超级电容器详细介绍(有机系超级电容器)
超级电容器
电极材料
电极材料是影响超级电容器性能的重要因素。 为了进一步提高超级电容器的容量和循环寿命,最主要的 是开发新的高比容量,高比功率的电极材料。 超级电容器的电极材料可以分为以下几类:炭电极材料, 金属氧化物电极材料,导电聚合物电极材料,复合电极材 料。
碳电极材料
目前已经开发用在双电层电容器上的碳材料有:活性炭 粉末、活性碳纤维、碳纳米管、膨胀性石墨、碳气凝胶、 炭黑和石墨烯等。 炭材料的性质中最为关键的几个影响因素为炭材料的表 面积和粒径分布,炭材料的电学稳定性,炭材料的导电 率。
在沿海岛屿、边远山区,地广人稀的草原牧场等地方, 风能和太阳能可作为解决生产和生活能源的一种可靠 途径。然而,这些能源还不能稳定地供给。将超级电 容器与风力发电装置或太阳能电池组成混合电源,超 级电容器在白天阳光充足或风力强劲的条件下吸收能 量以电能的形式存储起来,在夜晚或风力较弱时放电, 可解决上述问题。
超级电容器还可用作汽车的主电源。
(4)工业领域
超级电容器在工业不间断电源(UPs)、安全预防 设备以及仪器仪表等方面得到广泛应用。
(5)消费电子领域
使用超级电容器做为储能元件的手电筒,充电只 需90秒,循环寿命可达50万次,可使用约135年。电 子玩具常要求瞬时大电流,而电池无法提供,使用超 级电容器作为电源不仅可以解决这个问题,还可以降 低使用成本、减轻质量。一种自动的切管工具用于替 代一种己经有十年历史的旧式手持切管设备。考虑实 际应用,要求能提供瞬间高功率及长寿命,并且要求 快速充电,一次充电能满足100次的切割工作,超级 电容器与电池混联后能使产品满足应用的需求。
超级电容器的研究及应用现状
美国、日本、韩国、俄罗斯、德国等国研究超级 电容器起步较早,技术相对比较成熟。
超级电容器的研究
3、表面官能团
主要通过两种途径: 1)改变表面的润湿性能 2)官能团自身发生可逆的氧化还原反应 从制备高容量、耐高压、稳定性好的电容器角度 出发 , 要求活性炭材料表面的官能团有一个合适 的比例。
4、微晶结构
对超级电容器来说,中孔比例大一些比较好 中孔碳材料的方法主要有三种: 1)催化活化法 2)混合聚合物炭化法 3)模板炭化法
3、发展趋势:
• 提高性能、降低成本是超级电容器发展的主旋律。 • 从超级电容器的发展历史来看,电容器虽然能够 提供高功率,但电容器不能像电池一样提供高的 重量能量比,期望将来超级电容器能够代替电池 作为储能元件,兼具高能量和高功率的性能。 • 超级电容器是绿色环保、能源开发的重要方向之 一,它的研发必将带动整个电子产业及相关行业 的发展,目前国内超级电容器的开发生产刚刚起 步,具有广阔的发展空间。
双电层原理示意图
2. 性能特点
—介于电池和物理电容器之间
性 能 铅酸电池 1-5小时 超级电容器 0.3-若干秒 普通电容器 10-3—10-6秒
充电时间
放电时间
比能Wh/kg 循环寿命 比功率W/kg 充放电效率
0.3-3小时
30- 40 300 < 300 0.7-0.85
0.3-若干秒
1- 20 >10000 >1000 0.85-0.98
2) 赝电容型超级电容器
(1) 金属氧化物材料 • 贵金属氧化物材料 —RuO2:无定型RuO2拥有更高 的电导率,更高的比电容,更高的电化学可逆性。 • 替代RuO2的廉价金属氧化物材料—MnO2和NiO。
(2) 导电聚合物材料 聚苯胺(PANI)、聚吡 (PPy)和聚噻吩(PTh) 他们的一些相关衍生 物。 优点: 价格低廉、对环境友 好、高导电率、高度 可逆以及活性可控。
超级电容器综述
超级电容器综述超级电容器(supercapacitor,ultracapacitor),又叫双电层电容器(Electrical Double-Layer Capacitor)、电化学电容器(Electrochemcial Capacitor, EC), 黄金电容、法拉电容,通过极化电解质来储能。
它是一种电化学元件,但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。
超级电容器可以被视为悬浮在电解质中的两个无反应活性的多孔电极板,在极板上加电,正极板吸引电解质中的负离子,负极板吸引正离子,实际上形成两个容性存储层,被分离开的正离子在负极板附近,负离子在正极板附近。
超级电容器是建立在德国物理学家亥姆霍兹提出的界面双电层理论基础上的一种全新的电容器。
众所周知,插入电解质溶液中的金属电极表面与液面两侧会出现符号相反的过剩电荷,从而使相间产生电位差。
那么,如果在电解液中同时插入两个电极,并在其间施加一个小于电解质溶液分解电压的电压,这时电解液中的正、负离子在电场的作用下会迅速向两极运动,并分别在两上电极的表面形成紧密的电荷层,即双电层,它所形成的双电层和传统电容器中的电介质在电场作用下产生的极化电荷相似,从而产生电容效应,紧密的双电层近似于平板电容器,但是,由于紧密的电荷层间距比普通电容器电荷层间的距离更小得多,因而具有比普通电容器更大的容量。
双电层电容器与铝电解电容器相比内阻较大,因此,可在无负载电阻情况下直接充电,如果出现过电压充电的情况,双电层电容器将会开路而不致损坏器件,这一特点与铝电解电容器的过电压击穿不同。
同时,双电层电容器与可充电电池相比,可进行不限流充电,且充电次数可达10^6次以上,因此双电层电容不但具有电容的特性,同时也具有电池特性,是一种介于电池和电容之间的新型特殊元器件。
