稳恒电流习题

合集下载

高考物理稳恒电流解题技巧及经典题型及练习题

高考物理稳恒电流解题技巧及经典题型及练习题

高考物理稳恒电流解题技巧及经典题型及练习题一、稳恒电流专项训练1.如图所示,已知电源电动势E=20V ,内阻r=lΩ,当接入固定电阻R=3Ω时,电路中标有“3V,6W”的灯泡L 和内阻R D =1Ω的小型直流电动机D 都恰能正常工作.试求:(1)流过灯泡的电流(2)固定电阻的发热功率(3)电动机输出的机械功率【答案】(1)2A (2)7V (3)12W【解析】(1)接通电路后,小灯泡正常工作,由灯泡上的额定电压U 和额定功率P 的数值 可得流过灯泡的电流为:=2A (2)根据热功率公式,可得固定电阻的发热功率:=12W(3)根据闭合电路欧姆定律,可知电动机两端的电压:=9V 电动机消耗的功率:=18W 一部分是线圈内阻的发热功率:=4W 另一部分转换为机械功率输出,则=14W 【点睛】(1)由灯泡正常发光,可以求出灯泡中的电流;(2)知道电阻中流过的电流,就可利用热功率方程,求出热功率;(3)电动机消耗的电功率有两个去向:一部分是线圈内阻的发热功率;另一部分转化为机械功率输出。

2.把一只“1.5V ,0.3A ”的小灯泡接到6V 的电源上,为使小灯泡正常发光,需要串联还是并联一个多大电阻?【答案】串联一个15Ω的电阻【解析】【分析】【详解】要使灯泡正常发光则回路中电流为0.3A ,故回路中的总电阻为6Ω=20Ω0.3U R I ==总 灯泡的电阻为 1.5Ω=5Ω0.3L L U R I ==由于电源电压大于灯泡额定电压,故需要串联一个电阻分压,阻值为20Ω5Ω15ΩL R R R ==-=总-3.如图所示,已知电源电动势E=16 V ,内阻r=1 Ω,定值电阻R=4 Ω,小灯泡上标有“3 V ,4.5 W”字样,小型直流电动机的线圈电阻r′=1 Ω,开关闭合时,小灯泡和电动机均恰好正常工作.求:(1)电路中的电流强度;(2)电动机两端的电压;(3)电动机的输出功率.【答案】(1)1.5A ;(2)5.5V ;(3)6W.【解析】试题分析:(1)电路中电流L LP I U ==1.5A (2)电动机两端的电压()M L U E U I R r =--+=5.5V(3)电动机的总功率电动机线圈热功率2/ 2.25W P I r==热电动机的输出功率考点:电功率4.如图所示,已知R 3=3Ω,理想电压表读数为3v ,理想电流表读数为2A ,某时刻由于电路中R 3发生断路,电流表的读数2.5A ,R 1上的电压为5v ,求:(1)R 1大小、R 3发生断路前R 2上的电压、及R 2阻值各是多少?(R 3发生断路时R 2上没有电流)(2)电源电动势E 和内电阻r 各是多少?【答案】(1)1V 1Ω(2)10 V ;2Ω【解析】试题分析:(1)R 3断开时 电表读数分别变为5v 和2.5A 可知R 1=2欧R3断开前R1上电压U1=R1I=4VU1= U2 + U3所以 U2=1VU2:U3 = R2:R3 =1:3R2=1Ω(2)R3断开前总电流I1=3AE = U1 + I1rR3断开后总电流I2=2.5AE = U2 + I2r联解方程E= 10 V r=2Ω考点:闭合电路的欧姆定律【名师点睛】5.如图所示,竖直放置的两根足够长的光滑金属导轨相距为L,导轨的两端分别与电源(串有一滑动变阻器 R)、定值电阻、电容器(原来不带电)和开关K相连.整个空间充满了垂直于导轨平面向外的匀强磁场,其磁感应强度的大小为B.一质量为m,电阻不计的金属棒 ab 横跨在导轨上.已知电源电动势为E,内阻为r,电容器的电容为C,定值电阻的阻值为R0,不计导轨的电阻.(1)当K接1时,金属棒 ab 在磁场中恰好保持静止,则滑动变阻器接入电路的阻值 R 为多大?(2)当 K 接 2 后,金属棒 ab 从静止开始下落,下落距离 s 时达到稳定速度,则此稳定速度的大小为多大?下落 s 的过程中所需的时间为多少?(3) ab 达到稳定速度后,将开关 K 突然接到3,试通过推导,说明 ab 作何种性质的运动?求 ab 再下落距离 s 时,电容器储存的电能是多少?(设电容器不漏电,此时电容器没有被击穿)【答案】(1)EBLrmg-(2)442222B L s m gRmgR B L+(3)匀加速直线运动2222mgsCB Lm cB L+【解析】【详解】(1)金属棒ab在磁场中恰好保持静止,由BIL=mgE I R r =+ 得 EBL R r mg =- (2)由 220B L v mg R = 得 022mgR v B L = 由动量定理,得mgt BILt mv -= 其中0BLs q It R ==得44220220B L s m gR t mgR B L += (3)K 接3后的充电电流q C U CBL v v I CBL CBLa t t t t ∆∆∆∆=====∆∆∆∆ mg-BIL=ma得22mg a m CB L =+=常数 所以ab 棒的运动性质是“匀加速直线运动”,电流是恒定的.v 22-v 2=2as根据能量转化与守恒得 22211()22E mgs mv mv ∆=-- 解得:2222mgsCB L E m cB L ∆=+ 【点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.6.在如图所示的电路中,两平行正对金属板A 、B 水平放置,两板间的距离d =4.0cm .电源电动势E =400V ,内电阻r =20Ω,电阻R 1=1980Ω.闭合开关S ,待电路稳定后,将一带正电的小球(可视为质点)从B 板上的小孔以初速度v 0=1.0m/s 竖直向上射入两板间,小球恰好能到达A 板.若小球所带电荷量q =1.0×10-7C ,质量m =2.0×10-4kg ,不考虑空气阻力,忽略射入小球对电路的影响,取g =10m/s 2.求:(1)A 、B 两金属板间的电压的大小U ;(2)滑动变阻器消耗的电功率P ;(3)电源的效率η.【答案】(1)U =200V (2)20W (3)0099.5【解析】【详解】(1)小球从B 板上的小孔射入恰好到达A 板的过程中,在电场力和重力作用下做匀减速直线运动,设A 、B 两极板间电压为U ,根据动能定理有:20102qU mgd mv --=-, 解得:U = 200 V .(2)设此时滑动变阻器接入电路中的电阻值为R ,根据闭合电路欧姆定律可知,电路中的电流1E I R R r=++,而 U = IR , 解得:R = 2×103 Ω 滑动变阻器消耗的电功率220U P W R==. (3)电源的效率2121()099.50()P I R R P I R R r η+===++出总. 【点睛】本题电场与电路的综合应用,小球在电场中做匀减速运动,由动能定理求电压.根据电路的结构,由欧姆定律求变阻器接入电路的电阻.7.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质。

高中物理稳恒电流解题技巧及经典题型及练习题

高中物理稳恒电流解题技巧及经典题型及练习题

高中物理稳恒电流解题技巧及经典题型及练习题一、稳恒电流专项训练1.在如图所示的电路中,电源内电阻r=1Ω,当开关S 闭合后电路正常工作,电压表的读数U=8.5V ,电流表的读数I=0.5A .求: ①电阻R ; ②电源电动势E ; ③电源的输出功率P .【答案】(1)17R =Ω;(2)9E V =;(3) 4.25P w = 【解析】 【分析】 【详解】(1)由部分电路的欧姆定律,可得电阻为:5UR I==Ω (2)根据闭合电路欧姆定律得电源电动势为E =U +Ir =12V (3)电源的输出功率为P =UI =20W 【点睛】部分电路欧姆定律U =IR 和闭合电路欧姆定律E =U +Ir 是电路的重点,也是考试的热点,要熟练掌握.2.如图所示的电路中,R 1=4Ω,R 2=2Ω,滑动变阻器R 3上标有“10Ω,2A”的字样,理想电压表的量程有0~3V 和0~15V 两挡,理想电流表的量程有0~0.6A 和0~3A 两挡.闭合开关S ,将滑片P 从最左端向右移动到某位置时,电压表、电流表示数分别为2V 和0.5A ;继续向右移动滑片P 至另一位置,电压表指针指在满偏的13,电流表指针也指在满偏的13.求电源电动势与内阻的大小.(保留两位有效数字)【答案】7.0V ,2.0Ω. 【解析】 【分析】根据滑动变阻器的移动可知电流及电压的变化,是可判断所选量程,从而求出电流表的示数;由闭合电路欧姆定律可得出电动势与内阻的两个表达式,联立即可求得电源的电动势. 【详解】滑片P 向右移动的过程中,电流表示数在减小,电压表示数在增大,由此可以确定电流表量程选取的是0~0.6 A ,电压表量程选取的是0~15 V ,所以第二次电流表的示数为13×0.6 A=0.2 A ,电压表的示数为13×15 V =5 V 当电流表示数为0.5A 时,R 1两端的电压为U 1=I 1R 1=0.5×4 V =2 V回路的总电流为I 总=I 1+12U R =0.5+22A =1.5 A由闭合电路欧姆定律得E =I 总r+U 1+U 3, 即E =1.5r+2+2①当电流表示数为0.2 A 时,R 1两端的电压为U 1′=I 1′R 1=0.2×4V =0.8 V回路的总电流为I 总′=I 1′+12U R '=0.2+0.82A =0.6A 由闭合电路欧姆定律得E =I 总′r+U 1′+U 3′, 即E =0.6r+0.8+5②联立①②解得E =7.0 V ,r =2.0Ω 【点睛】本题考查闭合电路的欧姆定律,但解题时要注意先会分析电流及电压的变化,从而根据题间明确所选电表的量程.3.如图所示,闭合电路处于方向竖直向上的磁场中,小灯泡的电阻为10Ω,其它电阻不计.当磁通量在0. 1s 内从0.2Wb 均匀增加到0.4Wb 过程中,求:①电路中的感应电动势;②如果电路中的电流恒为0.2A ,那么小灯泡在10s 内产生的热量是多少. 【答案】(1)2V (2)4J 【解析】(1)当磁通量发生变化时,闭合电路中要产生感应电动势,根据法拉第电磁感应定律,感应电动势大小为:0.40.220.1E V V t ∆Φ-===∆ (2)当小灯泡上的电流为I=0.2A 时,根据焦耳定律,10s 钟内产生的热量为:Q=I2Rt=0.22×10×10J=4J4.如图所示,已知电源电动势E=20V,内阻r=lΩ,当接入固定电阻R=3Ω时,电路中标有“3V,6W”的灯泡L和内阻R D=1Ω的小型直流电动机D都恰能正常工作.试求:(1)流过灯泡的电流(2)固定电阻的发热功率(3)电动机输出的机械功率【答案】(1)2A(2)7V(3)12W【解析】(1)接通电路后,小灯泡正常工作,由灯泡上的额定电压U和额定功率P的数值可得流过灯泡的电流为:=2A(2)根据热功率公式,可得固定电阻的发热功率:=12W(3)根据闭合电路欧姆定律,可知电动机两端的电压:=9V电动机消耗的功率:=18W一部分是线圈内阻的发热功率:=4W另一部分转换为机械功率输出,则=14W【点睛】(1)由灯泡正常发光,可以求出灯泡中的电流;(2)知道电阻中流过的电流,就可利用热功率方程,求出热功率;(3)电动机消耗的电功率有两个去向:一部分是线圈内阻的发热功率;另一部分转化为机械功率输出。

