选修2-2 第二章 推理与证明(A)
2019-2020学年高中数学选修2-2第二章推理科与证明章末复习讲义
第二章推理与证明知识系统整合规律方法收藏1.图形中的归纳推理问题主要涉及某些固定图形的个数,所以常常需要转化成数列问题来求解,常用的思路有两种:(1)直接查个数,找到变化规律后再猜想;(2)观察图形的变化规律.2.探索性问题是数学中的一类重要问题,如探讨数列的通项、前n 项和、立体几何、解析几何中的性质等,在处理时,先采用合情推理猜想、再采用演绎推理的论证方法.3.对于较为复杂的数学命题,不论是从“已知”推向“结论”,还是由“结论”靠向“已知”,都有一个比较长的过程,单靠分析或综合显得较为困难.为保证探索方向准确且过程快捷,人们又常常把分析与综合两者并列起来使用,即常采取同时从已知和结论出发,寻找问题的一个中间目标.从已知到中间目标运用综合法思索,而由结论到中间目标运用分析法思索,以中间目标为桥梁沟通已知与结论,构建出证明的有效路径.把分析法与综合法两者结合起来进行思考,寻求问题的解答途径的方式就是人们通常所说的分析综合法,也就是常说的“两路夹攻,一攻就通”的证明思路.4.解决数学中的证明问题,既要掌握常用的证明方法的思维过程、特点,又要有牢固的数学基础知识.另外,还应掌握证明的一些常用方法与技巧,证明常用的方法与技巧有以下几种:(1)换元法.换元法是结构较为复杂且量与量之间的关系不甚明了的命题,通过恰当地引入新变量,代换原命题中的部分式子,简化原有结果,使其转化为便于研究的形式.常见的有代数换元与三角换元.在应用换元法时,要注意新变量的取值范围,即代换的等价性.换元法步骤:①设元(或构造元)――→ 转化②求解――→ 等量③回代――→ 等价原则④检验(2)放缩法.放缩法常用于证明不等式.欲证A ≥B ,可通过适当放大或缩小,借助一个或多个中间量使得B ≤B 1,B 1≤B 2,…,B i ≤A 或A ≥A 1,A 1≥A 2,…,A i ≥B ,再利用传递性,以达到证明的目的,这种方法叫放缩法.应用放缩法时,放缩目标必须确定,而且要恰到好处,目标往往要从证明的结论考察,常用的放缩方法有增项、减项或利用分式的性质、不等式性质、已知不等式、函数的性质等.其放缩技巧主要有以下几种:①添加或舍去一些项,如: a 2+1>|a |;n n +1>n ;②将分子或分母放大(或缩小) 当a ,b ,c >0时,a b +c +b a +c +ca +b >a a +b +c +b a +b +c +ca +b +c;③利用基本不等式,如:lg 3·lg 5<⎝ ⎛⎭⎪⎫lg 3+lg 522=lg 15<lg 16=lg 4;④利用常用结论 ⅰ.1k的放缩:2k +k +1<22k <2k +k -1;ⅱ.1k 2的放缩(a):1kk +1<1k 2<1k k -1(程度大); ⅲ.1k 2的放缩(b):1k 2<1k 2-1=1k +1k -1=12⎝ ⎛⎭⎪⎫1k -1-1k +1(程度小);ⅳ.1k2的放缩(c):1k 2<44k 2-1=2⎝ ⎛⎭⎪⎫12k -1-12k +1(程度更小);ⅴ.分式放缩还可利用真(假)分数的性质:b a >b +m a +m (b >a >0,m >0)和b a <b +ma +m(a >b >0,m >0). (3)判别式法.判别式法是根据已知或构造出来的一元二次方程、一元二次不等式、二次函数的根、解集、函数的性质等特征确定出其判别式所应满足的不等式,从而推出结论的方法.利用判别式法证明时,应先将问题转化为与二次三项式相关的问题,再利用判别式法求解,要注意二次项系数是否为零.此外还有导数法、添项法、几何法、构造函数法等. 5.用数学归纳法证题的步骤(1)证明当n 取第一个值n 0(例如n 0=1或n 0=2)时结论正确.(2)假设当n =k (k ∈N *,k ≥n 0)时结论正确,证明当n =k +1时结论也正确. 在完成了这两个步骤以后,就可以断定结论对于从n 0开始的所有正整数n 都正确. 应用数学归纳法证明时要注意以下几点:(1)步骤要完整、规范,即“两步一结论”缺一不可,且第二步证明一定要用到归纳假设. (2)n 的第一个值n 0应根据具体问题来确定.(3)假设当n =k (k ∈N *,且k ≥n 0)时结论正确,并不一定都是证明n =k +1时结论也正确.如用数学归纳法证明“当n 为正偶数时x n-y n能被x +y 整除”,第一步应验证n =2时,命题成立;第二步归纳假设成立应写成假设当n =k 时命题成立,则当n =k +2时,命题也成立.(4)用数学归纳法可证明有关正整数的问题,但并不是所有的正整数问题都可以用数学归纳法证明的.例如:用数学归纳法证明⎝⎛⎭⎪⎫1+1n (n ∈N *)的单调性就难以实现.一般来说,从n =k 时的情形过渡到n =k +1的情形时,如果问题中存在可利用的递推关系,则数学归纳法有用武之地,否则使用数学归纳法就有困难.做题时要注意具体问题具体分析.学科思想培优一、归纳推理和类比推理的应用例1 古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图(1)中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,图(2)中的1,4,9,16,…,这样的数称为正方形数.下列数中既是三角形数又是正方形数的是( )A.289 B .1024 C .1225 D .1378[解析] 由图形可得三角形数构成的数列通项a n =n2(n +1),正方形数构成的数列通项b n =n 2,则由b n =n 2(n ∈N *)可排除D.又由a n =n 2(n +1),当a n =289时,即验证是否存在n ∈N *,使得n (n +1)=578,经计算n 不存在;同理,依次验证,有1225×2=49×50,且352=1225,故选C.[答案] C 拓展提升解决此类题目时,需要细心观察图形,寻找每一项与序号之间的关系,同时还要联系相关的知识,注意抽象出的是数列的哪类公式.例2 在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图所示的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,如果用S 1,S 2,S 3表示三个侧面面积,S 4表示截面面积,那么你类比得到的结论是________.[解析] 在进行类比推理时,应该注意平面图形中的点、线分别与空间图形中的线、面类比;平面图形的长度、面积分别与空间图形中的面积、体积类比,结论易得.[答案] S 21+S 22+S 23=S 24 拓展提升类比推理应从具体问题出发,通过观察、分析、类比、归纳而得出结论.通常情况下,平面图形的边长、面积往往类比空间几何体的面积、体积.二、演绎推理的应用例3 将下列演绎推理写成三段论的形式.(1)所有偶数都能被2整除,0 是偶数,所以0能被2整除;(2)循环小数是有理数,0.332·是循环小数,所以0.332·是有理数; (3)通项公式a n =2n +3的数列{a n }为等差数列; (4)函数f (x )=x 3是奇函数.[解] (1)所有偶数都能被2整除,(大前提) 0是偶数,(小前提) 0能被2整除.(结论)(2)循环小数是有理数,(大前提)0.332·是循环小数,(小前提)0.332·是有理数.(结论)(3)数列{a n }中,如果当n ≥2时,a n -a n -1为常数,则{a n }为等差数列,(大前提) 通项公式a n =2n +3时,若n ≥2,则a n -a n -1=2n +3-[2(n -1)+3]=2(常数),(小前提)通项公式a n =2n +3表示的数列{a n }为等差数列.(结论)(4)对于定义域关于原点对称的函数f (x ),若f (-x )=-f (x ),则函数f (x )是奇函数,(大前提)函数f (x )=x 3的定义域关于原点对称,f (-x )=(-x )3=-x 3=-f (x ),即f (-x )=-f (x ),(小前提)所以函数f (x )=x 3是奇函数.(结论) 拓展提升用三段论写推理过程时,关键是明确大、小前提;有时可省略小前提,有时甚至也可大前提与小前提同时省略,在寻找大前提时,可找一个使结论成立的充分条件作为大前提.三、直接证明例4 设a ,b ,c 为三角形三边,面积S =12(a +b +c ),且S 2=2ab ,试证:S <2a .[证明] (分析法)要证S <2a ,由于S 2=2ab ,即2a =S 2b ,所以只需证S <S 2b,即证b <S ,因为S =12(a +b +c ),所以只需证b <12(a +b +c ),即证b <a +c ,由于a ,b ,c 为三角形三边,所以上式显然成立,于是原命题成立.(综合法)因为a ,b ,c 为三角形三边,所以a +c >b ,所以a +b +c >2b , 又因为S =12(a +b +c ),即a +b +c =2S ,所以2S >2b ,所以S ·S >b ·S ,由于S 2=2ab ,所以2ab >bS ,即2a >S ,所以原命题得证. 