矩形截面偏心受压构件计算资料
矩形截面单向偏心受压构件(仅供借鉴)
长柱:柱的长细比较大,侧向挠度f与初始偏心 距ei相比已不能忽略;
细长柱:柱的长细比很大,侧向挠度出现不收 敛的增长,构件破坏时为失稳破环。
一类参考
7
实际结构中最常见的 是长柱,计算中应考虑由 于构件侧向挠度而引起的 二阶弯矩的影响,为此引 用偏心增大系数η:
ei e0 ea
一类参考
5
二阶效应
钢筋混凝土偏心受压构件中的轴向力在结构发 生侧向位移和挠曲变形时会引起附加内力,即二阶 效应。
下面介绍一种考虑二阶效应的方法——η—l0法。
一类参考
6
按长细比的不同,钢筋混凝土偏心受压 柱可分为短柱、长柱和细长柱。
短柱:长细比较小(l0/h≤5或l0/d≤5或l0/i≤17.5),
sAs
f'yA's
12
“受拉侧”钢筋应力 s
由平截面假定可得:
es
es
ecu
x= xn
es
h0 xn xn s=Eses
s
Ese
cu
(
x
/ h0
1)
Ese
cu
(
1)
为避免上式代入小偏心受压基本公式出
现 x 的三次方程,考虑到当ξ=ξb,σs=fy;ξ = β ,σs=0的两个边界A's均未知时
两个基本方程中有三个未知数,As、A's和 x,故无唯一解。
为使总配筋面积(As+ A's )最小,可取x=bh0 ,得:
As
Ne 1
fcbh02b (1 0.5b )
偏心受压构件计算
说明:1、本表根据《桥梁混凝土结构设计原理计算示例》(2006)编写。
2、本表用于已知截面、配筋及设计轴力求极限弯矩。
3、本表仅用配普通通钢时矩形截面偏心受压计算。
4、计算时,点击“开始计算”按钮,该按钮用于逼近法求偏心矩增大系数。
5、中间结果右侧的黄色区域可以强制修改对应值,以用于特殊计算或与其它程序对比计算,正常计算时注意对该区域(Q列)清空。
6、当混凝土强度等级高于C50或钢筋为不为HRB335时,请注意修界限受压区高度值,见桥规P25,表5.2.1。
7、本计算假定箍筋足够,不发生剪切破坏。
8、设计轴力(J5)在裂缝计算和承载力计算注意区分。
无条件输入翼板有效宽度bf'(m): 1.3翼板厚度hf'(m):0.1腹板宽b(m):0.225梁高h(m):0.5第一层受拉钢筋直径(mm):22第一层受拉钢筋根数:5第一层受拉钢筋到结构受拉边缘的距离a s1(m):0.07混凝土强度等级C:30第一层受压钢筋直径(mm):28第一层受压钢筋根数:0第一层受压钢筋到结构受压边缘的距离a s1'(m):0.05设计弯矩Md(kN):150#REF!#REF!2006)编写。
钮用于逼近法求偏心矩增大系数。
对应值,以用于特殊计算或与其它程序对比计算,为HRB335时,请注意修界限受压区高度值,见桥规P25,表5.2.1。
第一排受拉钢筋面积(m2):0.0019005第二排受拉钢筋面积(m2):0第三排受拉钢筋面积(m2):0总受拉钢筋面积(m2):0.0019005受拉钢筋到结构受拉边缘的距离as(m):0.07第一排受压钢筋面积(m2):0第二排受压钢筋面积(m2):0第三排受压钢筋面积(m2):0总受压钢筋面积(m2):0受压钢筋到结构受拉边缘的距离as'(m):#REF!混凝土抗压设计强度fcd(MPa):#REF!混凝土相对受压高度x(m):#REF!有效高度h0(m):#REF!M du3(kN):#REF!。
偏心受压构件计算方法
非对称配筋矩形截面偏心受压构件正截面承载力设计与复核1大小偏心的判别当e < h o时,属于小偏心受压。