(物理)高考必备物理稳恒电流技巧全解及练习题

(物理)高考必备物理稳恒电流技巧全解及练习题

(物理)高考必备物理稳恒电流技巧全解及练习题一、稳恒电流专项训练1.材料的电阻率ρ随温度变化的规律为ρ=ρ0(1+αt ),其中α称为电阻温度系数,ρ0是材料在t =0℃时的电阻率.在一定的温度范围内α是与温度无关的常量.金属的电阻一般随温度的增加而增加,具有正温度系数;而某些非金属如碳等则相反,具有负温度系数.利用具有正负温度系数的两种材料的互补特性,可制成阻值在一定温度范围内不随温度变化的电阻.已知:在0℃时,铜的电阻率为1.7×10-8Ω·m ,碳的电阻率为3.5×10-5Ω·m ;在0℃附近,铜的电阻温度系数为3.9×10-3℃-1,碳的电阻温度系数为-5.0×10-4℃-1.将横截面积相同的碳棒与铜棒串接成长1.0m 的导体,要求其电阻在0℃附近不随温度变化,求所需碳棒的长度(忽略碳棒和铜棒的尺寸随温度的变化). 【答案】3.8×10-3m 【解析】 【分析】 【详解】设所需碳棒的长度为L 1,电阻率为1ρ,电阻恒温系数为1α;铜棒的长度为2L ,电阻率为2ρ,电阻恒温系数为2α.根据题意有1101)l t ρρα=+(①2202)l t ρρα=+(②式中1020ρρ、分别为碳和铜在0℃时的电阻率. 设碳棒的电阻为1R ,铜棒的电阻为2R ,有111L R S ρ=③,222LR Sρ=④ 式中S 为碳棒与铜棒的横截面积.碳棒和铜棒连接成的导体的总电阻和总长度分别为12R R R =+⑤,012L L L =+⑥式中0 1.0m L = 联立以上各式得:10112022121020L L L L R t S S Sραραρρ+=++⑦ 要使电阻R 不随温度t 变化,⑦式中t 的系数必须为零.即101120220L L ραρα+=⑧ 联立⑥⑧得:20210202101L L ραραρα=-⑨代入数据解得:313810m L -=⨯.⑩ 【点睛】考点:考查了电阻定律的综合应用本题分析过程非常复杂,难度较大,关键是对题中的信息能够吃投,比如哦要使电阻R 不随温度t 变化,需要满足的条件2.在如图所示的电路中,电源内电阻r=1Ω,当开关S 闭合后电路正常工作,电压表的读数U=8.5V ,电流表的读数I=0.5A .求: ①电阻R ; ②电源电动势E ; ③电源的输出功率P .【答案】(1)17R =Ω;(2)9E V =;(3) 4.25P w = 【解析】 【分析】 【详解】(1)由部分电路的欧姆定律,可得电阻为:5UR I==Ω (2)根据闭合电路欧姆定律得电源电动势为E =U +Ir =12V (3)电源的输出功率为P =UI =20W 【点睛】部分电路欧姆定律U =IR 和闭合电路欧姆定律E =U +Ir 是电路的重点,也是考试的热点,要熟练掌握.3.如图所示,水平轨道与半径为r 的半圆弧形轨道平滑连接于S 点,两者均光滑且绝缘,并安装在固定的竖直绝缘平板上.在平板的上下各有一个块相互正对的水平金属板P 、Q ,两板间的距离为D .半圆轨道的最高点T 、最低点S 、及P 、Q 板右侧边缘点在同一竖直线上.装置左侧有一半径为L 的水平金属圆环,圆环平面区域内有竖直向下、磁感应强度大小为B 的匀强磁场,一个根长度略大于L 的金属棒一个端置于圆环上,另一个端与过圆心1O 的竖直转轴连接,转轴带动金属杆逆时针转动(从上往下看),在圆环边缘和转轴处引出导线分别与P 、Q 连接,图中电阻阻值为R ,不计其它电阻,右侧水平轨道上有一带电量为+q 、质量为12m 的小球1以速度052gr v =12m 的不带电小球2发生碰撞,碰后粘合在一起共同向左运动,小球和粘合体均可看作质点,碰撞过程没有电荷损失,设P 、Q 板正对区域间才存在电场.重力加速度为g . (1)计算小球1与小球2碰后粘合体的速度大小v ;(2)若金属杆转动的角速度为ω,计算图中电阻R 消耗的电功率P ;(3)要使两球碰后的粘合体能从半圆轨道的最低点S 做圆周运动到最高点T ,计算金属杆转动的角速度的范围.【答案】(1) 52gr v = (2) 2424B L P Rω= (3) 2mgd qBL ≤ω≤27mgd qBL【解析】 【分析】 【详解】(1)两球碰撞过程动量守恒,则0111()222mv m m v =+ 解得52grv =(2)杆转动的电动势21122BLv BL L BL εωω==⨯= 电阻R 的功率22424B L P R Rεω==(3)通过金属杆的转动方向可知:P 、Q 板间的电场方向向上,粘合体受到的电场力方向向上.在半圆轨道最低点的速度恒定,如果金属杆转动角速度过小,粘合体受到的电场力较小,不能达到最高点T ,临界状态是粘合体刚好达到T 点,此时金属杆的角速度ω1为最小,设此时对应的电场强度为E 1,粘合体达到T 点时的速度为v 1.在T 点,由牛顿第二定律得211v mg qE m r-=从S 到T ,由动能定理得2211112222qE r mg r mv mv ⋅-⋅=- 解得12mgE q=杆转动的电动势21112BL εω= 两板间电场强度11E dε=联立解得12mgdqBL ω=如果金属杆转动角速度过大,粘合体受到的电场力较大,粘合体在S 点就可能脱离圆轨道,临界状态是粘合体刚好在S 点不脱落轨道,此时金属杆的角速度ω2为最大,设此时对应的电场强度为E 2.在S 点,由牛顿第二定律得22v qE mg m r-=杆转动的电动势22212BL εω= 两板间电场强度22E dε=联立解得227mgdqBL ω=综上所述,要使两球碰后的粘合体能从半圆轨道的最低点S 做圆周运动到最高点T ,金属杆转动的角速度的范围为:227mgd mgdqBL qBL ω≤≤.4.如下左图所示,R1=14Ω,R2=9Ω,当S 扳到位置1时,电压表示数为2.8V ,当开关S 扳到位置2时,电压表示数为2.7V ,求电源的电动势和内阻?(电压表为理想电表)【答案】E=3V, r=1Ω【解析】试题分析:根据开关S 扳到位置1和2时,分别由闭合电路欧姆定律列出含有电动势和内阻的方程,联立组成方程组求解. 解:根据闭合电路欧姆定律,可列出方程组: 当开关S 扳到位置1时,E=U 1+I 1r=U 1+当开关S 扳到位置2时,E=U 2+I 2r=U 2+代入解得:E=3V ,r=1Ω答:电源的电动势和内阻分别为3V 和1Ω.【点评】本题提供了一种测量电源的电动势和内阻的方法,可以用电阻箱代替两个定值电阻,即由电压表和电阻箱并连接在电源上,测量电源的电动势和内阻,此法简称伏阻法.5.如图所示,固定的水平金属导轨间距L =2 m .处在磁感应强度B =4×l0-2 T 的竖直向上的匀强磁场中,导体棒MN 垂直导轨放置,并始终处于静止状态.已知电源的电动势E =6 V ,内电阻r =0.5 Ω,电阻R =4.5 Ω,其他电阻忽略不计.闭合开关S ,待电流稳定后,试求: (1)导体棒中的电流;(2)导体棒受到的安培力的大小和方向.【答案】(1)1.2 A ; (2)0.096 N ,方向沿导轨水平向左 【解析】 【分析】 【详解】(1)由闭合电路欧姆定律可得:I =64.50.5E A R r =++=1.2A (2)安培力的大小为: F =BIL =0.04×1.2×2N =0.096N安培力方向为沿导轨水平向左6.一交流电压随时间变化的图象如图所示.若用此交流电为一台微电子控制的电热水瓶供电,电热水瓶恰能正常工作.加热时的电功率P =880W ,保温时的电功率P ′=20W .求:①该交流电电压的有效值U ; ②电热水瓶加热时通过的电流I ;. ③电热水瓶保温5h 消耗的电能E . 【答案】①220V ②4A ③53.610J ⨯ 【解析】①根据图像可知,交流电电压的最大值为:2202m U V =, 则该交流电电压的有效值为:2202mU V ==; ②电热水瓶加热时,由P UI =得:8804220P I A A U === ③电热水瓶保温5h 消耗的电能为:52053600 3.610W P t J J ='=⨯⨯=⨯点睛:本题根据交流电图象要能正确求解最大值、有效值、周期、频率等物理量,要明确功率公式P UI =对交流电同样适用,不过U 、I 都要用有效值.7.平行导轨P 、Q 相距l =1 m ,导轨左端接有如图所示的电路.其中水平放置的平行板电容器两极板M 、N 相距d =10 mm ,定值电阻R 1=R 2=12 Ω,R 3=2 Ω,金属棒ab 的电阻r =2 Ω,其他电阻不计.磁感应强度B =0.5 T 的匀强磁场竖直穿过导轨平面,当金属棒ab 沿导轨向右匀速运动时,悬浮于电容器两极板之间,质量m =1×10-14kg ,电荷量q =-1×10-14C 的微粒恰好静止不动.取g =10 m /s 2,在整个运动过程中金属棒与导轨接触良好.且速度保持恒定.试求:(1)匀强磁场的方向和MN 两点间的电势差 (2)ab 两端的路端电压; (3)金属棒ab 运动的速度.【答案】(1) 竖直向下;0.1 V (2)0.4 V . (3) 1 m /s . 【解析】 【详解】(1)负电荷受到重力和电场力的作用处于静止状态,因为重力竖直向下,所以电场力竖直向上,故M 板带正电.ab 棒向右做切割磁感线运动产生感应电动势,ab 棒等效于电源,感应电流方向由b →a ,其a 端为电源的正极,由右手定则可判断,磁场方向竖直向下. 微粒受到重力和电场力的作用处于静止状态,根据平衡条件有mg =Eq 又MNU E d=所以U MN =mgdq=0.1 V(2)由欧姆定律得通过R 3的电流为I =3MNU R =0.05 A则ab 棒两端的电压为U ab =U MN +I ×0.5R 1=0.4 V . (3)由法拉第电磁感应定律得感应电动势E =BLv 由闭合电路欧姆定律得E =U ab +Ir =0.5 V 联立解得v =1 m /s .8.如图所示,某一新型发电装置的发电管是横截面为矩形的水平管道,管道宽为d ,管道高度为h ,上、下两面是绝缘板,前后两侧M N 、是电阻可忽略的导体板,两导体板与开关S 和定值电阻R 相连。

【物理】物理稳恒电流练习题及答案含解析

【物理】物理稳恒电流练习题及答案含解析

由于电源电压大于灯泡额定电压,故需要串联一个电阻分压,阻值为
R R总-RL 20Ω 5Ω 15Ω
5.在如图所示的电路中,电源电动势 E=3V,内阻 r=0.5Ω,定值电阻 R1 =9Ω,R2=5.5Ω,电键 S 断 开.
①求流过电阻 R1 的电流; ②求电阻 R1 消耗的电功率; ③将 S 闭合时,流过电阻 R1 的电流大小如何变化? 【答案】(1)0.2A;(2)0.36W;(3)变大
① 求导线中的电流 I;
②为了更精细地描述电流的分布情况,引入了电流面密度 j,电流面密度被定义为单位面积
的电流强度,求电流面密度 j 的表达式;
③经典物理学认为,金属的电阻源于定向运动的自由电子与金属离子(即金属原子失去电
子后的剩余部分)的碰撞,该碰撞过程将对电子的定向移动形成一定的阻碍作用,该作用
后,液体均以恒定速率 v0 沿 x 轴正方向流动。忽略液体流动时与管道间的流动阻力。
(1)开关 S 断开时,求 M、N 两导板间电压U0 ,并比较 M、N 导体板的电势高低;
(2)开关 S 闭合后,求: a. 通过电阻 R 的电流 I 及 M、N 两导体板间电压U ; b. 左右管道口之间的压强差 p 。
I(m A)
0.00 0.00 0.00 0.06 0.50 1.00 2.00 3.00 4.00 5.50
a)根据以上数据,电压表是并联在M与
之间的(填“O”或“P”)
b)画出待测元件两端电压UMO随MN间电压UMN变化的示意图为(无需数值)
【答案】(1) a
(2) a) P
b)
【解析】(1)选择分压滑动变阻器时,要尽量选择电阻较小的,测量时电压变化影响小,
2 2
A=1.5

高中物理稳恒电流专项训练100(附答案)

高中物理稳恒电流专项训练100(附答案)

高中物理稳恒电流专项训练100(附答案)一、稳恒电流专项训练1.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.(1)一段横截面积为S、长为l 的直导线,单位体积内有n 个自由电子,电子电荷量为e.该导线通有电流时,假设自由电子定向移动的速率均为v.(a)求导线中的电流I;(b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B,导线所受安培力大小为F安,导线内自由电子所受洛伦兹力大小的总和为F,推导 F 安=F.(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力F与m、n和v的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)【答案】(1)InvSe证明见答案F 1 2( 2) P nm 2S3【解析】(1)(a)电流I Q,又因为Q tne[v(St)] ,代入则I nvSe(b)F安=BIL,I nvSe,代入则:F 安=BnvSeL;因为总的自由电子个数N=nSL,每个自由电子受到洛伦兹力大小f=Bve,所以F=Nf=BnvSeL=F安,即 F 安=F.(2)气体压强公式的推导:设分子质量为m,平均速率为v,单位体积的分子数为n ;建立图示柱体模型,设柱体底面积为S,长为l ,则l t柱体体积V Sl 柱体内分子总数N 总nV 因分子向各个方向运动的几率相等,所以在t 时间内与柱体底面碰撞的分子总数为'1N总=N总总6总设碰前速度方向垂直柱体底面且碰撞是弹性的,则分子碰撞器壁前后,总动量的变化量为p 2m N总,依据动量定理有 Ft p 又压力 Ft p 由以上各式得单位面积上的压力F 0 F 1 nm 2 0S3【点评】本题的第 1 题中两问都曾出现在课本中,例如分别出现在人教版选修3-1.P42,选修 3-1P.42 ,这两个在上新课时如果老师注意到,并带着学生思考推导,那么这题得分是很 容易的.第 2 问需要利用动量守恒知识,并结合热力学统计知识,通过建立模型,然后进 行推导,这对学生能力要求较高,为了处理相应问题,通过建模来处理问题.在整个推导 过程并不复杂,但对分析容易对结果造成影响的错误是误认为所有分析都朝同一方向运 动,而不是热力学统计结果分子向各个运动方向运动概率大致相等,即要取总分子个数的1.6【考点定位】电流微观表达式、洛伦兹力推导以及压强的微观推导.2.(1)用螺旋测微器测量金属导线的直径,其示数如图所示,该金属导线的直径为 mm .(2)用下列器材装成描绘电阻 R 0 伏安特性曲线的电路,请将实物图连线成为实验电路. 微安表 μA (量程 200 μA ,内阻约 200Ω); 电压表 V (量程 3V ,内阻约 10Ω); 电阻 R 0 (阻值约 20 k Ω);滑动变阻器 R (最大阻值 50Ω,额定电流 1 A ); 电池组 E (电动势 3V ,内阻不计);答案】( 1)1.880(1.878~ 1.882 均正确)2)开关 S 及导线若干.解析】1)首先读出固定刻度 1.5 mm再读出可动刻度38. 0 ×0. 01 mm="0.380" mm金属丝直径为( 1.5+0.380) mm="1.880" mm .2)描绘一个电阻的伏安特性曲线一般要求电压要从0 开始调节,因此要采用分压电路.由于R0 100, R V 0.5 ,因此μA 表要采用内接法,其电路原理图为R A R0连线时按照上图中所标序号顺序连接即可.3.如图所示,已知电源电动势E=20V,内阻r=l Ω,当接入固定电阻R=3Ω 时,电路中标有3V,6W的”灯泡L和内阻R D=1Ω的小型直流电动机 D 都恰能正常工作.试求:1)流过灯泡的电流2)固定电阻的发热功率3)电动机输出的机械功率答案】(1)2A(2)7V(3)12W解析】(1)接通电路后,小灯泡正常工作,由灯泡上的额定电压U 和额定功率P的数值可得流过灯泡的电流为:=2A(2)根据热功率公式,可得固定电阻的发热功率:=12W(3)根据闭合电路欧姆定律,可知电动机两端的电压:=9V电动机消耗的功率: =18W 一部分是线圈内阻的发热功率: =4W 另一部分转换为机械功率输出,则 =14W 【点睛】( 1)由灯泡正常发光,可以求出灯泡中的电流;( 2)知道电阻中流过的电流,就可利用热功率方程 ,求出热功率;( 3)电动机消耗的电功率有两个去向:一部 分是线圈内阻的发热功率;另一部分转化为机械功率输出。

高考物理高考物理稳恒电流解题技巧及经典题型及练习题

高考物理高考物理稳恒电流解题技巧及经典题型及练习题

高考物理高考物理稳恒电流解题技巧及经典题型及练习题一、稳恒电流专项训练1.如图,ab 和cd 是两条竖直放置的长直光滑金属导轨,MN 和M′N′是两根用细线连接的金属杆,其质量分别为m 和2m.竖直向上的外力F 作用在杆MN 上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R ,导轨间距为l.整个装置处在磁感应强度为B 的匀强磁场中,磁场方向与导轨所在平面垂直.导轨电阻可忽略,重力加速度为g.在t =0时刻将细线烧断,保持F 不变,金属杆和导轨始终接触良好.求:(1)细线烧断后,任意时刻两杆运动的速度之比; (2)两杆分别达到的最大速度. 【答案】(1)1221v v = (2)12243mgR v B l = ;22223mgR v B l= 【解析】 【分析】细线烧断前对MN 和M'N'受力分析,得出竖直向上的外力F=3mg ,细线烧断后对MN 和M'N'受力分析,根据动量守恒求出任意时刻两杆运动的速度之比.分析MN 和M'N'的运动过程,找出两杆分别达到最大速度的特点,并求出. 【详解】解:(1)细线烧断前对MN 和M'N'受力分析,由于两杆水平静止,得出竖直向上的外力F=3mg .设某时刻MN 和M'N'速度分别为v 1、v 2. 根据MN 和M'N'动量守恒得出:mv 1﹣2mv 2=0 解得:122v v =: ① (2)细线烧断后,MN 向上做加速运动,M'N'向下做加速运动,由于速度增加,感应电动势增加,MN 和M'N'所受安培力增加,所以加速度在减小.当MN 和M'N'的加速度减为零时,速度最大.对M'N'受力平衡:BIl=2mg②,EI R=③,E=Blv 1+Blv 2 ④ 由①﹣﹣④得:12243mgR v B l =、22223mgRv B l = 【点睛】能够分析物体的受力情况,运用动量守恒求出两个物体速度关系.在直线运动中,速度最大值一般出现在加速度为0的时刻.2.为了测量一个阻值较大的末知电阻,某同学使用了干电池(1.5V ),毫安表(1mA ),电阻箱(0~9999W ),电键,导线等器材.该同学设计的实验电路如图甲所示,实验时,将电阻箱阻值置于最大,断开2K ,闭合1K ,减小电阻箱的阻值,使电流表的示数为1I =1.00mA ,记录电流强度值;然后保持电阻箱阻值不变,断开1K ,闭合2K ,此时电流表示数为1I =0.80mA ,记录电流强度值.由此可得被测电阻的阻值为____W .经分析,该同学认为上述方案中电源电动势的值可能与标称值不一致,因此会造成误差.为避免电源对实验结果的影响,又设计了如图乙所示的实验电路,实验过程如下: 断开1K ,闭合2K ,此时电流表指针处于某一位置,记录相应的电流值,其大小为I ;断开2K ,闭合1K ,调节电阻箱的阻值,使电流表的示数为___ ,记录此时电阻箱的阻值,其大小为0R .由此可测出x R = .【答案】0375,,I R 【解析】解:方案一中根据闭合电路欧姆定律,有E=I 1(r+R 1+R 2) (其中r 为电源内阻,R 1为电阻箱电阻,R 2为电流表内阻) E=I 2(r+R 1+R 2+R ) 由以上两式可解得 R=375Ω方案二是利用电阻箱等效替代电阻R 0,故电流表读数不变,为I ,电阻箱的阻值为R 0. 故答案为375,I ,R 0.【点评】本题关键是根据闭合电路欧姆定律列方程,然后联立求解;第二方案是用等效替代法,要保证电流相等.3.材料的电阻率ρ随温度变化的规律为ρ=ρ0(1+αt ),其中α称为电阻温度系数,ρ0是材料在t =0℃时的电阻率.在一定的温度范围内α是与温度无关的常量.金属的电阻一般随温度的增加而增加,具有正温度系数;而某些非金属如碳等则相反,具有负温度系数.利用具有正负温度系数的两种材料的互补特性,可制成阻值在一定温度范围内不随温度变化的电阻.已知:在0℃时,铜的电阻率为1.7×10-8Ω·m ,碳的电阻率为3.5×10-5Ω·m ;在0℃附近,铜的电阻温度系数为3.9×10-3℃-1,碳的电阻温度系数为-5.0×10-4℃-1.将横截面积相同的碳棒与铜棒串接成长1.0m 的导体,要求其电阻在0℃附近不随温度变化,求所需碳棒的长度(忽略碳棒和铜棒的尺寸随温度的变化). 【答案】3.8×10-3m 【解析】 【分析】 【详解】设所需碳棒的长度为L 1,电阻率为1ρ,电阻恒温系数为1α;铜棒的长度为2L ,电阻率为2ρ,电阻恒温系数为2α.根据题意有1101)l t ρρα=+(①2202)l t ρρα=+(②式中1020ρρ、分别为碳和铜在0℃时的电阻率. 设碳棒的电阻为1R ,铜棒的电阻为2R ,有111L R S ρ=③,222LR Sρ=④ 式中S 为碳棒与铜棒的横截面积.碳棒和铜棒连接成的导体的总电阻和总长度分别为12R R R =+⑤,012L L L =+⑥式中0 1.0m L = 联立以上各式得:10112022121020L L L L R t S S Sραραρρ+=++⑦ 要使电阻R 不随温度t 变化,⑦式中t 的系数必须为零.即101120220L L ραρα+=⑧ 联立⑥⑧得:20210202101L L ραραρα=-⑨代入数据解得:313810m L -=⨯.⑩ 【点睛】考点:考查了电阻定律的综合应用本题分析过程非常复杂,难度较大,关键是对题中的信息能够吃投,比如哦要使电阻R 不随温度t 变化,需要满足的条件4.在“探究导体电阻与其影响因素的定量关系”试验中,为了探究3根材料未知,横截面积均为S =0.20mm 2的金属丝a 、b 、c 的电阻率,采用如图所示的实验电路.M 为金属丝c 的左端点,O 为金属丝a 的右端点,P 是金属丝上可移动的接触点.在实验过程中,电流表读数始终为I =1.25A ,电压表读数U 随OP 间距离x 的变化如下表:x /mm600 700 800 900 1000 120014001600180020002100220023002400U/V3.954.505.105.906.506.656.826.937.027.157.858.509.059.75⑴绘出电压表读数U 随OP 间距离x 变化的图线; ⑵求出金属丝的电阻率ρ,并进行比较.【答案】(1)如图所示; (2)电阻率的允许范围:a ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅b ρ:68.510m -⨯Ω⋅~71.1010m -⨯Ω⋅c ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率. 【解析】(1)以OP 间距离x 为横轴,以电压表读数U 为纵轴,描点、连线绘出电压表读数U 随OP 间距离x 变化的图线. (2)根据电阻定律l R S ρ=可得S U S R l I lρ=⋅=⋅. 663(6.5 3.9)0.2010 1.04101.25(1000600)10a m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 673(7.1 6.5)0.20109.6101.25(20001000)10b m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 663(9.77.1)0.2010 1.04101.25(24002000)10c m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率.5.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质。