拓展提升知识链之间的等价联系是产生一题多解的本质所在,掌握了这个“法宝”,必然会促进解题能力的逐步提高.四、反证法例5 设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明:数列{a n +1}不是等比数列. [解] (1)设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1qn -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n,∴S n =a 11-q n1-q,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n1-q,q ≠1.(2)证明:假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =qk -1+qk +1.∵q ≠0,∴q 2-2q +1=0,∴q =1,这与已知矛盾, ∴假设不成立,故{a n +1}不是等比数列. 拓展提升当命题结论中出现“至多”“至少”“不可能”“都不”“不是”等否定性词语时,常用反证法.对于“否定”型命题,从正面证明需要证明的情况太多,直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆.五、数学归纳法例6 用数学归纳法证明:对一切n∈N *,1+122+132+…+1n 2≥3n 2n +1.[证明] (1)当n =1时,左边=1, 右边=3×12×1+1=1,不等式成立.(2)假设当n =k (k ∈N *)时,不等式成立, 即1+122+132+…+1k 2≥3k 2k +1,则当n =k +1时,要证1+122+132+…+1k 2+1k +12≥3k +12k +1+1,只需证3k 2k +1+1k +12≥3k +12k +3.因为3k +12k +3-⎣⎢⎡⎦⎥⎤3k 2k +1+1k +12=34k +12-1-1k +12=1-k +12k +12[4k +12-1]=-k k +2k +124k 2+8k +3≤0,所以3k 2k +1+1k +12≥3k +12k +3,即1+122+132+…+1k 2+1k +12≥3k +12k +1+1,所以当n =k +1时不等式成立.由(1)(2)知,不等式对一切n ∈N *都成立. 拓展提升本题在知道结果以后,执果索因,用分析法进行证明.在解题过程中数学归纳法通常与其他方法综合运用,如比较法、放缩法、配凑法、分析法和综合法.例7 已知点的序列A n (x n,0),n ∈N *,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点,….(1)写出x n 与x n -1,x n -2之间的关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1,a 2,a 3,由此猜想数列{a n }的通项公式,并加以证明. [解] (1)当n ≥3时,x n =x n -1+x n -22;(2)a 1=x 2-x 1=a ,a 2=x 3-x 2=x 2+x 12-x 2=-12(x 2-x 1)=-a 2,a 3=x 4-x 3=x 3+x 22-x 3=-12(x 3-x 2)=-12⎝ ⎛⎭⎪⎫-12a =14a ,由此猜想a n =⎝ ⎛⎭⎪⎫-12n -1a (n ∈N *),用数学归纳法证明如下:①当n =1时,a 1=x 2-x 1=a =⎝ ⎛⎭⎪⎫-120a ,猜想成立;②假设当n =k (n ∈N *)时,猜想成立,即a k =⎝ ⎛⎭⎪⎫-12k -1a 成立,那么,a k +1=x k +2-x k +1=x k +1+x k2-x k +1=-12(x k +1-x k )=-12a k =-12⎝ ⎛⎭⎪⎫-12k -1a=⎝ ⎛⎭⎪⎫-12(k +1)-1a ,即当n =k +1时猜想也成立. 根据①和②,可知{a n }的通项公式为a n =⎝ ⎛⎭⎪⎫-12n -1a (n ∈N *).拓展提升由已知求出数列的前n项,提出猜想,然后再用数学归纳法证明,是不完全归纳法与数学归纳法相结合的一种重要的解决数列通项公式的方法,证明的关键是根据已知条件和假设寻找a k与a k+1或S k与S k+1之间的关系,从而为数学归纳法的实施做了必要的准备.。
人教版高中数学选修2-2第二章推理与证明复习小结优质课件
现命题等,著名哲学家康德说:“每当理智缺乏可靠论证思
路时,类比法往往能指明前进的方向.”
工具
人教A版数学选修2-2 第二章 推理与证明
栏目导引
特别提醒: (1) 归纳推理是由部分到整体,个体到一般
的推理,其结论正确与否,有待于严格证明.
(2) 进行类比推理时,要合理确定类比对象,不能乱 比,要对两类对象的共同特点进行对比.
[ 思维点击 ] 归纳猜想 ――→ fn推理与证明
栏目导引
1 [规范解答] 因为 an= 2, n+1 f(n)=(1-a1)(1-a2)„(1-an) 1 3 所以 f(1)=1-a1=1-4=4,
1 1- f(2)=(1-a1)(1-a2)=f(1)· 9
推理与证明章末小结
工具
人教A版数学选修2-2 第二章 推理与证明
栏目导引
一、合情推理和演绎推理
1.归纳和类比是常用的合情推理,都是根据已有的事
实,经过观察、分析、比较、联想,再进行归纳类比,然后 提出猜想的推理.从推理形式上看,归纳是由部分到整体, 个别到一般的推理,类比是由特殊到特殊的推理,演绎推理 是由一般到特殊的推理.
推出结论的线索不够清晰; (2) 如果从正面证明,需要分成多种情形进行分类讨 论,而从反面进行证明,只要研究一种或很少的几种情形.
工具
人教A版数学选修2-2 第二章 推理与证明
栏目导引
三、数学归纳法
数学归纳法是推理逻辑,它的第一步称为归纳奠基,是
论证的基础保证,即通过验证落实传递的起点,这个基础必 须真实可靠;它的第二步称为归纳递推,是命题具有后继传 递性的保证,两步合在一起为完全归纳步骤,这两步缺一不 可,第二步中证明“当n =k +1 时结论正确”的过程中,必
高中数学 第二章 推理与证明 2.1.2 类比推理说课稿 新人教A版选修2-2(2021年最新整理)
高中数学第二章推理与证明2.1.2 类比推理说课稿新人教A版选修2-2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章推理与证明2.1.2 类比推理说课稿新人教A版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章推理与证明2.1.2 类比推理说课稿新人教A版选修2-2的全部内容。
2.1.2类比推理一、教材分析(1)课题内容课题内容是《类比推理》,出自普通高中新课程标准实验教科书人教A版高中数学选修2—2.(2)地位和作用本节课是《推理与证明》的起始内容。
《推理与证明》是数学的一种基本思维过程,也是人们在学习和生活中经常使用的一种思维方式.贯穿于高中数学的整个知识体系,同时也对后续知识的学习起到引领作用。
合情推理有助于发现新的规律和事实,是重要的数学思想方法之一。
(3)重点,难点重点:了解类比推理的含义,作用,掌握类比推理的步骤,体会类比推理的思想。
难点:类比推理步骤中的如何发现几个事实的共性,如何由个别事实总结,类比出其他事实的命题。
一、学情分析(1)在进行本节课的教学时,学生已经有大量的运用类比推理生活实例和数学实例,这些内容是学生理解类比推理的重要基础,因此教学时应充分注意这一教学条件,引导学生多进行类比与概括。
(2)数学史上有一些著名的猜想是运用类比推理的典范,教学这一内容时应充分利用这一条件,不仅可让学生体会类比推理的过程,感受类比推理能猜测和发现一些新结论,探索和提供解决一些问题的思路和方向的作用,还可利用著名猜想让学生体会数学的人文价值,激发学生学习数学的兴趣和探索真理的欲望。
(人教A版)数学【选修2-2】2-2-2《反证法》ppt课件
规律技巧 用反证法证明“至多”“至少”型命题,可减 少讨论情况,目标明确.否定结论时需弄清楚结论的否定是什 么,避免出现错误.需仔细体会“至多有一个”“至少有一 个”的含义.
三 用反证法证明否定性命题 【例3】 求证抛物线上任取四点所组成的四边形不可能
是平行四边形.
已知:如图所示,A,B,C,D是抛物线y2=2px(p>0)上的 任意四点,其坐标分别是(x1,y1),(x2,y2),(x3,y3),(x4, y4).连接AB,BC,CD,DA.
答案 D
3.求证:如果a>b>0,那么n
n a>
b(n∈N,且n>1).
证明 假设n a不大于n b,则n a=n b,或n a<n b.
当n a=n b时,则有a=b. 这与a>b>0相矛盾.
当n
n a<
b时,则有a<b,
这也与a>b相矛盾.
所以n
a>
b.
4.若a,b,c均为实数,且a=x2-2y+
求证:四边形ABCD不可能是平行四边形. 【分析】 解答本题的关键在于通过假设,根据平行四边 形对边所在直线的斜率相等,推出结论与已知条件相矛盾,从 而肯定原命题正确.
