超经典初中数学竞赛题试题

合集下载

全国初中数学竞赛试题

全国初中数学竞赛试题

全国初中数学竞赛试题【试题一】:代数基础1. 已知 \( a, b, c \) 是一个三角形的三边长,且满足 \( a^2 + b^2 = c^2 \),求证 \( a + b \geq c \)。

【试题二】:几何问题2. 给定一个圆,圆心为 \( O \),半径为 \( r \)。

在圆上任取两点\( A \) 和 \( B \),连接 \( OA \) 和 \( OB \)。

求证 \( \angle AOB \) 的度数小于 \( 180^\circ \)。

【试题三】:数列与级数3. 一个等差数列的首项是 \( a_1 = 3 \),公差 \( d = 2 \)。

求这个数列的第 \( n \) 项 \( a_n \) 的表达式,并计算前 \( n \) 项的和 \( S_n \)。

【试题四】:函数与方程4. 已知函数 \( f(x) = x^2 - 4x + 4 \),求该函数的最小值。

【试题五】:概率统计5. 一个袋子里有 \( 5 \) 个红球和 \( 3 \) 个蓝球。

随机抽取两个球,求两个球颜色相同的概率。

【试题六】:组合数学6. 有 \( 8 \) 个不同的球,需要将它们放入 \( 3 \) 个不同的盒子中,每个盒子至少有一个球。

求不同的放法有多少种。

【试题七】:逻辑推理7. 在一个逻辑推理题中,有三个人分别说了以下的话:- 甲说:“乙是说谎者。

”- 乙说:“丙是说谎者。

”- 丙说:“甲和乙都是说谎者。

”如果三个人中只有一个人说谎,那么谁说的是真话?【试题八】:创新问题8. 一个正方体的体积是 \( 8 \) 立方厘米,求这个正方体的表面积。

【试题九】:应用题9. 一个水池可以以恒定的速率 \( r \) 进水,同时也以另一个恒定的速率 \( s \) 出水。

如果水池开始时是空的,求水池被填满的时间\( t \)。

【试题十】:综合题10. 一个圆的半径是 \( 5 \) 厘米,圆内接一个等边三角形。

数学竞赛试题及答案初中

数学竞赛试题及答案初中

数学竞赛试题及答案初中一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 0.33333...(循环)B. 根号2C. 1/3D. 4答案:B2. 一个等腰三角形的底边长为6,高为4,其周长是多少?A. 16B. 18C. 20D. 22答案:C3. 一个数的平方等于16,这个数是多少?A. 4B. -4C. 4或-4D. 以上都不是答案:C4. 以下哪个方程的解是x=2?A. x^2 - 4 = 0B. x^2 - 3x + 2 = 0C. x^2 - 5x + 6 = 0D. x^2 - x - 6 = 0答案:B5. 一个圆的直径为10,其面积是多少?A. 25πB. 50πC. 100πD. 200π答案:B二、填空题(每题3分,共15分)1. 一个直角三角形的两个直角边长分别为3和4,其斜边长为________。