高考物理稳恒电流专项训练及答案

高考物理稳恒电流专项训练及答案

高考物理稳恒电流专项训练及答案一、稳恒电流专项训练1. 4~1.0T 范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化) (4)磁场反向,磁敏电阻的阻值不变. 【解析】(1)当B =0.6T 时,磁敏电阻阻值约为6×150Ω=900Ω,当B =1.0T 时,磁敏电阻阻值约为11×150Ω=1650Ω.由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻器选择分压式接法;由于xVA xR R R R >,所以电流表应内接.电路图如图所示.(2)方法一:根据表中数据可以求得磁敏电阻的阻值分别为:130.4515000.3010R -=Ω=Ω⨯,230.911516.70.6010R -=Ω=Ω⨯,331.5015001.0010R -=Ω=Ω⨯,431.791491.71.2010R -=Ω=Ω⨯,532.7115051.8010R -=Ω=Ω⨯, 故电阻的测量值为1234515035R R R R R R ++++=Ω=Ω(1500-1503Ω都算正确.) 由于0150010150R R ==,从图1中可以读出B =0.9T 方法二:作出表中的数据作出U -I 图象,图象的斜率即为电阻(略).(3)在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化);(4)从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关.本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力.从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U 、I 值求电阻.第(3)、(4)问则考查考生思维的灵敏度和创新能力.总之本题是一道以能力立意为主,充分体现新课程标准的三维目标,考查学生的创新能力、获取新知识的能力、建模能力的一道好题.2.为了测量一个阻值较大的末知电阻,某同学使用了干电池(1.5V ),毫安表(1mA ),电阻箱(0~9999W ),电键,导线等器材.该同学设计的实验电路如图甲所示,实验时,将电阻箱阻值置于最大,断开2K ,闭合1K ,减小电阻箱的阻值,使电流表的示数为1I =1.00mA ,记录电流强度值;然后保持电阻箱阻值不变,断开1K ,闭合2K ,此时电流表示数为1I =0.80mA ,记录电流强度值.由此可得被测电阻的阻值为____W .经分析,该同学认为上述方案中电源电动势的值可能与标称值不一致,因此会造成误差.为避免电源对实验结果的影响,又设计了如图乙所示的实验电路,实验过程如下: 断开1K ,闭合2K ,此时电流表指针处于某一位置,记录相应的电流值,其大小为I ;断开2K ,闭合1K ,调节电阻箱的阻值,使电流表的示数为___ ,记录此时电阻箱的阻值,其大小为0R .由此可测出x R = .【答案】0375,,I R 【解析】解:方案一中根据闭合电路欧姆定律,有E=I 1(r+R 1+R 2) (其中r 为电源内阻,R 1为电阻箱电阻,R 2为电流表内阻) E=I 2(r+R 1+R 2+R ) 由以上两式可解得 R=375Ω方案二是利用电阻箱等效替代电阻R 0,故电流表读数不变,为I ,电阻箱的阻值为R 0. 故答案为375,I ,R 0.【点评】本题关键是根据闭合电路欧姆定律列方程,然后联立求解;第二方案是用等效替代法,要保证电流相等.3.如图1所示,用电动势为E 、内阻为r 的电源,向滑动变阻器R 供电.改变变阻器R 的阻值,路端电压U 与电流I 均随之变化.(1)以U为纵坐标,I为横坐标,在图2中画出变阻器阻值R变化过程中U-I图像的示意图,并说明U-I图像与两坐标轴交点的物理意义.(2)a.请在图2画好的U-I关系图线上任取一点,画出带网格的图形,以其面积表示此时电源的输出功率;b.请推导该电源对外电路能够输出的最大电功率及条件.(3)请写出电源电动势定义式,并结合能量守恒定律证明:电源电动势在数值上等于内、外电路电势降落之和.【答案】(1)U–I图象如图所示:图象与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a如图所示:b.2 4 E r(3)见解析【解析】(1)U–I图像如图所示,其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a.如图所示b.电源输出的电功率:2222 ()2E EP I R RrR rR rR===+++当外电路电阻R=r时,电源输出的电功率最大,为2max=4EPr(3)电动势定义式:WEq=非静电力根据能量守恒定律,在图1所示电路中,非静电力做功W产生的电能等于在外电路和内电路产生的电热,即22W I rt I Rt Irq IRq=+=+E Ir IR U U=+=+外内本题答案是:(1)U–I图像如图所示,其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a.如图所示当外电路电阻R =r 时,电源输出的电功率最大,为2max =4E P r(3)E U U =+外内点睛:运用数学知识结合电路求出回路中最大输出功率的表达式,并求出当R =r 时,输出功率最大.4.(18分) 如图所示,金属导轨MNC 和PQD ,MN 与PQ 平行且间距为L ,所在平面与水平面夹角为α,N 、Q 连线与MN 垂直,M 、P 间接有阻值为R 的电阻;光滑直导轨NC 和QD 在同一水平面内,与NQ 的夹角都为锐角θ。

【物理】物理稳恒电流题20套(带答案)含解析

【物理】物理稳恒电流题20套(带答案)含解析

【物理】物理稳恒电流题20套(带答案)含解析一、稳恒电流专项训练1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大?【答案】(1)238mg B L (2)1238mgrB B dL【解析】试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =34I ① I dc =14I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③由①~③,解得I ab =2234mgB L ④ (2)由(1)可得I =22mgB L ⑤设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =34r ⑦ 根据闭合电路欧姆定律,有I =E R⑧ 由⑤~⑧,解得v =121234mgrB B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.2.为了测量一个阻值较大的末知电阻,某同学使用了干电池(1.5V ),毫安表(1mA ),电阻箱(0~9999W ),电键,导线等器材.该同学设计的实验电路如图甲所示,实验时,将电阻箱阻值置于最大,断开2K ,闭合1K ,减小电阻箱的阻值,使电流表的示数为1I =1.00mA ,记录电流强度值;然后保持电阻箱阻值不变,断开1K ,闭合2K ,此时电流表示数为1I =0.80mA ,记录电流强度值.由此可得被测电阻的阻值为____W .经分析,该同学认为上述方案中电源电动势的值可能与标称值不一致,因此会造成误差.为避免电源对实验结果的影响,又设计了如图乙所示的实验电路,实验过程如下: 断开1K ,闭合2K ,此时电流表指针处于某一位置,记录相应的电流值,其大小为I ;断开2K ,闭合1K ,调节电阻箱的阻值,使电流表的示数为___ ,记录此时电阻箱的阻值,其大小为0R .由此可测出x R = .【答案】0375,,I R 【解析】解:方案一中根据闭合电路欧姆定律,有E=I 1(r+R 1+R 2) (其中r 为电源内阻,R 1为电阻箱电阻,R 2为电流表内阻) E=I 2(r+R 1+R 2+R ) 由以上两式可解得 R=375Ω方案二是利用电阻箱等效替代电阻R 0,故电流表读数不变,为I ,电阻箱的阻值为R 0. 故答案为375,I ,R 0.【点评】本题关键是根据闭合电路欧姆定律列方程,然后联立求解;第二方案是用等效替代法,要保证电流相等.3.要描绘某电学元件(最大电流不超过6m A,最大电压不超过7V)的伏安特性曲线,设计电路如图,图中定值电阻R为1KΩ,用于限流;电流表量程为10m A,内阻约为5Ω;电压表(未画出)量程为10V,内阻约为10KΩ;电源电动势E为12V,内阻不计。

高中物理稳恒电流解题技巧及经典题型及练习题

高中物理稳恒电流解题技巧及经典题型及练习题

高中物理稳恒电流解题技巧及经典题型及练习题一、稳恒电流专项训练1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大?【答案】(1)238mg B L (2)1238mgrB B dL【解析】试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =34I ① I dc =14I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③由①~③,解得I ab =2234mgB L ④ (2)由(1)可得I =22mgB L ⑤设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =34r ⑦ 根据闭合电路欧姆定律,有I =E R⑧ 由⑤~⑧,解得v =121234mgrB B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.2.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质。