由于石油资源日趋短缺,并且燃烧石油的内燃机尾气排放对环境的污染越来越严重(尤其是在大、中城市),人们都在研究替代内燃机的新型能源装置。
超级电容器简介
3.非常短的充电时间,在0.1-30s即可完成。
4.解决了贮能设备高比功率和高比能量输出之间的矛盾, 将它与蓄电池组合起来,就会成为一个兼有高比功率输出的贮 能系统。
5.贮能寿命极长,其贮存寿命几乎可以是无限的。
6.高可靠性。
四、超级电容器技术及电极材料的进展
电压、能量密度高
按照电解液分,分为水溶液电解液超级电容器和有机电解液超级电容器。
根据结构分为对称型电容器(SymmetricCapacitor)和混合型超级电容器(Hybrid Capacitor)。
三、超级电容器的性能特点——介于电池与物理电容器
之间
优点
1. 高功率密度,输出功率密度高达数KW/kg,一般蓄电池的 数十倍。
氧化还原赝电容即法拉第赝电容是指活性电极材料发生氧化还原反应表现出 来的电容特性,主要包括过渡金属氧化物和导电聚合物。
双电层电容器存储的电荷与它的电容和电压相关 Q=CV,电容和电压是独 立的,但取决于电极的表面积,双电层的厚度和电解液的介质常数。根据 双电层电容器所需设备的性能或是使用的电解液选择电极材料。活性炭是 双电层电容器传统的电极材料
双电层原理示意图
充电时,外电源使电容器正负极分别带正电和负电,而电解液中的正负离子分别移动到电 极表面附近,形成双电层,整个双电层电容器实际上是两个单双电层电容器的串联装置。
双电层电容器充电状态电位分布曲线
Profile of the potential across electrochemical double layer capacitor in the charged condition
双电层电容器的储能机理本质上与静电容器一致,其依靠材料表面电子和溶液中等量 离子在电极材料/电解液界面的分离储存电量。通常电极材料采用高比表面积炭材料, 具有较高的比表面积(高达2000 m2 /g),远大于电解电容器电极的比表面积,
超级电容器原理及电特性
超级电容器原理及电特性超级电容器(Supercapacitor)是一种高能量密度和高功率密度的电子储存设备,也被称为超级电容器或电化学电容器。
它是一种介于传统电容器和化学电池之间的电子器件,具有高容量和高电流输出的特性,在能量存储和释放方面相比传统的电池具有很大的优势。
超级电容器的原理是基于电荷在电解质中的吸附原理,它由两个带有相互交替排列的互连电极和电解质组成。
电极通常由活性材料制成,如活性炭、过渡金属氧化物、活性金属等。
电容器的两个电极中,一个电极带正电,一个带负电,当电解质通过电极时,正极会吸引负电荷,而负极则会吸引正电荷,从而形成了一个电荷分离的状态,储存着电能。
超级电容器与传统电容器的最大区别在于其电解质的性质。
超级电容器使用的电解质是有机盐溶液或聚合物溶液,相比之下,传统电容器使用的是固体或液体介质。
由于电解质的存在,超级电容器具有较高的离子导电性,使其能够在短时间内获得较大的充电和放电电流,从而实现高功率输出。
超级电容器的电特性主要包括容量、电压和内电阻。
容量是用来衡量超级电容器储存电能的大小,单位通常是法拉(F)。
对比传统电容器,超级电容器的容量通常要大得多,可以达到几千法拉甚至更高。
电压是电容器的工作电压范围,超级电容器的电压一般在1.2-2.7伏之间。
内电阻是超级电容器放电时的阻抗,也称为超级电容器的等效串联电阻。
内电阻较低则能够提供更大的电流输出。
超级电容器具有很多优点。
首先,它具有很高的循环寿命和快速充放电特性。
传统电池在充放电过程中会有能量损失,导致其循环寿命较短,而超级电容器可以进行数万次的充放电循环而不损失能量。
其次,超级电容器具有很高的功率密度,能够在短时间内释放出大量电能,因此在需要高功率输出的场合具有很大的优势。
此外,超级电容器具有良好的可靠性和环保性,不含重金属等有害物质,对环境友好。
然而,超级电容器的能量密度还不如传统电池高。
虽然超级电容器的容量较大,但其能量存储量仍然不及化学电池,这限制了其在一些应用中的使用。
超级电容器简介课件
THANKS
主要应用领域市场现状与趋势
总结词
电动汽车和可再生能源领域是超级电容器的最主要应用领域,未来市场份额将进一步扩 大。
详细描述
电动汽车和可再生能源领域是超级电容器最主要的应用领域。在电动汽车领域,超级电 容器可以提供快速充电和大功率放电,提高车辆的加速和爬坡性能。在可再生能源领域 ,超级电容器可以用于储存和释放能量,提高能源利用效率。未来,随着电动汽车和可
能量密度与功率密度
能量密度高
超级电容器具有较高的能量密度,能 够存储较多的电能,使得其在混合动 力汽车、电动车等领域具有广泛应用 。
功率密度高
超级电容器具有极高的功率密度,可 以在短时间内释放大量电能,适用于 需要瞬时大功率输出的场合。
循环寿命与稳定性
长寿命
超级电容器经过多次充放电循环后,性能衰减较小,循环寿命长,可达数十万 次以上。
再生能源市场的不断扩大,超级电容器的市场份额也将进一步增加。
市场竞争格局与挑战
总结词
超级电容器市场竞争激烈,企业需要不 断创新以保持竞争优势。
VS
详细描述
目前,全球超级电容器市场已经形成了较 为稳定的竞争格局,但随着新技术的不断 涌现和市场的不断扩大,竞争也日趋激烈 。企业需要不断加大研发投入,提高产品 性能和降低成本,以应对市场竞争的挑战 。同时,企业还需要加强与上下游企业的 合作,共同推动超级电容器市场的快速发 展。