时,可暂先按大偏心受压计算,若b,再改用小偏心受压计算2、大偏心受压正截面承载力设计1).求A s和A,令b,(HRB33歐,b 0.55; HRB40C级,b 0.52)2Ne i f c bh o b(1 0.5 b)A s REf y(h o a)(混规,f y2).求A sA s A si A s2 A S3(0)若 b 按照大偏心(1)若 b cy 2 i bA ;Ne i f c bh o2 (1 /2)f y(h o a )i f c bh o b NA s 主A s f y适用条件: A s/bh > min,且不小于f t / f y ;A;/ bh > min 0如果 x<2a/,A s N(e h/2 a') f y (h o a/)适用条件:A;/ bh > min,且不小于f t/f y ;A;/bh > min 0 3、小偏心受压正截面承载力设计如果s QA s min bh 再重新求,再计算A s(2)若 h/ h oNe i f c bh(h 。
h )2f y (h o a)然后计算和A sN(h/2 e Q e a a 7)1 f cbh(h/2 a 7) f y (h o a )情况(2)和(3)验算反向破坏。
4、偏心受压正截面承载力复核1).已知N ,求M 或仓。
先根据大偏心受压计算出X : (1)如果 x 2a / ,⑵ 如果2a / x b h 。
,由大偏心受压求e ,再求e 0 ⑶若 b ,可由小偏心受压计算 。
再求e 、e o2).已知e o ,求N 先根据大偏心受压计算出x (1) 如果 X 2a /,(2) 若2a / x b h o ,由大偏心受压求N 。
(3) 若x> b h o ,可由小偏心受压求N 。
偏心受压构件的正截面承载力计算
xhoho 22[0Ndesffcsd 'db A s'(hoas')]
➢当 2as x时bh,0
As fcdbxffs'dsdAs' 0Nd
➢当 x ,b h且0
时x , 2 a s
令 x ,2则a可s 求得
As
0 Nd es
偏压构件是同时受到轴向压力N和弯矩M的作用, 等效于对截面形心的偏心距:e。=M/N的偏心压力的 作用。
图7-1偏心受压构件与压弯构件图
偏心距: 压力N的作用点离构件截面形心的距离e0 压弯构件: 截面上同时承受轴心压力和弯矩的构件。
偏心受压: (压弯构件)
单向偏心受力构件 双向偏心受力构件
大偏心受压构件 小偏心受压构件
fsd (ho as)
2)当 e0 0时.3h0
已知:b hN d M d f c d f s d f s d l 0
求: As 、 As '
注:As不论是拉还是压,均未达屈服强度,可按一则最小配筋 率来进行设计.
解: 令 A sm 'in b h 0 .0 0 2 b h
由式(7-6)和式(7-10),可求得x方程组
由7-10可钢筋应力 s
s cuEs(xh0 1)
由7-4可求得NU
0 N d fc d b x fs dA s sA s
2.当 h时/ h,0 取 代x入7h-10得钢筋应力
承载力NU1
近偏心则破坏
再由 7s -4求得截面
由公式7-13求截面承载力NU2 远偏心则破坏
0 N d e s f c d b h ( h 0 h /2 ) f s d A s ( h 0 a s )
55 矩形截面偏心受压构件正截面承载力计算
不考虑间接钢筋影响的情况,而按普通轴心受压承载力计算:
◆对l0/d大于12的柱(易纵向弯曲,导致螺旋筋不起作用)。 ◆螺旋箍筋轴向力设计值小于普通箍筋柱的轴向力设计时。
◆当间接钢筋换算面积Ass0小于纵筋全部截面积的25%时(间接
钢筋配置少,套箍作用不明显)。
构造要求:
箍筋间距不应大于80mm及dcor/5,也不应小于40mm。
例题讲解:118页
5.2.2 轴心受压螺旋箍筋柱正截面受压承载力计算
箍筋作用:
增强机理:约束核心区砼在纵向受压时的横向变形, 从而提高了砼抗压强度和变形能力,这种受到约束的 混凝土称为约束砼。 等效增强:在柱的横向采用螺旋箍筋或焊接环筋也能 像直接配置纵向钢筋那样起到提高承载力和变形能力 的作用,相当于间接纵筋。
◆ 这种破坏具有明显预兆,变形能力较大,破坏特征与 (哪种
构件的一种破坏形式?)相似,承载力主要取决于受拉侧钢筋。