如图所示:一段横截面积为S 、长为l 的金属电阻丝,单位体积内有n 个自由电子,每一个电子电量为e 。

高考物理稳恒电流技巧(很有用)及练习题及解析

高考物理稳恒电流技巧(很有用)及练习题及解析

高考物理稳恒电流技巧(很有用)及练习题及解析一、稳恒电流专项训练1.材料的电阻率ρ随温度变化的规律为ρ=ρ0(1+αt ),其中α称为电阻温度系数,ρ0是材料在t =0℃时的电阻率.在一定的温度范围内α是与温度无关的常量.金属的电阻一般随温度的增加而增加,具有正温度系数;而某些非金属如碳等则相反,具有负温度系数.利用具有正负温度系数的两种材料的互补特性,可制成阻值在一定温度范围内不随温度变化的电阻.已知:在0℃时,铜的电阻率为1.7×10-8Ω·m ,碳的电阻率为3.5×10-5Ω·m ;在0℃附近,铜的电阻温度系数为3.9×10-3℃-1,碳的电阻温度系数为-5.0×10-4℃-1.将横截面积相同的碳棒与铜棒串接成长1.0m 的导体,要求其电阻在0℃附近不随温度变化,求所需碳棒的长度(忽略碳棒和铜棒的尺寸随温度的变化). 【答案】3.8×10-3m 【解析】 【分析】 【详解】设所需碳棒的长度为L 1,电阻率为1ρ,电阻恒温系数为1α;铜棒的长度为2L ,电阻率为2ρ,电阻恒温系数为2α.根据题意有1101)l t ρρα=+(①2202)l t ρρα=+(②式中1020ρρ、分别为碳和铜在0℃时的电阻率. 设碳棒的电阻为1R ,铜棒的电阻为2R ,有111L R S ρ=③,222LR Sρ=④ 式中S 为碳棒与铜棒的横截面积.碳棒和铜棒连接成的导体的总电阻和总长度分别为12R R R =+⑤,012L L L =+⑥式中0 1.0m L = 联立以上各式得:10112022121020L L L L R t S S Sραραρρ+=++⑦ 要使电阻R 不随温度t 变化,⑦式中t 的系数必须为零.即101120220L L ραρα+=⑧ 联立⑥⑧得:20210202101L L ραραρα=-⑨代入数据解得:313810m L -=⨯.⑩ 【点睛】考点:考查了电阻定律的综合应用本题分析过程非常复杂,难度较大,关键是对题中的信息能够吃投,比如哦要使电阻R 不随温度t 变化,需要满足的条件2.在“探究导体电阻与其影响因素的定量关系”试验中,为了探究3根材料未知,横截面积均为S =0.20mm 2的金属丝a 、b 、c 的电阻率,采用如图所示的实验电路.M 为金属丝c 的左端点,O 为金属丝a 的右端点,P 是金属丝上可移动的接触点.在实验过程中,电流表读数始终为I =1.25A ,电压表读数U 随OP 间距离x 的变化如下表:x /mm600 700 800 900 1000 120014001600180020002100220023002400U/V3.954.505.105.906.506.656.826.937.027.157.858.509.059.75⑴绘出电压表读数U 随OP 间距离x 变化的图线; ⑵求出金属丝的电阻率ρ,并进行比较.【答案】(1)如图所示; (2)电阻率的允许范围:a ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅b ρ:68.510m -⨯Ω⋅~71.1010m -⨯Ω⋅c ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率. 【解析】(1)以OP 间距离x 为横轴,以电压表读数U 为纵轴,描点、连线绘出电压表读数U 随OP 间距离x 变化的图线.(2)根据电阻定律l R S ρ=可得S U S R l I lρ=⋅=⋅. 663(6.5 3.9)0.2010 1.04101.25(1000600)10a m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 673(7.1 6.5)0.20109.6101.25(20001000)10b m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 663(9.77.1)0.2010 1.04101.25(24002000)10c m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率.3.(1)用螺旋测微器测量金属导线的直径,其示数如图所示,该金属导线的直径为 mm .(2)用下列器材装成描绘电阻0R 伏安特性曲线的电路,请将实物图连线成为实验电路. 微安表μA (量程200μA ,内阻约200Ω); 电压表V (量程3V ,内阻约10Ω); 电阻0R (阻值约20 kΩ);滑动变阻器R (最大阻值50Ω,额定电流1 A ); 电池组E (电动势3V ,内阻不计);开关S 及导线若干.【答案】(1)1.880(1.878~1.882均正确) (2)【解析】(1)首先读出固定刻度1.5 mm再读出可动刻度38. 0×0. 01 mm="0.380" mm 金属丝直径为(1.5+0.380) mm="1.880" mm .(注意半刻度线是否漏出;可动刻度需要估读)(2)描绘一个电阻的伏安特性曲线一般要求电压要从0开始调节,因此要采用分压电路.由于0V A 0100,0.5R RR R ==,因此μA 表要采用内接法,其电路原理图为 连线时按照上图中所标序号顺序连接即可.4.在如图所示的电路中,电源内电阻r=1Ω,当开关S 闭合后电路正常工作,电压表的读数U=8.5V ,电流表的读数I=0.5A .求: ①电阻R ; ②电源电动势E ; ③电源的输出功率P .【答案】(1)17R =Ω;(2)9E V =;(3) 4.25P w = 【解析】 【分析】 【详解】(1)由部分电路的欧姆定律,可得电阻为:5UR I==Ω (2)根据闭合电路欧姆定律得电源电动势为E =U +Ir =12V (3)电源的输出功率为P =UI =20W 【点睛】部分电路欧姆定律U =IR 和闭合电路欧姆定律E =U +Ir 是电路的重点,也是考试的热点,要熟练掌握.5.环保汽车将为2008年奥运会场馆服务.某辆以蓄电池为驱动能源的环保汽车,总质量3310kg m =⨯.当它在水平路面上以v =36km/h 的速度匀速行驶时,驱动电机的输入电流I =50A ,电压U =300V .在此行驶状态下(1)求驱动电机的输入功率P 电;(2)若驱动电机能够将输入功率的90%转化为用于牵引汽车前进的机械功率P 机,求汽车所受阻力与车重的比值(g 取10m/s 2);(3)设想改用太阳能电池给该车供电,其他条件不变,求所需的太阳能电池板的最小面积.结合计算结果,简述你对该设想的思考.已知太阳辐射的总功率260410W P =⨯,太阳到地球的距离,太阳光传播到达地面的过程中大约有30%的能量损耗,该车所用太阳能电池的能量转化效率约为15%.【答案】(1)31.510W P =⨯电(2)/0.045f mg = (3)2101m S = 【解析】试题分析:⑴31.510W P IU 电==⨯⑵0.9P P Fv fv 电机===0.9/f P v =电/0.045f mg =⑶当太阳光垂直电磁板入射式,所需板面积最小,设其为S ,距太阳中心为r 的球面面积204πS r =若没有能量的损耗,太阳能电池板接受到的太阳能功率为P ',则00P S P S '= 设太阳能电池板实际接收到的太阳能功率为P , 所以()130%P P =-'由于15%P P =电,所以电池板的最小面积()00130%P SP S =-220004π101?m 0.70.150.7r P PS S P P ===⨯电考点:考查非纯电阻电路、电功率的计算点评:本题难度中等,对于非纯电阻电路欧姆定律不再适用,但消耗电功率依然是UI 的乘积,求解第3问时从能量守恒定律考虑问题是关键,注意太阳的发射功率以球面向外释放6.守恒定律是自然界中某种物理量的值恒定不变的规律,它为我们解决许多实际问题提供了依据.在物理学中这样的守恒定律有很多,例如:电荷守恒定律、质量守恒定律、能量守恒定律等等.(1)根据电荷守恒定律可知:一段导体中通有恒定电流时,在相等时间内通过导体不同截面的电荷量都是相同的.a .己知带电粒子电荷量均为g ,粒子定向移动所形成的电流强度为,求在时间t 内通过某一截面的粒子数N.b.直线加速器是一种通过高压电场使带电粒子加速的装置.带电粒子从粒子源处持续发出,假定带电粒子的初速度为零,加速过程中做的匀加速直线运动.如图l所示,在距粒子源l1、l2两处分别取一小段长度相等的粒子流I∆.已知l l:l2=1:4,这两小段粒子流中所含的粒子数分别为n1和n2,求:n1:n2.(2)在实际生活中经常看到这种现象:适当调整开关,可以看到从水龙头中流出的水柱越来越细,如图2所示,垂直于水柱的横截面可视为圆.在水柱上取两个横截面A、B,经过A、B的水流速度大小分别为v I、v2;A、B直径分别为d1、d2,且d1:d2=2:1.求:水流的速度大小之比v1:v2.(3)如图3所示:一盛有水的大容器,其侧面有一个水平的短细管,水能够从细管中喷出;容器中水面的面积S l远远大于细管内的横截面积S2;重力加速度为g.假设水不可压缩,而且没有粘滞性.a.推理说明:容器中液面下降的速度比细管中的水流速度小很多,可以忽略不计:b.在上述基础上,求:当液面距离细管的高度为h时,细管中的水流速度v.【答案】(1)a.Q ItNq q==;b.21:2:1nn=;(2)221221::1:4v v d d==;(3)a.设:水面下降速度为1v,细管内的水流速度为v.按照水不可压缩的条件,可知水的体积守恒或流量守恒,即:12Sv Sv =,由12S S >>,可得12v v <<.所以:液体面下降的速度1v 比细管中的水流速度可以忽略不计. b. 2v gh = 【解析】 【分析】 【详解】 (1)a.电流Q I t=, 电量Q Nq = 粒子数Q It N q q== b.根据2v ax =, 可知在距粒子源1l 、2l 两处粒子的速度之比:12:1:2v v =极短长度内可认为速度不变,根据x v t∆=∆, 得12:2:1t t =根据电荷守恒,这两段粒子流中所含粒子数之比:12:2:1n n = (2)根据能量守恒,相等时间通过任一截面的质量相等,即水的质量相等.也即:2··4v d π处处相等 故这两个截面处的水流的流速之比:221221::1:4v v d d ==(3)a .设:水面下降速度为1v ,细管内的水流速度为v .按照水不可压缩的条件,可知水的体积守恒或流量守恒,即:12Sv Sv = 由12S S >>,可得:12v v <<.所以液体面下降的速度1v 比细管中的水流速度可以忽略不计. b.根据能量守恒和机械能守恒定律分析可知:液面上质量为m 的薄层水的机械能等于细管中质量为m 的小水柱的机械能. 又根据上述推理:液面薄层水下降的速度1v 忽略不计,即10v =. 设细管处为零势面,所以有:21002mgh mv +=+ 解得:2v gh =7.如图所示的电路中,电阻R 1=6 Ω,R 2=3 Ω.S 断开时,电流表示数为0.9 A ;S 闭合时,电流表示数为0.8 A ,设电流表为理想电表,则电源电动势E =________V ,内电阻r =________Ω.【答案】E=5.76V r=0.4Ω【解析】根据闭合电路欧姆定律,两种状态,列两个方程,组成方程组,就可求解.当S断开时(1)当S闭合时(2)由(1)、(2)式联立,解得E=5.76Vr=0.4Ω8.山师附中一研究性学习小组制作了一辆以蓄电池为驱动能源的环保电动汽车,其电池每次充电仅需三至五个小时,蓄电量可让小汽车一次性跑500m,汽车时速最高可达10m/s,汽车总质量为9kg.驱动电机直接接在蓄电池的两极,且蓄电池的内阻为r=0.20Ω.当该汽车在水平路面上以v=2m/s的速度匀速行驶时,驱动电机的输入电流I=1.5A,电压U=3.0V,内电阻R M=0.40Ω.在此行驶状态下(取g=10 m/s2),求:(1)驱动电机输入的电功率P入;(2)驱动电机的热功率P热;(3)驱动电机输出的机械功率P机;(4)蓄电池的电动势E.【答案】(1)4.5W(2)0.9W(3)3.6W(4)3.3V【解析】试题分析:根据P=UI求出驱动电机的输入功率;由P=I2r可求得热功率;由输入功率与热功率的差值可求出机械功率;由闭合电路欧姆定律可求得电源的电动势.(1)驱动电机输入的电功率:P入=IU=1.5×3.0W=4.5W(2)驱动电机的热功率:P热=I2R=(1.5)2×0.40W=0.9W(3)驱动电机输出的机械功率:P机=P入−P热=3.6W(4)蓄电池的电动势:E=U+IR=(3.0+1.5×0.2)V=3.3V点睛:本题主要考查了功率的公式P=UI,以及机械功率的公式P=Fv的应用;要注意体会能量的转化与守恒关系.9.如图所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L.M、P两点间接有电阻值为R的电阻,一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.求:(1)在加速下滑过程中,当ab 杆的速度大小为v 时杆中的电流及杆的加速度大小; (2)在下滑过程中,ab 杆可以达到的速度最大值.【答案】(1)BLv R 22B L vgsin mRθ- (2)22sin mgR B L θ 【解析】(1)当ab 加速下滑时,速度大小为v 时,则 E BLv =根据闭合电路欧姆定律,有:E I R= 故BLvI R=,方向由a 到b 由安培力公式: F BIL =根据牛顿第二定律:mgsin F ma θ-=整理可以得到:2222 )/sin B L v B L v a mgsin m g R mR(θθ=-=-(2)当0a =时ab 杆的速度可以达到最大值 即: mBLv mgsin BL Rθ= 所以:22sin m mgR v B L θ=.10.如图所示,一矩形线圈在匀强磁场中绕OO ′轴匀速转动,磁场方向与转轴垂直.线圈匝数n =100匝,电阻r =1Ω,长l 1=0.5m ,宽l 2=0.4m ,角速度ω=10rad/s .磁场的磁感强度B =0.2T .线圈两端外接电阻R =9Ω的用电器,和一个理想交流电流表.试分析求解:(1)线圈中产生感应电动势的最大值; (2)电流表的读数;(3)电阻R 上消耗的电功率.【答案】(1)40V ;(2)2.82A ;(3)72W . 【解析】试题分析:(1)线圈中产生感应电动势的最大值E=NBSω=40V ;(2)线圈中产生感应拘泥于的最大值I=ER r+=4A ;故电流表的读数为2=2.82A ; (3)电阻R 上消耗的电功率P=(2.82A )2×9Ω=72W . 考点:感应电动势,欧姆定律,电功率的计算.11.如图所示,电源电动势E =27 V ,内阻r =2 Ω,固定电阻R 2=4 Ω,R 1为光敏电阻.C 为平行板电容器,其电容C =3pF ,虚线到两极板距离相等,极板长L =0.2 m ,间距d =1.0×10-2 m .P 为一圆盘,由形状相同透光率不同的二个扇形a 、b 构成,它可绕AA′轴转动.当细光束通过扇形a 、b 照射光敏电阻R 1时,R 1的阻值分别为12 Ω、3 Ω.有带电量为q =-1.0×10-4 C 微粒沿图中虚线以速度v 0=10 m/s 连续射入C 的电场中.假设照在R 1上的光强发生变化时R 1阻值立即有相应的改变.重力加速度为g =10 m/s 2.(1)求细光束通过a 照射到R 1上时,电容器所带的电量;(2)细光束通过a 照射到R 1上时,带电微粒刚好沿虚线匀速运动,求细光束通过b 照射到R 1上时带电微粒能否从C 的电场中射出.【答案】(1)111.810C Q -=⨯(2)带电粒子能从C 的电场中射出【解析】 【分析】由闭合电路欧姆定律求出电路中电流,再由欧姆定律求出电容器的电压,即可由Q=CU 求其电量;细光束通过a 照射到R 1上时,带电微粒刚好沿虚线匀速运动,电场力与重力二力平衡.细光束通过b 照射到R 1上时,根据牛顿第二定律求粒子的加速度,由类平抛运动分位移规律分析微粒能否从C 的电场中射出. 【详解】(1)由闭合电路欧姆定律,得12271.5A 1242E I R R r ===++++又电容器板间电压22C U U IR ==,得U C =6V 设电容器的电量为Q ,则Q=CU C 解得111.810C Q -=⨯(2)细光束通过a 照射时,带电微粒刚好沿虚线匀速运动,则有CU mg qd= 解得20.610m kg -=⨯细光束通过b 照射时,同理可得12C U V '= 由牛顿第二定律,得C U qmg ma d'-= 解得210m/s a = 微粒做类平抛运动,得212y at =, 0l t v = 解得20.210m 2d y -=⨯<, 所以带电粒子能从C 的电场中射出. 【点睛】本题考查了带电粒子在匀强电场中的运动,解题的关键是明确带电粒子的受力情况,判断其运动情况,对于类平抛运动,要掌握分运动的规律并能熟练运用.12.如图所示,质量m=1kg 的通电导体棒在安培力作用下静止在倾角为37°、宽度L=1m 的光滑绝缘框架上,磁场方向垂直于框架平面向下(磁场仅存在于绝缘框架内).右侧回路中,电源的电动势E=8V 、内阻r=1Ω,额定功率为8W 、额定电压为4V 的电动机M 正常工作.取sin37°=0.6,cos37°=0.8,重力加速度大小g=10m/s 2.试求:(1)电动机当中的电流I M 与通过电源的电流I 总.(2)金属棒受到的安培力大小及磁场的磁感应强度大小.【答案】(1)电动机当中的电流是2A ,通过电源的电流是4A ;(2)金属棒受到的安培力大小是6N ,磁场的磁感应强度大小3T .【解析】试题分析:(1)由P=UI 求出电动机中的电流,由串并联电路的电压关系得到内电阻上的电压,由欧姆定律得到干路电流;(2)进而得到磁场中导线的电流,由平衡条件得到安培力,由安培力公式得到B . 解:(1)电动机的正常工作时,有:P M =UI M代入数据解得:I M =2A通过电源的电流为:I 总===4A(2)导体棒静止在导轨上,由共点力的平衡可知,安培力的大小等于重力沿斜面向下的分力,即:F=mgsin37°=6N流过电动机的电流I 为:I=I 总 I M =4A 2A=2AF=BIL解得:B=3T答:(1)电动机当中的电流是2A ,通过电源的电流是4A ;(2)金属棒受到的安培力大小是6N ,磁场的磁感应强度大小3T .【点评】本题借助安培力与电路问题考查了平衡条件的应用,解答的关键是正确找出两个支路的电流之间的关系.是一道很好的综合题.13.如图所示,两平行金属导轨间的距离L =0.4 m ,金属导轨所在的平面与水平面夹角θ=37°,在导轨所在空间内,分布着磁感应强度B =0.5 T 、方向垂直于导轨平面的匀强磁场。

高中物理稳恒电流题20套(带答案)及解析

高中物理稳恒电流题20套(带答案)及解析

高中物理稳恒电流题20套(带答案)及解析一、稳恒电流专项训练1.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质。

如图所示:一段横截面积为S 、长为l 的金属电阻丝,单位体积内有n 个自由电子,每一个电子电量为e 。

该电阻丝通有恒定电流时,两端的电势差为U ,假设自由电子定向移动的速率均为v 。

(1)求导线中的电流I ;(2)有人说“导线中电流做功,实质上就是导线中的恒定电场对自由电荷的静电力做功”。

这种说法是否正确,通过计算说明。

(3)为了更好地描述某个小区域的电流分布情况,物理学家引入了电流密度这一物理量,定义其大小为单位时间内通过单位面积的电量。

若已知该导线中的电流密度为j ,导线的电阻率为ρ,试证明:U j lρ=。

【答案】(1)I neSv =;(2)正确,说明见解析;(3)证明见解析 【解析】【详解】(1)电流的定义式Q I t =,在t 时间内,流过横截面的电荷量Q nSvte = 因此I neSv =(2)这种说法正确。

在电路中,导线中电流做功为:W UIt = 在导线中,恒定电场的场强U E l=,导体中全部自由电荷为q nSle =, 导线中的恒定电场对自由电荷力做的功:U U W qEvt qvt nSel vt nSevUt l l ==== 又因为I neSv =,则W UIt =故“导线中电流做功,实质上就是导线中的恒定电场对自由电荷的静电力做功”是正确的。

