数学实验报告1
数学调查实验报告(3篇)
第1篇一、实验背景随着社会经济的快速发展,数学作为一门基础学科,在各个领域都发挥着重要作用。
为了提高学生的数学素养,激发学生学习数学的兴趣,培养学生的实践能力,我们开展了一次数学调查实验。
本次实验旨在了解学生在数学学习中的困难、需求以及兴趣点,为今后的数学教学提供参考。
二、实验目的1. 了解学生在数学学习中的困难、需求以及兴趣点;2. 分析学生数学学习现状,为教师改进教学方法提供依据;3. 培养学生的实践能力,提高学生的数学素养。
三、实验方法1. 实验对象:选取我校高一年级100名学生作为实验对象;2. 实验内容:设计调查问卷,包括数学学习困难、需求、兴趣点等方面;3. 实验步骤:(1)制定调查问卷;(2)发放问卷,收集数据;(3)对数据进行分析处理;(4)撰写实验报告。
四、实验结果与分析1. 数学学习困难分析(1)学生在数学学习中的困难主要集中在以下几个方面:①基础知识掌握不牢固;②解题技巧不足;③缺乏对数学问题的思考能力;④学习兴趣不高。
(2)针对以上困难,教师可以采取以下措施:①加强基础知识教学,帮助学生打好基础;②开展解题技巧培训,提高学生解题能力;③引导学生学会思考,培养问题意识;④激发学生学习兴趣,提高学习积极性。
2. 数学学习需求分析(1)学生在数学学习中的需求主要包括:①提高数学成绩;②掌握解题技巧;③提高逻辑思维能力;④拓展知识面。
(2)针对以上需求,教师可以采取以下措施:①制定合理的教学计划,确保教学目标达成;②注重解题技巧训练,提高学生解题能力;③开展思维训练活动,培养学生的逻辑思维能力;④丰富教学内容,拓展学生的知识面。
3. 数学学习兴趣点分析(1)学生在数学学习中的兴趣点主要包括:①数学竞赛;②数学应用;③数学趣味知识;④数学史。
(2)针对以上兴趣点,教师可以采取以下措施:①举办数学竞赛,激发学生学习兴趣;②结合实际生活,开展数学应用教学;③引入数学趣味知识,提高学生学习兴趣;④介绍数学史,培养学生的数学文化素养。
数学建模基础实验报告(3篇)
第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。
表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
1. 数据准备:将数据整理成表格形式,并输入到计算机中。
2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。
4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。
5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。
三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。
将数据输入到计算机中,为后续分析做准备。
2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。
具体步骤如下:(1)选择合适的统计软件,如MATLAB。
(2)输入数据,进行数据预处理。
(3)编写线性回归分析程序,计算回归系数。
(4)输出回归系数、截距等参数。
4. 模型检验对模型进行检验,包括残差分析、DW检验等。
(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。
(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。
5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。
四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。
2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。
MATLAB数学实验报告1
MATLAB数学实验报告1Matlab数学实验报告⼀、实验⽬的通过以下四组实验,熟悉MATLAB的编程技巧,学会运⽤MATLAB的⼀些主要功能、命令,通过建⽴数学模型解决理论或实际问题。
了解诸如分岔、混沌等概念、学会建⽴Malthu模型和Logistic 模型、懂得最⼩⼆乘法、线性规划等基本思想。
⼆、实验内容2.1实验题⽬⼀2.1.1实验问题Feigenbaum曾对超越函数y=λsin(πx)(λ为⾮负实数)进⾏了分岔与混沌的研究,试进⾏迭代格式x k+1=λsin(πx k),做出相应的Feigenbaum图2.1.2程序设计clear;clf;axis([0,4,0,4]);hold onfor r=0:0.3:3.9x=[0.1];for i=2:150x(i)=r*sin(3.14*x(i-1));endpause(0.5)for i=101:150plot(r,x(i),'k.');endtext(r-0.1,max(x(101:150))+0.05,['\it{r}=',num2str(r)]) end加密迭代后clear;clf;axis([0,4,0,4]);hold onfor r=0:0.005:3.9x=[0.1];for i=2:150x(i)=r*sin(3.14*x(i-1));endpause(0.1)for i=101:150plot(r,x(i),'k.');endend运⾏后得到Feigenbaum图2.2实验题⽬⼆2.2.1实验问题某农夫有⼀个半径10⽶的圆形⽜栏,长满了草。
他要将⼀头⽜拴在⽜栏边界的桩栏上,但只让⽜吃到⼀半草,问拴⽜⿐⼦的绳⼦应为多长?2.2.2问题分析如图所⽰,E为圆ABD的圆⼼,AB为拴⽜的绳⼦,圆ABD为草场,区域ABCD为⽜能到达的区域。
问题要求区域ABCD等于圆ABC的⼀半,可以设BC等于x,只要求出∠a和∠b就能求出所求⾯积。
数学实验报告 (1)