◆ 形成这种破坏的条件是:偏心距e0较大,且受拉侧纵向钢筋
配筋率合适,通常称为大偏心受压情况下的受拉破坏。
N
fyAs
f'yA's
2、受压破坏
产生受压破坏的条件有两种情况: ⑴当相对偏心距e0/h0较小,截面全部受压或大部分受压 ⑵或虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多时
纵筋宜采用HRB400、RRB400、HRB500级钢筋(物尽其用) 箍筋一般采用HRB400、HRB335级钢筋,也可采用HPB300级。
5.1 受压构件的一般构造要求
5.1.3 纵筋
直径不宜小于12mm,常用16-32mm 单侧配筋率不小于0.2%,全部纵向钢筋最小配筋率附表4-5。 全部纵筋配筋率不宜超过5%。(回顾配筋率) 纵筋均匀布置,矩形截面不少于4根,圆形截面不少于6根。 保护层对一级环境取20mm,净间距不应小于50mm。
7.偏心受压构件的截面承载力计算20191120精品文档
梁。
s As
f y'As'
◆受压破坏特征:破坏是由于混凝土被压碎而引起的,破坏时
靠近纵向力一侧钢筋达到屈服强度,远侧钢筋可能受拉也可
能受压,受拉时未屈服,受压时可能屈服也可能未屈服。
◆ 承载力主要取决于压区混凝土和受压侧钢筋,破坏具有脆性 性质。
ÊÜ À Æ »µ ÊÜ Ñ¹ Æ »µ
偏心受压构件的破坏形态展开图
ns11219ei /7h0×(lhc)2近似取 ns11310ei /0h0×(lhc)2
ei e0ea M N2 ea
n
s1130(M N 021ea)/h0
×(lc)2 h
对于“受压破坏”的小偏心受压构件上式显然不适用
在计算破坏曲率时,需引进一个修正系数c,对截面曲率进行修
P—Δ效应
最大一阶和二阶弯矩在柱端且符号相同。 当二阶弯矩不可忽略时,应考虑结构侧移的影响。
N F
N
M0max Mmax
Mmax =Mmax +M0max
7.2.2 矩形截面偏心受压构 件承载力计算公式
一、 区分大小偏心受压破坏的 界限破坏
≤b属于大偏心破坏形态 > b属于小偏心破坏形态
N ( ei+ f )
图示典型偏心受压柱,跨中侧
向挠度为f。因此,对跨中截面, 轴力N的偏心距为ei + f ,即跨 中截面的弯矩为M =N ( ei + f )。
xN ei
(一) P-δ效应
y y f × sin px
le f
ei N
le
在截面和初始偏心距相同的情
N ei
况下,柱的长细比l0/h不同,侧
7.2偏心受压构件正截面承载力计算
第七章 偏心受压构件的强度计算
影响,各截面所受的弯矩不再是Ne0,而
变成N(e0+y)见图(7-4)所示,y为构件 任意点的水平侧向挠度。在柱高度中心处,
y
N
侧向挠度最大,截面上的弯矩为N(e0+f)。
一般,把偏心受压构件截面弯矩中心的Ne0称为初始弯矩或一
阶弯矩(不考虑侧向挠度时的弯矩),将Nf或Ny称为附加弯矩或
二阶弯矩。
由于二阶弯矩的影响,将造成偏心受压构件不同的破坏类型。(见教材122 页图7-12) 短柱——材料破坏,即由于截面中材料达到其强度极限而发生的破坏; 长柱(8<lo /h≤30) ——材料破坏 细长柱——失稳破坏。即当偏心压力达到最大值时,侧向挠度f突然剧增, 但材料未达到其强度极限情况下发生的破坏。由于失稳破坏与材料破坏有本 质的区别,设计中一般尽量不采用细长柱。
rb N j e M u Rg Ag (h0 a ' ) (7-12) rs 当按式(7-12)求得的正截面承载力M u比不考虑受压钢筋A/g时更小,则 在计算中不应考虑受压钢筋A/g 。
'
3)当偏心压力作用的偏心距很小,即小偏心受压情况下且全截面受压。 若靠近偏心压力一侧的纵向钢筋A/g配置较多,而远离偏心压力一侧的纵向钢 筋Ag配置较少时,钢筋Ag的应力可能达到受压屈服强度,离偏心压力较远一 侧的混凝土也有可能压坏,这时的截面应力分布如图(7-8)所示。为使钢筋 Ag数量不致过少,防止出现一侧压应力负担较大引起的破坏,《公路桥规》 规定:对于小偏心受压构件,若偏心压力作用于钢筋Ag合力点和A/g合力点之 间时,尚应符合下列条件:
e
e/
e0
e/
x
Ra
z
x 2a '
rb / Rg Ag C rs
偏心受压构件正截面承载力计算—矩形截面偏心受压构件正截面承载力计算
即x≤ξbh0,且x<2a’s,则由基本公式3可得:
Ne f y As h0 as
As As
Ne f y(h0 as )
(4)若判定为小偏心受压破坏
则按下式重新计算x:
N 1 fcbh0b
Ne 0.431 fcbh02 (1 b )(h0 as)
1
fcbh0
e
ei N
N Nu 1 fcbx f yAs f y As
Ne
Nue
1 fcbx(h0
x) 2
f yAs (h0
as )
e ei 0.5h as
fyAs
f'yA's
(1)情况1:As和A's均未知时 两个基本方程中有三个未知数,As、A's和 x,故无唯一解。 与双筋梁类似,为使总配筋面积(As+A's)最小?
• 2.截面复核
已知:截面尺寸、材料强度、e0、L0,AS,AS’
求: N 解:判断大小偏心
1.对于垂直弯矩作用方向还应按轴心受压进行验算即应满足:
N Nu 0.9 ( fcd A fsd As )
2.对于弯矩作用方向按偏心受压进行验算
偏心受压构件正截面承载力计算 基本公式
(建筑规范)
1.计算假定
计算方法及步骤
矩形截面偏心受压构件对称配筋的计算方法
对称配筋,即截面的两侧用相同数量的配筋和相同钢材规格,
As=As',fsd = fsd',as = as'
1.不对称配筋与对称配筋的比较: (1) 不对称配筋: 优点是充分利用混凝土的强度, 节省钢筋;缺点主要是施工不便,容易将钢筋的位置 对调。 (2) 对称配筋: 优点为对结构更有利(可能有相反 方向的弯矩),施工方便,构造简单,钢筋位置不易 放错;缺点是多用钢筋。
基本构件计算矩形截面偏心受压构件承载力的计算
矩形截面偏心受压构件正截面承载力的计算一、基本公式1. 计算图式2. 基本公式由0=∑x N 得:)](11[g g g gsa cb u j A A R bx R N N σγγγ-''+=≤ 由0=∑gA M 得:)](1)2(1[00g g g sa cb u j a h A R x h bx R M e N '-''+-=≤γγγ由0=∑'gA M 得:)](1)2(1[0g g g sg a c b u j a h A a x bx R M e N '-+'--=≤'σγγγ 混凝土受压区高度由下式确定:e A R e A xh e bx R g gg g a '''-=+-σ)2(0(对偏心作用力点取矩) e e '、-分别为偏心压力j N 作用点至钢筋g A 合力作用点和钢筋g A '合力作用点的距离,按下式计算:η=e g a h e -+20;η='e g a h e '+-203.公式的注意事项(1)钢筋g A 的应力g σ取值当jg h x ξξ≤=0时,构件属于大偏心受压构件,这时取g g R =σ(受拉钢筋屈服);当jg h x ξξ>=0时,构件属于小偏心受压构件,这时g σ按下式计算,但不大于g R 值:)19.0(003.0-=ξσg g E ,式中g E 为受拉钢筋的弹性模量。
(2)为保证构件破坏时,大偏心受压构件截面上的受压钢筋能达到抗压设计强度gR ',必须满足g a x '≥2,否则受压钢筋的应力可能达不到g R '。
与双筋截面受弯构件类似,这时可近似取g a x '=2,由截面受力平衡条件(0=∑'g A M )可得:)(0gg g s bu j a h A R M e N '-=≤'γγ 上式计算的正截面承载力u M 比不考虑受压钢筋gA '更小时,计算中不考虑受压钢筋g A '的影响。
矩形截面偏心受压构件计算
M0 =N ei