【证明】 由题意得,直线AB的斜率为 kAB=xy22--xy11=y12+py2,同理kBC=y32+py2, kCD=y42+py3,kDA=y12+py4. 假设四边形ABCD为平行四边形,则有kAB=kCD,kBC=kDA. 即有yy23+ +yy12= =yy31+ +yy44, ,① ② 由①-②,得y1-y3=y3-y1,
π 2
,b=y2-2z+
π3,c=z2-2x+6π.
高二数学选修2-2:第二章 推理与证明
【例 3】 一直线与△ABC 的边 AB,AC 分别相交于 E,F,则SS△△AABECF =AABE··AACF.将平面上的三角形与空间中的三棱锥进行类比,试 推理三棱锥的性质,并给出证明. 解 在三棱锥 S-ABC 中,平面 α 与侧棱 SA,SB,SC 分别相 交于 D,E,F. 则VVSS--DABECF=SSDA··SSBE··SSCF. 证明如下:
则当 n=k+1 时,2+2 1·4+4 1·…·2k2+k 1·22kk++31
> k+1·22kk++31=22kk++31.
要证当 n=k+1 时结论成立,
只需证 2
2k+k+3 1>
k+2成立,
只需证:4k2+12k+9>4k2+12k+8 成立,显然成立,
∴当 n=k+1 时,2+2 1·4+4 1·…·2k2+k 1·22kk++31> k+1+1成立, 综合①②可知不等式b1b+1 1·b2b+2 1·…·bnb+n 1> n+1成立.
从而只需证 2
a2+a12≥ 2 a+1a,
只要证 4a2+a12≥2a2+2+a12,
即 a2+a12≥2,而上述不等式显然成立,故原不等式成立.
【例5】 如图,在四面体B-ACD中,CB=CD,AD⊥BD,且E,F 分别是AB,BD的中点,求证: (1)直线EF∥平面ACD; (2)平面EFC⊥平面BCD.
∴AB∥EN. 又AB∥CD∥EF, ∴EN∥EF, 这与EN∩EF=E矛盾,故假设不成立. ∴ME与BN不共面,即它们是异面直线.
专题四 数学归纳法 1.数学归纳法事实上是一种完全归纳的证明方法,它适用于与自
然数有关的问题.两个步骤、一个结论缺一不可,否则结论不 成立;在证明递推步骤时,必须使用归纳假设,必须进行恒等 变换. 2.探索性命题是近几年高考试题中经常出现的一种题型,此类问 题未给出问题的结论,需要由特殊情况入手,猜想、证明一般 结论,它的解题思路是:从给出条件出发,通过观察、试验、 归纳、猜想、探索出结论,然后再对归纳,猜想的结论进行证 明.
(完整版)数学选修2-2练习题及答案
目录:数学选修2-2第一章 导数及其应用 [基础训练A 组] 第一章 导数及其应用 [综合训练B 组] 第一章 导数及其应用 [提高训练C 组] 第二章 推理与证明 [基础训练A 组] 第二章 推理与证明 [综合训练B 组]第二章 推理与证明 [提高训练C 组] 第三章 复数 [基础训练A 组] 第三章 复数 [综合训练B 组]第三章 复数 [提高训练C 组](数学选修2-2)第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。
2014年人教A版选修2-2课件 第二章小结(推理与证明)
小前提: 这个对象是某事物, S 是 M. 结论: 这个对象有某特征. S 是 P.
要使结论正确, 必须大小前提正确.
6. 直接证明 综合法: 由已知、定义、定理、公理等, 经过推理论证, 推导结论成立. 由因导果 分析法: 从结论出发, 逐步寻求使它成立 的充分条件, 最后归结到一个明显成立的条件. 执果索因 综合法与分析法都属直接证明.
2.1 合情推理与演绎推理 2.2 直接证明与间接证明 2.3 数学归纳法 第二章 小结
本章小结
知识要点 例题选讲
复习参考题 自我检测题
1. 归纳推理
由某事物的部分对象具有某些特征, 推出该 类事物的全部对象都具有这些特征的推理, 或者 由个别事实概括出一般结论的推理, 即由部分到 整体, 由个别到一般.
例2. 观察下列各式: 55=3125, 56=15625, 57=78125, … 则 52013的末四位数字为 ( A ) (A) 3125 (B) 5625 (C) 0625 (D) 8125 分析: 56 与 55 的末四位之差为 5625-3125=2500, 57 与 56 的末四位之差为 8125-5625=2500. 猜测: 5n+1 比 5n 末四位多 2500. 而 4 个2500 等于 10000,
例4. 在平面上, 若两个正三角形的边长的比为 1:2, 则它们的面积比为 1:4. 类似地, 在空间中, 若 两个正四面体的棱长的比为 1:2, 则它们的体积比 为 1:8 . 分析: 面积是平方单位, 体积是立方单位.
那么估计体积比是 1:8.
(类比推理)
例5. 直线 l1: y=k1x+1, l2: y=k2x-1, 其中实数 k1, k2 满足 k1k2+2=0. (1) 证明 l1 与 l2 相交; (2) 证明 l1 与 l2 的交点在椭圆 2x2+y2=1 上. 证明: (1) 反证法: 假设 l1 与 l2 不相交, 那么 k1=k2, 则 k1k2+2=k12+2 >0, 这与已知的 k1k2+2=0 矛盾. ∴假设不成立, 则命题: “l1 与 l2 相交” 成立.
2014-2015学年人教a版数学选修2-2第2章《推理与证明》综合检测(含答案)
第二章综合检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.观察数列1,2,2,3,3,3,4,4,4,4,…的特点,按此规律,则第100项为( ) A .10 B .14 C .13 D .100[答案] B[解析] 设n ∈N *,则数字n 共有n 个, 所以n (n +1)2≤100即n (n +1)≤200,又因为n ∈N *,所以n =13,到第13个13时共有13×142=91项,从第92项开始为14,故第100项为14.2.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,因为( )A .大前提错误B .小前提错误C .推理形式错误D .不是以上错误[答案] C[解析] 大小前提都正确,其推理形式错误.故应选C.3.用数学归纳法证明等式1+2+3+…+(n +3)=(n +3)(n +4)2(n ∈N *)时,验证n =1,左边应取的项是( )A .1B .1+2C .1+2+3D .1+2+3+4[答案] D[解析] 当n =1时,左=1+2+…+(1+3)=1+2+3+4,故应选D. 4.(2012·福建南安高二期末)下列说法正确的是( ) A .“a <b ”是“am 2<bm 2”的充要条件B .命题“∀x ∈R ,x 3-x 2-1≤0”的否定是“∃x ∈R ,x 3-x 2-1≤0”C .“若a 、b 都是奇数,则a +b 是偶数”的逆否命题是“若a +b 不是偶数,则a 、b 不都是奇数”D .若p ∧q 为假命题,则p 、q 均为假命题 [答案] C[解析] A 中“a <b ”是“am 2<bm 2”的必要不充分条件,故A 错;B 中“∀x ∈R ,x 3-x 2-1≤0”的否定是“∃x ∈R ,x 3-x 2-1>0”,故B 错;C 正确;D 中p ∧q 为假命题,则p 、q 中至少有一个为假命题,故D 错. 5.(2014·东北三校模拟) 下列代数式(其中k ∈N *)能被9整除的是( ) A .6+6·7k B .2+7k -1C .2(2+7k +1)D .3(2+7k )[答案] D[解析] 特值法:当k =1时,显然只有3(2+7k )能被9整除,故选D. 证明如下:当k =1时,已验证结论成立,假设当k =n (n ∈N *)时,命题成立,即3(2+7n )能被9整除,那么3(2+7n +1)=21(2+7n )-36.∵3(2+7n )能被9整除,36能被9整除, ∴21(2+7n )-36能被9整除, 这就是说,k =n +1时命题也成立. 故命题对任何k ∈N *都成立.6.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14[答案] D[解析] 项数为n 2-(n -1)=n 2-n +1,故应选D. 7.已知a +b +c =0,则ab +bc +ca 的值( ) A .大于0 B .小于0 C .不小于0 D .不大于0[答案] D[解析] 解法1:∵a +b +c =0, ∴a 2+b 2+c 2+2ab +2ac +2bc =0,∴ab +ac +bc =-a 2+b 2+c 22≤0.解法2:令c =0,若b =0,则ab +bc +ac =0,否则a 、b 异号,∴ab +bc +ac =ab <0,排除A 、B 、C ,选D.8.已知c >1,a =c +1-c ,b =c -c -1,则正确的结论是( ) A .a >b B .a <bC .a =bD .a 、b 大小不定[答案] B[解析] a =c +1-c =1c +1+c ,b =c -c -1=1c +c -1,因为c +1>c >0,c >c -1>0, 所以c +1+c >c +c -1>0,所以a <b .9.定义一种运算“*”;对于自然数n 满足以下运算性质:( ) (i)1]B.n +1 C .n -1 D .n 2[答案] A[解析] 令a n =n *1,则由(ii)得,a n +1=a n +1,由(i)得,a 1=1,∴{a n }是首项a 1=1,公差为1的等差数列,∴a n =n ,即n *1=n ,故选A. 10.