答案:52. 如果一个数的立方等于-8,那么这个数是________。

答案:-23. 一个数的绝对值是5,这个数可能是________或________。

答案:5 或 -54. 一个圆的周长是2πr,如果周长是12π,那么半径r是________。

答案:65. 如果一个二次方程ax^2 + bx + c = 0的判别式Δ=b^2-4ac小于0,那么这个方程的解是________。

答案:无实数解三、解答题(每题10分,共20分)1. 已知一个二次函数y=ax^2+bx+c,其中a=1,b=-3,c=2,求这个函数的顶点坐标。

答案:顶点坐标为(3/2, -1/4)。

2. 一个长方形的长是宽的两倍,如果周长是24,求长方形的长和宽。

答案:长为8,宽为4。

四、证明题(每题15分,共30分)1. 证明勾股定理:在一个直角三角形中,直角边的平方和等于斜边的平方。

答案:略2. 证明平行四边形的对角线互相平分。

答案:略。

初中数学竞赛题试卷及答案

初中数学竞赛题试卷及答案

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √9B. √-1C. πD. 0.1010010001……2. 已知a,b是实数,且a+b=0,则下列选项中错误的是()A. a和b互为相反数B. a和b都是0C. ab>0D. ab≤03. 一个等腰三角形的底边长为10cm,腰长为13cm,则该三角形的周长是()A. 32cmB. 34cmC. 36cmD. 38cm4. 若x^2-4x+3=0,则x的值是()A. 1或3B. 2或3C. 1或2D. 2或45. 下列各式中,正确的是()A. 2a + 3b = 2(a + b)B. 2a - 3b = 2(a - b)C. 2a + 3b = 2a + 3bD. 2a - 3b = 2a - 3b6. 已知函数f(x) = 2x - 1,则f(3)的值是()A. 5B. 6C. 7D. 87. 一个长方形的长是8cm,宽是5cm,则该长方形的对角线长是()A. 5cmB. 8cmC. 10cmD. 13cm8. 若a > b,且a + b = 0,则下列选项中正确的是()A. a < 0,b > 0B. a > 0,b < 0C. a = 0,b = 0D. 无法确定9. 下列各式中,分式有意义的条件是()A. 分子为0,分母为0B. 分子为0,分母不为0C. 分子不为0,分母为0D. 分子不为0,分母不为010. 下列图形中,是轴对称图形的是()A. 正方形B. 等边三角形C. 等腰梯形D. 以上都是二、填空题(每题5分,共50分)11. 若a,b是实数,且a + b = 0,则ab的值是______。

12. 一个圆的半径是r,则该圆的周长是______。

13. 若x^2 - 4x + 3 = 0,则x^2 - 4x + 4的值是______。

14. 函数f(x) = 2x - 1的图象是一条______。

数学竞赛试题及答案初中

数学竞赛试题及答案初中

数学竞赛试题及答案初中试题一:代数问题题目:如果\( a \)和\( b \)是两个连续的自然数,且\( a^2 + b^2= 45 \),求\( a \)和\( b \)的值。

解答:设\( a \)为较小的自然数,那么\( b = a + 1 \)。

根据题意,我们有:\[ a^2 + (a + 1)^2 = 45 \]\[ a^2 + a^2 + 2a + 1 = 45 \]\[ 2a^2 + 2a - 44 = 0 \]\[ a^2 + a - 22 = 0 \]分解因式得:\[ (a + 11)(a - 2) = 0 \]因此,\( a = -11 \)或\( a = 2 \)。

由于\( a \)是自然数,所以\( a = 2 \),\( b = 3 \)。

试题二:几何问题题目:在一个直角三角形中,直角边的长度分别为3厘米和4厘米,求斜边的长度。

解答:根据勾股定理,直角三角形的斜边\( c \)可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \]其中\( a \)和\( b \)是直角边的长度。

代入数值:\[ c = \sqrt{3^2 + 4^2} \]\[ c = \sqrt{9 + 16} \]\[ c = \sqrt{25} \]\[ c = 5 \]所以斜边的长度是5厘米。

试题三:数列问题题目:一个等差数列的前三项分别是2,5,8,求这个数列的第10项。

解答:等差数列的通项公式是:\[ a_n = a_1 + (n - 1)d \]其中\( a_n \)是第\( n \)项,\( a_1 \)是首项,\( d \)是公差。

已知首项\( a_1 = 2 \),公差\( d = 5 - 2 = 3 \)。

代入公式求第10项:\[ a_{10} = 2 + (10 - 1) \times 3 \]\[ a_{10} = 2 + 9 \times 3 \]\[ a_{10} = 2 + 27 \]\[ a_{10} = 29 \]所以这个数列的第10项是29。

2024全国初中数学竞赛试题

2024全国初中数学竞赛试题

1、已知直角三角形的两条直角边长度分别为3和4,则斜边上的高为:A. 2.4B. 1.2C. 5D. 不能确定(答案)A2、若a、b、c为三角形的三边长,且满足a² + b² + c² + 50 = 10a + 6b + 8c,则此三角形为:A. 直角三角形B. 等腰三角形C. 等边三角形D. 不能确定(答案)A3、解方程组 { x + 2y = 5, 3x - 4y = -2 } 时,若先消去y,则得到的方程是:A. 5x = 14B. 5x = 10C. 7x = 16D. 7x = 22(答案)B4、在平行四边形ABCD中,若∠A : ∠B = 2 : 3,则∠C的度数为:A. 60°B. 90°C. 120°D. 不能确定(答案)C5、已知 |x| = 5,y = 3,则x - y等于:A. 8或-2B. 2或-8C. -2或8D. -8或2(答案)D6、若关于x的一元二次方程x² - (k - 1)x - k = 0有两个相等的实数根,则k的值为:A. -3B. 3C. -1D. 1(答案)D7、在圆O中,弦AB的长度等于半径OA,则∠AOB的度数为:A. 30°B. 60°C. 120°D. 30°或150°(答案)B8、若a > b > 0,c < d < 0,则一定有:A. a² > b²B. c² > d²C. a/d > b/cD. a/d < b/c(答案)A9、已知一次函数y = kx + b的图像经过点(2, 3)和(-1, -3),则它的图像不经过:A. 第一象限B. 第二象限C. 第三象限D. 第四象限(答案)C10、在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为:A. 45°B. 60°C. 75°D. 90°(答案)C。