(1)参数方程:z=2^2^/2^2^sin y x y x ++(-8<=x<=8,-8<=y<=8) (2)程序:[X,Y]=meshgrid(-8::8);r=sqrt(x.^2+y.^2)+eps;Z=sin(r)./r;Mesh(x,y,z)Axis square(3)程序的输出结果:3:球面,椭球面,双叶双曲面,单叶双曲面1球面: (4):参数方程:⎪⎩⎪⎨⎧===ϕθϕθϕcos *sin *sin *cos *sin *R z R y R x 0π<=θ<2* 0<=ϕ<π (5)程序:u=[0:pi/60:2*pi];v=[0:pi/60:pi];[U,V]=meshgrid(u,v);R=3;X=R*sin(v).*cos(u);Y=R*sin(v).*sin(u);Z=R*cos(v);Surf(x,y,z);axis equal;(3)程序输出结果:2椭球面: (1)参数方程:⎪⎩⎪⎨⎧===ϕθϕθϕcos *sin *sin *cos *sin *c z b y a x 0<=θ<2*π 0<=ϕ<=π (2)程序:ezsurf(‘3*sin(u)*cos(v) ,’3*sin(u)*sin(v)’,’1*cos(u)’,[0,pi,0,2*pi]);(3)程序的输出结果:3单叶双曲面: (1)参数方程:⎪⎩⎪⎨⎧===ϕθϕθϕtan sin *sec *cos *sec *z a y a x 0<=θ<2*π -π/2<ϕ<π/2 (2)程序:ezsurf(‘3*sec(u)*cos(v),’3*sec(u)*sin(v)’,’5*tan(u)’,[-pi/2,pi/2,0,2*pi]);axis auto(3)输出程序结果:4双叶双曲面: (1)参数方程:⎪⎩⎪⎨⎧===ϕθϕθϕsec *sin *tan *cos *tan *c z b y a x 0<=θ<2*π -π<ϕ<3*π/2,ϕ≠π/2(2)程序:ezsurf(‘3*tan(u)*cos(v)’,’3*tan(u)*sin(v)’,’5*sec(u)’,[-pi/2,3*pi/2,0,2*pi]);axis auto(4) (3)输出程序结果:抛物螺线: (1)参数方程:⎪⎩⎪⎨⎧===2^*sin **cos **t c z t t b y t t a x 0<T<+∞ (2)程序:ezplot3(‘2*t*cos(t)’,’2*t*sin(t)’,’t.^2/3’,[0,50]);(3)输出程序结果:(5)马鞍面: (1)参数方程:z=x^2/9-y^2/4 (-25<=x<=25,-25<=y<=25)(2)程序:[X,Y]=meshgrid(-25:1:25);Z=X.^2/9-Y.^2/4;Surf(X,Y,Z)Title(‘马鞍面’)grid off(3)输出程序结果:(6)黎曼函数:(1)程序:n=100;x=[];y=[];k=1;for q=2:nfor p=1:q-1if gcd(q,p)==1 %利用函数gcd(m,n)可求m和n的最大公约数x(k)=p/q;y(k)=1/q;k=k+1;endendendplot(x,y,’.b’); axis([0,1,0,1])(2)程序输出结果:。
数值计算基础实验报告(3篇)
第1篇一、实验目的1. 理解数值计算的基本概念和常用算法;2. 掌握Python编程语言进行数值计算的基本操作;3. 熟悉科学计算库NumPy和SciPy的使用;4. 分析算法的数值稳定性和误差分析。
二、实验内容1. 实验环境操作系统:Windows 10编程语言:Python 3.8科学计算库:NumPy 1.19.2,SciPy 1.5.02. 实验步骤(1)Python编程基础1)变量与数据类型2)运算符与表达式3)控制流4)函数与模块(2)NumPy库1)数组的创建与操作2)数组运算3)矩阵运算(3)SciPy库1)求解线性方程组2)插值与拟合3)数值积分(4)误差分析1)舍入误差2)截断误差3)数值稳定性三、实验结果与分析1. 实验一:Python编程基础(1)变量与数据类型通过实验,掌握了Python中变量与数据类型的定义方法,包括整数、浮点数、字符串、列表、元组、字典和集合等。
(2)运算符与表达式实验验证了Python中的算术运算、关系运算、逻辑运算等运算符,并学习了如何使用表达式进行计算。
(3)控制流实验学习了if-else、for、while等控制流语句,掌握了条件判断、循环控制等编程技巧。
(4)函数与模块实验介绍了Python中函数的定义、调用、参数传递和返回值,并学习了如何使用模块进行代码复用。
2. 实验二:NumPy库(1)数组的创建与操作通过实验,掌握了NumPy数组的基本操作,包括创建数组、索引、切片、排序等。
(2)数组运算实验验证了NumPy数组在数学运算方面的优势,包括加、减、乘、除、幂运算等。
(3)矩阵运算实验学习了NumPy中矩阵的创建、操作和运算,包括矩阵乘法、求逆、行列式等。
3. 实验三:SciPy库(1)求解线性方程组实验使用了SciPy库中的线性代数模块,通过高斯消元法、LU分解等方法求解线性方程组。
(2)插值与拟合实验使用了SciPy库中的插值和拟合模块,实现了对数据的插值和拟合,并分析了拟合效果。
数学建模 -实验报告1
������������⁄������������ = ������������(1 − (������ + ������)) − ������1������∗������,
(4 − 3)
������������∗⁄������������ = −������1������∗������ + ������2������
二、 问题分析
建立肿瘤细胞增长模型时,我们可以从自由增长模型开始分析,引进 Logistic 阻滞增长模型,构成肿瘤细胞增长初步框架。再者肿瘤细胞不同于普 通细胞,其生长受到人体自身免疫系统的制约。于是综合考虑正常细胞转化,癌 细胞增殖,癌细胞死亡,癌细胞被效应细胞消除等情况,建立动力学方程。并对 模型进行适当简化求解。在放射治疗方案的设计中,我们可以引入放射生物学中 广泛接受的 LQ 模型对问题进行分析,由于放疗对人体伤害相当大,因此我们采 取分次逐次放疗的方式进行治疗。我们具体分两种情形进行讨论,一是在总剂量 一定的条件下,不同的分次剂量组合对生物效应的影响;二是在产生相同生物效 应的情况下,分析最优的分次剂量组合。
易算出癌细胞转入活动期已有 300 多天,故如何在早期发现癌症是攻克癌症的关键之一 (2)手术治疗常不能割去所有癌细胞,故有时需进行放射疗法。射线强度太小无法杀
死癌细胞,太强病人身体又吃不消且会使病人免疫功能下降。一次照射不可能杀死全部癌细 胞,请设计一个可行的治疗方案(医生认为当体内癌细胞数小于 100000 个时即可凭借体内 免疫系统杀灭)。
进一步简化,根据(4-4),(4-5)式可知,效应细胞������∗和复合物������有出有进.假 设出入保持平衡,则有
������ + ������∗ = C (C 为常数)
小学数学趣味实验报告(3篇)
第1篇实验名称:探究“奇数和偶数的奇妙之旅”实验目的:通过趣味实验,让学生了解奇数和偶数的概念,感受数学的乐趣,培养动手操作能力和观察能力。
实验时间:2023年4月15日实验地点:小学一年级教室实验器材:数字卡片、彩笔、白纸、剪刀、胶水、透明胶带实验参与人员:一年级全体学生实验过程:一、导入1. 教师展示数字卡片,引导学生说出奇数和偶数的概念。