(3)由欧姆定律:U IR = 由电阻定律:l R S ρ= 则l U I S ρ=,则有:U I l Sρ= 电流密度的定义:Q I j St S == 故U j lρ=2.如图所示的电路中,R 1=4Ω,R 2=2Ω,滑动变阻器R 3上标有“10Ω,2A”的字样,理想电压表的量程有0~3V 和0~15V 两挡,理想电流表的量程有0~0.6A 和0~3A 两挡.闭合开关S ,将滑片P 从最左端向右移动到某位置时,电压表、电流表示数分别为2V 和0.5A ;继续向右移动滑片P 至另一位置,电压表指针指在满偏的13,电流表指针也指在满偏的13.求电源电动势与内阻的大小.(保留两位有效数字)【答案】7.0V ,2.0Ω.【解析】【分析】根据滑动变阻器的移动可知电流及电压的变化,是可判断所选量程,从而求出电流表的示数;由闭合电路欧姆定律可得出电动势与内阻的两个表达式,联立即可求得电源的电动势.【详解】滑片P 向右移动的过程中,电流表示数在减小,电压表示数在增大,由此可以确定电流表量程选取的是0~0.6 A ,电压表量程选取的是0~15 V ,所以第二次电流表的示数为13×0.6 A =0.2 A ,电压表的示数为13×15 V =5 V 当电流表示数为0.5A 时,R 1两端的电压为U 1=I 1R 1=0.5×4 V =2 V回路的总电流为I 总=I 1+12U R =0.5+22A =1.5 A 由闭合电路欧姆定律得E =I 总r+U 1+U 3,即E =1.5r+2+2①当电流表示数为0.2 A 时,R 1两端的电压为U 1′=I 1′R 1=0.2×4V =0.8 V回路的总电流为I 总′=I 1′+12U R =0.2+0.82A =0.6A 由闭合电路欧姆定律得E =I 总′r+U 1′+U 3′,即E =0.6r+0.8+5②联立①②解得E =7.0 V ,r =2.0Ω【点睛】本题考查闭合电路的欧姆定律,但解题时要注意先会分析电流及电压的变化,从而根据题间明确所选电表的量程.3.如图所示,闭合电路处于方向竖直向上的磁场中,小灯泡的电阻为10Ω,其它电阻不计.当磁通量在0. 1s 内从0.2Wb 均匀增加到0.4Wb 过程中,求:①电路中的感应电动势;②如果电路中的电流恒为0.2A ,那么小灯泡在10s 内产生的热量是多少.【答案】(1)2V (2)4J【解析】(1)当磁通量发生变化时,闭合电路中要产生感应电动势,根据法拉第电磁感应定律,感应电动势大小为: 0.40.220.1E V V t ∆Φ-===∆ (2)当小灯泡上的电流为I=0.2A 时,根据焦耳定律,10s 钟内产生的热量为: Q=I 2Rt=0.22×10×10J=4J4.在现代生活中,充电宝是手机一族出行的必备品.当充电宝电量不足时,需要给充电宝充电,此时充电宝相当于可充电的电池,充电过程可简化为如图所示电路.先给一充电宝充电,充电电压为5V ,充电电流为1000mA ,充电宝的内阻为0.2.Ω试求:()1充电宝的输入功率;()2充电宝内阻消耗的热功率;()3一分钟内充电宝储存的电能.【答案】()1 5W ;()2?0.2W ;()3 288. 【解析】【分析】(1)根据P UI =求解充电宝的输入功率;(2)根据2P I r =求解热功率;(3)根据2Q Pt I rt =-求解一分钟内充电宝储存的电能.【详解】(1)充电宝的输入功率为:351000105P UI W 入-==⨯⨯=;(2)充电宝内阻消耗的热功率为:2210.20.2P I r W ==⨯=热;(3)一分钟内充电宝储存的电能为:25600.260288Q P t I rt J =-=⨯-⨯=入.【点睛】注意本题中的充电宝是非纯电阻电路,输入功率不等于热功率,知道热功率只能用2P I r =求解.5.如图所示的电路中,电炉电阻R =10Ω,电动机线圈的电阻r =1Ω,电路两端电压U =100V ,电流表的示数为30A ,问:(1)通过电动机的电流为多少?(2)通电一分钟,电动机做的有用功为多少?【答案】(1)I 2=20A (2)W =9.6×104J【解析】【详解】根据欧姆定律,通过电炉的电流强度为:11001010U I A A R === 根据并联电路中的干路电流和支路电流的关系,则通过电动机的电流强度为:I 2=I -I 1=20A.电动机的总功率为P =UI 2=100×20 W =2×103W.因发热而损耗的功率为P ′=I 22r =400 W.电动机的有用功率(机械功率)为P ″=P -P ′=1.6×103W ,电动机通电1 min 做的有用功为W =P ″t =1.6×103×60 J =9.6×104J.【点睛】题图中的两个支路分别为纯电阻电路(电炉)和非纯电阻电路(电动机).在纯电阻电路中可运用欧姆定律I =U/R 直接求出电流强度,而非纯电阻电路中的电流强度只能运用干路和支路中电流强度的关系求出.在非纯电阻电路中,电功大于电热,两者的差值才是有用功.6.一交流电压随时间变化的图象如图所示.若用此交流电为一台微电子控制的电热水瓶供电,电热水瓶恰能正常工作.加热时的电功率P =880W ,保温时的电功率P ′=20W .求:①该交流电电压的有效值U ;②电热水瓶加热时通过的电流I ;.③电热水瓶保温5h 消耗的电能E .【答案】①220V ②4A ③53.610J ⨯【解析】①根据图像可知,交流电电压的最大值为:2202m U V =,则该交流电电压的有效值为:2202m U V ==; ②电热水瓶加热时,由P UI =得:8804220P I A A U === ③电热水瓶保温5h 消耗的电能为:52053600 3.610W P t J J ='=⨯⨯=⨯点睛:本题根据交流电图象要能正确求解最大值、有效值、周期、频率等物理量,要明确功率公式P UI =对交流电同样适用,不过U 、I 都要用有效值.7.如图所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L .M 、P 两点间接有电阻值为R 的电阻,一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.求:(1)在加速下滑过程中,当ab 杆的速度大小为v 时杆中的电流及杆的加速度大小; (2)在下滑过程中,ab 杆可以达到的速度最大值.【答案】(1)BLv R 22B L v gsin mRθ- (2)22sin mgR B L θ 【解析】(1)当ab 加速下滑时,速度大小为v 时,则 E BLv =根据闭合电路欧姆定律,有: E I R=故BLv I R =,方向由a 到b 由安培力公式: F BIL =根据牛顿第二定律:mgsin F ma θ-=整理可以得到:2222 )/sin B L v B L v a mgsin m g R mR(θθ=-=- (2)当0a =时ab 杆的速度可以达到最大值即: m BLv mgsin BLR θ= 所以:22sin m mgR v B L θ=.8.如图所示,一矩形线圈在匀强磁场中绕OO′轴匀速转动,磁场方向与转轴垂直.线圈匝数n =100匝,电阻r =1Ω,长l 1=0.5m ,宽l 2=0.4m ,角速度ω=10rad/s .磁场的磁感强度B =0.2T .线圈两端外接电阻R =9Ω的用电器,和一个理想交流电流表.试分析求解:(1)线圈中产生感应电动势的最大值;(2)电流表的读数;(3)电阻R 上消耗的电功率.【答案】(1)40V ;(2)2.82A ;(3)72W .【解析】试题分析:(1)线圈中产生感应电动势的最大值E=NBSω=40V ;(2)线圈中产生感应拘泥于的最大值I=E R r+=4A 2=2.82A ; (3)电阻R 上消耗的电功率P=(2.82A )2×9Ω=72W .考点:感应电动势,欧姆定律,电功率的计算.9.某校科技小组的同学设计了一个传送带测速仪,测速原理如图所示.在传送带一端的下方固定有间距为L 、长度为d 的平行金属电极.电极间充满磁感应强度为B 、方向垂直传送带平面(纸面)向里、有理想边界的匀强磁场,且电极之间接有理想电压表和电阻R ,传送带背面固定有若干根间距为d 的平行细金属条,其电阻均为r ,传送带运行过程中始终仅有一根金属条处于磁场中,且金属条与电极接触良好.当传送带以一定的速度v 匀速运动时,(1)电压表的示数(2)电阻R产生焦耳热的功率(3)每根金属条经过磁场区域的全过程中克服安培力做功【答案】(1)BLvRUR r=+;(2)2222()B L v RPR r=+;(3)22B L vdWR r=+.【解析】试题分析:(1)金属条产生的感应电动势为E=BLv,电路中的感应电流为I=BLvR r+,故电压表的示数BLvRU IRR r==+;(2)电阻R产生焦耳热的功率P=I2R=2222 ()B L v RR r+;(3)每根金属条经过磁场区域的全过程中克服安培力做功W=F安d=BILd=22B L vdR r+.考点:电磁感应,欧姆定律,焦耳定律,安培力.10.如图所示,竖直放置的两根足够长的光滑金属导轨相距为L,导轨的两端分别与电源(串有一滑动变阻器 R)、定值电阻、电容器(原来不带电)和开关K相连.整个空间充满了垂直于导轨平面向外的匀强磁场,其磁感应强度的大小为B.一质量为m,电阻不计的金属棒 ab 横跨在导轨上.已知电源电动势为E,内阻为r,电容器的电容为C,定值电阻的阻值为R0,不计导轨的电阻.(1)当K接1时,金属棒 ab 在磁场中恰好保持静止,则滑动变阻器接入电路的阻值 R 为多大?(2)当 K 接 2 后,金属棒 ab 从静止开始下落,下落距离 s 时达到稳定速度,则此稳定速度的大小为多大?下落 s 的过程中所需的时间为多少?(3) ab 达到稳定速度后,将开关 K 突然接到3,试通过推导,说明 ab 作何种性质的运动?求 ab 再下落距离 s 时,电容器储存的电能是多少?(设电容器不漏电,此时电容器没有被击穿)【答案】(1)EBL r mg -(2)44220220B L s m gR mgR B L +(3)匀加速直线运动 2222mgsCB L m cB L + 【解析】【详解】(1)金属棒ab 在磁场中恰好保持静止,由BIL=mgE I R r=+ 得 EBL R r mg=- (2)由 220B L v mg R = 得 022mgR v B L = 由动量定理,得mgt BILt mv -= 其中0BLs q It R ==得44220220B L s m gR t mgR B L+= (3)K 接3后的充电电流q C U CBL v v I CBL CBLa t t t t ∆∆∆∆=====∆∆∆∆ mg-BIL=ma 得22mg a m CB L =+=常数 所以ab 棒的运动性质是“匀加速直线运动”,电流是恒定的.v 22-v 2=2as根据能量转化与守恒得 22211()22E mgs mv mv ∆=-- 解得:2222mgsCB L E m cB L∆=+ 【点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.11.如图所示,某一新型发电装置的发电管是横截面为矩形的水平管道,管道宽为d ,管道高度为h ,上、下两面是绝缘板,前后两侧M N 、是电阻可忽略的导体板,两导体板与开关S 和定值电阻R 相连。

高考物理稳恒电流答题技巧及练习题

高考物理稳恒电流答题技巧及练习题

高考物理稳恒电流答题技巧及练习题一、稳恒电流专项训练1.在如图所示的电路中,电源内电阻r=1Ω,当开关S 闭合后电路正常工作,电压表的读数U=8.5V ,电流表的读数I=0.5A .求: ①电阻R ; ②电源电动势E ; ③电源的输出功率P .【答案】(1)17R =Ω;(2)9E V =;(3) 4.25P w = 【解析】 【分析】 【详解】(1)由部分电路的欧姆定律,可得电阻为:5UR I==Ω (2)根据闭合电路欧姆定律得电源电动势为E =U +Ir =12V (3)电源的输出功率为P =UI =20W 【点睛】部分电路欧姆定律U =IR 和闭合电路欧姆定律E =U +Ir 是电路的重点,也是考试的热点,要熟练掌握.2.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯【解析】 【分析】 【详解】(1)闭合开关S稳定后,电路的电流:12282 482EI A AR R r===++++;电容器两端电压:222816RU U IR V V===⨯=;电容器带电量:121123.010164.810RQ CU C C--==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t=21122Uqd tdm=联立解得46.2510/qC kgm-=⨯3.如图1所示,用电动势为E、内阻为r的电源,向滑动变阻器R供电.改变变阻器R的阻值,路端电压U与电流I均随之变化.(1)以U为纵坐标,I为横坐标,在图2中画出变阻器阻值R变化过程中U-I图像的示意图,并说明U-I图像与两坐标轴交点的物理意义.(2)a.请在图2画好的U-I关系图线上任取一点,画出带网格的图形,以其面积表示此时电源的输出功率;b.请推导该电源对外电路能够输出的最大电功率及条件.(3)请写出电源电动势定义式,并结合能量守恒定律证明:电源电动势在数值上等于内、外电路电势降落之和.【答案】(1)U–I图象如图所示:图象与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a如图所示:b.24Er(3)见解析【解析】(1)U–I图像如图所示,其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a.如图所示b.电源输出的电功率:2222()2E EP I R RrR rR rR===+++当外电路电阻R=r时,电源输出的电功率最大,为2max=4EPr(3)电动势定义式:WEq=非静电力根据能量守恒定律,在图1所示电路中,非静电力做功W产生的电能等于在外电路和内电路产生的电热,即22W I rt I Rt Irq IRq =+=+ E Ir IR U U =+=+外内本题答案是:(1)U –I 图像如图所示,其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流 (2)a .如图所示当外电路电阻R =r 时,电源输出的电功率最大,为2max =4E P r(3)E U U =+外内点睛:运用数学知识结合电路求出回路中最大输出功率的表达式,并求出当R =r 时,输出功率最大.4.如图所示的电路中,R 1=4Ω,R 2=2Ω,滑动变阻器R 3上标有“10Ω,2A”的字样,理想电压表的量程有0~3V 和0~15V 两挡,理想电流表的量程有0~0.6A 和0~3A 两挡.闭合开关S ,将滑片P 从最左端向右移动到某位置时,电压表、电流表示数分别为2V 和0.5A ;继续向右移动滑片P 至另一位置,电压表指针指在满偏的13,电流表指针也指在满偏的13.求电源电动势与内阻的大小.(保留两位有效数字)【答案】7.0V ,2.0Ω. 【解析】 【分析】根据滑动变阻器的移动可知电流及电压的变化,是可判断所选量程,从而求出电流表的示数;由闭合电路欧姆定律可得出电动势与内阻的两个表达式,联立即可求得电源的电动势. 【详解】滑片P 向右移动的过程中,电流表示数在减小,电压表示数在增大,由此可以确定电流表量程选取的是0~0.6 A ,电压表量程选取的是0~15 V ,所以第二次电流表的示数为13×0.6 A =0.2 A ,电压表的示数为13×15 V =5 V 当电流表示数为0.5A 时,R 1两端的电压为U 1=I 1R 1=0.5×4 V =2 V 回路的总电流为I 总=I 1+12U R =0.5+22A =1.5 A 由闭合电路欧姆定律得E =I 总r+U 1+U 3, 即E =1.5r+2+2①当电流表示数为0.2 A 时,R 1两端的电压为U 1′=I 1′R 1=0.2×4V =0.8 V回路的总电流为I 总′=I 1′+12U R =0.2+0.82A =0.6A 由闭合电路欧姆定律得E =I 总′r+U 1′+U 3′, 即E =0.6r+0.8+5②联立①②解得E =7.0 V ,r =2.0Ω 【点睛】本题考查闭合电路的欧姆定律,但解题时要注意先会分析电流及电压的变化,从而根据题间明确所选电表的量程.5.如图所示,闭合电路处于方向竖直向上的磁场中,小灯泡的电阻为10Ω,其它电阻不计.当磁通量在0. 1s 内从0.2Wb 均匀增加到0.4Wb 过程中,求:①电路中的感应电动势;②如果电路中的电流恒为0.2A ,那么小灯泡在10s 内产生的热量是多少. 【答案】(1)2V (2)4J 【解析】(1)当磁通量发生变化时,闭合电路中要产生感应电动势,根据法拉第电磁感应定律,感应电动势大小为:0.40.220.1E V V t ∆Φ-===∆ (2)当小灯泡上的电流为I=0.2A 时,根据焦耳定律,10s 钟内产生的热量为: Q=I 2Rt=0.22×10×10J=4J6.如下左图所示,R1=14Ω,R2=9Ω,当S 扳到位置1时,电压表示数为2.8V ,当开关S 扳到位置2时,电压表示数为2.7V ,求电源的电动势和内阻?(电压表为理想电表)【答案】E=3V, r=1Ω【解析】试题分析:根据开关S 扳到位置1和2时,分别由闭合电路欧姆定律列出含有电动势和内阻的方程,联立组成方程组求解. 解:根据闭合电路欧姆定律,可列出方程组: 当开关S 扳到位置1时,E=U 1+I 1r=U 1+当开关S 扳到位置2时,E=U 2+I 2r=U 2+代入解得:E=3V ,r=1Ω答:电源的电动势和内阻分别为3V 和1Ω.【点评】本题提供了一种测量电源的电动势和内阻的方法,可以用电阻箱代替两个定值电阻,即由电压表和电阻箱并连接在电源上,测量电源的电动势和内阻,此法简称伏阻法.7.如图中A 、B 、C 、D 四个电路中,小灯L 1上标有“6V 3A”字样,小灯L 2上标有“4V 0.2A”字样,电压U ab 均为U =10V 。