九年级数学竞赛题

九年级数学竞赛题

九年级数学竞赛题一、代数部分1. 一元二次方程竞赛题题目:已知关于公式的一元二次方程公式有两个实数根公式和公式。

(1)求实数公式的取值范围;(2)当公式时,求公式的值。

解析:(1)对于一元二次方程公式,判别式公式。

在方程公式中,公式,公式,公式,因为方程有两个实数根,所以公式。

展开公式得公式,即公式,解得公式。

(2)由公式可得公式。

根据韦达定理,在一元二次方程公式中,公式,公式。

对于方程公式,公式,公式。

当公式时,即公式,解得公式,但公式不满足公式(由(1)得),舍去。

当公式时,即公式,那么公式,由(1)中公式,解得公式。

2. 二次函数竞赛题题目:二次函数公式的图象经过点公式,且与公式轴交点的横坐标分别为公式、公式,其中公式,公式,求公式的取值范围。

解析:因为二次函数公式的图象经过点公式,所以公式,则公式。

二次函数与公式轴交点的横坐标是方程公式的根,由韦达定理公式,公式。

设公式,因为公式,公式,当公式时,公式;当公式时,公式;当公式时,公式。

将公式代入公式,公式中:由公式得公式,化简得公式,即公式。

由公式得公式,化简得公式,即公式,公式。

所以公式,则公式,解得公式。

二、几何部分1. 圆的竞赛题题目:在公式中,弦公式与弦公式相交于点公式,公式、公式分别是弦公式、公式的中点,连接公式、公式,若公式,公式的半径为公式。

(1)求证:公式是等边三角形;(2)求公式的长(用公式表示)。

解析:(1)连接公式、公式。

因为公式、公式分别是弦公式、公式的中点,根据垂径定理,公式,公式。

在四边形公式中,公式,公式,根据四边形内角和为公式,可得公式。

又因为公式(半径),公式、公式分别是弦公式、公式的中点,所以公式,公式。

在公式中,公式,公式(同圆中,弦心距相等则弦相等的一半也相等),所以公式是等边三角形。

(2)设公式与公式交于点公式,公式与公式交于点公式。

在公式中,公式,公式,公式,则公式。

同理,在公式中,公式。

因为公式是等边三角形,公式,在公式中,公式,公式,则公式,所以公式。

历届初中数学竞赛试题及答案

历届初中数学竞赛试题及答案

历届初中数学竞赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的平方等于16,那么这个数是多少?A. 4B. -4C. 4 或 -4D. 16答案:C3. 一个直角三角形的两条直角边分别为3和4,斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A4. 一个数列1, 1, 2, 3, 5, ...,每个数都是前两个数的和,这个数列的第6个数是多少?A. 8B. 13C. 21D. 34答案:B5. 如果一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 125π答案:B二、填空题(每题2分,共10分)6. 一个数的绝对值是它本身,这个数是________。

答案:非负数7. 一个长方体的长、宽、高分别是2cm、3cm和4cm,它的体积是________。

答案:24立方厘米8. 一个分数的分子和分母同时乘以一个相同的数,这个分数的值________。

答案:不变9. 如果一个数的立方等于它本身,那么这个数是________。

答案:1,-1,010. 一个圆的周长是2πr,其中r是圆的半径,π是圆周率,π的值约等于________。

答案:3.14三、解答题(每题5分,共20分)11. 一个班级有50名学生,其中30名学生参加了数学竞赛,20名学生参加了英语竞赛,并且有5名学生同时参加了数学和英语竞赛。

请问只参加数学竞赛的学生有多少人?答案:只参加数学竞赛的学生有30-5=25人。

12. 一个等差数列的前三项分别是2,5,8,求这个数列的第10项。

答案:等差数列的公差d=5-2=3,第10项a10=a1+(10-1)*d=2+9*3=29。

13. 一个直角三角形的斜边长为13,一条直角边长为5,求另一条直角边长。

答案:根据勾股定理,另一条直角边长b=√(13²-5²)=12。

初中数学竞赛试题五份精选集合(含答案)

初中数学竞赛试题五份精选集合(含答案)