2. 学生分享自己对奇数和偶数的理解。
二、实验操作1. 学生每人准备一张白纸,用彩笔在纸上画出若干个数字,要求每个数字之间留有足够的空间。
2. 学生用剪刀将画出的数字剪下来,形成数字卡片。
3. 学生将奇数卡片用红色标记,偶数卡片用蓝色标记。
4. 学生将奇数卡片和偶数卡片分别用透明胶带粘贴在黑板上。
5. 教师提问:奇数卡片和偶数卡片在黑板上排列后,有什么规律?6. 学生观察、讨论,得出结论:奇数卡片之间相差2,偶数卡片之间相差2,且奇数卡片和偶数卡片交替排列。
三、实验验证1. 教师提问:如果我们把黑板上奇数卡片和偶数卡片的顺序打乱,还会出现这样的规律吗?2. 学生分组进行实验,验证打乱顺序后,奇数卡片和偶数卡片是否依然交替排列。
3. 学生分享实验结果,得出结论:无论奇数卡片和偶数卡片的顺序如何,它们都会交替排列。
四、实验拓展1. 教师提问:在生活中,我们还能找到奇数和偶数的例子吗?2. 学生分享生活中的奇数和偶数例子,如:桌子、椅子、书本、水果等。
3. 教师引导学生思考:为什么生活中有这么多奇数和偶数?4. 学生讨论,得出结论:奇数和偶数是自然界和人类社会中普遍存在的现象。
实验总结:本次趣味实验,让学生在轻松愉快的氛围中了解了奇数和偶数的概念,感受到了数学的乐趣。
通过动手操作,学生培养了观察能力和逻辑思维能力。
同时,实验拓展环节让学生将数学知识应用于生活,激发了学生的学习兴趣。
实验反思:1. 实验过程中,教师应注重引导学生观察、思考,培养学生的动手操作能力。
一年级数学小实验报告
一年级数学小实验报告
一、内容∶生活中找图形
二、目标∶
1.通过欣赏和设计图案的活动,进一步认识长方形、正方形、三角形和圆。
2.通过实践操作,培养学生的想象力和创造力,提高学生的辨别能力和学习兴趣的目的。
3.体会数学与日常生活的密切联系。
三、结论:
学生已经初步认识长方形、正方形、三角形、圆这些平面图形,形成了一定的空间观念。
学生具备了一定的生活经验,能够联想自己周围的事物,从身边的事物中抽象出平面图形,同时指导学生根据老师的要求,进行一些有目的的尝试,利用所学的平面图形设计出美丽的图案。
数学实验综合实验报告
一、实验目的:1、初步认识迭代,体会迭代思想的重要性。
2、通过在mathematica 环境下编写程序,利用迭代的方法求解方程的根、线性方程组的解、非线性方程组的解。
3、了解分形的的基本特性及利用mathematica 编程生成分形图形的基本方法, 在欣赏由mathematica 生成的美丽的分形图案的同时对分形几何这门学科有一个直观的了解。
从哲理的高度理解这门学科诞生的必然性,激发读者探寻科学真理的兴趣。
4、从一个简单的二次函数的迭代出发,利用mathematica 认识混沌现象及其所 蕴涵的规律。
5、.进一步熟悉Mathematic 软件的使用,复习总结Mathematic 在数学作图中的应用,为便于研究数学图像问题提供方便,使我们从一个新的视角去理解数学问题以及问题的实际意义。
6、在学习和运用迭代法求解过程中,体会各种迭代方法在解决问题的收敛速度上的异同点。
二、实验的环境:学校机房,mathematica4环境三、实验的基本理论和方法:1、迭代(一)—方程求解函数的迭代法思想:给定实数域上光滑的实值函数)(x f 以及初值0x 定义数列1()n n x f x +=, ,3,2,1,0=n , (1)n x , ,3,2,1,0=n ,称为)(x f 的一个迭代序列。
(1)方程求根给定迭代函数)(x f 以及初值0x 利用(1)迭代得到数列n x , ,3,2,1,0=n .如果数列收敛到某个*x ,则有)(**x f x =. (2)即*x 是方程)(x f x =的解。
由此启发我们用如下的方法求方程0)(=x g 的近似解。
将方程0)(=x g 改写为等价的方程)(x f x =, (3) 然后选取一初值利用(1)做迭代。
迭代数列n x 收敛的极限就是方程0)(=x g 的解。
为了使得迭代序列收敛并尽快收敛到方程0)(=x g 的某一解的条件是迭代函数)(x f 在解的附近的导数将的绝对值尽量小,因此迭代方程修订成x x f x h x )1()()(λλ-+== (4) 选取λ使得|)(|x h '在解的附近尽量小. 为此, 我们可以令,01)()(=-+'='λλx f x h得)(11x f '-=λ. 于是 1)()()(-'--=x f x x f x x h . 特别地,如果取x x g x f +=)()(, 则可得到迭代公式 .,1,0,)()(1 ='-=+n x g x g x x n n n n (5) (2)线性方程组的数值解的迭代求解理论与矩阵理论给定一个n 元线性方程组⎪⎩⎪⎨⎧=++=++,,1111111n n nn n n n b x a x a b x a x a (6)或写成矩阵的形式,b Ax = (7) 其中)(ij a A =是n 阶方阵,T n x x x x ),,(21 =及T n b b b b ),,,(21 =均为n 维列向量.熟知,当矩阵A 的行列式非零时,以上的方程组有唯一解.如何有效,快速地寻求大型的线性方程组的数值解释科学工程计算中非常重要的任务.而迭代法常常是求解这些问题的有效方法之一。
数学实验报告的总结(3篇)
第1篇一、实验背景随着科技的不断发展,数学实验在各个领域中的应用越来越广泛。
数学实验作为一种以计算机为工具,通过模拟、计算和验证等方法,对数学理论进行实践探索和研究的方法,已经成为数学研究的重要手段。
本次实验旨在通过数学实验,加深对数学理论的理解,提高数学应用能力,培养创新意识和团队协作精神。
二、实验目的1. 熟悉数学实验的基本方法,掌握数学实验的基本步骤。
2. 通过实验,加深对数学理论的理解,提高数学应用能力。
3. 培养创新意识和团队协作精神,提高自身综合素质。
三、实验内容本次实验主要包括以下内容:1. 实验一:线性方程组的求解通过编写程序,实现线性方程组的直接法、迭代法等求解方法,并对比分析各种方法的优缺点。
2. 实验二:矩阵运算实现矩阵的加法、减法、乘法、转置等基本运算,以及求逆矩阵、特征值和特征向量等高级运算。
3. 实验三:数值积分通过编写程序,实现定积分、变积分、高斯积分等数值积分方法,并分析各种方法的误差和适用范围。
4. 实验四:常微分方程的数值解法实现欧拉法、龙格-库塔法等常微分方程的数值解法,并对比分析各种方法的稳定性、精度和适用范围。
四、实验过程1. 确定实验内容,明确实验目的。
2. 设计实验方案,包括实验步骤、算法选择、数据准备等。
3. 编写实验程序,实现实验方案。
4. 运行实验程序,收集实验数据。
5. 分析实验数据,得出实验结论。
6. 撰写实验报告,总结实验过程和结果。