• 承受N和Mmax作用的截面是构件最危险截面---临界截面
•
Nf ----构件由纵向弯曲引起的最大二阶弯矩
• 最大弯矩Mmax= M0+ Nf
ei
y
f
N
M0=N ei
Mmax= M0+ Nf
M0
N ei
M0 =N ei
Nf
•两端弯矩不相等,但符号相同
• 构件的最大挠度位于离端部某位置。
N 1 f cbx f y As s s As Ne 1 f cbx(h0 x ) f y As (h0 as' ) 2
e ei 0.5h as
ei e0 ea
ss——受拉钢筋应力;As——受拉钢筋面积;
As‟——受压钢筋面积;b——宽度; x ——受压区高度;fy„——受压钢筋屈服强度 ;
弯曲前的弯矩:
M Nei
f 弯曲后的弯矩: M N (ei f ) Nei (1 ) ei f 令 : (1 ) 则:M Ne i ei
1 偏心距增大系数,可按下式计算: 1 e 1400 i h0
l0 × 1 2 h
对于小偏心受压:
N 1 f cbx f y As s s As x ) f A (h a ' ) Ne 1 f cbx(h0 y s 0 s 2
三、钢筋的应力ss
可由平截面假定求得
cu 0.0033
xc h0 xc
s h0 xc cu xc
结论: •构件两端作用相等弯矩时,一阶、 二阶弯矩最大处重 合,一阶弯矩增加最大,即,临界截面弯矩最大。 •两端弯矩不等但符号相同时,一阶弯矩仍增加较多。 •两端弯矩不等符号相反时,一阶弯矩增加很小或不增加。 M0=N ei M2=N e0 M2=N e0
矩形截面偏心受压构件的正截面承载力计算
1.当 bh0 x h 时, 钢筋应力由下式计算
s
cu
Es
(
h0
x
1)
由(5-1)可求得NU
0Nd fcdbx fsd As s As
2.当 x 时h,取 求x得 钢h 筋应力
力NU1
近偏心侧破坏
再由(s 5-1)求得截面承载
由公式(5-7)求截面承载力NU2 远偏心侧破坏
构件截面承载力为NU1, NU2中较小者
2)垂直于弯矩作用平面内的截面承载力复核
《公桥规》规定,对于偏心受压构件除应计算弯矩作用 平面内的强度外,尚应按轴心受压构件复核垂直于弯矩作 用平面内的强度。这时,不考虑弯矩作用,而按轴心受压
1、截面设计 大、小偏心偏心受压构件的初步判别
根据经验, 当 e0 0.时3h0,可假定截面为大偏心受压;当 时,可e假0 定0.截3h0面为小偏心受压。
注意:仅适用于矩形截面
1)当e0 0.3时h0
第一种情况:
已知:b h
求: As 、As'
Nd Md
fcd
f sd
(两个方程三个未知数)
解:(1)取 b 即x bh0
fcd b
as'
)]
➢当 2as x 时bh,0
As
fcdbx
f
' sd
As'
0 Nd
f sd
➢当 x ,bh且0
时x, 2as
令 x ,2则a可s 求得
As
0 Nd es
fsd (ho as )
2)当 e0 0时.3h0
已知:b h N d M d
f cd
f sd
f sd
l0
4.3 偏心受压构件承载力计算
4.2轴心受压构件承载力计算一、偏心受压构件破坏特征偏心受压构件在承受轴向力N和弯矩M的共同作用时,等效于承受一个偏心距为的偏心力N的作用,当弯矩M相对较小时,气就很小,构件接近于轴心受压,相反当N相对较小时,气就很大,构件接近于受弯,因此,随着气的改变,偏心受压构件的受力性能和破坏形态介于轴心受压和受弯之间。
按照轴向力的偏心距和配筋情况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。
1.受拉破坏当轴向压力偏心距分较大,且受拉钢筋配置不太多时,构件发生受拉破坏。
在这种情况下,构件受轴向压力N后,离N较远一侧的截面受拉,另一侧截面受压。
当N增加到一定程度,首先在受拉区出现横向裂缝,随着荷载的增加,裂缝不断发展和加宽,裂缝截面处的拉力全部由钢筋承担。