数学竞赛训练题一一.选择题(每小题6分,共36分) 1.如果100,0,log log 3x y x y y x >>+=, 144xy =,那么x y +的值是( ).203A .263B .243C .103D2. 设函数)10()(||≠>=-a a a x f x 且,f (-2)=9,则 ( ) A. f (-2)>f (-1) B. f (-1)>f (-2) C. f (1)>f (2) D. f (-2)>f (2)3.已知二次函数()f x 满足(1)(1),f x f x -=+4(1)1,f -≤≤-1(2)5,f -≤≤则(3)f 的取值范围是( )A.7(3)26f ≤≤ B. 4(3)15f -≤≤ C. 1(3)32f -≤≤ D.2825(3)33f -≤≤4.如图1,设P 为△ABC 内一点,且2155A P AB AC =+ ,则△ABP 的面积与△ABC 的面积之比为 ( ) A.15B.25C.14D.135. 设在x o y 平面上,20y x <≤,01x ≤≤所围成图形的面积为13,则集合{}{}2(,)|||||1,(,)|||1M x y y x N x y y x =-≤=≥+的交集M N ⋂所表示图形的面积是( ) A.31B. 23C. 1D. 436.方程20062007x y+=的正整数解(,)x y 的组数是( )A .1组 B. 2 组 C. 4组 D. 8组二.填空题(每小题9分,共54分)7.函数213()log (56)f x x x =-+的单调递增区间为 .8.已知02sin 2sin 5=α,则)1tan()1tan(0-+αα的值是_____________________.9.设{}n a 是一个等差数列,12119,3,a a ==记16n n n n A a a a ++=+++ ,则n A 的最小值为10.函数()f x 满足(1)1003f =,且对任意正整数n 都有2(1)(2)()()f f f n n f n +++= ,则(2006)f 的值为11..已知⎪⎩⎪⎨⎧≤+≥-≥03030y x y x y ,则x 2+y 2的最大值是12.对于实数x ,当且仅当n ≤x <n +1(n ∈N +)时,规定[x ]=n ,则不等式045][36][42<+-x x 的解集为三.解答题(每小题20分,共60分)13.设集合A =12log (3)2x x ⎧⎫⎪⎪-≥-⎨⎬⎪⎪⎩⎭,B =21ax x a ⎧⎫>⎨⎬-⎩⎭,若A ∩B ≠∅,求实数a 的取值范围.14.三角形ABC 的顶点C (,)x y 的坐标满足不等式2282,3x y y y +≤+≥.边AB 在横坐标轴上.如果已知点Q (0,1)与直线AV 和BC 的距离均为1,求三解形ABC 面积的的最大值.15.设函数()y f x =的定义域为R ,当0x <时,()1f x >,且对任意实数,x y ,有()()()f x y f x f y +=成立,数列{}n a 满足1(0)a f =且*11()().(2)n n f a n N f a +=∈--(1)求2008a 的值; (2)若不等式12111(1)(1)(1)21nk n a a a +++≥+ 对一切*n N ∈均成立,求k 的最大值.数学竞赛训练题一参考答案1.B 2.A 3.C 4.A 5.B 6.D 7. (,2)-∞- 8.23-.. 9.5710.1200711. 9 12. 82<≤x13. 解:a ∈(-1,0)∪(0,3)14.解:点C 在如图的弓形区域内.设1200(,0),(,0),(,)A a B a C x y ,由点Q 到直线AC ,BC 的距离等于1得2010********(2)20,(2)20.y a x a y y a x a y -+-=-+-=这说明12,a a 是方程2000(2)20y a x a y -+-=的2个根.所以220001212204[(2)]()4,(2)x y y AB a a a a y +-=+-=-这里0[3,4]y ∈.首先固定0y ,欲使AB 最大,需2209(1).x y =--因此当0[3,4]y ∈为某一定值时,点C 应位于弓形弧上.所以0000114262(3222ABC S AB y y y y ∆=⋅≤≤=-时取等号)115.(1)1,0,(1)(1)(0),(0) 1.(0)1x y f f f f a f =-=-=-=∴==∴∈∴1212212112112112112解:令得 当x>0时,-x<0,f(0)=f(x)f(-x)=1, 0<f(x)<1.设x ,x R,且x <x ,则x -x >0,f(x -x )<1,f(x )-f(x )=f(x )-f(x +x -x )=f(x )[1-f(x -x )]>0. f(x )>f(x ),函数y=111200812121()(2) 1.(12)(0),20.221,4015111(2)(1)(1)(1)21111(1)(1)(1)2111(1)(1n n n n n n n n nf a f a f an an f a a a a a n a k n a a a a a a n a +++--=∴+--=--=-=∴=-=+++≥++++≤+++n+1n f(x)在R 上是单调递减函数.1由f(a )=得f(-2-a )即由恒成立,知k 恒成立.设F(n)=212121)(1),21()0111(1)(1)(1)(1)23(1)2(1)1,(1)()()4(1)12()(1)33.nn a a n F n a a a F n n F n n F n F n F n n F n F +++>++++=+++=>+>+-∴≥=≤则且又即22所以,k 3,即k 的最大值为333数学竞赛训练题三一、选择题(本题满分36分,每小题6分)1.已知数列{a n }满足3a n +1+a n =4(n ≥1),且a 1=9,其前n 项之和为S n 。