高中物理稳恒电流解题技巧及经典题型及练习题

高中物理稳恒电流解题技巧及经典题型及练习题

高中物理稳恒电流解题技巧及经典题型及练习题一、稳恒电流专项训练1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大?【答案】(1)238mg B L (2)1238mgrB B dL【解析】试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =34I ① I dc =14I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③由①~③,解得I ab =2234mgB L ④ (2)由(1)可得I =22mgB L ⑤设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =34r ⑦ 根据闭合电路欧姆定律,有I =E R⑧ 由⑤~⑧,解得v =121234mgrB B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.2.为了测量一个阻值较大的末知电阻,某同学使用了干电池(1.5V ),毫安表(1mA ),电阻箱(0~9999W ),电键,导线等器材.该同学设计的实验电路如图甲所示,实验时,将电阻箱阻值置于最大,断开2K ,闭合1K ,减小电阻箱的阻值,使电流表的示数为1I =1.00mA ,记录电流强度值;然后保持电阻箱阻值不变,断开1K ,闭合2K ,此时电流表示数为1I =0.80mA ,记录电流强度值.由此可得被测电阻的阻值为____W .经分析,该同学认为上述方案中电源电动势的值可能与标称值不一致,因此会造成误差.为避免电源对实验结果的影响,又设计了如图乙所示的实验电路,实验过程如下: 断开1K ,闭合2K ,此时电流表指针处于某一位置,记录相应的电流值,其大小为I ;断开2K ,闭合1K ,调节电阻箱的阻值,使电流表的示数为___ ,记录此时电阻箱的阻值,其大小为0R .由此可测出x R = .【答案】0375,,I R 【解析】解:方案一中根据闭合电路欧姆定律,有E=I 1(r+R 1+R 2) (其中r 为电源内阻,R 1为电阻箱电阻,R 2为电流表内阻) E=I 2(r+R 1+R 2+R ) 由以上两式可解得 R=375Ω方案二是利用电阻箱等效替代电阻R 0,故电流表读数不变,为I ,电阻箱的阻值为R 0. 故答案为375,I ,R 0.【点评】本题关键是根据闭合电路欧姆定律列方程,然后联立求解;第二方案是用等效替代法,要保证电流相等.3.材料的电阻率ρ随温度变化的规律为ρ=ρ0(1+αt ),其中α称为电阻温度系数,ρ0是材料在t =0℃时的电阻率.在一定的温度范围内α是与温度无关的常量.金属的电阻一般随温度的增加而增加,具有正温度系数;而某些非金属如碳等则相反,具有负温度系数.利用具有正负温度系数的两种材料的互补特性,可制成阻值在一定温度范围内不随温度变化的电阻.已知:在0℃时,铜的电阻率为1.7×10-8Ω·m ,碳的电阻率为3.5×10-5Ω·m ;在0℃附近,铜的电阻温度系数为3.9×10-3℃-1,碳的电阻温度系数为-5.0×10-4℃-1.将横截面积相同的碳棒与铜棒串接成长1.0m 的导体,要求其电阻在0℃附近不随温度变化,求所需碳棒的长度(忽略碳棒和铜棒的尺寸随温度的变化). 【答案】3.8×10-3m【解析】 【分析】 【详解】设所需碳棒的长度为L 1,电阻率为1ρ,电阻恒温系数为1α;铜棒的长度为2L ,电阻率为2ρ,电阻恒温系数为2α.根据题意有1101)l t ρρα=+(①2202)l t ρρα=+(②式中1020ρρ、分别为碳和铜在0℃时的电阻率. 设碳棒的电阻为1R ,铜棒的电阻为2R ,有111L R S ρ=③,222LR Sρ=④ 式中S 为碳棒与铜棒的横截面积.碳棒和铜棒连接成的导体的总电阻和总长度分别为12R R R =+⑤,012L L L =+⑥式中0 1.0m L = 联立以上各式得:10112022121020L L L L R t S S Sραραρρ+=++⑦ 要使电阻R 不随温度t 变化,⑦式中t 的系数必须为零.即101120220L L ραρα+=⑧ 联立⑥⑧得:20210202101L L ραραρα=-⑨代入数据解得:313810m L -=⨯.⑩ 【点睛】考点:考查了电阻定律的综合应用本题分析过程非常复杂,难度较大,关键是对题中的信息能够吃投,比如哦要使电阻R 不随温度t 变化,需要满足的条件4.(18分) 如图所示,金属导轨MNC 和PQD ,MN 与PQ 平行且间距为L ,所在平面与水平面夹角为α,N 、Q 连线与MN 垂直,M 、P 间接有阻值为R 的电阻;光滑直导轨NC 和QD 在同一水平面内,与NQ 的夹角都为锐角θ。

物理稳恒电流专项习题及答案解析及解析

物理稳恒电流专项习题及答案解析及解析

物理稳恒电流专项习题及答案解析及解析一、稳恒电流专项训练1.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.(1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电荷量为e .该导线通有电流时,假设自由电子定向移动的速率均为v . (a )求导线中的电流I ;(b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F安,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F .(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力F 与m 、n 和v 的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明) 【答案】(1)I nvSe =证明见答案 (2)213F P nm S υ== 【解析】 (1)(a )电流QI t=,又因为[()]Q ne v St =,代入则I nvSe = (b )F 安=BIL ,I nvSe =,代入则:F 安=BnvSeL ;因为总的自由电子个数N=nSL ,每个自由电子受到洛伦兹力大小f=Bve ,所以F=Nf =BnvSeL=F 安,即F 安=F .(2)气体压强公式的推导:设分子质量为m ,平均速率为v ,单位体积的分子数为n ;建立图示柱体模型,设柱体底面积为S ,长为l ,则l t υ= 柱体体积V Sl = 柱体内分子总数N nV =总因分子向各个方向运动的几率相等,所以在t 时间内与柱体底面碰撞的分子总数为’16N N 总总=设碰前速度方向垂直柱体底面且碰撞是弹性的,则分子碰撞器壁前后,总动量的变化量为2p m N υ∆=,总依据动量定理有Ft p =∆ 又压力Ft p =∆由以上各式得单位面积上的压力2013F F nm S υ== 【点评】本题的第1题中两问都曾出现在课本中,例如分别出现在人教版选修3-1.P42,选修3-1P .42,这两个在上新课时如果老师注意到,并带着学生思考推导,那么这题得分是很容易的.第2问需要利用动量守恒知识,并结合热力学统计知识,通过建立模型,然后进行推导,这对学生能力要求较高,为了处理相应问题,通过建模来处理问题.在整个推导过程并不复杂,但对分析容易对结果造成影响的错误是误认为所有分析都朝同一方向运动,而不是热力学统计结果分子向各个运动方向运动概率大致相等,即要取总分子个数的16. 【考点定位】电流微观表达式、洛伦兹力推导以及压强的微观推导.2.如图所示,已知电源电动势E=20V ,内阻r=lΩ,当接入固定电阻R=3Ω时,电路中标有“3V,6W”的灯泡L 和内阻R D =1Ω的小型直流电动机D 都恰能正常工作.试求:(1)流过灯泡的电流 (2)固定电阻的发热功率 (3)电动机输出的机械功率 【答案】(1)2A (2)7V (3)12W 【解析】(1)接通电路后,小灯泡正常工作,由灯泡上的额定电压U 和额定功率P 的数值 可得流过灯泡的电流为:=2A(2)根据热功率公式,可得固定电阻的发热功率:=12W(3)根据闭合电路欧姆定律,可知电动机两端的电压:=9V电动机消耗的功率:=18W一部分是线圈内阻的发热功率:=4W另一部分转换为机械功率输出,则=14W【点睛】(1)由灯泡正常发光,可以求出灯泡中的电流;(2)知道电阻中流过的电流,就可利用热功率方程,求出热功率;(3)电动机消耗的电功率有两个去向:一部分是线圈内阻的发热功率;另一部分转化为机械功率输出。

高中物理稳恒电流题20套(带答案)

高中物理稳恒电流题20套(带答案)

高中物理稳恒电流题20套(带答案)一、稳恒电流专项训练1.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.(1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电荷量为e .该导线通有电流时,假设自由电子定向移动的速率均为v . (a )求导线中的电流I ;(b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F安,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F .(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力F 与m 、n 和v 的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明) 【答案】(1)I nvSe =证明见答案 (2)213F P nm S υ== 【解析】 (1)(a )电流QI t=,又因为[()]Q ne v St =,代入则I nvSe = (b )F 安=BIL ,I nvSe =,代入则:F 安=BnvSeL ;因为总的自由电子个数N=nSL ,每个自由电子受到洛伦兹力大小f=Bve ,所以F=Nf =BnvSeL=F 安,即F 安=F .(2)气体压强公式的推导:设分子质量为m ,平均速率为v ,单位体积的分子数为n ;建立图示柱体模型,设柱体底面积为S ,长为l ,则l t υ= 柱体体积V Sl = 柱体内分子总数N nV =总因分子向各个方向运动的几率相等,所以在t 时间内与柱体底面碰撞的分子总数为’16N N 总总=设碰前速度方向垂直柱体底面且碰撞是弹性的,则分子碰撞器壁前后,总动量的变化量为2p m N υ∆=,总依据动量定理有Ft p =∆ 又压力Ft p =∆由以上各式得单位面积上的压力2013F F nm S υ== 【点评】本题的第1题中两问都曾出现在课本中,例如分别出现在人教版选修3-1.P42,选修3-1P .42,这两个在上新课时如果老师注意到,并带着学生思考推导,那么这题得分是很容易的.第2问需要利用动量守恒知识,并结合热力学统计知识,通过建立模型,然后进行推导,这对学生能力要求较高,为了处理相应问题,通过建模来处理问题.在整个推导过程并不复杂,但对分析容易对结果造成影响的错误是误认为所有分析都朝同一方向运动,而不是热力学统计结果分子向各个运动方向运动概率大致相等,即要取总分子个数的16. 【考点定位】电流微观表达式、洛伦兹力推导以及压强的微观推导.2.在如图所示的电路中,电源内电阻r=1Ω,当开关S 闭合后电路正常工作,电压表的读数U=8.5V ,电流表的读数I=0.5A .求: ①电阻R ; ②电源电动势E ; ③电源的输出功率P .【答案】(1)17R =Ω;(2)9E V =;(3) 4.25P w = 【解析】 【分析】 【详解】(1)由部分电路的欧姆定律,可得电阻为:5UR I==Ω (2)根据闭合电路欧姆定律得电源电动势为E =U +Ir =12V (3)电源的输出功率为P =UI =20W 【点睛】部分电路欧姆定律U =IR 和闭合电路欧姆定律E =U +Ir 是电路的重点,也是考试的热点,要熟练掌握.3.如图所示,已知电源电动势E=20V ,内阻r=lΩ,当接入固定电阻R=3Ω时,电路中标有“3V,6W”的灯泡L 和内阻R D =1Ω的小型直流电动机D 都恰能正常工作.试求:(1)流过灯泡的电流(2)固定电阻的发热功率(3)电动机输出的机械功率【答案】(1)2A(2)7V(3)12W【解析】(1)接通电路后,小灯泡正常工作,由灯泡上的额定电压U和额定功率P的数值可得流过灯泡的电流为:=2A(2)根据热功率公式,可得固定电阻的发热功率:=12W(3)根据闭合电路欧姆定律,可知电动机两端的电压:=9V电动机消耗的功率:=18W一部分是线圈内阻的发热功率:=4W另一部分转换为机械功率输出,则=14W【点睛】(1)由灯泡正常发光,可以求出灯泡中的电流;(2)知道电阻中流过的电流,就可利用热功率方程,求出热功率;(3)电动机消耗的电功率有两个去向:一部分是线圈内阻的发热功率;另一部分转化为机械功率输出。

高中物理稳恒电流常见题型及答题技巧及练习题

高中物理稳恒电流常见题型及答题技巧及练习题

高中物理稳恒电流常见题型及答题技巧及练习题一、稳恒电流专项训练1.在如图所示的电路中,电源内电阻r=1Ω,当开关S 闭合后电路正常工作,电压表的读数U=8.5V ,电流表的读数I=0.5A .求: ①电阻R ; ②电源电动势E ; ③电源的输出功率P .【答案】(1)17R =Ω;(2)9E V =;(3) 4.25P w = 【解析】 【分析】 【详解】(1)由部分电路的欧姆定律,可得电阻为:5UR I==Ω (2)根据闭合电路欧姆定律得电源电动势为E =U +Ir =12V (3)电源的输出功率为P =UI =20W 【点睛】部分电路欧姆定律U =IR 和闭合电路欧姆定律E =U +Ir 是电路的重点,也是考试的热点,要熟练掌握.2.如图所示,一根有一定电阻的直导体棒质量为、长为L ,其两端放在位于水平面内间距也为L 的光滑平行导轨上,并与之接触良好;棒左侧两导轨之间连接一可控电阻;导轨置于匀强磁场中,磁场的磁感应强度大小为B ,方向垂直于导轨所在平面,时刻,给导体棒一个平行与导轨的初速度,此时可控电阻的阻值为,在棒运动过程中,通过可控电阻的变化使棒中的电流强度保持恒定,不计导轨电阻,导体棒一直在磁场中。

(1)求可控电阻R 随时间变化的关系式; (2)若已知棒中电流强度为I ,求时间内可控电阻上消耗的平均功率P ;(3)若在棒的整个运动过程中将题中的可控电阻改为阻值为的定值电阻,则棒将减速运动位移后停下;而由题干条件,棒将运动位移后停下,求的值。

【答案】(1);(2);(3)【解析】试题分析:(1)因棒中的电流强度保持恒定,故棒做匀减速直线运动,设棒的电阻为,电流为I,其初速度为,加速度大小为,经时间后,棒的速度变为,则有:而,时刻棒中电流为:,经时间后棒中电流为:,由以上各式得:。