响应速度
超级电感的响应速度较快, 能够快速提供和回收能量, 而超级电容器的响应速度相 对较慢。
储能密度
超级电容器的储能密度较高 ,能够存储更多的能量,而 超级电感的储能密度相对较 低。
应用范围
超级电感适用于高频、大电 流的应用场景,而超级电容 器适用于需要快速充放电和 长循环寿命的应用场景。
超级电容器基础知识
超级电容器分类(结构)
平板型
在扣式体系中多采用平板状和圆片状的电极, 另外也有另外也有Econd公司产品为典型代 表的多层叠片串联组合而成的高压超级电容 器,可以达到300V以上的工作电压。
卷绕型
采用电极材料涂覆在集流体上,经过绕制 得到,这类电容器通常具有更大的电容量 和更高的功率密度。
流为100A,200F以下的为3A)和规定的频率(DC和大容量的100Hz或小容量 的KHz)下的等效串联电阻。通常交流ESR比直流ESR小,随温度上升而减小。
DC-ESR 在实际情况中,由于电容器存在一定的内阻,充放电转换的瞬间会有一个 电位的突变我们可以利用这一突变计算电极或者电容器的等效串联电阻。
锂离子超级电容器
Li4Ti5O12/AC 不对称电容器体系的概念首度由美国的 Telcordia公司提出。这一混合体系采用以活负极,电解液为商用的锂离子二 次电池电解液(锂盐),能量密度可达每公斤数十瓦(接近铅 酸蓄电池的能量密度水平)。其工作原理如图所示,充电过程 中,正极吸附电解液阴离子,负极则发生锂离子材料的嵌入反 应,放电时则相反。
t
U U0e RC
超级电容器的性能参数—漏电流
图中,EPR为等效并联电阻,代表超 级电容器的漏电流,影响长期储能性 能,EPR通常很大,可以达到几十kΩ, 所以漏电流很小。 2~4μA/F
漏电流和自放电在本质上无差别,机理也基本相同。究其根本在于电 极、电解液或其他与电芯有关的构成部分含有的微量杂质(未除干净的 H2O、气体,材料的纯度等)。
由于超级电容漏电流比较小,所以只要在充电时恒压保持足够长的 时间,那么能量就能储存很长时间,这一点是很有意义的。
当温度升高时,离子的热振动加强,漏电流也会加剧。
超级电容器详细介绍(有机系超级电容器)
制造工艺
深圳好电科技有限公司
制造设备
深圳好电科技有限公司
二、市场主要应用
应用方式
瞬间大电流放电:如USB产品要用0.5A以上电流, 闪光灯, 电动工具. 快速充电:如警卫手电筒, 玩具,电动工具 大电流能量快速回收:如独力太阳能发电, 节能电梯, 环保汽车 使用频繁、充放次数多: 如应急灯 免维护、无需更换:如太阳能道钉灯、地埋灯. 智能水,电,气表 零下40度正常工作:如汽车/电动车泠起动 轻质移动电源:如遥控飞机 非常安全可靠、永远不会爆炸的储能产品
深圳好电科技有限公司
法是内装锂电池。锂电池使用到一定时间后,不得不更换。需要上门为用户更换电池或水表,这对于水表生 产厂家和自来水公司来说都是一件繁琐的事。另外,电池电量不足的情况出现是随机的,如果不精确和及时 的监测电池电量,将无法可靠的关断水阀,造成无法计费、逃水现象等情况出现。这是内部安装了锂电池的 智能水表的致命缺点,直接影响到它的推广和使用。 用超级电容代替锂电池可以解决这个问题。超级电容 是一种无源器件,具有电容的大电流快速充放电特性,同时也有电池的储能特性,并且重复使用寿命长,放 电时利用移动导体间的电子(而不依靠化学反应)释放电流,从而为设备提供电源。
深圳好电科技有限公司
•税控收款机都具有断电保护功能,即当出现突然断电时,仍能将数据存储,并能进行短时间IC读写卡的操作过 程,这时需要有后备电源作保护。 •后备电源有两种解决方案:超级电容器和电池。超级电容器与电池相比具有放电电流大,循环寿命长、绿色环 保等特点。 •使用超级电容器增强了税控收款机的可靠性,免除了电池需要每隔2-3年维护更换一次的工作。在断电时,由超 容为控制电路提供能量,CPU可在短时间执行数据存储过程,读写完成后,电容器再提供瞬间脉冲电流(几A), 将IC卡弹出。
超级电容基本知识
超级电容基本知识超级电容器相关资料1. 超级电容器的原理及结构 1.1 超级电容器结构图⼀为超级电容器的模型,超级电容器中,多孔化电极采⽤活性炭粉和活性炭和活性炭纤维,电解液采⽤有机电解质,如碳酸类或⼄腈类。
⼯作时,在可极化电极和电解质溶液之间界⾯上形成的双电层中聚集的电容量c 由下式确定:其中ε是电解质的介电常数,δ是由电极界⾯到离⼦中⼼的距离,s 是电极界⾯的表⾯⾯积。
由图1中可见,其多孔化电极是使⽤多孔性的活性碳有极⼤的表⾯积在电解液中吸附着电荷,因⽽将具有极⼤的电容量并可以存储很⼤的静电能量,超级电容器的这⼀特性是介于传统的电容器与电池之间。
电池相较之间,尽管这能量密度是5%或是更少,但是这能量的储存⽅式,也可以应⽤在传统电池不⾜之处与短时⾼峰值电流之中。
这种超级电容器有⼏点⽐电池好的特⾊。
1.2 ⼯作原理超级电容器是利⽤双电层原理的电容器,原理⽰意图如图2。
当外加电压加到超级电容器的两个极板上时,与普通电容器⼀样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产⽣的电场作⽤下,在电解液与电极间的界⾯上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触⾯上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量⾮常⼤。