初中数学竞赛试题及答案pdf

初中数学竞赛试题及答案pdf

初中数学竞赛试题及答案pdf一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个数的平方等于9,这个数是?A. 3B. -3C. 3或-3D. 以上都不是答案:C3. 计算下列算式的结果:(2x + 3)(2x - 3) = ?A. 4x^2 - 6x + 6B. 4x^2 - 9C. 4x^2 + 6x - 9D. 4x^2 + 9答案:B4. 如果一个三角形的两边长分别为3和4,且这两边之间的夹角为90度,那么这个三角形的周长是多少?A. 7B. 8C. 9D. 10答案:D5. 以下哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A6. 一个圆的直径是10厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π答案:C7. 以下哪个是完全平方数?A. 36B. 49C. 64D. 81答案:C8. 一个数的立方等于-8,这个数是?A. -2B. 2C. -2或2D. 以上都不是答案:A9. 计算下列算式的结果:(a + b)^2 = ?A. a^2 + 2ab + b^2B. a^2 - 2ab + b^2C. a^2 + b^2D. a^2 - b^2答案:A10. 如果一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 以上都不是答案:C二、填空题(每题4分,共20分)11. 一个数的平方根是2,那么这个数是______。

答案:412. 一个等差数列的首项是2,公差是3,那么这个数列的第5项是______。

答案:1713. 一个等腰三角形的底边长是6厘米,两腰长分别是8厘米,那么这个三角形的周长是______厘米。

答案:2214. 如果一个数除以3余2,除以5余1,那么这个数可能是______(写出一个符合条件的数即可)。

答案:1115. 一个直角三角形的两直角边长分别是3厘米和4厘米,那么这个三角形的斜边长是______厘米。

初中数学竞赛试卷题

初中数学竞赛试卷题

一、选择题(每题5分,共50分)1. 若一个数的平方等于它本身,则这个数是()A. 0和1B. 0和-1C. 0、1和-1D. 0、1和22. 下列各数中,有理数是()A. √3B. √4C. πD. √-13. 若a、b是实数,且a²+b²=1,则下列各式中正确的是()A. a+b=1B. a²-b²=1C. a-b=1D. a²+b²=24. 下列函数中,一次函数是()A. y=2x+3B. y=3x²+2x-1C. y=x+√xD. y=2x³+3x²-15. 下列各式中,同类项是()A. 2a²+3bB. a²b+2ab²C. a²+3b²D. a²b²+2ab6. 下列各式中,完全平方公式正确的是()A. (a+b)²=a²+2ab+b²B. (a-b)²=a²-2ab+b²C. (a+b)²=a²-2ab+b²D. (a-b)²=a²+2ab-b²7. 下列各式中,方程正确的是()A. 2x+3=7B. 2x²+3x-7=0C. x³+2x²-5x+1=0D. 2x²-3x+1=08. 下列各式中,不等式正确的是()A. 2x+3>7B. 2x²+3x-7<0C. x³+2x²-5x+1>0D. 2x²-3x+1<09. 下列各式中,分式正确的是()A. 2x+3/xB. x²+3x-7/xC. x+2/x²D. x²-3x+1/x10. 下列各式中,函数的定义域是()A. y=2x+3B. y=3x²+2x-1C. y=x+√xD. y=2x³+3x²-1二、填空题(每题5分,共50分)11. 若a、b是实数,且a²+b²=0,则a=________,b=________。

初一数学竞赛测试题及答案

初一数学竞赛测试题及答案

初一数学竞赛测试题及答案【测试题一】题目:计算下列表达式的值:\[ 2^3 + 3^2 - 4 \times 5 \]【答案】首先,按照运算顺序,先计算乘方和乘法,再计算加法和减法。

\[ 2^3 = 8 \]\[ 3^2 = 9 \]\[ 4 \times 5 = 20 \]然后进行加减运算:\[ 8 + 9 - 20 = 17 - 20 = -3 \]所以,表达式的值为 -3。