(2)因可控电阻R随时间均匀减小,故所求功率为:,由以上各式得:。

(3)将可控电阻改为定值电阻,棒将变减速运动,有:,,而,,由以上各式得,而,由以上各式得,所求。

高考物理稳恒电流解题技巧及经典题型及练习题

高考物理稳恒电流解题技巧及经典题型及练习题

高考物理稳恒电流解题技巧及经典题型及练习题一、稳恒电流专项训练1.在如图所示的电路中,电源内电阻r=1Ω,当开关S 闭合后电路正常工作,电压表的读数U=8.5V ,电流表的读数I=0.5A .求: ①电阻R ; ②电源电动势E ; ③电源的输出功率P .【答案】(1)17R =Ω;(2)9E V =;(3) 4.25P w = 【解析】 【分析】 【详解】(1)由部分电路的欧姆定律,可得电阻为:5UR I==Ω (2)根据闭合电路欧姆定律得电源电动势为E =U +Ir =12V (3)电源的输出功率为P =UI =20W 【点睛】部分电路欧姆定律U =IR 和闭合电路欧姆定律E =U +Ir 是电路的重点,也是考试的热点,要熟练掌握.2.把一只“1.5V ,0.3A ”的小灯泡接到6V 的电源上,为使小灯泡正常发光,需要串联还是并联一个多大电阻? 【答案】串联一个15Ω的电阻 【解析】 【分析】 【详解】要使灯泡正常发光则回路中电流为0.3A ,故回路中的总电阻为6Ω=20Ω0.3U R I ==总 灯泡的电阻为1.5Ω=5Ω0.3L L U R I == 由于电源电压大于灯泡额定电压,故需要串联一个电阻分压,阻值为20Ω5Ω15ΩL R R R ==-=总-3.在现代生活中,充电宝是手机一族出行的必备品.当充电宝电量不足时,需要给充电宝充电,此时充电宝相当于可充电的电池,充电过程可简化为如图所示电路.先给一充电宝充电,充电电压为5V ,充电电流为1000mA ,充电宝的内阻为0.2.Ω试求:()1充电宝的输入功率;()2充电宝内阻消耗的热功率; ()3一分钟内充电宝储存的电能.【答案】()1 5W ;()2?0.2W ;()3 288. 【解析】 【分析】(1)根据P UI =求解充电宝的输入功率;(2)根据2P I r =求解热功率;(3)根据2Q Pt I rt =-求解一分钟内充电宝储存的电能. 【详解】(1)充电宝的输入功率为:351000105P UI W 入-==⨯⨯=; (2)充电宝内阻消耗的热功率为:2210.20.2P I r W ==⨯=热; (3)一分钟内充电宝储存的电能为:25600.260288Q P t I rt J =-=⨯-⨯=入.【点睛】注意本题中的充电宝是非纯电阻电路,输入功率不等于热功率,知道热功率只能用2P I r =求解.4.在图所示的电路中,电源电压U 恒定不变,当S 闭合时R 1消耗的电功率为9W ,当S 断开时R 1消耗的电功率为4W ,求:(1)电阻R 1与R 2的比值是多大?(2)S 断开时,电阻R 2消耗的电功率是多少? (3)S 闭合与断开时,流过电阻R 1的电流之比是多少? 【答案】2∶1,2W ,3∶2 【解析】【分析】【详解】(1)当S闭合时R1消耗的电功率为9W,则:2119WUPR==当S断开时R1消耗的电功率为4W,则:21112'()4WUP RR R=+=解得:12:2:1R R=(2)S断开时R1和R2串联,根据公式2P I R=,功率之比等于阻值之比,所以:1122':':2:1P P R R==又因为1'4WP=,所以,S断开时,电阻R2消耗的电功率:22'WP=(3)S闭合时:1UIR=S断开时:12'URIR+=所以:1212'3R RIRI+==5.如图所示,已知R3=3Ω,理想电压表读数为3v,理想电流表读数为2A,某时刻由于电路中R3发生断路,电流表的读数2.5A,R1上的电压为5v,求:(1)R1大小、R3发生断路前R2上的电压、及R2阻值各是多少?(R3发生断路时R2上没有电流)(2)电源电动势E和内电阻r各是多少?【答案】(1)1V 1Ω(2)10 V ;2Ω【解析】试题分析:(1)R3断开时电表读数分别变为5v和2.5A 可知R1=2欧R3断开前R1上电压U1=R1I=4VU1= U2 + U3所以 U2=1VU2:U3 = R2:R3 =1:3R2=1Ω(2)R3断开前总电流I1=3AE = U1 + I1rR3断开后总电流I2=2.5AE = U2 + I2r联解方程E= 10 V r=2Ω考点:闭合电路的欧姆定律【名师点睛】6.如图所示,竖直放置的两根足够长的光滑金属导轨相距为L,导轨的两端分别与电源(串有一滑动变阻器 R)、定值电阻、电容器(原来不带电)和开关K相连.整个空间充满了垂直于导轨平面向外的匀强磁场,其磁感应强度的大小为B.一质量为m,电阻不计的金属棒 ab 横跨在导轨上.已知电源电动势为E,内阻为r,电容器的电容为C,定值电阻的阻值为R0,不计导轨的电阻.(1)当K接1时,金属棒 ab 在磁场中恰好保持静止,则滑动变阻器接入电路的阻值 R 为多大?(2)当 K 接 2 后,金属棒 ab 从静止开始下落,下落距离 s 时达到稳定速度,则此稳定速度的大小为多大?下落 s 的过程中所需的时间为多少?(3) ab 达到稳定速度后,将开关 K 突然接到3,试通过推导,说明 ab 作何种性质的运动?求 ab 再下落距离 s 时,电容器储存的电能是多少?(设电容器不漏电,此时电容器没有被击穿)【答案】(1)EBLrmg-(2)442222B L s m gRmgR B L+(3)匀加速直线运动2222mgsCB Lm cB L+【解析】【详解】(1)金属棒ab在磁场中恰好保持静止,由BIL=mgEI R r=+ 得 EBLR r mg=- (2)由 220B L vmg R =得 022mgR v B L =由动量定理,得mgt BILt mv -= 其中0BLsq It R ==得4422220B L s m gR t mgR B L +=(3)K 接3后的充电电流q C U CBL v v I CBL CBLa t t t t∆∆∆∆=====∆∆∆∆ mg-BIL=ma 得22mga m CB L =+=常数所以ab 棒的运动性质是“匀加速直线运动”,电流是恒定的. v 22-v 2=2as根据能量转化与守恒得 22211()22E mgs mv mv ∆=--解得:2222mgsCB L E m cB L ∆=+【点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.7.如图a 所示,处于匀强磁场中的两根足够长、电阻不计的光滑平行金属导轨相距L =1m ,导轨平面与水平面成θ=370角,下端连接阻值为R =0.4Ω的电阻.匀强磁场方向垂直于导轨平面向上,磁感应强度为B =0.4T ,质量m =0.2Kg 、电阻R =0.4Ω的金属杆放在两导轨上,杆与导轨垂直且保持良好接触,金属导轨之间连接一理想电压表.现用一外力F 沿水平方向拉杆,使之由静止沿导轨开始下滑,电压表示数U 随时间t 变化关系如图b 所示.取g =10m/s 2,sin370=0.6,cos370=0.8求:⑴金属杆在第5s 末的运动速率; ⑵第5s 末外力F 的功率; 【答案】(1)1m/s (2)-0.8W 【解析】 【分析】金属杆沿金属导轨方向在三个力作用下运动,一是杆的重力在沿导轨向下方向的分力G 1,二是拉力F 在沿导轨向下方向的分力F 1,三是沿导轨向上方向的安培力,金属杆在这几个力的作用下,向下做加速运动. 【详解】(1)如下图所示,F 1是F 的分力,G 1是杆的重力的分力,沿导轨向上方向的安培力未画出,由题设条件知,电压表示数U 随时间t 均匀增加,说明金属杆做的是匀加速运动,由b 图可得金属杆在第5s 末的电压是0.2V ,设此时杆的运动速率为v ,电压为U ,电流I ,由电磁感应定律和欧姆定律有E BLv =因电路中只有两个相同电阻,有1122U E BLv == 解得1v =m/s故金属杆在第5s 末的运动速率是1m/s(2) 金属杆做的是匀加速运动,设加速度为a ,此时杆受的安培力为f ,有va t==0.2m/s 2220.22B L vf BTL R===N1G mg =sin θ=1.2N由牛顿第二定律得11G f F ma --= 110.8F G f ma =--=N由功率公式得10.8P F v ==W因1F 的方向与棒的运动方向相反,故在第5s 末外力F 的功率是--0.8W . 【点睛】由电阻的电压变化情况来分析金属棒的运动情况.8.如图所示电路中,R 1=6 Ω,R 2=12 Ω,R 3=3 Ω,C =30 μF ,当开关S 断开,电路稳定时,电源总功率为4 W ,当开关S 闭合,电路稳定时,电源总功率为8 W ,求:(1)电源的电动势E 和内电阻r ;(2)在S 断开和闭合时,电容器所带的电荷量各是多少? 【答案】(1)8V ,1Ω (2)1.8×10﹣4C ,0 C 【解析】 【详解】 (1)S 断开时有: E=I 1(R 2+R 3)+I 1r…① P 1=EI 1…②S 闭合时有:E=I 2(R 3+1212R R R R +)+I 2r…③ P 2=EI 2…④由①②③④可得:E=8V ;I 1=0.5A ;r=1Ω;I 2=1A (3)S 断开时有:U=I 1R 2得:Q 1=CU=30×10-6×0.5×12C=1.8×10-4C S 闭合,电容器两端的电势差为零,则有:Q 2=09.如图所示,粗糙斜面的倾角θ=37°,半径r =0.5 m 的圆形区域内存在着垂直于斜面向下的匀强磁场.一个匝数n =10匝的刚性正方形线框abcd ,通过松弛的柔软导线与一个额定功率P =1.25 W 的小灯泡A 相连,圆形磁场的一条直径恰好过线框bc 边.已知线框质量m =2 kg ,总电阻R 0=1.25 Ω,边长L >2r ,与斜面间的动摩擦因数μ=0.5.从t =0时起,磁场的磁感应强度按B =2-2πt (T)的规律变化.开始时线框静止在斜面上,在线框运动前,灯泡始终正常发光.设最大静摩擦力等于滑动摩擦力,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)小灯泡正常发光时的电阻R ;(2)线框保持不动的时间内,小灯泡产生的热量Q . 【答案】(1)1.25 Ω (2)3.14 J 【解析】 【分析】(1)根据法拉第电磁感应定律,即可求解感应电动势;由功率表达式,结合闭合电路欧姆定律即可;(2)对线框受力分析,并结合平衡条件,及焦耳定律,从而求得. 【详解】(1)由法拉第电磁感应定律有E =n tΦ∆∆得22121100.5 2.5?22B E nr V V t πππ∆⨯⨯⨯⨯∆=== 小灯泡正常发光,有P =I 2R 由闭合电路欧姆定律有E =I (R 0+R ) 则有P =(0ER R+)2R ,代入数据解得R =1.25 Ω. (2)对线框受力分析如图设线框恰好要运动时,磁场的磁感应强度大小为B ′,由力的平衡条件有 mg sin θ=F 安+f =F 安+μmg cos θ F 安=nB ′I ×2r联立解得线框刚要运动时,磁场的磁感应强度大小B ′=0.4 T 线框在斜面上可保持静止的时间 1.642/5t s s ππ== 小灯泡产生的热量Q =Pt =1.25×45πJ =3.14 J.10.麦克斯韦的电磁场理论告诉我们:变化的磁场产生感生电场,该感生电场是涡旋电场;变化的电场也可以产生感生磁场,该感生磁场是涡旋磁场.(1)如图所示,在半径为r 的虚线边界内有一垂直于纸面向里的匀强磁场,磁感应强度大小随时间的变化关系为B =kt (k >0且为常量).将一半径也为r 的细金属圆环(图中未画出)与虚线边界同心放置.①求金属圆环内产生的感生电动势ε的大小.②变化的磁场产生的涡旋电场存在于磁场内外的广阔空间中,在与磁场垂直的平面内其电场线是一系列同心圆,如图中的实线所示,圆心与磁场区域的中心重合.在同一圆周上,涡旋电场的电场强度大小处处相等.使得金属圆环内产生感生电动势的非静电力是涡旋电场对自由电荷的作用力,这个力称为涡旋电场力,其与电场强度的关系和静电力与电场强度的关系相同.请推导金属圆环位置的涡旋电场的场强大小E 感.(2)如图所示,在半径为r 的虚线边界内有一垂直于纸面向里的匀强电场,电场强度大小随时间的变化关系为E =ρt (ρ>0且为常量).①我们把穿过某个面的磁感线条数称为穿过此面的磁通量,同样地,我们可以把穿过某个面的电场线条数称为穿过此面的电通量.电场强度发生变化时,对应面积内的电通量也会发生变化,该变化的电场必然会产生磁场.小明同学猜想求解该磁场的磁感应强度B 感的方法可以类比(1)中求解E 感的方法.若小明同学的猜想成立,请推导B 感在距离电场中心为a (a <r )处的表达式,并求出在距离电场中心2r和2r 处的磁感应强度的比值B 感1:B 感2.②小红同学对上问通过类比得到的B 感的表达式提出质疑,请你用学过的知识判断B 感的表达式是否正确,并给出合理的理由. 【答案】(1)①2k r π ②kr2;(2)①1:1②不正确. 【解析】 【分析】(1)①根据法拉第电磁感应定律求解金属圆环内产生的感生电动势ε的大小.②在金属圆环内,求解非静电力对带电量为-q 的自由电荷所做的功,求解电动势,从而求解感应电场强度;(2)①类比(1)中求解E 感的过程求解 两处的磁感应强度的比值;②通过量纲分析表达式的正误. 【详解】(1)①根据法拉第电磁感应定律得()2B S B S k r t t tεπ∆⋅∆Φ∆====∆∆∆②在金属圆环内,非静电力对带电量为-q 的自由电荷所做的功W 非=qE 感·2πr 根据电动势的定义W q非ε=解得感生电场的场强大小22krE r t π∆Φ==∆感 (2)①类比(1)中求解E 感的过程,在半径为R 处的磁感应强度为2eB R tπ∆Φ=∆感 在R=a 时,2e E a πΦ=,解得2aB ρ=感在R=2r 时, 212e r E π⎛⎫Φ= ⎪⎝⎭,解得14r B ρ=感 将R=2r 时, 22e E r πΦ=,解得24rB ρ=感所以1211B B =感感 ② 上问中通过类比得到的B 感的表达式不正确;因为通过量纲分析我们知道:用基本物理量的国际单位表示2eB R tπ∆Φ=∆感的导出单位为24kg m A s⋅⋅ ;又因为F B IL =,用基本物理量的国际单位表示F B IL =的导出单位为2kgA s ⋅.可见,通过类比得到的B 感的单位是不正确的,所以2e B R t π∆Φ=∆感的表达式不正确. 【点睛】考查电磁学综合运用的内容,掌握法拉第电磁感应定律、电场强度和磁感应强度的应用,会用类比法解决问题以及用物理量的量纲判断表达式的正误.11.如图甲所示,发光竹蜻蜓是一种常见的儿童玩具,它在飞起时能够发光.某同学对竹蜻蜓的电路作如下简化:如图乙所示,半径为L 的金属圆环绕垂直于圆环平面、通过圆心O 的金属轴O 1O 2以角速度ω匀速转动,圆环上接有电阻均为r 的三根导电辐条OP 、OQ 、OR ,辐条互成120°角.在圆环内,圆心角为120°的扇形区域内存在垂直圆环平面向下磁感应强度为B 的匀强磁场,在转轴O 1O 2与圆环的边缘之间通过电刷M 、N 与一个LED 灯(可看成二极管,发光时电阻为r ).圆环及其它电阻不计,从辐条OP 进入磁场开始计时.(1)顺磁感线方向看,圆盘绕O 1O 2轴沿什么方向旋转,才能使LED 灯发光?在不改变玩具结构的情况下,如何使LED 灯发光时更亮?(2)在辐条OP 转过60°的过程中,求通过LED 灯的电流;(3)求圆环每旋转一周,LED 灯消耗的电能.【答案】(1)逆时针;增大角速度(2)28BL r ω(3)2432B L rωπ 【解析】试题分析:(1)圆环转动过程,始终有一条导电辐条在切割磁感线,产生感应电动势,并通过M.N 和二极管构成闭合回路.由于二极管的单向导电性,只有转轴为正极,即产生指向圆心的感应电流时二极管才发光,根据右手定则判断,圆盘逆时针旋转.要使得LED 灯发光时更亮,就要使感应电动势变大,即增大转速增大角速度ω. (2)导电辐条切割磁感线产生感应电动势212E BL ω= 此时O 点相当于电源正极,P 点为电源负极,电源内阻为r 电源外部为二个导体辐条和二极管并联,即外阻为3r . 通过闭合回路的电流343EE I r r r ==+ 带入即得22133248BL BL I r rωω⨯== 流过二极管电流为238I BL rω= (3)转动过程始终有一个导电辐条在切割磁感线,所以经过二极管的电流不变 转过一周所用时间2T πω= 所以二极管消耗的电能2422'()332I B L Q I rT rT rωπ=== 考点:电磁感应 串并联电路12.用质量为m 、总电阻为R 的导线做成边长为l 的正方形线框MNPQ ,并将其放在倾角为θ的平行绝缘导轨上,平行导轨的间距也为l ,如图所示,线框与导轨之间是光滑的,在导轨的下端有一宽度为l (即ab l =)、磁感应强度为B 的有界匀强磁场,磁场的边界'aa 、'bb 垂直于导轨,磁场的方向与线框平面垂直,线框从图示位置由静止释放,恰能匀速穿过磁场区域,重力加速度为g ,求:(1)线框通过磁场时的速度v ;(2)线框MN 边运动到'aa 的过程中通过线框导线横截面的电荷量q ;(3)通过磁场的过程中,线框中产生的热量Q 。

【物理】物理稳恒电流题20套(带答案)

【物理】物理稳恒电流题20套(带答案)

电阻率为 ,试证明: U j 。 l
【答案】(1) I neSv ;(2)正确,说明见解析;(3)证明见解析
【解析】 【详解】
(1)电流的定义式 I Q ,在 t 时间内,流过横截面的电荷量 Q nSvte t
因此 I neSv
(2)这种说法正确。
在电路中,导线中电流做功为:W UIt
在导线中,恒定电场的场强 E U ,导体中全部自由电荷为 q nSle , l
(1)细线烧断后,任意时刻两杆运动的速度之比;
(2)两杆分别达到的最大速度.
【答案】(1) v1 2 v2 1
(2)
v1
4mgR 3B2l 2

v2
2mgR 3B2l 2
【解析】
【分析】
细线烧断前对 MN 和 M'N'受力分析,得出竖直向上的外力 F=3mg,细线烧断后对 MN 和
M'N'受力分析,根据动量守恒求出任意时刻两杆运动的速度之比.分析 MN 和 M'N'的运动
3mg 由①~③,解得 Iab= 4B2L2 ④
mg (2)由(1)可得 I= B2 L2 ⑤
设导体杆切割磁感线产生的电动势为 E,有 E=B1L1v ⑥
设 ad、dc、cb 三边电阻串联后与 ab 边电阻并联的总电阻为 R,则 R= 3 r ⑦ 4
根据闭合电路欧姆定律,有 I= E ⑧ R
3mgr 由⑤~⑧,解得 v= 4B1B2L1L2 ⑨
联立(15)(17)(18),得 xm=
答:(1)ef 棒上产生的热量为

(2)通过 ab 棒某横截面的电量为

(3)此状态下最强磁场的磁感应强度是
的最点评】本题是对法拉第电磁感应定律的考查,解决本题的关键是分析清楚棒的受力的情 况,找出磁感应强度的关系式是本题的重点.