当两极板间电势低于电解液的氧化还原电极电位时,电解液界⾯上电荷不会脱离电解液,超级电容器为正常⼯作状态(通常为3V 以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为⾮正常状态。
由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界⾯上的电荷响应减少。
由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。
因此性能是稳定的,与利⽤化学反应的蓄电池是不同的。
1.3 主要特点由于超级电容器的结构及⼯作原理使其具有如下特点:①.电容量⼤,超级电容器采⽤活性炭粉与活性炭纤维作为可极化电极与电解液接触的⾯积⼤⼤增加,根据电容量的计算公式,那么两极板的表⾯积越⼤,则电容量越⼤。
超级电容器的分类
超级电容器的分类(资料来源:中国联保网)按原理超级电容器的类型比较多,按不同方式可以分为多种产品,以下作简单介绍。
按原理分为双电层型超级电容器和赝电容型超级电容器:双电层型超级电容器1.活性碳电极材料,采用了高比表面积的活性炭材料经过成型制备电极。
2.碳纤维电极材料,采用活性炭纤维成形材料,如布、毡等经过增强,喷涂或熔融金属增强其导电性制备电极。
3.碳气凝胶电极材料,采用前驱材料制备凝胶,经过炭化活化得到电极材料。
4.碳纳米管电极材料,碳纳米管具有极好的中孔性能和导电性,采用高比表面积的碳纳米管材料,可以制得非常优良的超级电容器电极。
以上电极材料可以制成:1.平板型超级电容器,在扣式体系中多采用平板状和圆片状的电极,另外也有Econd公司产品为典型代表的多层叠片串联组合而成的高压超级电容器,可以达到300V以上的工作电压。
2.绕卷型溶剂电容器,采用电极材料涂覆在集流体上,经过绕制得到,这类电容器通常具有更大的电容量和更高的功率密度。
赝电容型超级电容器包括金属氧化物电极材料与聚合物电极材料,金属氧化物包括NiOx、MnO2、V2O5等作为正极材料,活性炭作为负极材料制备的超级电容器,导电聚合物材料包括PPY、PTH、PAn i、PAS、PFPT等经P型或N型或P/N型掺杂制取电极,以此制备超级电容器。
这一类型超级电容器具有非常高的能量密度,除NiOx型外,其它类型多处于研究阶段,还没有实现产业化生产。
按电解质类型可以分为水性电解质和有机电解质类型:水性电解质1.酸性电解质,多采用36%的H2SO4水溶液作为电解质。
2.碱性电解质,通常采用KOH、NaOH等强碱作为电解质,水作为溶剂。
3.中性电解质,通常采用KCl、NaCl等盐作为电解质,水作为溶剂,多用于氧化锰电极材料的电解液。
有机电解质通常采用LiClO4为典型代表的锂盐、TEABF4作为典型代表的季胺盐等作为电解质,有机溶剂如PC、ACN、GBL、THL等有机溶剂作为溶剂,电解质在溶剂中接近饱和溶解度。
什么是超级电容超级电容器(supercapacitor),又叫双电层电容器
什么是超级电容超级电容器(supercapacitor),又叫双电层电容器(Electrical Doule-Layer Capacitor)、黄金电容、法拉电容,通过极化电解质来储能。
它是一种电化学元件,但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。
超级电容器可以被视为悬浮在电解质中的两个无反应活性的多孔电极板,在极板上加电,正极板吸引电解质中的负离子,负极板吸引正离子,实际上形成两个容性存储层,被分离开的正离子在负极板附近,负离子在正极板附近。
超级电容器向快速充电与大功率发展充电1分钟即可驱动小型笔记本电脑运行近1个半小时--在2004年10月于幕张MESSE举行的IT博览会“CEATEC JAPAN”上,这种快速充电的演示成了人们关心的话题。
一般笔记本电脑的充电电池要充满电至少需要1个小时。
但“双电层电容器”却大幅缩短了这一时间。
超级电容器是介于电容器和电池之间的储能器件,它既具有电容器可以快速充放电的特点,又具有电化学电池的储能机理。
超级电容器也可以分为两类:(1)以活性炭材料为电极,以电极双电层电容的机制储存电荷,通常被称作双电层电容器(DLC);(2)以二氧化钌或者导体聚合物等材料为阳极,以氧化还原反应的机制存储电荷,通常被称作电化学电容器。
作为一种新型储能元件,电化学电容器的电容量可高达法拉级甚至上万法拉,能够实现快速充放电和大电流发电,并比蓄电池具有更高的功率密度(可达1,000W/kg数量级)、和更长的循环使用寿命(充放电次数可达10万次),同时可在极低温等极端恶劣的环境中使用,并且无环境污染。
这些特点使得电化学电容器在电动汽车、通讯、消费和娱乐电子、信号监控等领域的电源应用方面具有广阔的市场前景。
有业内专家预测,仅就中国市场而言,目前的年需求量可达2,150万只,而整个亚太地区的总需求量则超过9,000万只。
美国市场研究公司Frost & Sullivan不久前发布的一份报告也预计,2002年到2009年之间,全球超级电容器产业的产量和销售收入这两项数据将分别以157%和49%的年复合增长率保持高速增长。
超级电容器简介
超级电容器不含有有毒物质,对环境友好 ,且在使用寿命结束后可回收再利用。
02
超级电容器的应用领域
汽车工业
01
02
03
混合动力汽车