【测试题二】题目:如果一个数的平方等于这个数本身,这个数是什么?【答案】设这个数为 \( x \),根据题意,我们有:\[ x^2 = x \]这个方程可以重写为:\[ x^2 - x = 0 \]\[ x(x - 1) = 0 \]根据零乘律,\( x = 0 \) 或 \( x - 1 = 0 \),所以 \( x = 0 \) 或 \( x = 1 \)。

【测试题三】题目:一个长方体的长、宽、高分别是 8 厘米、6 厘米和 5 厘米,求这个长方体的体积。

【答案】长方体的体积可以通过长、宽、高的乘积来计算:\[ \text{体积} = 长 \times 宽 \times 高 \]\[ \text{体积} = 8 \times 6 \times 5 = 240 \text{ 立方厘米} \]【测试题四】题目:一个圆的半径是 7 厘米,求这个圆的周长和面积。

【答案】圆的周长公式是 \( C = 2\pi r \),面积公式是 \( A = \pi r^2 \)。

将半径 \( r = 7 \) 厘米代入公式中:\[ C = 2 \times \pi \times 7 \approx 44 \text{ 厘米} \]\[ A = \pi \times 7^2 \approx 153.94 \text{ 平方厘米} \]【测试题五】题目:一个班级有 40 名学生,其中 2/5 是男生,3/5 是女生。

如果班级里增加了 10 名男生,那么班级里男生和女生的比例是多少?【答案】首先,计算原有男生和女生的人数:男生:\( 40 \times \frac{2}{5} = 16 \) 人女生:\( 40 \times \frac{3}{5} = 24 \) 人增加 10 名男生后,男生总数变为 \( 16 + 10 = 26 \) 人,女生人数不变。

七年级数学竞赛试题

七年级数学竞赛试题

七年级数学竞赛试题一、选择题(每题3分,共30分)1. 若公式与公式互为相反数,则公式()A. 公式B. 公式C. 公式D. 公式解析:因为互为相反数的两个数和为0,所以公式,即公式,公式,解得公式。

答案为A。

2. 已知公式是方程公式的解,则公式()A. 公式B. 公式C. 公式D. 公式解析:把公式代入方程公式,得到公式,公式,公式。

答案为A。

3. 把方程公式去分母后,正确的是()A. 公式B. 公式C. 公式D. 公式解析:方程公式去分母,因为2和3的最小公倍数是6,所以等式两边同时乘以6,得到公式,即公式。

答案为B。

4. 若公式,公式,则公式为()A. 公式B. 公式C. 公式D. 公式解析:公式。

答案为C。

5. 一个角的补角是这个角的余角的公式倍,则这个角的度数为()A. 公式B. 公式C. 公式D. 公式解析:设这个角的度数为公式,则它的补角为公式,余角为公式。

根据题意得公式,公式,公式,公式,公式。

答案为C。

6. 下列图形中,不是正方体展开图的是()A. “一四一”型B. “二三一”型C. “田田”型D. “三三”型解析:正方体展开图有11种基本情况,分别为“一四一”型、“二三一”型、“三三”型、“二二二”型,其中“田田”型不是正方体的展开图。

答案为C。

7. 若公式为有理数,则公式一定是()A. 零B. 非负数C. 正数D. 负数解析:当公式时,公式;当公式时,公式。

所以公式一定是非负数。

答案为B。

8. 已知有理数公式、公式在数轴上的位置如图所示,则下列结论正确的是()A. 公式B. 公式C. 公式D. 公式解析:由数轴可知公式,公式,且公式。

公式,因为公式,公式,公式,公式,公式。

答案为无正确选项。

9. 某商店把一商品按标价的九折出售(即优惠公式),仍可获利公式,若该商品的标价为每件公式元,则该商品的进价为()A. 公式元B. 公式元C. 公式元D. 公式元解析:设该商品的进价为公式元,商品标价为公式元,按九折出售后的售价为公式元。

数学竞赛初中试题及答案

数学竞赛初中试题及答案

数学竞赛初中试题及答案一、选择题(每题3分,共30分)1. 已知等腰三角形的两边长分别为5和8,那么这个等腰三角形的周长是:A. 18B. 21C. 26D. 282. 一个数的平方等于它的4倍,这个数是:A. 0B. 2C. -2D. 0或23. 一个长方形的长是宽的2倍,如果宽增加2厘米,长减少2厘米,那么面积不变。