(2013·济宁梁山一中高二期中)已知函数f (x )满足f (0)=0,导函数f ′(x )的图象如图所示,则f (x )的图象与x 轴围成的封闭图形的面积为( )A .13B .43C .2D .83[答案] B[解析] 由f ′(x )的图象知,f ′(x )=2x +2,设f (x )=x 2+2x +c ,由f (0)=0知,c =0,∴f (x )=x 2+2x , 由x 2+2x =0得x =0或-2.故所求面积S =-⎠⎛0-2(x 2+2x )dx =⎪⎪-(13x 3+x 2)0-2=43. 11.已知1+2×3+3×32+4×32+…+n ×3n -1=3n (na -b )+c 对一切n ∈N *都成立,那么a 、b 、c 的值为( )A .a =12,b =c =14B .a =b =c =14C .a =0,b =c =14D .不存在这样的a 、b 、c[答案] A[解析] 令n =1、2、3,得⎩⎪⎨⎪⎧3(a -b )+c =1,9(2a -b )+c =7,27(3a -b )+c =34.所以a =12,b =c =14.12.设函数f (x )定义如下表,数列{x n }满足x 0=5,且对任意的自然数均有x n +1=f (x n ),则x 2011=( )A.1 C .4 D .5[答案] C[解析] x 1=f (x 0)=f (5)=2,x 2=f (2)=1,x 3=f (1)=4,x 4=f (4)=5,x 5=f (5)=2,…,数列{x n }是周期为4的数列,所以x 2011=x 3=4,故应选C.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.在△ABC 中,D 为边BC 的中点,则AD →=12(AB →+AC →).将上述命题类比到四面体中去,得到一个类比命题: _____________________________________________________.[答案] 在四面体A -BCD 中,G 为△BCD 的重心,则AG →=13(AB →+AC →+AD →)14.(2013·安阳中学高二期末)设函数f (x )=x x +2(x >0),观察:f 1(x )=f (x )=xx +2,f 2(x )=f (f 1(x ))=x 3x +4,f 3(x )=f (f 2(x ))=x 7x +8,f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________.[答案]x(2n-1)x +2n[解析] 观察f 1(x )、f 2(x )、f 3(x )、f 4(x )的表达式可见,f n (x )的分子为x ,分母中x 的系数比常数项小1,常数项依次为2,4,8,16……2n .故f n (x )=x(2n-1)x +2n.14.(2014·厦门六中高二期中)在平面上,我们用一直线去截正方形的一个角,那么截下的一个直角三角形,按如图所标边长,由勾股定理有c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,如果用S 1、S 2、S 3表示三个侧面面积,S 表示截面面积,那么类比得到的结论是________.[答案] S 2=S 21+S 22+S 23[解析] 类比如下:正方形↔正方体;截下直角三角形↔截下三侧面两两垂直的三棱锥;直角三角形斜边平方↔三棱锥底面面积的平方;直角三角形两直角边平方和↔三棱锥三个侧面面积的平方和,结论S 2=S 21+S 22+S 23.证明如下:如图,作OE ⊥平面LMN ,垂足为E ,连接LE 并延长交MN 于F ,∵LO ⊥OM ,LO ⊥ON ,∴LO ⊥平面MON , ∵MN ⊂平面MON ,∴LO ⊥MN ,∵OE ⊥MN ,∴MN ⊥平面OFL ,∴S △OMN =12MN ·OF ,S △MNE =12MN ·FE ,S △MNL =12MN ·LF ,OF 2=FE ·FL ,∴S 2△OMN =(12MN ·OF )2=(12MN ·FE )·(12MN ·FL )=S △MNE ·S △MNL ,同理S 2△OML =S △MLE ·S △MNL ,S 2△ONL =S △NLE ·S △MNL ,∴S 2△OMN +S 2△OML +S 2△ONL =(S △MNE +S △MLE +S △NLE )·S △MNL =S 2△MNL ,即S 21+S 22+S 23=S 2.16.(2014·洛阳部分重点中学教学检测)观察下列等式:31×2×12=1-122,31×2×12+42×3×122=1-13×22,31×2×12+42×3×122+53×4×123=1-14×23,……,由以上等式推测到一个一般的结论:对于n ∈N *,31×2×12+42×3×122+…+n +2n (n +1)×12n =________. [答案] 1-1(n +1)·2n[解析] 由已知中的等式:31×2×12=1-12231×2×12+42×3×122=1-13×22,31×2×12+42×3×122+53×4×123=1-14×23,…, 所以对于n ∈N *,31×2×12+42×3×122+…+n +2n (n +1)×12n =1-1(n +1)2n.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)已知:a 、b 、c ∈R ,且a +b +c =1. 求证:a 2+b 2+c 2≥13.[证明] 由a 2+b 2≥2ab ,及b 2+c 2≥2bc ,c 2+a 2≥2ca . 三式相加得a 2+b 2+c 2≥ab +bc +ca .∴3(a 2+b 2+c 2)≥(a 2+b 2+c 2)+2(ab +bc +ca )=(a +b +c )2. 由a +b +c =1,得3(a 2+b 2+c 2)≥1, 即a 2+b 2+c 2≥13.18.(本题满分12分)设n ∈N +[解析] 记f (n ) 则f (1)=11-2=3,f (2)=1111-22=1089=33,f (3)=111111-222=110889=333.猜想f (n )=333…3n个. [点评] f (n )=333…3n个可证明如下: ∵111…12n 个=19(102n -1),222…2n 个2=29(10n -1),令10n =x >1,则f (n )=19(x 2-1)-29(x -1)=19(x 2-2x +1)=13(x -1)=13(10n -1), 即f (n )=33…3n个. 19.(本题满分12分)(2013·华池一中高二期中)在圆x 2+y 2=r 2(r >0)中,AB 为直径,C 为圆上异于A 、B 的任意一点,则有k AC ·k BC =-1.你能用类比的方法得出椭圆x 2a 2+y 2b 2=1(a >b >0)中有什么样的结论?并加以证明.[解析] 类比得到的结论是:在椭圆x 2a 2+y 2b 2=1(a >b >0)中,A 、B 分别是椭圆长轴的左右端点,点C (x ,y )是椭圆上不同于A 、B 的任意一点,则k AC ·k BC =-b 2a2证明如下:设A (x 0,y 0)为椭圆上的任意一点,则A 关于中心的对称点B 的坐标为B (-x 0,-y 0),点P (x ,y )为椭圆上异于A ,B 两点的任意一点,则k AP ·k BP =y -y 0x -x 0·y +y 0x +x 0=y 2-y 20x 2-x 20.由于A 、B 、P 三点在椭圆上,∴⎩⎨⎧x 2a 2+y 2b 2=1,x 20a 2+y20b 2=1.两式相减得,x 2-x 20a 2+y 2-y 20b 2=0,∴y 2-y 20x 2-x 20=-b 2a 2,即k AP ·k BP =-b 2a 2.故在椭圆x 2a 2+y 2b 2=1(a >b >0)中,长轴两个端点为A 、B 、P 为异于A 、B 的椭圆上的任意一点,则有k AB ·k BP =-b 2a2.20.(本题满分12分)已知函数f (x )=a x +x -2x +1(a >1).(1)证明:函数f (x )在(-1,+∞)上为增函数; (2)用反证法证明方程f (x )=0没有负数根.[解析] (1)证法1:任取x 1、x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0,ax 2-x 1>1且ax 1>0,∴ax 2-ax 1=ax 1(ax 2-x 1-1)>0, 又∵x 1+1>0,x 2+1>0, ∴x 2-2x 2+1-x 1-2x 1+1=(x 2-2)(x 1+1)-(x 1-2)(x 2+1)(x 1+1)(x 2+1) =3(x 2-x 1)(x 1+1)(x 2+1)>0,于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0, 故函数f (x )在(-1,+∞)上为增函数.证法2:f ′(x )=a x ln a +x +1-(x -2)(x +1)2=a x ln a +3(x +1)2 ∵a >1,∴ln a >0,∴a x ln a +3(x +1)2>0, f ′(x )>0在(-1,+∞)上恒成立, 即f (x )在(-1,+∞)上为增函数.(2)解法1:设存在x 0<0(x 0≠-1)满足f (x 0)=0, 则ax 0=-x 0-2x 0+1,且0<ax 0<1.