超级电容器可以提供瞬时 大电流,辅助发动机启动 和加速,提高燃油效率。
电动汽车
超级电容器可以快速储存 和释放能量,用于启动、 加速和制动回收,提高车 辆性能。
汽车零部件
产业链整合
通过整合上下游产业链,提高生产效率和降低 成本,企业将获得更多竞争优势。
跨界合作
与其他产业领域进行跨界合作,拓展超级电容器的应用领域和商业模式。
THANKS
谢谢您的观看
特点与优势
高功率密度
长寿命
超级电容器具有极高的功率密度,能够在 短时间内提供大量电能,适合用于需要瞬 时大电流的场合。
由于超级电容器的充放电过程中发生的电 化学反应较为温和,因此其寿命较长,可 达到数万次甚至数十万次充放电循环。
快速充放电
环境友好
超级电容器可以在短时间内完成充电,放 电速度也较快,提高了使用效率。
寿命与稳定性
薄膜电容器的寿命和稳定性较好,而 超级电容器的寿命和稳定性相对较差 。
Байду номын сангаас
05
超级电容器的市场前景与趋势
市场现状
市场规模
全球超级电容器市场规模持续增长,应用领域不断扩 大。
竞争格局
市场竞争激烈,主要集中在技术领先和品牌优势的企 业。
区域分布
全球超级电容器市场主要集中在中国、欧洲和北美等 地区。
超级电容器可用于汽车零 部件的能量回收和节能控 制,如座椅、车门等。
能源存储
可再生能源
超级电容器可以用于储存太阳能 、风能等可再生能源产生的电能 ,提高能源利用效率。
超级电容器基础知识详解
超级电容器是20世纪60年代发展起来的一种新型储能器件,并于80年代逐渐走向市场。
自从1957 年美国人Becker申报的第一项超级电容器专利以来,超级电容器的发展就不断推陈出新,直到1983 年,日本NEC公司率先将超级电容器推向商业化市场,使得超级电容器引起人们的广泛兴趣,研究开发热潮席卷全球,不但技术水平日新月异,而且应用范围也不断扩大。
一、超级电容器的原理超级电容也称电化学电容,与传统静电电容器不同,主要表现在储存能量的多少上。
作为能量的储存或输出装置,其储能的多少表现为电容量的大小。
根据超级电容器储能的机理,其原理可分为:1.在电极P 溶液界面通过电子和离子或偶极子的定向排列所产生的双电层电容器。
双电层理论由19 世纪末H elm h otz 等提出。
关于双电层的代表理论和模型有好几种,其中以H elm h otz 模型最为简单且能够充分说明双电层电容器的工作原理。
该模型认为金属表面上的静电荷将从溶液中吸收部分不规则的分配离子,使它们在电极P 溶液界面的溶液一侧,离电极一定距离排成一排,形成一个电荷数量与电极表面剩余电荷数量相等而符号相反的界面层。
于是,在电极上和溶液中就形成了两个电荷层,这就是我们通常所讲的双电层。
双电层有储存电能量的作用,电容器的容量可以利用以下公式来计算:式中,E为电容器的储能大小;C为电容器的电容量;V 为电容器的工作电压。
由此可见,双电层电容器的容量与电极电势和材料本身的属性有关。
通常为了形成稳定的双电层,一般采用导电性能良好的极化电极。
2.在电极表面或体相中的二维与准二维空间,电活性物质进行欠电位沉积,发生高度可逆的化学吸附、脱附或氧化还原反应,产生与电极充电电位有关的法拉第准电容器。
在电活性物质中,随着存在于法拉第电荷传递化学变化的电化学过程的进行,极化电极上发生欠电位沉积或发生氧化还原反应,充放电行为类似于电容器,而不同于二次电池,不同之处为:(1)极化电极上的电压与电量几乎呈线性关系;(2)当电压与时间成线性关系d V/d t=K时,电容器的充放电电流为一恒定值I=Cd V/d t=CK.此过程为动力学可逆过程,与二次电池不同但与静电类似。
iec 超级电容-概述说明以及解释
iec 超级电容-概述说明以及解释1.引言1.1 概述超级电容(Super Capacitor)是一种新型的能量存储装置,它介于传统电容和化学电池之间。
相对于传统电容器,超级电容具有更高的能量密度和更大的功率密度,可以在短时间内快速充放电。
与传统化学电池相比,超级电容具有更长的循环寿命和更高的可靠性。
超级电容器的工作原理是通过在两个电极之间形成一个电介质,来存储电荷。
与传统电容器不同的是,超级电容器使用高表面积的电极材料,如活性炭或金属氧化物,来增加存储电荷的能力。
同时,电介质的选择也非常重要,它需要具有较高的介电常数和低电阻,以便快速存储和释放电荷。
超级电容器在多个领域都有广泛的应用。
在电动车领域,超级电容器可以用作辅助能量源,提供高效稳定的瞬时功率输出,以增加车辆的加速性能和能量回收效率。
在可再生能源领域,超级电容器可以作为储能设备,平衡能量的供需差异。
此外,超级电容器还被广泛应用于电子设备、电网稳定、医疗器械等领域。
尽管超级电容器具有很多优势,如高速充放电、长循环寿命和可靠性,但也存在一些局限性。
首先,超级电容器的能量密度较低,无法与化学电池相比。
其次,超级电容器的成本较高,限制了其大规模商业应用。
此外,超级电容器的稳定性和耐高温性还需要进一步改进。
总结而言,超级电容作为一种新兴的能量存储装置,具有重要的应用前景。
随着技术的不断创新和进步,超级电容器的能量密度和成本将不断提高,其在电动交通、可再生能源和其他领域的应用将会进一步扩大。
因此,超级电容器在能源存储领域的发展有着巨大的潜力。
文章结构部分的内容应包括对整篇文章的组织和结构进行说明。
下面是一个可能的编写示例:1.2 文章结构本文将按照以下结构进行叙述:1.引言:概述超级电容的定义、原理和应用背景,介绍文章的目的。