五、实验结果与分析1. 实验一:线性方程组的求解通过实验,验证了直接法和迭代法在求解线性方程组时的有效性。
直接法在求解大规模线性方程组时具有较好的性能,而迭代法在求解稀疏线性方程组时具有较好的性能。
2. 实验二:矩阵运算实验结果表明,矩阵运算的程序实现具有较高的精度和效率。
在实际应用中,可以根据具体需求选择合适的矩阵运算方法。
3. 实验三:数值积分通过实验,验证了各种数值积分方法的有效性。
高斯积分具有较高的精度,但在求解复杂函数时,需要调整积分区间和节点。
数学实验报告
西安交通大学实验报告一、某棉纺厂的原棉需从仓库运送到各车间,各车间的原棉需求量,单位产品从各仓库运往各车间的运输费以及各仓库的库存如表所列,问如何安排运输任务使得总运费最小?问题分析:该题较为简单,只要根据表中数据确定不等式,找到上下限,在根据书上的已有例子,综合自己的判断,就可写出。
f=[2,1,3,2,2,4,3,4,2];A=[1,1,1,0,0,0,0,0,0;0,0,0,1,1,1,0,0,0;0,0,0,0,0,0,1,1,1];b=[50;30;10];aeq=[1,0,0,1,0,0,1,0,0;0,1,0,0,1,0,0,1,0;0,0,1,0,0,1,0,0,1]; beq=[40,15,35];vlb=[0,0,0,0,0,0,0,0,0];vub=[];[x,fval]=linprog(f,A,b,aeq,beq,vlb,vub)结果分析:由运行结果可知,第一车间由1,2仓库分别运进10,20单位的原棉,第二车间由1仓库运进15单位的原棉,第三车间由1,3仓库分别运进25,10单位的原棉,即可使总运费最小。
二、某校学生在大学三年级第一学期必须要选修的课程只有一门,可供限定选修的课程有8门,任意选修课程有10门,由于一些课程之间互有联系,所以可能在选修某门课程中必须同时选修其他课程,这18门课程的学分数和要求同时选修课程的相应信息如表:按学校规定,每个学生每学期选修的总学分不能少于21学分,因此,学生必须在上述18门课程中至少选修19学分学校同时还规定学生每学期选修任意选修课的学分不能少于3学分,也不能超过6学分,为了达到学校的要求,试为该学生确定一种选课方案。
问题分析:本题是一道典型的0-1规划的问题,本体的难点在于,选了B一定要选A,但选了A却有选B,和不选B这两种方案,故不可采用以前普通的计算方式,考虑相减,即A-B>=0就可解决该问题。
c=[-5,-5,-4,-4,-3,-3,-3,-2,-3,-3,-3,-2,-2,-2,-1,-1,-1,-1];a=[-5,-5,-4,-4,-3,-3,-3,-2,-3,-3,-3,-2,-2,-2,-1,-1,-1,-1;0,0,0,0,0,0,0,0,3,3,3,2,2,2,1,1,1,1;0,0,0,0,0,0,0,0,-3,-3,-3,-2,-2,-2,-1,-1,-1,-1;-1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0;0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0;0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0;0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0;0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0;0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0;0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0];b=[-19;6;-3;0;0;0;0;0;0;0;0];[x,favl]=bintprog(c,a,b)favl=-favl;结果分析:有实验结果可知,连选前10门课才可达到学校的要求。
数学实验基础实验报告
实验名称:线性方程组的求解实验目的:1. 理解线性方程组的基本概念和解法。
2. 掌握高斯消元法和矩阵运算的基本方法。
3. 培养学生运用数学软件进行实验的能力。
实验器材:1. 计算机2. 数学软件(如MATLAB、Mathematica等)3. 纸和笔实验时间:2023年X月X日实验内容:一、实验背景线性方程组是数学中常见的一类问题,它在工程、物理、经济学等领域有着广泛的应用。
本实验旨在通过计算机软件,解决线性方程组的求解问题,并加深对线性代数知识的理解。
二、实验原理线性方程组的求解方法有很多,如高斯消元法、克拉默法则等。
本实验主要介绍高斯消元法。
高斯消元法是一种通过行变换将系数矩阵化为上三角矩阵,从而求解线性方程组的方法。
三、实验步骤1. 准备实验数据:根据题目要求,准备一个线性方程组,如:\[ \begin{cases}2x + 3y - z = 8 \\x - 2y + 3z = 4 \\3x + 2y - 4z = 0\end{cases} \]2. 使用数学软件编写程序,实现高斯消元法。
以下为MATLAB代码示例:```matlab% 定义系数矩阵和常数项A = [2 3 -1; 1 -2 3; 3 2 -4];b = [8; 4; 0];% 高斯消元法r = size(A, 1);for i = 1:r% 寻找主元[~, maxIndex] = max(abs(A(i:r, i)));maxIndex = maxIndex + i - 1;% 交换行A([i maxIndex], :) = A([maxIndex i], :);b([i maxIndex]) = b([maxIndex i]);% 消元for j = i+1:rfactor = A(j, i) / A(i, i);A(j, i:r) = A(j, i:r) - factor A(i, i:r);b(j) = b(j) - factor b(i);endend% 输出结果x = A \ b;disp('方程组的解为:');disp(x);```3. 运行程序,观察输出结果,验证方程组的解是否正确。
数值分析实验报告1
p
得到m=(00)T
即M0=0 ;M1=;M2=;M3=;M4=0
则根据三次样条函数定义,可得:
S(x)=
接着,在Command Window里输入画图的程序代码,
下面是画牛顿插值以及三次样条插值图形的程序:
x=[ ];
y=[ ];
plot(x,y)
hold on
for i=1:1:5
y(i)= *(x(i)*(x(i)*(x(i)*(x(i)*(x(i)*(x(i)*(x(i)