∴0<-x 0-2x 0+1<1,即12<x 0<2,与假设x 0<0矛盾.故方程f (x )=0没有负数根. 解法2:设x 0<0(x 0≠-1),①若-1<x 0<0,则x 0-2x 0+1<-2,ax 0<1,∴f (x 0)<-1.②若x 0<-1则x 0-2x 0+1>0,ax 0>0,∴f (x 0)>0.综上,x <0(x ≠-1)时,f (x )<-1或f (x )>0,即方程f (x )=0无负数根. 21.(本题满分12分)(2014·哈六中期中)已知函数f (x )=(x -2)e x -12x 2+x +2.(1)求函数f (x )的单调区间和极值; (2)证明:当x ≥1时,f (x )>16x 3-12x .[解析] (1)f ′(x )=(x -1)(e x -1),当x <0或x >1时,f ′(x )>0,当0<x <1时,f ′(x )<0, ∴f (x )在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减, 当x =0时,f (x )有极大值f (0)=0,当x =1时,f (x )有极小值f (1)=52-e.(2)设g (x )=f (x )-16x 3+12x ,则g ′(x )=(x -1)(e x -x 2-32),令u (x )=e x -x 2-32,则u ′(x )=e x -12,当x ≥1时,u ′(x )=e x -12>0,u (x )在[1,+∞)上单调递增,u (x )≥u (1)=e -2>0,所以g ′(x )=(x -1)(e x -x 2-32)≥0,g (x )=f (x )-16x 3+12x 在[1,+∞)上单调递增.g (x )=f (x )-16x 3+12x ≥g (1)=176-e>0,所以f (x )>16x 3-12x .22.(本题满分14分)设数列a 1,a 2,…a n ,…中的每一项都不为0.证明{a n }为等差数列的充分必要条件是:对任何n ∈N +,都有1a 1a 2+1a 2a 3+…+1a n a n +1=na 1a n +1. [分析] 本题考查等差数列、数学归纳法与充要条件等有关知识,考查推理论证、运算求解能力.解题思路是利用裂项求和法证必要性,再用数学归纳法或综合法证明充分性. [证明] 先证必要性.设数列{a n }的公差为d .若d =0,则所述等式显然成立.若d ≠0,则1a 1a 2+1a 2a 3+…+1a n a n +1=1d ⎝ ⎛⎭⎪⎫a 2-a 1a 1a 2+a 3-a 2a 2a 3+…+a n +1-a n a n a n +1 =1d ⎝⎛⎭⎫⎝⎛⎭⎫1a 1-1a 2+⎝⎛⎭⎫1a 2-1a 3+…+⎝⎛⎭⎫1a n -1a n +1 =1d ⎝⎛⎭⎫1a 1-1a n +1=1d a n +1-a 1a 1a n +1=n a 1a n +1. 再证充分性.证法1:(数学归纳法)设所述的等式对一切n ∈N +都成立.首先,在等式1a 1a 2+1a 2a 3=2a 1a 3两端同乘a 1a 2a 3,即得a 1+a 3=2a 2,所以a 1,a 2,a 3成等差数列,记公差为d ,则a 2=a 1+d .假设a k =a 1+(k -1)d ,当n =k +1时,观察如下两个等式 1a 1a 2+1a 2a 3+…+1a k -1a k =k -1a 1a k, ① 1a 1a 2+1a 2a 3+…+1a k -1a k +1a k a k +1=ka 1a k +1②将①代入②,得k -1a 1a k +1a k a k +1=k a 1a k +1,在该式两端同乘a 1a k a k +1,得(k -1)a k +1+a 1=ka k . 将a k =a 1+(k -1)d 代入其中,整理后,得a k +1=a 1+kd .由数学归纳法原理知,对一切n ∈N ,都有a n =a 1+(n -1)d ,所以{a n }是公差为d 的等差数列.证法2:(直接证法)依题意有 1a 1a 2+1a 2a 3+…+1a n a n +1=n a 1a n +1,① 1a 1a 2+1a 2a 3+…+1a n a n +1+1a n +1a n +2=n +1a 1a n +2. ②②-①得1a n +1a n +2=n +1a 1a n +2-n a 1a n +1,在上式两端同乘a 1a n +1a n +2,得a 1=(n +1)a n +1-na n +2. ③ 同理可得a 1=na n -(n -1)a n +1(n ≥2)④③-④得2na n +1=n (a n +2+a n ) 即a n +2-a n +1=a n +1-a n ,由证法1知a 3-a 2=a 2-a 1,故上式对任意n ∈N *均成立.所以{a n }是等差数列.1.已知数列2,5,22,11,…,则25是这个数列的( ) A .第6项 B .第7项 C .第19项 D .第11项[答案] B [解析]2,5,8,11,…,而25=20,可见各根号内被开方数构成首项为2,公差为3的等差数列,由20=2+(n -1)×3得n =7.2.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两名是对的,则获奖的歌手是__________________.[答案] 丙[解析] 若甲获奖,则甲、乙、丙、丁说的都是错的,同理可推知乙、丙、丁获奖的情况,最后可知获奖的歌手是丙.3.(1)由“若a 、b 、c ∈R ,则(ab )c =a (bc )”类比“若a 、b 、c 为三个向量,则(a ·b )c =a (b ·c )”;(2)在数列{a n }中,a 1=0,a n +1=2a n +2,猜想a n =2n -2;(3)“在平面内,三角形的两边之和大于第三边”类比“在空间中,四面体的任意三个面的面积之和大于第四个面的面积”;上述三个推理中结论正确的序号为________. [答案] ②③[解析] (a ·b )c =a (b ·c )不一定成立,其左边为平行于c 的向量,右边为平行于a 的向量,即命题(1)不正确;由a 1=0,a n +1=2a n +2可得a n +1+2=2(a n +2),则数列{a n +2}是首项为2,公比为2的等比数列,a n +2=2n ,即a n =2n -2,命题(2)正确;(3)正确,可结合三个侧面在底面上的射影去证明; 综上可得正确的结论为(2)(3).4.若x >0,y >0,用分析法证明:(x 2+y 2)12>(x 3+y 3)13.[证明] 要证(x 2+y 2)12>(x 3+y 3)13,只需证(x 2+y 2)3>(x 3+y 3)2,即证x 6+3x 4y 2+3x 2y 4+y 6>x 6+2x 3y 3+y 6, 即证3x 4y 2+3y 4x 2>2x 3y 3. 又因为x >0,y >0,所以x 2y 2>0, 故只需证3x 2+3y 2>2xy .而3x 2+3y 2>x 2+y 2≥2xy 成立,所以(x 2+y 2)12>(x 3+y 3)13成立. 5.已知a 是正整数,且a 3是偶数,求证:a 也是偶数.[分析] 已知a 3的奇偶性研究a 的奇偶性,不易直接证明,但如果已知a 的奇偶性研究a 3的奇偶性则较容易证明,故可用反证法.[证明] 假设a 不是偶数,则a 必为奇数,设a =2k +1(k ∈N ),则a 3=(2k +1)3=8k 3+12k 2+6k +1=2(4k 3+6k 2+3k )+1,由于k ∈N ,所以4k 2+6k 2+3k ∈N ,故2(4k 3+6k 2+3k )是偶数,2(4k 3+6k 2+3k )+1为奇数,即a 3为奇数,这与a 3是偶数相矛盾.故假设不正确,即a 也是偶数.6.我们知道,在△ABC 中,若c 2=a 2+b 2,则△ABC 是直角三角形.现在请你研究:若c n =a n +b n (n >2),问△ABC 为何种三角形?为什么?[解析] 锐角三角形 ∵c n =a n +b n (n >2),∴c >a, c >b ,由c 是△ABC 的最大边,所以要证△ABC 是锐角三角形,只需证角C 为锐角,即证cos C >0.∵cos C =a 2+b 2-c 22ab, ∴要证cos C >0,只要证a 2+b 2>c 2,① 注意到条件:a n +b n =c n ,于是将①等价变形为:(a 2+b 2)c n -2>c n . ② ∵c >a ,c >b ,n >2,∴c n -2>a n -2,c n -2>b n -2,即c n -2-a n -2>0,c n -2-b n -2>0, 从而(a 2+b 2)c n -2-c n =(a 2+b 2)c n -2-a n -b n =a 2(c n -2-a n -2)+b 2(c n -2-b n -2)>0, 这说明②式成立,从而①式也成立.故cos C >0,C 是锐角,△ABC 为锐角三角形.。
人教A选修2-211-12学年高二数学:第二章 推理与证明章末归纳总结 课件(人教A版选修2-2)
1 1 由 an+ <an+1+ =c 得 an<α an an 10 当 2<c< 时,an<α≤3 3 10 c> 3 时,α>3,且 1≤an<α, 1 1 于是 α-an+1=a α(α-an)≤3(α-an), n 1 α-an+1≤3n(α-1) α-1 当 n>log3 时,α-an+1≤α-3,an+1≥3. α-3 10 10 因此 c> 3 不合要求,所以 c 的取值范围为2, 3 .