2.正文:2.1 超级电容的定义和原理:详细介绍超级电容的基本概念、组成结构和工作原理。
将对超级电容与传统电容的区别进行分析,并阐述其高能量密度和长寿命的特点。
超级电容器原理及电特性详细分析
超级电容器原理及电特性详细分析超级电容器是一种高能量密度的无源储能元件,随着它的问世,如何应用好超级电容器,提高电子线路的性能和研发新的电路、电子线路及应用领域是电力电子技术领域的科技工作者的一个热门课题。
1. 级电容器的原理及结构1.1 超级电容器结构图一为超级电容器的模型,超级电容器中,多孔化电极采用活性炭粉和活性炭和活性炭纤维,电解液采用有机电解质,如丙烯碳酸脂(propylene carbonate)或高氯酸四乙氨(t etraetry lanmmonium perchlorate)。
工作时,在可极化电极和电解质溶液之间界面上形成的双电层中聚集的电容量c由下式确定:其中ε是电解质的介电常数,δ是由电极界面到离子中心的距离,s是电极界面的表面面积。
图1超级电容器结构框图由图中可见,其多孔化电极是使用多孔性的活性碳有极大的表面积在电解液中吸附着电荷,因而将具有极大的电容量并可以存储很大的静电能量,超级电容器的这一特性是介于传统的电容器与电池之间。
电池相较之间,尽管这能量密度是5%或是更少,但是这能量的储存方式,也可以应用在传统电池不足之处与短时高峰值电流之中。
这种超级电容器有几点比电池好的特色。
1.2 工作原理超级电容器是利用双电层原理的电容器,原理示意图如图2。
当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。
当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。
由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷响应减少。
超级电容器简介
活性炭表面官能团的作用
➢ 含氧官能团越多,导电性越差。
➢羧基浓度越大,漏电电流越大,储存性能越差。 ➢ 羧基浓度越高,静态电位越高,越易析氧,电极越不稳定。 ➢处理炭表面官能团,提高性能
高温处理的影响
➢ 增加电导率和密度,
➢ 减少表面官能团,也减小比表面、比容量 。 ➢适宜的高温处理,可提高大电流下体积比容量。 ➢ 进行二次活化可提高比表面--重量比容量。
•法拉第准(赝)电容不仅只在电极表面,而且可在整个电极内部产生,因而可获得 比双电层电容更高的电容量和能量密度。在相同电极面积的情况下,法拉第准 (赝)电容可以是双电层电容量的10~100倍。
赝电容根据电极反应的不同,分为吸附电容和氧化还原赝电容 吸附赝电容是指电化学活性物质在基底电极上发生二维/准二维的电化学吸 脱附,表现出电容性质。如H+在Pt电极表面的吸脱附反应
此时的放电和再充电行为更接近于电容器而不是原电池,如: (1)电压与电极上施加或释放的电荷几乎成线性关系; (2)设该系统电压随时间呈线性变化dV/dt=K,则产生的电流为恒定或几 乎恒定的容性充电电流I=CdV/dt=CK。
•此时系统的充放电过程是动力学高度可逆的,与原电池及蓄电池不同,但与静 电电容类似。为与双电层电容及电极与电解液界面形成的真正的静电电容相 区别,称这样得到的电容为法拉第准(赝)电容。
碳是双电层电容器理想的电极材料,在水溶液和非水溶液理想极化的条件下电压分别为 1 V 和 3.5 V
❖ 电容器电解质:
➢ 水溶液:酸性体系——硫酸
碱性体系——氢氧化钾
➢ 有机电解液:Et4NBF4/PC(小型电容器,高温性能好) Et4NBF4/AN(大型,大功率、低温) LiAlCl4/SOCl2
超级电容基本参数概念
超级电容基本参数概念超级电容器(Supercapacitors,ultracapacitor),又名电化学电容器(ElectrochemicalCapacitors),双电层电容器(ElectricalDoule-LayerCapacitor)、黄金电容、法拉电容,是从上世纪七、八十年代发展起来的通过极化电解质来储能的一种电化学元件。
以下是店铺分享给大家的关于超级电容基本参数概念,欢迎大家前来阅读!超级电容基本参数概念:超级电容器具有比二次电池更长的使用寿命,但它的使用寿命并不是无限的,超级电容器基本失效的形式是电容内阻的增加( ESR)与(或) 电容容量的降低.,电容实际的失效形式往往与用户的应用有关,长期过温(温度)过压 (电压),或者频繁大电流放电都会导致电容内阻的增加或者容量的减小。
在规定的参数范围内使用超级电容器可以有效的延长超级电容器的寿命。
通常,超级电容器具有于普通电解电容类似的结构,都是在一个铝壳内密封了液体电解液,若干年以后,电解液会逐渐干涸,这一点与普通电解电容一样,这会导致电容内阻的增加,并使电容彻底失效。
一、电压 Voltage超级电容器具有一个推荐的工作电压或者最佳工作电压,这个值是根据电容在最高设定温度下最长工作时间来确定的。
如果应用电压高于推荐电压,将缩短电容的寿命,如果过压比较长的时间,电容内部的电解液将会分解形成气体,当气体的压力逐渐增强时,电容的安全孔将会破裂或者冲破。
短时间的过压对电容而言是可以容忍的。
二、极性 Polarity超级电容器采用对称电极设计,也就说,他们具有类似的结构。
当电容首次装配时,每一个电极都可以被当成正极或者负极,一旦电容被第一次100%从满电时,电容就会变成有极性了,每一个超级电容器的外壳上都有一个负极的标志或者标识。