荷载继续加大,受拉钢筋首先达到屈服,并形成一条明显的主裂缝,随后主裂缝明显加宽并向受压一侧延伸,受压区高度迅速减小。
最后,受压区边缘出现纵向裂缝,受压区混凝土被压碎而导致构件破坏(图4.3.1)。
此时,受压钢筋一般也能屈服。
由于受拉破坏通常在轴向压力偏心距分较大发生,故习惯上也称为大偏心受压破坏。
受拉破坏有明显预兆,属于延性破坏。
2.受压破坏当构件的轴向压力的偏心距分较小,或偏心距分虽然较大但配置的受拉钢筋过多时,就发生这种类型的破坏。
加荷后整个截面全部受压或大部份受压,靠近轴向压力M 一侧的混凝土压应力较高,远离轴向压力一侧压应力较小甚至受拉。
随着荷载逐渐增加,靠近轴一侧混凝土出现纵向裂缝,进而混凝土达到极限应变先被压碎,受压钢筋的应力也达到远离一侧的钢筋可能受压,也可能受拉,但因本身截面应力太小,或因配筋过多,都达不到屈服强度(图4.3.2)。
由于受压破坏通常在轴向压力偏心距%较小时发生,故习惯上也称为小偏心受压破坏。
受压破坏无明显预兆,属脆性破坏。
3.受拉破坏与受压破坏的界限综上可知,受拉破坏和受压破坏都属于“材料破坏”。
其相同之处是,截面的最终破坏都是受压区边缘混凝土达到极限压应变而被压碎。
06d(1)对称配筋矩形截面偏心受压构件正截面受压承载力计算
大偏心 截面设 计(对 称配筋)
(2)大小偏心受压情况的初步判别
大偏心 截面设 计(对 称配筋)
(3)受压高度的计算及大小偏心受压情况的检验
大偏心 截面设 计(对 称配筋)
(4)求钢筋
2、对称配筋矩形截面小偏 心受压构件正截面受压承载
力计算
(1) 平衡方程 (2) 适用条件 (3) 问题求解
A:截面设计 B:承载力复核
(1) 平衡方程
N e
ei
e
X = 0
Nu 1 fcbx f ' y A's s As
M = 0
s
1 b 1
fy
Nue
1
f c bx(h0
x) 2
f
'y
A's
(h0
a's
)
Ass As
Nu
e'
1
fcbx(
x 2
a's
) s As( h0
a's
)
e
ei
h 2
as
e'
h 2
ei
a's
as
a1fc f yAs
As
b as X/2 h0 h
e、e' —分别为轴向力作用点至受拉钢筋As合力 点和受压钢筋A's合力点之间的距离
(1) 平衡方程
X = 0
N 1 fcbx f 'y A's s As
N 1 f#39;y
A's
b b 1
(三)对称配筋矩形截面偏心受压构件正截面 受压承载力计算
(四)对称配筋工形截面偏心受压构件正截面 受压承载力计算
(完整版)矩形截面偏心受压构件正截面的承载力计算
矩形截面偏心受压构件正截面的承载力计算一、矩形截面大偏心受压构件正截面的受压承载力计算公式 (一)大偏心受压构件正截面受压承载力计算(1)计算公式由力的平衡条件及各力对受拉钢筋合力点取矩的力矩平衡条件,可以得到下面两个基本计算公式:s y s y c A f A f bx f N -+=''1α (7-23)()'0''012a h A f x h bx f Ne s y c -+⎪⎭⎫ ⎝⎛-=α (7-24)式中: N —轴向力设计值;α1 —混凝土强度调整系数;e —轴向力作用点至受拉钢筋A S 合力点之间的距离;a he e i -+=2η (7-25) a i e e e +=0 (7-26)η—考虑二阶弯矩影响的轴向力偏心距增大系数,按式(7-22)计算;e i —初始偏心距;e 0 —轴向力对截面重心的偏心距,e 0 =M/N ;e a —附加偏心距,其值取偏心方向截面尺寸的1/30和20㎜中的较大者; x —受压区计算高度。
(2)适用条件1) 为了保证构件破坏时受拉区钢筋应力先达到屈服强度,要求b x x ≤ (7-27)式中 x b — 界限破坏时,受压区计算高度,o b b h x ξ= ,ξb 的计算见与受弯构件相同。