Pn=f(x0)+f[x0,x1](x-x0)+ f[x0,x1,x2](x-x0) (x-x1)+···+ f[x0,x1,···xn](x-x0) ···(x-xn-1)
我们要知道牛顿插值多项式的系数,即均差表中得部分均差。
在MATLAB的Editor中输入程序代码,计算牛顿插值中多项式系数的程序如下:
【实验原理】
《数值分析》第二章“插值法”的相关内容,包括:牛顿多项式插值,三次样条插值,拉格朗日插值的相应算法和相关性质。
【实验环境】(使用的软硬件)
软件:
MATLAB 2012a
硬件:
电脑型号:联想 Lenovo 昭阳E46A笔记本电脑
操作系统:Windows 8 专业版
处理器:Intel(R)Core(TM)i3 CPU M 350 @
实验内容:
【实验方案设计】
第一步,将书上关于三种插值方法的内容转化成程序语言,用MATLAB实现;第二步,分别用牛顿多项式插值,三次样条插值,拉格朗日插值求解不同的问题。
【实验过程】(实验步骤、记录、数据、分析)
实验的主要步骤是:首先分析问题,根据分析设计MATLAB程序,利用程序算出问题答案,分析所得答案结果,再得出最后结论。
数学实验基础 实验报告(1)常微分方程
实验一 常微分方程1. 分别用Euler 法和ode45解下列常微分方程并与解析解比较: (1) ,(0)1,13y x y y x '=+=<<Euler 法:function [t,y]=euler(Fun,tspan,y0,h) t=tspan(1):h:tspan(2); y(1)=y0;for i=1:length(t)-1y(i+1)=y(i)+h.*feval(Fun,t(i),y(i)); end t=t'; y=y';function f=Fun(x,y) % 常微分方程的右端函数 f=x+y;>> [x,y]=euler('Fun',[0,3],1,0.1)>> [x,y] ans =0 1.0000 0.1000 1.1000 0.2000 1.2200 0.3000 1.3620 0.4000 1.5282 0.5000 1.7210 0.6000 1.9431 0.7000 2.1974 0.8000 2.4872 0.9000 2.8159 1.0000 3.1875 1.1000 3.6062 1.2000 4.0769 1.3000 4.6045 1.4000 5.1950 1.5000 5.8545 1.6000 6.5899 1.7000 7.4089 1.8000 8.3198 1.9000 9.3318 2.0000 10.4550 2.1000 11.7005 2.2000 13.0805 2.3000 14.6086 2.4000 16.2995 2.5000 18.1694 2.6000 20.2364 2.7000 22.5200 2.8000 25.0420 2.9000 27.8262 3.0000 30.8988ode45:>> [x,y]=ode45('Fun',[0,3],1) ans =0 1.0000 0.0502 1.0528 0.1005 1.1109 0.1507 1.17460.2010 1.2442 0.2760 1.3596 0.3510 1.4899 0.4260 1.63610.5010 1.7996 0.5760 1.9817 0.6510 2.1838 0.7260 2.4074实验一 常微分方程0.8010 2.6544 0.8760 2.9264 0.9510 3.2254 1.0260 3.55351.1010 3.9131 1.1760 4.3065 1.2510 4.7364 1.3260 5.20561.4010 5.7172 1.4760 6.2744 1.5510 6.8810 1.6260 7.54061.7010 8.2574 1.7760 9.0359 1.8510 9.8808 1.9260 10.79742.0010 11.7912 2.0760 12.8683 2.1510 14.0351 2.2260 15.29862.3010 16.6664 2.3760 18.1466 2.4510 19.7478 2.5260 21.47962.6010 23.3522 2.6760 25.3764 2.7510 27.5641 2.8260 29.92812.9010 32.4820 2.9257 33.3694 2.9505 34.2796 2.9752 35.21343.0000 36.1711解析解:>> y=dsolve('Dy=x+y','y(0)=1','x') y =2*exp(x) - x - 1(2) 20.01()2sin(),(0)0,(0)1,05y y y t y y t ''''-+===<< Euler 法:实验一常微分方程function f=Fun(t,y)% 常微分方程的右端函数f=[y(2);0.01*y(2)^2-2*y(1)+sin(t)];>> [t,y]=euler('Fun',[0,5],[0,1],0.2)ode45:>> [t,y]=ode45('Fun',[0,5],[0,1])t =0 0.0001 0.0001 0.0002 0.0002 0.0005 0.0007 0.0010 0.0012 0.00250.0037 0.0050 0.0062 0.0125 0.0188 0.0251 0.0313 0.0627 0.0941 0.12550.1569 0.2819 0.4069 0.5319 0.6569 0.7819 0.9069 1.0319 1.1569 1.28191.4069 1.5319 1.6569 1.7819 1.90692.0319 2.1569 2.2819 2.4069 2.53192.6569 2.7819 2.90693.0319 3.1569 3.2819 3.4069 3.5319 3.6569 3.78193.90694.0319 4.1569 4.2819 4.4069 4.5319 4.6569 4.7427 4.8285 4.91425.0000y =0 1.0000 0.0001 1.0000 0.0001 1.0000 0.0002 1.0000 0.0002 1.00000.0005 1.0000 0.0007 1.0000 0.0010 1.0000 0.0012 1.0000 0.0025 1.00000.0037 1.0000 0.0050 1.0000 0.0062 1.0000 0.0125 1.0000 0.0188 1.00000.0251 0.9999 0.0313 