虽然它们可以被短路以使电压降低到零伏,但电极依然保留很少一部分的电荷,此时变换极性是不推荐的。
电容按照一个方向被充电的时间越长,它们的极性就变得越强,如果一个电容长时间按照一个方向充电后变换极性,那么电容的寿命将会被缩短。
超级电容器
活性炭 碳气凝胶 碳纳米管 石墨烯
金属氧化物
混合型超级电容器
静电和电化学作用共同储能
导电聚合物
对称型电极
非对称型电极
可充电电池型
复合电极材料 赝电容+双电层电极
8
3
3-1 双电层电容器
双电层电容原理
其储能过程是物理过程,没有化学反应且 过程完全可逆,这与蓄电池电化学储能不同
由于正负离子在固体电极和电解液之间的表面上分别吸附, 造成两固体电极之间的电势差,从而实现能量的存储。
材料
Cellulose 纤维素
5
制作
工艺
5
超级电容器的制作工艺
磨料
行星球磨机
压制电芯
热平压机
软包超级电容器制作工艺流程图
14
3
3-3 混合型超级电容器
锂离子电容器
结 构 图
15
3
3-3 混合型超级电容器
充电
电解液 中的Li+嵌入 到石墨层间 形成嵌锂石 墨,同时, 电解液中的 阴离子则吸 附在活性炭 正极表面形 成双电层。
锂离子电容器机理
放电
Li+从负极 材料中脱出回到 电解液中,正极 活性炭与电解液 界面间产生的双 电层解离,阴离 子从正极表面释 放,同时电子从 负极通过外电路 到达正极。
4
4-2 超级电容器的电解液
电 解 液
性能要求
4
4-2 超级电容器的电解液
按照电解液的类型可以分为水系电解液和有机系电解液
水系电解液
中性电解液(NaSO4等) 酸性电解液(H2SO4等)
碱性电解液(KOH等)。
有机/离子电解液 四氟硼酸四乙基铵(Et4NBF4)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳好电科技有限公司
主体材料
电极材料
活性材料主要以活性炭为主。另包含导电剂、粘结剂、辅助添加剂、溶剂和集流体(铝箔)。
电解液
针对有机体系,其电解质盐采用四氟硼酸四乙基铵,溶剂主要有AN、PC两种。
隔膜
隔膜主要是PP聚丙烯无纺布或纤维素微孔膜,多从国外进口。
外壳
以铝制外壳为主,也有部分采用塑料壳、铝塑膜或钢制外壳。
二次电池 20~200 50~500
充放电时间 循环寿命 安全性
10-6~10-3 s ∞ 很高
容器和二次电池之间!
1~30 s >100,000 很高
深圳好电科技有限公司
0.3~3 h 500~2000 较高
美国《探索》杂志2007年1月号
将超超级级电电容器容列为器200性6年世能界介 七于大科传技统发现电之一容认为器超级和电二 容次器电是能池量储之存领间域的!一项革
网络通讯:(中型模组、模块,工作时间不长或瞬间工作的) 电脑、电话、手机、信息终端、通讯站、GPS、PDA、电力数据传输
风光发电: 风力发电、变浆、接收转换、太阳能发电(储能)、太阳能灯(警示灯、标识灯、道钉灯、地 埋灯)、太阳能手电
交通运输: 摩托车启动、机车启动、汽车启动、纯电容汽车、电动汽车辅助动力、电动自行车辅助动力、 汽车音响、车载监控、车载刷卡终端、轻轨地铁
深圳好电科技有限公司
•税控收款机都具有断电保护功能,即当出现突然断电时,仍能将数据存储,并能进行短时间IC读写卡的操作过 程,这时需要有后备电源作保护。 •后备电源有两种解决方案:超级电容器和电池。超级电容器与电池相比具有放电电流大,循环寿命长、绿色环 保等特点。 •使用超级电容器增强了税控收款机的可靠性,免除了电池需要每隔2-3年维护更换一次的工作。在断电时,由超 容为控制电路提供能量,CPU可在短时间执行数据存储过程,读写完成后,电容器再提供瞬间脉冲电流(几A), 将IC卡弹出。
后备电源: 开关柜、直流屏、负荷调整电源、故障定位、变频器、脉冲电源、应急灯、救生绳、报警器、 卷帘门、与电池配套电源、断电保护
能量回收: 吊车、矿井、机车、电梯、抽油机 军工领域: 战斗机、军车、坦克、雷达、潜艇、导弹、鱼雷、激光炮、电磁炮
深圳好电科技有限公司
1、智能三表
应用于智能三表 (热量表、煤气表、智能水表) 传统智能水表在控制水阀开启和关断时,普遍采用的方
报告提纲 一、超容基本介绍 二、市场主要应用 三、产业发展状况 四、已有技术成果
有机系超级电容器
深圳好电科技有限公司
一、超容基本介绍
工作原理 超级电容器是一种能兼具传统电容器和电池优点的新型储能器件,利用电极与电解质之间的界
面双电层储能。
正极 Es + A- → Es+//A- + e-
负极 Es + C+ + e- → C+//Es总反应 Es + Es + C+A-→ Es+//A- + C+//Es-
制造工艺
深圳好电科技有限公司
制造设备
深ቤተ መጻሕፍቲ ባይዱ好电科技有限公司
二、市场主要应用
应用方式
瞬间大电流放电:如USB产品要用0.5A以上电流, 闪光灯, 电动工具. 快速充电:如警卫手电筒, 玩具,电动工具 大电流能量快速回收:如独力太阳能发电, 节能电梯, 环保汽车 使用频繁、充放次数多: 如应急灯 免维护、无需更换:如太阳能道钉灯、地埋灯. 智能水,电,气表 零下40度正常工作:如汽车/电动车泠起动 轻质移动电源:如遥控飞机 非常安全可靠、永远不会爆炸的储能产品
深圳好电科技有限公司
组成结构 包括:电极(正极、负极)、电解液、隔膜、引线、外壳、盖帽等。其中电极和电解液是影响超级 电容器性能发挥的关键因素!
