai 的跟踪 .016.0714.000 36.000 .991 .008 .282 .063Wilks 的Lambda .984.067(b)4.000 34.000 .991 .008 .268 .062Hotelling的跟踪 .016.063 4.000 32.000 .992 .008 .253 .061Roy 的最大根.016.142(c)2.000 18.000 .868 .016 .284 .069误差方差等同性的 Levene 检验(a)F df1 df2 Sig.人均收入.643 5 18 .670文化程度.615 5 18 .690检验零假设,即在所有组中因变量的误差方差均相等。

a 设计: Intercept+A+B+A * B4.实验结果分析在“协方差矩阵等同性的 Box 检验(a)”中可以看出,p=0.887,大于0.05,故接受原假设,即认为方差是齐性的,可以进行方差分析。

在“多变量检验”中,仅以wilks的Lambda为例进行分析,在效应A中p值接近0,故拒绝原假设,认为民族(A)对文化水平和收入有显著影响,在效应B中p=0.142,故接受原假设,即认为B(居民)对对文化水平和收入没有显著影响。

在A*B中,p=0.991,大于0.05,故接受原假设,即认为AB的交互作用对文化水平和收入的影响不显著。

故应该不考虑交互作用,重新改进该试验。

步骤如下:1.第一、二步和前面一样,只需要点击“模型”,将“全因子”改为“定制”,“建立项”中改为“主效应”接着将“A,B”添加到“模型”中,如下图三所示:【图三】2.点击“继续”“确定”,得到如下表二结果:【表二】常规线性模型主体间因子值标签N民族 1.00 1 82.00 2 83.00 3 8居民 1.00 农村122.00 城市12协方差矩阵等同性的 Box 检验(a)Box 的 M 12.397F .587df1 15df2 1772.187Sig. .887检验零假设,即观测到的因变量的协方差矩阵在所有组中均相等。

a 设计: Intercept+A+B多变量检验(d)效应值 F 假设 df 误差 df Sig. 偏 Eta 方非中心。

参数观察到的幂(a)截距Pillai 的跟踪.9952020.700(b)2.000 19.000 .000 .995 4041.400 1.000Wilks 的Lambda .0052020.700(b)2.000 19.000 .000 .995 4041.400 1.000a 使用 alpha 的计算结果 = .05b 精确统计量c 该统计量是 F 的上限,它产生了一个关于显著性级别的下限。

d 设计: Intercept+A+B主体间效应的检验源因变量III 型平方和df均方 F Sig. 偏 Eta 方 非中心。

参数观察到的幂(a) 校正模型 人均收入 528.750(b) 3 176.250 2.332 .105 .259 6.995 .500 文化程度 654.792(c) 3218.2643.292 .042 .331 9.877 .662 截距 人均收入 96013.500 1 96013.500 1270.230 .000 .984 1270.230 1.000文化程度161868.3751 161868.372441.761.000.9922441.7611.000Hotelling 的跟踪212.7052020.700(b)2.00019.000.000.9954041.4001.000Roy 的最大根212.7052020.700(b)2.00019.000.000.9954041.4001.000A Pillai 的跟踪 .900 8.176 4.000 40.000 .000 .450 32.702 .996Wilks 的Lambda.102 20.265(b)4.000 38.000 .000 .681 81.059 1.000Hotelling 的跟踪8.80239.6084.000 36.000 .000 .815 158.434 1.000Roy 的最大根 8.800 88.002(c) 2.000 20.000 .000 .898 176.004 1.000 B Pillai 的跟踪 .2052.457(b) 2.00019.000.112.2054.914.433Wilks 的Lambda.7952.457(b)2.000 19.000 .112 .205 4.914 .433Hotelling 的跟踪.2592.457(b) 2.000 19.000 .112 .205 4.914 .433Roy 的最大根.2592.457(b) 2.000 19.000 .112 .205 4.914 .4335A 人均收入144.750 2 72.375 .957 .401 .087 1.915 .192文化程度367.750 2 183.875 2.774 .086 .217 5.547 .484 B 人均收入384.000 1 384.000 5.080 .036 .203 5.080 .573文化程度287.042 1 287.042 4.330 .051 .178 4.330 .508 误差人均收入1511.750 20 75.588文化程度1325.833 20 66.292总计人均收入98054.000 24文化程度163849.000 24校正的总计人均收入2040.500 23文化程度1980.625 23a 使用 alpha 的计算结果 = .05b R 方 = .259(调整 R 方 = .148)c R 方 = .331(调整 R 方 = .230)主体间 SSCP 矩阵人均收入文化程度假设截距人均收入96013.500124665.75文化程度124665.75161868.375A 人均收入144.750 -225.750文化程度-225.750 367.750B 人均收入384.000 332.000文化程度332.000 287.042误差人均收1511.750 1360.000入文化程1360.000 1325.833度基于 III 型平方和3.实验结果分析去掉A与B的交互作用后,在“协方差矩阵等同性的 Box 检验(a)”表格中,p=0.887,大于0.05,故接受原假设,即认为方差是齐性的,可以进行方差分析。

相关文档
最新文档