高中物理稳恒电流解题技巧及练习题及解析

高中物理稳恒电流解题技巧及练习题及解析

高中物理稳恒电流解题技巧及练习题及解析一、稳恒电流专项训练1.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯【解析】 【分析】 【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++;电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联立解得46.2510/qC kg m-=⨯2.能量守恒是自然界基本规律,能量转化通过做功实现。

研究发现,电容器存储的能最表达式为c E =21CU 2,其中U 为电容器两极板间的电势差.C 为电容器的电容。

现将一电容器、电源和某定值电阻按照如图所示电路进行连接。

已知电源电动势为0E ,电容器电容为0C ,定值电阻阻值为R ,其他电阻均不计,电容器原来不带电。

现将开关S 闭合,一段时间后,电路达到稳定状态。

求:在闭合开关到电路稳定的过程中,该电路因电磁辐射、电流的热效应等原因而损失的能量。

【答案】2012CE 【解析】 【详解】根据电容定义,有C=QU,其中Q 为电容器储存的电荷量,得:Q=CU 根据题意,电容器储存能量:E C =12CU 2 利用电动势为E 0的电源给电容器充电,电容器两极间电压最终为E 0, 所以电容器最终储存的能量为:E 充=2012CE , 则电容器最终储存的电荷量为:Q=CE 0,整个过程中消耗消耗能量为:E 放=W 电源=E 0It=E 0Q=C 20E 根据能量守恒得:E 损=E 放-E 充=C 20E -2012CE =2012CE3.把一只“1.5V ,0.3A ”的小灯泡接到6V 的电源上,为使小灯泡正常发光,需要串联还是并联一个多大电阻? 【答案】串联一个15Ω的电阻 【解析】 【分析】 【详解】要使灯泡正常发光则回路中电流为0.3A ,故回路中的总电阻为6Ω=20Ω0.3U R I ==总 灯泡的电阻为1.5Ω=5Ω0.3L L U R I == 由于电源电压大于灯泡额定电压,故需要串联一个电阻分压,阻值为20Ω5Ω15ΩL R R R ==-=总-4.利用如图所示的电路可以测量电源的电动势和内电阻。

高考物理稳恒电流专项训练及答案

高考物理稳恒电流专项训练及答案

高考物理稳恒电流专项训练及答案一、稳恒电流专项训练1. 4~1.0T 范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化) (4)磁场反向,磁敏电阻的阻值不变. 【解析】(1)当B =0.6T 时,磁敏电阻阻值约为6×150Ω=900Ω,当B =1.0T 时,磁敏电阻阻值约为11×150Ω=1650Ω.由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻器选择分压式接法;由于xVA xR R R R >,所以电流表应内接.电路图如图所示.(2)方法一:根据表中数据可以求得磁敏电阻的阻值分别为:130.4515000.3010R -=Ω=Ω⨯,230.911516.70.6010R -=Ω=Ω⨯,331.5015001.0010R -=Ω=Ω⨯,431.791491.71.2010R -=Ω=Ω⨯,532.7115051.8010R -=Ω=Ω⨯, 故电阻的测量值为1234515035R R R R R R ++++=Ω=Ω(1500-1503Ω都算正确.) 由于0150010150R R ==,从图1中可以读出B =0.9T 方法二:作出表中的数据作出U -I 图象,图象的斜率即为电阻(略).(3)在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化);(4)从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关.本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力.从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U 、I 值求电阻.第(3)、(4)问则考查考生思维的灵敏度和创新能力.总之本题是一道以能力立意为主,充分体现新课程标准的三维目标,考查学生的创新能力、获取新知识的能力、建模能力的一道好题.2.为了测量一个阻值较大的末知电阻,某同学使用了干电池(1.5V ),毫安表(1mA ),电阻箱(0~9999W ),电键,导线等器材.该同学设计的实验电路如图甲所示,实验时,将电阻箱阻值置于最大,断开2K ,闭合1K ,减小电阻箱的阻值,使电流表的示数为1I =1.00mA ,记录电流强度值;然后保持电阻箱阻值不变,断开1K ,闭合2K ,此时电流表示数为1I =0.80mA ,记录电流强度值.由此可得被测电阻的阻值为____W .经分析,该同学认为上述方案中电源电动势的值可能与标称值不一致,因此会造成误差.为避免电源对实验结果的影响,又设计了如图乙所示的实验电路,实验过程如下: 断开1K ,闭合2K ,此时电流表指针处于某一位置,记录相应的电流值,其大小为I ;断开2K ,闭合1K ,调节电阻箱的阻值,使电流表的示数为___ ,记录此时电阻箱的阻值,其大小为0R .由此可测出x R = .【答案】0375,,I R 【解析】解:方案一中根据闭合电路欧姆定律,有E=I 1(r+R 1+R 2) (其中r 为电源内阻,R 1为电阻箱电阻,R 2为电流表内阻) E=I 2(r+R 1+R 2+R ) 由以上两式可解得 R=375Ω方案二是利用电阻箱等效替代电阻R 0,故电流表读数不变,为I ,电阻箱的阻值为R 0. 故答案为375,I ,R 0.【点评】本题关键是根据闭合电路欧姆定律列方程,然后联立求解;第二方案是用等效替代法,要保证电流相等.3.要描绘某电学元件(最大电流不超过6m A,最大电压不超过7V)的伏安特性曲线,设计电路如图,图中定值电阻R为1KΩ,用于限流;电流表量程为10m A,内阻约为5Ω;电压表(未画出)量程为10V,内阻约为10KΩ;电源电动势E为12V,内阻不计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、电流欧姆定律练习题一、选择题5.对于有恒定电流通过的导体,下列说法正确的是[ ]A.导体内部的电场强度为零B.导体是个等势体C.导体两端有恒定的电压存在D.通过导体某个截面的电量在任何相等的时间内都相等6.有四个金属导体,它们的伏安特性曲线如图1所示,电阻最大的导体是[ D]A.a B.b C.c D.d二、填空题8.导体中的电流是5μA,那么在3.2S内有______ C的电荷定向移动通过导体的横截面,相当于______个电子通过该截面。

9.电路中有一段导体,给它加20mV的电压时,通过它的电流为5mA,可知这段导体的电阻为______Ω,如给它加30mV的电压时,它的电阻为______Ω;如不给它加电压时,它的电阻为______Ω。

10.如图2所示,甲、乙分别是两个电阻的I-U图线,甲电阻阻值为______Ω,乙电阻阻值为______Ω,电压为10V时,甲中电流为______A,乙中电流为______A。

11.图3所示为两个电阻的U-I图线,两电阻阻值之比R1∶R2=______,给它们两端加相同的电压,则通过的电流之比I1∶I2______。

12.某电路两端电压不变,当电阻增至3Ω时,电流降为原来的13.设金属导体的横截面积为S,单位体积内的自由电子数为n,自由电子定向移动速度为v,那么在时间t内通过某一横截面积的自由电子数为______;若电子的电量为e,那么在时间t内,通过某一横截面积的电量为______;若导体中的电流I,则电子定向移动的速率为______。

14.某电解槽内,在通电的2s内共有3C的正电荷和3C的负电荷通过槽内某一横截面,则通过电解槽的电流为______A。

三、计算题15.在氢原子模型中,电子绕核运动可等效为一个环形电流。

设氢原子中电子在半径为r的轨道上运动,其质量、电量分别用m和e来表示,则等效电流I等于多少?16.在彩色电视机的显像管中,从电子枪射出的电子在加速电压U作用下被加速,且形成电流为I的平均电流,若打在荧光屏上的高速电子全部被荧光屏吸收。

设电子质量为m,电量为e,进入加速电场之前的初速不计,则t秒内打在荧光屏上的电子数为多少?电流欧姆定律练习题答案一、选择题1、D2、C3、D4、AD5、CD6、D7、B二、填空题8、1.6×10-5,1×10149、4,4,410、2.5,5,4,211、4∶1,1∶412、2.413、nsvt,ensvt,I/ens14、3三、计算题二、电阻定律、电阻率练习题一、选择题2.一粗细均匀的镍铬丝,截面直径为d,电阻为R。

把它拉制成直径为d/10的均匀细丝后,它的电阻变为[D ]A.R/1000B.R/100C.100R D.10000R3.用电器离电源L米,线路上的电流为I,为使在线路上的电压降不超过U,已知输电线的电阻率为ρ。

那么,输电线的横截面积的最小值是[ B]A.ρL/R B.2ρLI/UC.U/ρLI D.2UL/Iρ4.一根阻值为R的均匀电阻丝,长为L,横截面积为S,设温度不变,在下列哪些情况下其电阻值仍为R?[ ]CA.当L不变,S增大一倍时B.当S不变,L增大一倍时D.当L和横截面的半径都增大一倍时。

5.有长度相同,质量相同,材料不同的金属导线A、B各一根。

已知A的密度比B的大,A的电阻率比B的小。

则A、B两根导线的电阻为[ D]A.R A>R B B.R A<R BC.R A= R B D.无法判断6.一只白炽灯泡,正常发光时的电阻为121Ω,当这只灯泡停止发光一段时间后的电阻应是[B ]A.大于121ΩB.小于121ΩC.等于121ΩD 无法判断7.关于导体和绝缘体的如下说法正确的是[ ABC]A.超导体对电流的阻碍作用等于零B.自由电子在导体中走向移动时仍受阻碍C.绝缘体接在电路中仍有极微小电流通过D.电阻值大的为绝缘体,电阻值小的为导体二、填空题8.材料的电阻率在数值上等于用这种材料制成的长为______m,横截面积为______m2的一条导线的电阻;在国际单位制中,电阻率的单位为______。

9.两种材料不同的电阻丝,长度之比为1∶5,截面积之比为2∶3,电阻之比为2∶5,则材料的电阻率之比为______。

10.一根金属丝,将其对折后并起来,则电阻变为原来的______倍。

11.甲导线长L 截面直径为d,两端电压为U.同样材料的乙导线长2L,截面直径为2d,两端电压为2U,则甲、乙两导线中电流之比为______。

12.有一根粗细均匀的电阻丝,当两端加上2V电压时通过其中的电流为4A,现将电阻丝均匀地拉长,然后两端加上1V电压,这时通过它的电流为0.5A。

由此可知,这根电阻丝已被均匀地拉长为原长的______倍。

14.A、B两根完全相同的金属裸导线,如果把导线A均匀拉长到原来的2倍,导线B 对折后结合起来,则它们的电阻之比R A∶R B为______,然后分别加上相同的电压,相同时间内通过导线横截面的电量之比q A∶q B为______。

15.电压恒定的电源与一根玻璃管中的水银柱组成电路,水银柱中通过的电流为0.1A。

今将这些水银倒进另一根玻璃管中,管的内径是原管的2倍,重新与该电源组成电路,则流过水银柱的电流为______A。

三、计算题16.在一根长l=5m,横截面积S=3.5×10-4m2的铜质导线两端加2.5×10-3V电压。

己知铜的电阻率ρ=1.75×10-8Ω·m,则该导线中的电流多大?每秒通过导线某一横截面的电子数为多少?17.相距40km的A、B两地架两条输电线,电阻共为800Ω,如果在A、B间的某处发生短路,这时接在A处的电压表示数为10V,电流表的示数为40mA,求发生短路处距A 处有多远?如图2所示。

电阻定律、电阻率练习题答案一、选择题1、C2、D3、B4、C5、D6、B7、ABC二、填空题12、213、1∶3,1∶314、16∶1,1∶1615、1.6三、计算题16、10A,6.25×1019个17、12.5km三、电功和电功率练习题一、选择题1.一只断灯丝的灯泡,摇接灯丝后使用,要比原来亮一些,这是因为灯丝的[ ]A.电阻变小B.电阻增大C.电阻率减小D.电阻率增大2.两个绕线电阻分别标有“100Ω、10w”和“20Ω、40W”,则它们的额定电流之比为[ ]3.将一根电阻丝接在某恒定电压的电源两端,电流做功的功率为P。

若将该电阻丝均匀地拉长为原来的两倍后再接入该电源。

则它的功率为[ ]A. 4P B.0.25PC.16p D.0.125P4.一根电阻丝在通过2C的电量时,消耗电能是8J。

若在相同时间内通过4C的电量,则该电阻丝两端所加电压U和该电阻丝在这段时间内消耗的电能E分别为[ ] A.U=4V B.U=8VC.E=16J D.E=32J5.两只灯泡分别接在两个电路中,下列判断正确的是[ ]A.额定电压高的灯泡较亮B.额定功率大的灯泡较亮C.接在电压高的电路两端的那盏灯较亮D.在电路中实际功率大的灯较亮6.图1中虚线框内是一个未知电路,测得它的两端点a,b之间的电阻是R,在a,b 之间加上电压U,测得流过这电路的电流为I,则未知电路的电功率一定是:[ ] C.UI D.I2R+UI7.图2中M,N接稳压电源,a,b间断开时,U ab=120V,a,b间接入“220V,100w”的灯泡时,U ab=110V.则此时电源输入M、N的电功率为[ ]A.25W B.27.27WC.102.27W D.2.27W[ ]A.公式①适用于任何电路的电功率B.公式②适用于任何电路的电功率C.公式①、②、③均适用于任何电路的电功率D.以上说法均不正确9.一只电炉的电阻丝和一台电动机线圈电阻相同,都为R。

设通过它们的电流相同(电动机正常运转),则在相同的时间内[ ]A.电炉和电动机产生的电热相等B.电动机消耗的功率大于电炉消耗的功率C.电炉两端电压小于电动机两端电压D.电炉和电动机两端电压相等10.输电线总电阻为r,输送的电功率是P,送电电压U,则用户得到的功率为[ ]11.在电动机正常工作时,每秒钟内电流做功和每秒钟内电枢上产生的热量的关系,下列说法中正确的是[ ]A.电功等于电热B.电功等于电热的0.24倍C.电功等于电动机输出的机械功D.电热仅为电功的一部分二、填空题12.如图3,将滑动变阻器A、P端接入电源两端,当A、P间电阻值为8Ω时,A、P 段电阻的功率为2W,如果在电源电压降为原来的1/2时,A、P段电阻消耗功率仍为2W则A、P段的电阻值必须为______Ω。

这时通过A、P段电阻的电流为______A。

13.在一根导线两端加上一定的电压,每秒内发出一定的热量,今将这根导线均匀地拉长为原来的n倍后,再加上同样的电压,则这根导线每秒所产生的热量是原来的______倍。

14.相同材料制成的导线A和B长度相同。

导线A的截面半径是BB 两导线横截面的电量之比为______,电流对A和B两导线做功之比为______,A和B 两导线两端的电压之比为______。

15.一个标明“1kΩ,10W”的电阻,允许通过的最大电流为_____,允许加在这个电阻两端的最大电压为______。

当这个电阻两端的电压为40V时,它消耗的实际功率为______。

(设电阻阻值不随温度变化)16.“220V、5.5kW”的电动机,电阻为0.4Ω,它在正常工作时的电流为______A,1s钟内产生的热量是______J,1s内有______J的电能转化为机械能。

17.如图4,为用直流电源给蓄电池充电的电路。

若蓄电池的内阻为r,电流表和电压表的示数分别为I和U,则输入蓄电池的功率为______,蓄电池的发热功率为______,电能转化为化学能的功率为______。

三、计算题18.某滑动变阻器上标有“20Ω、0.2 A”字样,现将固定端A和滑动端P接在3V的电源上,并保持电压不变,如图5所示。

在P由B端向A端滑动过程中,AP段电阻允许消耗的最大功率是多少?这时AP段电阻值多大?19.有一个直流电动机,把它接入0.2V电压的电路时,电动机不转,测得流过电动机的电流是0.4A,若把它接入2V电压的电路中,电动机正常工作,工作电流是1A。

求:(1)电动机正常工作时的输出功率。

(2)如在正常工作时,转子突然被卡住,此时电动机的发热功率多大?(提示:电动机在电路中转子不转动时为纯电阻用电器)三、电功和电功率练习题答案一、选择题1、A2、C3、B4、BD5、D6、C7、B8、A9、ABC10、B11、D二、填空题三、计算题18、0.6W,15Ω19、1.5W,8W四、串联电路和并联电路练习题一、选择题1.电阻R1、R2、R3串联在电路中。

相关文档
最新文档