主要分类 根据储能机理——双电层、赝电容 根据电极材料——炭基、氧化物基、聚合物基、混合型 根据电解质——水系、有机系、凝胶、固体等 根据内部结构——卷绕式、叠片式 根据外部结构——纽扣、方型、圆柱
深圳好电科技有限公司
应用领域
公用电器、工业及医疗电器:(用作小功率器件的电源) 智能水表、电表与气表,远程载波抄表,税控机、控制器、触摸屏、摄像头、扫描仪、投影仪、考勤钟、计 数器、显示屏、彩票机、银行终端、公汽读卡器、身份识别、复印机、打印机、X光机、磁共振、道钉机、 电焊机、充磁机、皮带机、激光器、矿灯、工业仪表、雷管、电动工具、电动玩具、电磁阀、电子门锁、助 听器
4、宽温度范围:-40℃~ 70℃,满足恶劣环境使用要求。
5、免维护:极低漏电流,电压保持时间长,长时间放置不失效。
6、绿色环保:无有害气体和Pb、Cd、Hg等重金属污染。
性能指标 能量密度(Wh/kg) 功率密度(W/kg)
传统电容器 <0.1 >10,000
超级电容器 1~10 1000~10000
→ 极大的比表面积S和极小的电解质离子半径d:法拉级高容量。
→ 双电层充放电不发生化学反应和结构变化,过程完全可逆:可快 速充放电、数万周循环寿命。
性能特点
1、超高电容量:比能量是传统电解电容器的2000 ~ 6000倍。 2、超强功率特性:大电流快速充放电,比功率是电池的10 ~ 100倍。
3、超长循环寿命:10万次以上,是电池的10 ~ 100倍。
深圳好电科技有限公司
法是内装锂电池。锂电池使用到一定时间后,不得不更换。需要上门为用户更换电池或水表,这对于水表生 产厂家和自来水公司来说都是一件繁琐的事。另外,电池电量不足的情况出现是随机的,如果不精确和及时 的监测电池电量,将无法可靠的关断水阀,造成无法计费、逃水现象等情况出现。这是内部安装了锂电池的 智能水表的致命缺点,直接影响到它的推广和使用。 用超级电容代替锂电池可以解决这个问题。超级电容 是一种无源器件,具有电容的大电流快速充放电特性,同时也有电池的储能特性,并且重复使用寿命长,放 电时利用移动导体间的电子(而不依靠化学反应)释放电流,从而为设备提供电源。
超级电容器在智能水表中的应用优点: 1、将电池从水表中分离出来,从而可以不考虑电池寿命对水表的影响,延长了水表的使用时间。 2、超级电容大电流放电特性保障水阀关断的可靠性,在外接干电池电量不足时,仍能利用存储在超级电容上的
能量将水阀关断。 3、以前一味追求的漏电流指标,主要是为了保障电池的使用寿命,改用超级电容后,漏电流指标变得不重要。 如果电池电量不足,用户可以随时更换。这样,不仅使电路设计简化,减少产品的出厂检验工序,还使产品的成 本降低。
深圳好电科技有限公司
6、IT电子产品
深圳好电科技有限公司
7、瞬间不间断电源 8、电梯
深圳好电科技有限公司
9、车辆低温启动 10、电动自行车
深圳好电科技有限公司
11、混合电动车 12、风光储能系统
深圳好电科技有限公司
13、地铁能量回收 14、军工领域
深圳好电科技有限公司
3、电动工具、玩具
4、应急照明
•为确保应急照明灯的节电、高亮度、长寿命和不间断性要求,采用由直流电源供电的半导体照明灯LED。 •选择超级电容器取代锂电池作为LED储能元件,进一步加强了应急照明灯的超长寿命和免维护特性,同时其良 好的可靠性,不用担心电池断电,适合在要求较高的场合应用。
5、太阳能照明
2、税控收款机
•税控收款机是一种具有法律严肃性和不可破坏性的带有计税功能的收款机。它内部装有自动记录但不能更改和 抹掉的计税存储器,记录着每日营业数据和应纳税额,是向纳税机关纳税的凭据。 •纳税户销售商品的记录与相关时间等信息可在税控机内保留5~10年,不可修改、清除。有关数据由税务部门用 专用IC卡读出,以便稽查。
命性发展,并将在某些领域取代
传超统级蓄电电容池器!性能介于传统电
参数指标
容量——电容器在一定的重量或者体积范围内存储的容量(F) 电压——电容器在额定温度范围内所允许的连续工作电压(V) 内阻——又称等效串联电阻(ESR),分为直流内阻和交流内阻(Ω ) 漏电流——恒定电压一定时间后测得的电流(mA) 比能量——又称能量密度,单位重量或体积下存储的能量(Wh/kg 或 Wh/L) 比功率——又称功率密度,单位重量或体积下释放的功率(W/kg 或 Wh/L) 循环寿命——经历一次完整的充电和放电过程,称为一次循环(周期) 高低温性能——在高温、低温环境下性能的保持和变化情况 电量=电流*时间 Q = I *t
容量=电量/电压 C = Q/V = I*t/Δ V
能量= ½*容量*电压2 E = ½C*V2 若初始电压Vo,终止电压Vf ,则释放能量=E0-Ef= ½ C*(Vo2 – Vf2) 1焦耳(ws)= 1/3600 瓦时 (wh)= 1/3600*V 安时 (Ah)
安时与法拉换算:Ah=C*V/3600,例如200F*2.7V/3600=0.15Ah