0.9998 0.0627 0.9987 0.0941 0.9965 0.1253 0.99340.1564 0.9893 0.2786 0.9632 0.3966 0.9220 0.5085 0.8662 0.6126 0.79670.7072 0.7146 0.7908 0.6210 0.8620 0.5176 0.9198 0.4058 0.9632 0.28760.9915 0.1647 1.0043 0.0392 1.0013 -0.0869 0.9826 -0.2117 0.9485 -0.33310.8996 -0.4490 0.8365 -0.5578 0.7605 -0.6577 0.6725 -0.7471 0.5742 -0.8246实验一 常微分方程0.4669 -0.8889 0.3525 -0.9393 0.2327 -0.9748 0.1095 -0.9950 -0.0154 -0.9996-0.1398 -0.9887 -0.2619 -0.9624 -0.3798 -0.9212 -0.4916 -0.8657 -0.5957 -0.7970-0.6904 -0.7161 -0.7742 -0.6242 -0.8460 -0.5228 -0.9046 -0.4134 -0.9491 -0.2978-0.9789 -0.1777 -0.9934 -0.0549 -0.9945 0.0300 -0.9883 0.1146 -0.9748 0.1985-0.9543 0.28092. 求一通过原点的曲线,它在(,)x y 处的切线斜率等于22,0 1.57.x y x +<<若x 上限增为1.58,1.60会发生什么?function f=Fun(x,y) % 常微分方程的右端函数 f=2*x+y.^2;>> [x,y]=ode45('Fun',[0,1.57],0) x =0 0.0393 0.0785 0.1178 0.1570 0.1963 0.2355 0.2748 0.3140 0.3533 0.3925 0.4318 0.4710 0.5103 0.5495 0.5888 0.6280 0.6673 0.7065 0.7458 0.7850 0.8243 0.8635 0.9028 0.9420 0.9813 1.0205 1.0598 1.0990 1.1383 1.1775 1.2168 1.2560 1.2953 1.3345 1.3738 1.4130 1.4248 1.4367 1.4485 1.4604 1.4722 1.4840 1.4959 1.5077 1.5140 1.5203 1.5265 1.5328 1.5376 1.5424 1.5472 1.5519 1.5543 1.5567 1.5591 1.5614 1.5631 1.5647 1.5664 1.5681 1.5685 1.5690 1.5695 1.5700 y =实验一 常微分方程0 0.0015 0.0062 0.0139 0.0247 0.0386 0.0556 0.0758 0.09920.1259 0.1559 0.1895 0.2266 0.2675 0.3124 0.3615 0.4152 0.4738 0.5378 0.6076 0.6841 0.7679 0.8601 0.9620 1.0751 1.2014 1.3434 1.5045 1.6892 1.9037 2.1557 2.4577 2.8282 3.3003 3.9056 4.7317 5.9549 6.4431 7.0116 7.6832 8.4902 9.4821 10.7170 12.3090 14.4551 15.9220 17.7080 19.9390 22.8164 25.6450 29.2282 33.9673 40.5910 44.9434 50.3088 57.1229 66.1087 74.3108 84.7123 98.4901 117.7875 124.9206 132.9699 142.1268 152.641500.20.40.60.81 1.2 1.4 1.6若x 上限增为1.58,1.60,则超出运算的范围,发生溢出。
数学实验报告
数学实验报告在我们的日常生活中,数学就像一个无处不在的小精灵,总是在不经意间跳出来,给我们带来惊喜或者挑战。
这次,我就和数学来了一场奇妙的“实验之旅”。
实验名称:探索三角形内角和的奥秘实验目的:验证三角形内角和是否为 180 度实验材料:纸、笔、量角器实验过程:首先,我在纸上随意画了几个不同形状、大小的三角形,有锐角三角形、直角三角形还有钝角三角形。
我拿起量角器,小心翼翼地测量着第一个锐角三角形的三个内角。
哎呀,这可真是个精细活儿,眼睛都快要看花了。
第一个角是 50 度,第二个角是 70 度,第三个角一量,是 60 度。
我赶紧把这三个度数加起来:50 + 70 + 60 = 180 度,心里一阵小激动,难道这就是传说中的三角形内角和?接着,我又测量了一个直角三角形。
这个直角可太明显啦,一量就是 90 度。
剩下的两个锐角,一个是 30 度,另一个是 60 度。
加起来算算,90 + 30 + 60 = 180 度,太棒啦,又对上啦!最后,我测量了那个看起来有点“凶巴巴”的钝角三角形。
钝角可不好量,费了好大劲儿才量准,是 120 度。
剩下的两个角分别是 25 度和35 度。
120 + 25 + 35 = 180 度,耶!经过对这几个三角形内角的测量和计算,我发现不管三角形的形状和大小怎么变,它们的内角和好像总是 180 度。
为了进一步验证这个结论,我还尝试了把三角形的三个角剪下来,拼在一起。
嘿,您还别说,这三个角真的拼成了一个平角,也就是 180 度。
通过这次实验,我可以肯定地说:三角形的内角和就是 180 度!这就像是数学世界里的一个神奇密码,被我成功破解啦。
在这次实验中,我也遇到了一些小麻烦。
比如说,测量角度的时候,稍微手抖一下,度数就可能量错。
还有啊,剪角的时候,一不小心就把纸剪破了,真是让我有点小郁闷。
不过,这些小挫折可没有打败我,反而让我更加小心谨慎,也让我明白了做数学实验一定要有耐心和细心。
重庆大学数学实验实验一
图3:节点法的应用 如图3所示,有三个未知的外力 Ax , Ay 和 Dy ,作用在桁架与地面接触的节点上。这三个外力与4280 磅和5270磅的负载共同作用导致桁架组件的内力。桁架每个组件的内力可以通过对每个节点运用节点法 来确定。图3是节点法在每个节点应用的示意图。注意各组件已经被“割断”,假设内力方向如箭头所示。 被“割断”的组件的所有力都按张力来标示,所谓张力就是作用在桁架组件的拉力。 为了把卡车的重量从桥的中间转化为桥两端的支撑力,一些组件一定会被压缩,另一些一定会被拉 伸。所以如果最终得出的力为负,则说明假设为张力是错误的,该力实际上应该是压力。在图3中具有负 值的力的箭头应向内。 为了使桁架满足平衡条件,在每一节点处,x 轴方向和y轴方向的合力应分别为0。对应的数学表达 式为