设长方形的宽为x厘米,根据题意可得方程:A. 2x(x+2) = x(x-2)B. 2x(x-2) = x(x+2)C. 2x^2 = x^2 - 4x + 4D. 2x^2 = x^2 + 4x - 44. 一个数列的前四项依次为1, 2, 4, 8,那么第五项是:A. 16B. 32C. 64D. 1285. 一个圆的直径是10厘米,那么它的面积是:A. 78.5平方厘米B. 157平方厘米C. 314平方厘米D. 785平方厘米6. 一个数的相反数是-4,那么这个数是:A. 4B. -4C. 0D. 87. 一个分数的分子比分母小3,且这个分数等于1/2,那么这个分数是:A. 1/3B. 2/5C. 3/6D. 4/78. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 09. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0, 1或-110. 一个等差数列的前三项依次为2, 5, 8,那么第四项是:A. 11B. 12C. 13D. 14二、填空题(每题4分,共20分)1. 一个数的立方根是它本身的数是______。

2. 如果一个三角形的两个内角分别是45度和45度,那么第三个内角是______度。

3. 一个数的绝对值是它本身,这个数是______。

4. 一个数的平方等于16,这个数是______。

5. 一个数的相反数是它本身,这个数是______。

三、解答题(每题10分,共50分)1. 已知一个等腰三角形的两边长分别为3和4,求这个等腰三角形的周长。

竞赛初中数学试题及答案

竞赛初中数学试题及答案

竞赛初中数学试题及答案一、选择题(每题2分,共10分)1. 已知一个等腰三角形的两边长分别为3cm和5cm,那么这个三角形的周长是()。

A. 11cmB. 13cmC. 16cmD. 无法确定2. 下列哪个数是无理数()。

A. 0.5B. √2C. 22/7D. 03. 一个数的相反数是-3,那么这个数是()。

A. 3B. -3C. 0D. 64. 若a、b、c是等差数列,且a+c=10,b=5,则a、b、c的值分别是()。

A. 2, 5, 8B. 3, 5, 7C. 4, 5, 6D. 5, 5, 55. 一个圆的半径为2cm,那么这个圆的面积是()。

A. 4π cm²B. 8π cm²C. 12π cm²D. 16π cm²二、填空题(每题2分,共10分)6. 一个数的平方是25,那么这个数是______或______。

7. 一个数增加20%后是120,那么这个数原来是______。

8. 已知一个直角三角形的两个直角边长分别为3cm和4cm,那么斜边长是______cm。

9. 一个数的绝对值是5,那么这个数是______或______。

10. 一个数除以-2的商是-3,那么这个数是______。

三、解答题(每题5分,共20分)11. 已知一个二次函数y=ax²+bx+c,其中a=1,b=-3,c=2,求当x=1时,y的值。

12. 一个长方形的长是宽的两倍,如果宽增加2cm,长减少2cm,面积不变,求原长方形的长和宽。

13. 一个数列的前三项分别是1,2,3,从第四项开始,每一项都是前三项的和,求数列的第8项。

14. 一个圆的直径是10cm,求这个圆的周长和面积。

答案:一、选择题1. B2. B3. A4. A5. B二、填空题6. ±57. 1008. 59. ±510. 6三、解答题11. 当x=1时,y=1-3+2=0。

初中数学竞赛试卷带答案

初中数学竞赛试卷带答案

一、选择题(每题5分,共25分)1. 下列各数中,哪个数是负数?A. -3B. 0C. 3D. -3.5答案:D2. 如果一个长方形的面积是24平方厘米,长是6厘米,那么宽是多少厘米?A. 2B. 3C. 4D. 5答案:B3. 下列哪个数是偶数?A. 23B. 25C. 26D. 27答案:C4. 下列哪个图形的对称轴最多?A. 等腰三角形B. 等边三角形C. 长方形答案:D5. 一个正方体的棱长为a,那么它的表面积是多少?A. 4a^2B. 6a^2C. 8a^2D. 12a^2答案:B二、填空题(每题5分,共25分)6. 1/2 + 3/4 = _______答案:5/47. 9.6 - 3.8 = _______答案:5.88. 0.3 × 0.4 = _______答案:0.129. 下列分数中,哪个是最简分数?A. 6/8B. 3/4C. 4/6D. 8/10答案:B10. 下列哪个数是整数?A. 1.5C. 1.1D. 1.01答案:A三、解答题(每题10分,共30分)11. 一个长方形的长是8厘米,宽是5厘米,求它的周长。

答案:周长= 2 × (长 + 宽) = 2 × (8 + 5) = 2 × 13 = 26厘米12. 一个梯形的上底是6厘米,下底是10厘米,高是4厘米,求它的面积。