数学归纳法是专门证明与正整数有关的命题的 一种方法.它是一种完全归纳法,它的证明共 分两步,其中第一步是命题成立的基础,称为 “归纳基础”(或称特殊性).第二步解决的是延 续性(又称传递性)问题.运用数学归纳法证明有 关命题要注意以下几点: 1.两个步骤缺一不可. 2.第二步中,证明“当n=k+1时结论正确”的 过程里,必须利用“归纳假设”即必须用上 “当n=k时结论正确”这一结论.
-
4 的等比数列,
4n 1 1 2 1 n-1 bn+3=-3×4 ,即 bn=- 3 -3.
(2)a1=1,a2=c-1,由 a2>a1 得 c>2 用数学归纳法证明:当 c>2 时,an<an+1 1 ①当 n=1,a2=c-a >a1,命题成立; 1 ②设当 n=k 时,ak<ak+1,则当 n=k+1 时,ak+2 1 =c- >c-a =ak+1, ak+1 k 故由①②知当 c>2 时,an<an+1 c+ c2-4 当 c>2 时,令 α= , 2 1
[例 3]
若定义在区间 D 上函数 f(x)对于 D 上的几个
1 值 x1 , x2 , „ , xn 总 满 足 n [f(x1) + f(x2) + „ +
2021_2022年高中数学第二章推理与证明1
④平面上,“在△ABC 中,∠ACB 的平分线 CE 将三角形 分成两部分的面积比SS△ △ABEECC=ABCC”,将这个结论类比到空间中, 有“在三棱锥 A-BCD 中,平面 DEC 平分二面角 A-CD-B, 且与 AB 交于点 E,则平面 DEC 将三棱锥分成两部分的体积比 VA-CDE=S△ACD”. VB-CDE S△BDC
• 1.类比推理 • 由两类对象具有某些__类__似____特征和其中一类对象的某些
_已__知__特__征_____,推出另一类对象也具有这些特征的推理称为类 比推理(简称类比).简言之,类比推理是由__特__殊____到 __特__殊____的推理. • (1)类比是从人们已经掌握了的事物的属性,推测正在研究中的 事物的属性,它以旧有认识作基础,类比出新的结果;
牛刀小试
• 1.鲁班发明锯子的思维过程为:带齿的草叶能割破行人的腿,“ 锯子”能“锯”开木材,它们在功能上是类似的.因此,它们在 形状上也应该类似,“锯子”应该是齿形的.该过程体现了( )
• A.归纳推理
B说法都不对
• [答案] B
• [解析] 推理是根据一个或几个已知的判断来确定一个新的判断的 思维过程,上述过程是推理,由性质类比可知是类比推理.
• [解析] 圆与球在它们的生成、形状、定义等方面都具有相似 的属性.据此,在圆与球的相关元素之间可以建立如下的对应 关系:
• 弦 ↔ 截面圆, • 直径 ↔ 大圆, • 周长 ↔ 表面积, • 圆面积 ↔ 球体积, • 等等.于是,根据圆的性质,可以猜测球的性质如下表所示:
圆的性质
圆心与弦(不是直径)的中 点的连线垂直于弦
cos2A+cos2B=bc2+ac2=a2+c2 b2=1.
人教版高中数学选修2-2第二章推理与证明复习小结优质
例.已知a、b、c 为 不相等正 数,且abc 1, 1 1 1 证 求 :a b c . a b c
a、b、c 为不相等正 证 法2 :
数,且abc 1,
1 1 1 a b c bc ca ab
1 1 1 1 1 1 1 1 1 b c c a a b . 2 2 2 a b c
2.间接证明 反证法:假设原命题 不成立 ,经过正确的推理, 矛盾 最后得出 ,因此说明假设错误,从而证明了原 命题成立,这样的证明方法叫反证法.
基础知识梳理
(一).综合法 例.已知a、b、c 为不相等正 数,且abc 1,
1 1 1 证 求 :a b c . a b c
06 0 6 成立.
a - 5 - a - 3 a - 2 - a 成立.
(三)反证法
例:已知a>0,b>0,且a+b>2,
1 b 1 a 求证: a , b
中至少有一个小于2.
分析 命题中有“至少……”“不都……”“都 不……”“没有……”“至多……”等指示性语句,在 用直接方法很难证明时,可以采用反证法.
B
O
O
D
C
例3:用三段论证明函数y=-x2+2x 在(-∞,1]上是增函数. 证明:任取x1、x2∈(-∞,1],且x+2x2) =(x2-x1)(x2+x1-2). 因为x1<x2,所以x2-x1>0; 因为x1<x2≤1,所以x2+x1-2<0. 因此,f(x1)-f(x2)<0,即f(x1)<f(x2). 于是根据“三段论”,得f(x)=-x2+2x在(-∞,1] 上是增函数.
证 法1: a、b、c 为 不相等正 数 ,且abc 1,
高中数学 第二章 推理与证明练习 新人教A版选修2-2-新人教A版高二选修2-2数学试题
第二章 推理与证明(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.证明:n +22<1+12+13+14+…+12n<n +1(n >1),当n =2时,中间式子等于( ) A.1 B.1+12C.1+12+13D.1+12+13+14解析:选D.n =2时中间式子的最后一项为14,所以中间式子为1+12+13+14.2.用反证法证明命题:“若函数f (x )=x 2+px +q ,那么|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”时,反设正确的是( )A.假设|f (1)|,|f (2)|,|f (3)|都不小于12B.假设|f (1)|,|f (2)|,|f (3)|都小于12C.假设|f (1)|,|f (2)|,|f (3)|至多有两个小于12D.假设|f (1)|,|f (2)|,|f (3)|至多有一个小于12解析:选B.“|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”的反设为“|f (1)|,|f (2)|,|f (3)|都小于12”.3.设x >0,则不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,…,推广到x +axn ≥n +1,则a=( )A.2nB.2nC.n 2D.n n解析:选D.结合已知的三个不等式可以发现第二个加数的分子是分母x 的指数的指数次方,可得a =n n.4.下面是一段“三段论”推理过程:若函数f (x )在(a ,b )内可导且单调递增,则在(a ,b )内,f ′(x )>0恒成立.因为f (x )=x 3在(-1,1)内可导且单调递增,所以在(-1,1)内,f ′(x )=3x 2>0恒成立.以上推理中( )A.大前提错误B.小前提错误C.结论正确D.推理形式错误解析:选A.f (x )在(a ,b )内可导且单调递增,则在(a ,b )内,f ′(x )≥0恒成立,故大前提错误,故选A.5.用数学归纳法证明:1+11+2+11+2+3+…+11+2+3+…+n =2nn +1时,由n =k 到n =k +1左边需要添加的项是( )A.2k (k +2)B.1k (k +1)C.1(k +1)(k +2)D.2(k +1)(k +2)解析:选D.由n =k 到n =k +1时,左边需要添加的项是11+2+3+…+(k +1)=2(k +1)(k +2).故选D.6.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证 b 2-ac <3a ”索的因应是( )A.a -b >0B.a -c <0C.(a -b )(a -c )>0D.(a -b )(a -c )<0解析:选C.要证明 b 2-ac <3a ,只需证b 2-ac <3a 2,只需证(a +c )2-ac <3a 2,只需证-2a 2+ac +c 2<0,即证2a 2-ac -c 2>0,即证(a -c )(2a +c )>0,即证(a -c )(a -b )>0.7.若sin A a =cos B b =cos C c,则△ABC 是( )A.等边三角形B.有一个内角是30°的直角三角形C.等腰直角三角形D.有一个内角是30°的等腰三角形解析:选C.因为sin A a =cos B b =cos C c,由正弦定理得,sin A a =sin B b =sin Cc,所以sin B b =cos B b =cos C c =sin C c.所以sin B =cos B ,sin C =cos C , 所以∠B =∠C =45°,所以△ABC 是等腰直角三角形.8.已知f (x )=x 3+x ,a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值一定( )A.大于0B.等于0C.小于0D.正负都可能解析:选A.f (x )为奇函数,也是增函数,因此由a +b >0可得a >-b ,所以f (a )>f (-b ),即f (a )>-f (b ),于是f (a )+f (b )>0,同理,f (a )+f (c )>0,f (b )+f (c )>0,所以f (a )+f (b )+f (c )>0.9.我们把平面中的结论“到定点的距离等于定长的点的轨迹是圆”拓展至空间中为“到定点的距离等于定长的点的轨迹是球”,类似可得:已知A (-1,0,0),B (1,0,0),则点集{P (x ,y ,z )||PA |-|PB |=1}在空间中的轨迹描述正确的是( )A.以A ,B 为焦点的双曲线绕轴旋转而成的旋转曲面B.以A ,B 为焦点的椭球体C.以A ,B 为焦点的双曲线单支绕轴旋转而成的旋转曲面D.以上都不对解析:选C.在平面中,点集{P (x ,y )||PA |-|PB |=1}是以A ,B 为焦点的双曲线的一支,点集{P (x ,y ,z )||PA |-|PB |=1}在空间中的轨迹是以A ,B 为焦点的双曲线单支绕轴旋转而成的旋转曲面,故选C.10.我国古代数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同,则积不容异”.