0.8Fdh=-Fdc
E H
Fbe+0.6Fea=0 0.8Fea=Feh Fhe+0.8Fhe=0.8Fhd 0.6Fhd+0.6Fhb+Fhc=0
将每个节点的方程联立求解,便可以得到每个节点受到的压力或者拉力
四、实验结果及分析
x = 0 4760 -19040/3 -20960/3 -20960/3 23800/3 -4760 800 -5720 26200/3 19040/3 5240 2. 由于承受的压力和拉力中有大于 9000 和 6500 的.所以货车不能安全通过。 五、附录(程序等) A=[1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C=B'; format rat x=A\C 1 0 0 0.8 0 0 0 0 -0.6 1 -1 0 0 0 0 0 1 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
数学逻辑小实验报告(3篇)
第1篇一、实验目的通过本次实验,了解数学逻辑的基本概念和运用方法,提高逻辑思维能力,并学会运用数学逻辑解决实际问题。
二、实验内容1. 简单逻辑推理(1)实验材料:题目、答案(2)实验步骤:①阅读题目,理解题意;②分析题目中的条件,找出逻辑关系;③根据逻辑关系,得出结论;④核对答案,检验推理过程是否正确。
2. 排列组合问题(1)实验材料:题目、答案(2)实验步骤:①阅读题目,理解题意;②分析题目中的条件,确定问题类型;③根据问题类型,运用排列组合公式进行计算;④核对答案,检验计算过程是否正确。
3. 概率问题(1)实验材料:题目、答案(2)实验步骤:①阅读题目,理解题意;②分析题目中的条件,确定问题类型;③根据问题类型,运用概率公式进行计算;④核对答案,检验计算过程是否正确。
三、实验结果与分析1. 简单逻辑推理实验结果显示,通过运用逻辑推理,大部分同学能够正确解答题目。
在解答过程中,部分同学能够快速找出逻辑关系,得出结论;但也有部分同学在分析题目条件时,存在一定的困难,导致推理过程不够严谨。
2. 排列组合问题实验结果显示,通过运用排列组合公式,大部分同学能够正确解答题目。
在解答过程中,部分同学能够熟练运用公式,快速计算出答案;但也有部分同学在确定问题类型时,存在一定的困难,导致计算过程出错。
3. 概率问题实验结果显示,通过运用概率公式,大部分同学能够正确解答题目。
在解答过程中,部分同学能够熟练运用公式,快速计算出答案;但也有部分同学在确定问题类型时,存在一定的困难,导致计算过程出错。
四、实验结论1. 数学逻辑在解决实际问题中具有重要作用,通过本次实验,提高了我们的逻辑思维能力。
2. 在运用数学逻辑解决实际问题时,要注重分析题目条件,找出逻辑关系,确保推理过程严谨。
3. 对于排列组合问题和概率问题,要熟练掌握相关公式,提高计算速度和准确性。
五、实验建议1. 加强数学逻辑基础知识的学习,提高逻辑思维能力。
方程的数学实验报告(3篇)
第1篇一、实验目的本次实验旨在通过对方程进行数学实验,加深对一元一次方程、一元二次方程、二元一次方程组等方程的理解,提高解决实际问题的能力。
二、实验内容1. 一元一次方程(1)实验步骤:①随机生成一组一元一次方程;②利用公式法或代入法求解方程;③验证解的正确性。
(2)实验结果:实验过程中,随机生成了10组一元一次方程,其中5组采用公式法求解,5组采用代入法求解。
经过验证,所有方程的解均正确。
2. 一元二次方程(1)实验步骤:①随机生成一组一元二次方程;②利用配方法、公式法或因式分解法求解方程;③验证解的正确性。
(2)实验结果:实验过程中,随机生成了10组一元二次方程,其中4组采用配方法求解,3组采用公式法求解,3组采用因式分解法求解。
经过验证,所有方程的解均正确。
3. 二元一次方程组(1)实验步骤:①随机生成一组二元一次方程组;②利用代入法、消元法或矩阵法求解方程组;③验证解的正确性。
(2)实验结果:实验过程中,随机生成了10组二元一次方程组,其中5组采用代入法求解,3组采用消元法求解,2组采用矩阵法求解。
经过验证,所有方程组的解均正确。
三、实验总结1. 通过本次实验,我们对一元一次方程、一元二次方程和二元一次方程组有了更深入的理解,掌握了解题方法。
2. 实验结果表明,采用不同的方法求解方程,可以得到相同的解。
在实际应用中,可以根据方程的特点选择合适的求解方法。
3. 在实验过程中,我们发现了一些规律:(1)一元一次方程的解为实数;(2)一元二次方程的解可能为实数或复数;(3)二元一次方程组的解可能为唯一解、无解或无数解。
四、实验拓展1. 对不同类型的方程,尝试使用计算机编程进行求解,提高实验效率。
2. 研究方程在实际问题中的应用,如经济、工程等领域。
3. 探讨方程在数学建模中的应用,提高解决实际问题的能力。
五、实验反思本次实验过程中,我们对方程的求解方法进行了深入研究,取得了一定的成果。
但在实验过程中,也存在一些不足之处:1. 实验数据量较小,可能无法全面反映各种方程的求解规律。
最新哈工大数学实验实验报告
最新哈工大数学实验实验报告实验目的:本次实验旨在通过一系列数学问题的求解,加深对高等数学理论的理解,并掌握数学建模的基本方法。
通过实际操作,提高运用数学工具解决实际问题的能力。
实验内容:1. 问题一:求解一元二次方程- 描述:给定一元二次方程 ax^2 + bx + c = 0,其中 a, b, c为已知系数,求解该方程的根。
- 方法:应用求根公式,即 x = (-b ± √(b^2 - 4ac)) / (2a)。
- 结果:计算得到方程的两个解,并验证其正确性。
2. 问题二:线性规划问题- 描述:给定一组线性约束条件和目标函数,求线性规划问题的最优解。
- 方法:使用单纯形法进行迭代求解。
- 结果:找到最优解,并给出对应的目标函数值。
3. 问题三:概率分布与统计推断- 描述:根据一组实验数据,估计总体分布的参数,并进行假设检验。
- 方法:利用最大似然估计法确定参数,再应用t检验进行假设检验。
- 结果:得出参数估计值和假设检验的结果。
实验环境:- 软件:MATLAB、Mathematica、R语言等数学软件。
- 硬件:个人计算机,具备足够的计算能力。
实验步骤:1. 准备阶段:收集所需的数据和资料,安装并熟悉相关数学软件。
2. 实验阶段:按照实验内容,逐步完成每个问题的求解。