答案:面积 = (上底 + 下底) × 高÷ 2 = (6 + 10) × 4 ÷ 2 = 16 × 4 ÷ 2 = 64 ÷ 2 = 32平方厘米13. 一个圆的半径是3厘米,求它的周长和面积。

答案:周长= 2 × π × 半径= 2 × 3.14 × 3 = 18.84厘米面积= π × 半径^2 = 3.14 × 3^2 = 3.14 × 9 = 28.26平方厘米四、附加题(10分)14. 一个等腰三角形的底边长是10厘米,腰长是13厘米,求这个三角形的面积。

七年级数学竞赛题目

七年级数学竞赛题目

七年级数学竞赛题目一、有理数运算类。

1. 计算:(-2)+3-(-5)- 解析:- 根据有理数的加减法法则,减去一个负数等于加上它的相反数。

- 所以(-2)+3 - (-5)=(-2)+3+5。

- 先计算(-2)+3 = 1,再计算1 + 5=6。

2. 计算:-1^4-(1 - 0.5)×(1)/(3)×[2-(-3)^2]- 解析:- 先计算指数运算,-1^4=-1,(-3)^2 = 9。

- 再计算括号内的式子,1-0.5 = 0.5=(1)/(2)。

- 然后计算乘法,(1)/(2)×(1)/(3)=(1)/(6),2 - 9=-7。

- 接着计算(1)/(6)×(-7)=-(7)/(6)。

- 最后计算-1-(-(7)/(6))=-1+(7)/(6)=(1)/(6)。

二、整式运算类。

3. 化简:3a + 2b-5a - b- 解析:- 合并同类项,对于a的同类项3a和-5a,3a-5a=-2a。

- 对于b的同类项2b和-b,2b - b=b。

- 所以化简结果为-2a + b。

4. 先化简,再求值:(2x^2 - 3xy+4y^2)-3(x^2 - xy+(5)/(3)y^2),其中x = - 2,y = 1- 解析:- 先去括号:- 原式=2x^2-3xy + 4y^2-3x^2+3xy - 5y^2。

- 再合并同类项:- (2x^2-3x^2)+(-3xy + 3xy)+(4y^2-5y^2)=-x^2 - y^2。

- 当x=-2,y = 1时,代入可得:- -(-2)^2-1^2=-4 - 1=-5。

三、一元一次方程类。

5. 解方程:3x+5 = 2x - 1- 解析:- 移项,将含x的项移到等号左边,常数项移到等号右边,得到3x-2x=-1 - 5。

- 合并同类项得x=-6。

6. 某班有学生45人会下象棋或围棋,会下象棋的人数比会下围棋的多5人,两种棋都会下的有20人,问会下围棋的有多少人?设会下围棋的有x人,则可列方程为?- 解析:- 会下象棋的人数为x + 5人。

初中数学竞赛试题及答案

初中数学竞赛试题及答案

初中数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数不是质数?A. 2B. 3C. 4D. 52. 如果一个数的平方等于其本身,那么这个数可能是:A. 0B. 1C. -1D. 23. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 84. 一个数的绝对值是其本身,这个数可能是:A. 正数B. 0C. 负数D. 正数或05. 以下哪个表达式的结果不是整数?A. 3 + 2C. 4 × 2D. 6 ÷ 26. 如果一个数的立方等于其本身,那么这个数可能是:A. 0B. 1C. -1D. 27. 一个圆的半径是5,它的面积是:A. 25πB. 50πC. 100πD. 125π8. 如果一个数的倒数是其本身,那么这个数可能是:A. 1B. -1C. 2D. 09. 一个数的平方根是其本身,这个数可能是:A. 0B. 1C. -1D. 210. 一个数的立方根是其本身,这个数可能是:A. 0B. 1D. 8答案:1. C2. A, B3. A4. D5. C6. A, B, C7. C8. A, B9. A, B10. A, B, C二、填空题(每题4分,共20分)11. 一个数的平方是16,这个数可能是________。

12. 如果一个数的绝对值是5,那么这个数可能是________。

13. 一个三角形的内角和是________度。

14. 一个数的立方是-27,这个数可能是________。

15. 一个数的平方根是2,那么这个数是________。

答案:11. ±412. ±513. 18014. -315. 4三、解答题(每题10分,共50分)16. 证明勾股定理。

17. 解方程:2x + 5 = 15。

18. 一个长方体的长、宽、高分别是3厘米、4厘米和5厘米,求其体积。

19. 一个圆的周长是12π,求其半径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档