“势”是高,“幂”是截面积.意思是:如果两个等高的几何体在同高处截得两几何体的截面积总相等,那么这两个几何体的体积相等.类比祖暅原理,如图所示,在平面直角坐标系中,区域①是一个形状不规则的封闭图形,区域②是一个上底长为1、下底长为2的梯形,且当实数t 取[0,3]上的任意值时,直线y =t 被区域①和区域②所截得的两线段长总相等,则区域①的面积为( )A.4B.92 C.5D.112解析:选B.根据题意,由祖暅原理分析可得①的面积等于②的面积,又②是一个上底长为1、下底长为2的梯形,所以①的面积为(1+2)×32=92.11.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )A.(7,5)B.(5,7)C.(2,10)D.(10,2)解析:选B.依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n +1,且第n 组共有n 个“整数对”,这样的前n 组一共有n (n +1)2个“整数对”,注意到10×(10+1)2<60<11×(11+1)2,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).12.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ) A.△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B.△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C.△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D.△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形解析:选D.因为三角形内角的正弦值是正值,所以△A 1B 1C 1的三个内角的余弦值均大于0.因此△A 1B 1C 1是锐角三角形.假设△A 2B 2C 2也是锐角三角形,并设cos A 1=sin A 2,则cos A 1=cos (90°-∠A 2), 所以∠A 1=90°-∠A 2.同理设cos B 1=sin B 2,cos C 1=sin C 2, 则有∠B 1=90°-∠B 2,∠C 1=90°-∠C 2. 又∠A 1+∠B 1+∠C 1=180°,所以(90°-∠A 2)+(90°-∠B 2)+(90°-∠C 2)=180°, 即∠A 2+∠B 2+∠C 2=90°. 这与三角形内角和等于180°矛盾,所以原假设不成立.若△A 2B 2C 2是直角三角形,不妨设A 2=π2,则sin A 2=1=cos A 1,而A 1在(0,π)内无解.故选D.二、填空题:本题共4小题,每小题5分.13.补充下列证明过程: 要证a 2+b 2+c 2≥ab +bc +ac (a ,b ,c ∈R ),即证,即证W. 因为a ,b ,c 为实数,上式显然成立,故命题结论成立. 答案:2(a 2+b 2+c 2)≥2ab +2bc +2ac (a -b )2+(b -c )2+(a -c )2≥014.已知a =5-12,函数f (x )=a x,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为W.解析:因为当0<a <1时,函数f (x )=a x为减函数,a =5-12∈(0,1),所以函数f (x )=(5-12)x为减函数.故由f (m )>f (n )得m <n .答案:m <n15.有三X 卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一X 卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是W.解析:为方便说明,不妨将分别写有1和2,1和3,2和3的卡片记为A ,B ,C .从丙出发,由于丙的卡片上的数字之和不是5,则丙只可能是卡片A 或B ,无论是哪一X ,均含有数字1,再由乙与丙的卡片上相同的数字不是1可知,乙所拿的卡片必然是C ,最后由甲与乙的卡片上相同的数字不是2,知甲所拿的卡片为B ,此时丙所拿的卡片为A .答案:1和316.如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n (n ≥2),每个数是它下一行左右相邻两数的和,如11=12+12,12=13+16,13=14+112,…,则第7行第4个数(从左往右数)为W. 11 1212 131613 14112112141512013012015…解析:由“第n 行有n 个数且两端的数均为1n ”可知,第7行第1个数为17,由“每个数是它下一行左右相邻两数的和”可知,第7行第2个数为16-17=142.同理易知,第7行第3个数为130-142=1105,第7行第4个数为160-1105=1140.答案:1140三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)定义在[-1,1]上的奇函数f (x ),当a ,b ∈[-1,1],a +b ≠0时,有f (a )+f (b )a +b>0.证明:函数f (x )的图象上不存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直.证明:假设函数f (x )的图象上存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直,则A ,B 两点的纵坐标相同.设它们的横坐标分别为x 1和x 2,x 1<x 2,且x 1,x 2∈[-1,1],则f (x 1)=f (x 2). 又f (x )是奇函数,所以f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1)+f (-x 2)x 1+(-x 2)[x 1+(-x 2)].又由题意,得f (x 1)+f (-x 2)x 1+(-x 2)>0,且x 1+(-x 2)<0,所以f (x 1)+f (-x 2)<0,即f (x 1)-f (x 2)<0, 这与f (x 1)=f (x 2)矛盾,故假设不成立,即函数f (x )的图象上不存在两个不同的点A ,B ,使直线AB 恰好与y 轴垂直. 18.(本小题满分12分)已知:A ,B 都是锐角,且A +B ≠90°,(1+tan A )(1+tan B )=2.求证:A +B =45°.证明:因为(1+tan A )(1+tan B )=2, 展开化简为tan A +tan B =1-tan A tan B . 因为A +B ≠90°,tan (A +B )=tan A +tan B 1-tan A tan B =1.又因为A ,B 都是锐角,所以0°<A +B <180°.所以A +B =45°.19.(本小题满分12分)已知a >0,b >0,2c >a +b ,求证:c -c 2-ab <a <c +c 2-ab . 证明:要证c -c 2-ab <a <c +c 2-ab . 只需证-c 2-ab <a -c <c 2-ab , 即证|a -c |<c 2-ab ,只需证(a -c )2<(c 2-ab )2, 只需证a 2-2ac +c 2<c 2-ab ,即证2ac >a 2+ab ,因为a >0,所以只需证2c >a +b .因为2c >a +b 已知, 所以原不等式成立.20.(本小题满分12分)如图,在直三棱柱ABC A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F为B 1C 1的中点.求证:(1)平面ADE ⊥平面BCC 1B 1; (2)直线A 1F ∥平面ADE .证明:(1)因为ABC A 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC .因为AD ⊂平面ABC ,所以CC 1⊥AD .因为AD ⊥DE ,CC 1,DE ⊂平面BCC 1B 1,CC 1∩DE =E , 所以AD ⊥平面BCC 1B 1. 因为AD ⊂平面ADE , 所以平面ADE ⊥平面BCC 1B 1.(2)因为A 1B 1=A 1C 1,F 为B 1C 1的中点, 所以A 1F ⊥B 1C 1,因为CC 1⊥平面A 1B 1C 1,且A 1F ⊂平面A 1B 1C 1, 所以CC 1⊥A 1F .因为CC 1,B 1C 1⊂平面BCC 1B 1,CC 1∩B 1C 1=C 1, 所以A 1F ⊥平面BCC 1B 1. 由(1)知AD ⊥平面BCC 1B 1, 所以A 1F ∥AD .因为AD ⊂平面ADE ,A 1F ⊄平面ADE , 所以A 1F ∥平面ADE .21.(本小题满分12分)设函数f (x )=x 3+11+x ,x ∈[0,1].证明:(1)f (x )≥1-x +x 2;(2)34<f (x )≤32.证明:(1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x,由于x ∈[0,1],有1-x 41+x ≤1x +1,即1-x +x 2-x 3≤1x +1,所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32,所以f (x )≤32.由第一问得f (x )≥1-x +x 2=⎝ ⎛⎭⎪⎫x -122+34≥34,又因为f (12)=1924>34,所以f (x )>34.综上,34<f (x )≤32.22.(本小题满分12分)在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12⎝ ⎛⎭⎪⎫a n +1a n .(1)求a 1,a 2,a 3;(2)由(1)猜想数列{a n }的通项公式,并用数学归纳法证明你的猜想. 解:(1)易求得a 1=1,a 2=2-1,a 3=3- 2. (2)猜想a n =n -n -1(n ∈N *)证明:①当n =1时,a 1=1-0=1,命题成立. ②假设n =k (k ≥1,k ∈N *)时,a k =k -k -1成立, 则n =k +1时,a k +1=S k +1-S k =12⎝⎛⎭⎪⎫a k +1+1a k +1-12⎝⎛⎭⎪⎫a k +1ak=12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-k ,所以,a 2k +1+2ka k +1-1=0,所以a k +1=k +1-k .即n =k +1时,命题成立. 由①②知,n ∈N *时,a n =n -n -1.。