3. 分析阶段:对求解结果进行分析,验证其合理性。
4. 总结阶段:撰写实验报告,总结实验过程中的关键点和学习到的知识。
实验结果:- 问题一的解验证了求根公式的有效性。
- 问题二的最优解展示了单纯形法在解决线性规划问题中的应用。
- 问题三的参数估计和假设检验结果为实际问题提供了决策依据。
实验结论:通过本次实验,我们不仅巩固了数学理论知识,而且通过实际操作提升了解决实际问题的能力。
数学建模和计算工具的应用对于理解和应用数学至关重要。
在未来的学习中,我们将继续探索更多的数学问题和解决方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的题名,连同表号置于表上。图表的题名及其中的文字采用小 5 号宋体。公式应该有编号,编号 靠右端。
1.求微分方程的解析解, 并画出它们的图形, y’= y + 2x, y(0) = 1, 0<x<1; y’’+ycos(x) = 0, y(0)=1, y’(0)=0;
Code: 1.1 clear y=dsolve('Dy=y+2*x','y(0)=1','x'); ezplot(y,[0 1]) Result:
end Result:
25
20
15
10
5
0
-5
-10
-15
0
1
2
3
4
5
6
7
8
9 10
可见,图像呈混沌状。
4.Apollo 卫星的运动轨迹的绘制
x 2 y x 1(x ) (x 1) ,
r13
r23
y2xy来自1 y r13y r23
,
1/ 82.45, 1 1 ,
r1 (x )2 y2 , r2 (x 1)2 y2 x(0) 1.2, x(0) 0, y(0) 0, y(0) 1.04935751
5 号宋体 三、数学模型的建立与求解(一般应包括模型、求解步骤或思路,程序放在后面的附录中)
5 号宋体 四、实验结果及分析
5 号宋体 五、附录(程序等) 5 号宋体 总结与体会 设计记录表格,包括碰到的问题汇总及解决情况 注 行距:选最小值 16 磅,每一图应有简短确切的题名,连同图号置于图下。每一表应有简短确切
重庆大学 学生实验报告
实验课程名称
数学实验
开课实验室
DS1402
学
院 联合学院 年级 2014 专业班电气工程
学 生 姓 名 赖一多 学 号 20146397
开 课 时 间 2014 至 2015 学年第 二 学期
总成绩 教师签名
数学与统计学院制
开课学院、实验室:
日
课程 名称 指导 教师
实验项目 名称 成绩
Result: 以下为部分数值解和图像
20
10
0
-10
-20
-30
-40
-50
-60
-70
-80
0
1
2
3
4
5
6
7
8
9 10
x' y z
y'
x
ay
z' b z(x c)
3.Rossler 微分方程组:
当固定参数 b=2, c=4 时,试讨论随参数 a 由小到大变化(如 a∈(0,0.65))而方程解的变化情况,并
end M文件: function equ=P5(t,x)
equ=[-10.5*x(1)/x(2);3.5];
result:
0.02
0.019
0.018
含 含 含 含 kg/L含
0.017
0.016
0.015
0.014
0.013
0
1
2
3
4
5
6
7
8
9 10
含含
9.River-bay 系统水污染问题
一条河流和河湾与大湖相连,位于湾上游的小河是造成湾污染的主要因素,另有一座铝厂恰好建在 湾旁,也造成污染。当湾中污染物平均浓度达到 1.6mg/l 时,铝厂将被迫暂时关闭。假使该湾的容量为 4,000,000 公升, 流入和流出河湾的水流速度均为 40,000 公升/天,若当前该河湾水中的污染物浓度为 0.8mg/l,河水中污染物的浓度为 0.5mg/l。要求
Code: clear
[t x]=ode23('P5',0:0.1:10,[7 350]); count=1;
for t=0:0.1:10 plot(t,x(count,1)/x(count,2),'--');xlabel('ʱ¼ä');ylabel('º¬ÑÎÁ¿£¨kg/L£©'); hold on count=count+1;
且画出空间曲线图形,观察空间曲线是否形成混沌状?
Code: clear global a
for a=0:0.05:0.65; [t x]=ode45('P3',[0 10],[1 1 1]); plot(t,x) hold on end
M 文件: function equ=fun(t,x) global a b=2;c=4; equ=[0 -1 -1;1 a 0;x(3) 0 -c]*x+[0;0;b];
Result:
8
6
4
2
0
-2
-4
-6
-8
0
1
2
3
4
5
6
7
8
9 10
5.盐水的混合问题
一个圆柱形的容器,内装 350 升的均匀混合的盐水溶液。如果纯水以每秒 14 升的速度从容器顶部流 入,同时,容器内的混合的盐水以每秒 10.5 升的速度从容器底部流出。开始时,容器内盐的含量为 7 千 克。求经过时间 t 后容器内盐的含量。
Code: clear global u u1 u=1/82.45;u1=1-u; [t x]=ode45('P4',[0 10],[1.2 0 0 -1.04935751]); plot(t,x) M文件: function eqt=P4(t,x) global u u1
r1=sqrt(((x(1)+u))^2+x(3)^2); r2=sqrt(((x(1)-u1)^2)+x(3)^2); eqt(1,1)=x(2); eqt(2,1)=2*x(4)+x(1)-u1*(x(1)+u)/r1^3-u*(x(1)-u1)/r2^3; eqt(3,1)=x(4); eqt(4,1)=-2*x(2)+x(3)-u1*x(3)/r1^3-u*x(3)/r2^3;
3 exp(x) - 2 x - 2
4
3.5
3
2.5 2
1.5
1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x
1.2 Code: clear [t y]=ode23('wf',[0 10],[0 1]); plot(t,y(:,1)) M 文件 function yd = wf( t,y ) yd=[y(2);-y(1)*cos(t)]
实验时间 :
年月
实验项目类型
验证 演示 综合 设计 其他
实验目的 5 号宋体 实验内容 5 号宋体 基础实验 一、问题重述 5 号宋体 二、实验过程(一般应包括实验原理或问题分析,变量说明、程序、调试情况记录、图表等, 实验
结果及分析) 5 号宋体
应用实验(或综合实验) 一、问题重述 5 号宋体 二、问题分析