2) 为了保证构件破坏时,受压钢筋应力能达到屈服强度,和双筋受弯构件相同,要求满足:'2a x ≥ (7-28) 式中 a ′ — 纵向受压钢筋合力点至受压区边缘的距离。
(二)小偏心受压构件正截面受压承载力计算(1)计算公式根据力的平衡条件及力矩平衡条件可得s s s y c A A f bx f N σα-+=''1 (7-29)⎪⎭⎫ ⎝⎛'-+⎪⎭⎫ ⎝⎛-=s s y c a h A f x h bx f Ne 0''012α (7-30) ()'0''1'2s s s s c a h A a x bx f Ne -+⎪⎭⎫⎝⎛-=σα (7-31)式中 x — 受压区计算高度,当x >h ,在计算时,取x =h ;σs — 钢筋As 的应力值,可根据截面应变保持平面的假定计算,亦可近似取:y b s f 11βξβξσ--=(7-32)要求满足:y s y f f ≤≤σ'x b — 界限破坏时受压区计算高度,0h x b b ξ=;b ξξ、 — 分别为相对受压区计算高度 x/h 0和相对界限受压区计算高度x b /h 0 ;'e e 、′— 分别为轴向力作用点至受拉钢筋A s 合力点和受压钢筋A s ′合力点之间的距离 a he e i -+=2η (7-33) ''2a e he i --=η (7-34) (2)对于小偏心受压构件当bh f N c >时,除按上述式(7-30)和式(7-31)或式(7-32)计算外,还应满足下列条件:()()s s y c a a h A f h h bh f e e a h N -+⎪⎭⎫⎝⎛-≤⎥⎦⎤⎢⎣⎡---'0''00'22 (7-35 )式中 '0h — 钢筋's A 合力点至离纵向较远一侧边缘的距离,即s a h h -='0。
矩形截面偏心受压构件N-M相关曲线
a、M=50kNm,N=200kN; b、 M=50kNm,N=206kN ; C 、 M=45kNm,N=200kN; d、 M=45kNm,N=206kN。
THE END
4、偏心受压构件的N-M相关曲线
4)M-N曲线特征
ab段 (受拉破坏段): 轴压力的增加会使其抗 弯能力增加
cb段(受压破坏段): 轴压力的增加会使其 抗弯能力减小。
• 利用N-M相关曲线判断最不利内力组合: 1、钢筋混凝土小偏心受压构的三组内力分别
为
(a)M=52.1kN·m,N=998kN;
《钢筋混凝土结构》
偏心受压构件正截面承载力计算
矩形截面偏心受压构件 N-M相关曲线
4、偏心受压构件的N-M相ቤተ መጻሕፍቲ ባይዱ曲线
1)当(M,N)落在曲线abd上或 曲线以外,则截面发生破坏。
(M,N)离曲线越近,受力越不 利。
2) e M N tg , 愈大,e愈大。
3)三个特征点 (a、b、c) a: 纯弯构件; b:大小偏压界限。 C:轴压构件。
基本构件计算不对称配筋矩形截面偏心受压构件正截面计算
基本构件计算不对称配筋矩形截面偏心受压构件正截面
计算
(一)偏心受压构件正截面计算原理及步骤
1、偏心受压构件正截面计算原理:偏心受压构件的正截面计算是指分析偏心受压构件的正截面,根据受力原理、承载力理论等原理,使用有限元分析方法和有限元程序,即设计必要的有限元划分和边界条件,求得偏心受压构件的正截面应力分布、节点位移及结构安全性等结果。
2、偏心受压构件正截面计算步骤:
(1)构件几何特征分析:分析构件的几何形状及尺寸,包括截面形状、尺寸,材料特性,偏心距、荷载位置、偏心向量等特征。
(2)建立有效的有限元程序:根据构件的几何特征,建立有效的有限元程序,确定有限元单元的类型及节点位置,设计节点或网格的尺寸,确定边界条件等。
(3)计算结果处理:将所有计算结果从节点处理,绘制应力分布曲线,求取偏心受压构件正截面的有效截面系数、最大截面应力、节点位移等性能参数。
(4)模型校核:根据构件的形状、偏心距、荷载位置等,比较试验数据和计算结果,可以很好地判断构件结构的安全性能。