2018学年高中数学人教A版选修2-2习题 第2章 推理与证明2.1.2 含答案
选修2-2 第二章 2.1 2.1.2一、选择题1.“在四边形ABCD中,∵AB CD,∴四边形ABCD是平行四边形”.上述推理过程导学号10510519()A.省略了大前提B.省略了小前提C.是完整的三段论D.推理形式错误[答案] A[解析]上述推理基于大前提“一组对边平行且相等的四边形为平行四边形”.2.下面是一段演绎推理:大前提:如果直线平行于平面,则这条直线平行于平面内的所有直线;小前提:已知直线b∥平面α,直线a⊂平面α;结论:所以直线b∥直线a.在这个推理中导学号10510520()A.大前提正确,结论错误B.小前提与结论都是错误的C.大、小前提正确,只有结论错误D.大前提错误,结论错误[答案] D[解析]如果直线平行于平面,则这条直线只是与平面内的部分直线平行,而不是所有直线,所以大前提错误,当直线b∥平面α,直线a⊂平面α时,直线b与直线a可能平行,也可能异面,故结论错误,选D.3.如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中,下面四个命题中不正确的是导学号10510521()A.BM是定值B.点M在某个球面上运动C.存在某个位置,使DE⊥A1C D.存在某个位置,使MB∥平面A1DE[答案] C[解析]由线面位置关系易知A、B、D正确,C错误,如图,取CD的中点Q,连接MQ,BQ,∵M为A1C的中点,∴MQ 1 2A1D,∵E为AB中点,四边形ABCD为矩形,∴BQ DE,∵矩形ABCD中,AB=2AD,△A1DE≌△ADE,∴MQ,BQ为定值∠MQB=∠A1DE=∠ADE为定值,∴BM为定值,又B为定点,∴点M在以B点为球心,BM为半径的球面上运动,∴A、B选项正确;由于BQ∥DE,MQ∥A1D,∴平面BMQ∥平面A1DE,∴BM∥平面A1DE,故D 正确;若DE⊥A1C,由于DE⊥EC,则DE⊥平面A1EC,则DE⊥A1E,这与DA1⊥EA1矛盾,故选C.4.《论语·学路》篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足.”上述推理用的是导学号10510522()A.类比推理B.归纳推理C.演绎推理D.一次三段论[答案] C[解析]这是一个复合三段论,从“名不正”推出“民无所措手足”,连续运用五次三段论,属演绎推理形式.5.(2016·长春外国语学校高二检测)有这样一段演绎推理:“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,这是因为导学号10510523() A.大前提错误B.小前提错误C.推理形式错误D.非以上错误[答案] C[解析]用小前提“S是M”,判断得到结论“S是P”时,大前提“M是P”必须是所有的M,而不是部分,因此此推理不符合演绎推理规则.6.(2016·锦州市高二检测)若三角形两边相等,则该两边所对的内角相等,在△ABC中,AB=AC,所以在△ABC中,∠B=∠C,以上推理运用的规则是导学号10510524() A.三段论推理B.假言推理C.关系推理D.完全归纳推理[答案] A[解析]∵三角形两边相等,则该两边所对的内角相等(大前提),在△ABC中,AB=AC,(小前提)∴在△ABC中,∠B=∠C(结论),符合三段论推理规则,故选A.二、填空题7.求函数y=log2x-2的定义域时,第一步推理中大前提是a有意义时,a≥0,小前提是log2x-2有意义,结论是________.导学号10510525[答案]log2x-2≥0[解析]由三段论方法知应为log2x-2≥0.8.以下推理过程省略的大前提为:________.导学号10510526∵a2+b2≥2ab,∴2(a2+b2)≥a2+b2+2ab.[答案]若a≥b,则a+c≥b+c[解析]由小前提和结论可知,是在小前提的两边同时加上了a2+b2,故大前提为:若a≥b,则a+c≥b+c.9.设函数f(x)=e xx2+ax+a,其中a为实数,若f(x)的定义域为R,则实数a的取值范围是________.导学号10510527[答案]0<a<4[解析]因为f(x)的定义域为R,所以x2+ax+a≠0恒成立.所以Δ=a2-4a<0.所以0<a<4,即当0<a<4时,f(x)的定义域为R.三、解答题10.将下列演绎推理写成三段论的形式.导学号10510528(1)菱形的对角线互相平分.(2)奇数不能被2整除,75是奇数,所以75不能被2整除.[答案](1)平行四边形的对角线互相平分大前提菱形是平行四边形小前提菱形的对角线互相平分结论(2)一切奇数都不能被2整除大前提75是奇数小前提75不能被2整除结论一、选择题1.下面是一段“三段论”推理过程:若函数f (x )在(a ,b )内可导且单调递增,则在(a ,b )内,f ′(x )>0恒成立.因为f (x )=x 3在(-1,1)内可导且单调递增,所以在(-1,1)内,f ′(x )=3x 2>0恒成立,以上推理中导学号 10510529( )A .大前提错误B .小前提错误C .结论正确D .推理形式错误[答案] A[解析] ∵对于可导函数f (x ),若f (x )在区间(a ,b )上是增函数,则f ′(x )≥0对x ∈(a ,b )恒成立.∴大前提错误,故选A.2.下面几种推理过程是演绎推理的是导学号 10510530( )A .因为∠A 和∠B 是两条平行直线被第三条直线所截得的同旁内角,所以∠A +∠B =180°B .我国地质学家李四光发现中国松辽地区和中亚细亚的地质结构类似,而中亚细亚有丰富的石油,由此,他推断松辽平原也蕴藏着丰富的石油C .由6=3+3,8=3+5,10=3+7,12=5+7,14=7+7,…,得出结论:一个偶数(大于4)可以写成两个素数的和D .在数列{a n }中,a 1=1,a n =12⎝⎛⎭⎫a n -1+1a n -1(n ≥2),通过计算a 2,a 3,a 4,a 5的值归纳出{a n }的通项公式[答案] A[解析] 选项A 中“两条直线平行,同旁内角互补”是大前提,是真命题,该推理为三段论推理,选项B 为类比推理,选项C 、D 都是归纳推理.二、填空题3.“∵α∩β=l ,AB ⊂α,AB ⊥l ,∴AB ⊥β”,在上述推理过程中,省略的命题为________.导学号 10510531[答案] 如果两个平面相交,那么在一个平面内垂直于交线的直线垂直于另一个平面4.(2016·深圳高二检测)已知2sin 2α+sin 2β=3sin α,则sin 2α+sin 2β的取值范围为________.导学号 10510532[答案] [0,54]∪{2} [解析] 由2sin 2α+sin 2β=3sin α得sin 2α+sin 2β=-sin 2α+3sin α=-(sin α-32)2+94且sin α≥0,sin 2α∈[0,1]. 因为0≤sin 2β≤1,sin 2β=3sin α-2sin 2α,所以0≤3sin α-2sin 2α≤1.解之得sin α=1或0≤sin α≤12, 令y =sin 2α+sin 2β,当sin α=1时,y =2.当0≤sin α≤12时,0≤y ≤54. 所以sin 2α+sin 2β的取值范围是[0,54]∪{2}. 三、解答题5.判断下列推理是否正确?为什么?导学号 10510533①“因为过不共线的三点有且仅有一个平面(大前提),而A ,B ,C 为空间三点(小前提),所以过A ,B ,C 三点只能确定一个平面(结论).”②∵奇数3,5,7,11是质数,9是奇数,∴9是质数.[解析] ①错误.小前提错误.因为若三点共线,则可确定无数平面,只有不共线的三点才能确定一个平面.②错误.推理形式错误,演绎推理是由一般到特殊的推理,3,5,7,11只是奇数的一部分,是特殊事例.6.已知a ,b ,c 是实数,函数f (x )=ax 2+bx +c ,g (x )=ax +b .当-1≤x ≤1时,|f (x )|≤1.导学号 10510534(1)求证:|c |≤1.(2)当-1≤x ≤1时,求证:-2≤g (x )≤2.[证明] (1)因为x =0满足-1≤x ≤1的条件,所以|f (0)|≤1.而f (0)=c ,所以|c |≤1.(2)当a >0时,g (x )在[-1,1]上是增函数,所以g (-1)≤g (x )≤g (1).又g (1)=a +b =f (1)-c ,g (-1)=-a +b =-f (-1)+c ,所以-f (-1)+c ≤g (x )≤f (1)-c ,又-1≤f (-1)≤1,-1≤f (1)≤1,-1≤c ≤1,所以-f (-1)+c ≥-2,f (1)-c ≤2,所以-2≤g (x )≤2.当a <0时,可用类似的方法,证得-2≤g (x )≤2.当a =0时,g (x )=b ,f (x )=bx +c ,g (x )=f (1)-c ,所以-2≤g (x )≤2.综上所述,-2≤g (x )≤2.。
高中数学第二章推理与证明2.1.2类比推理教案新人教A版选修2
2.1.2 类比推理一、教学目标1.通过对已学知识的回顾,认识类比推理这一种合情推理的基本方法,并把它用于对问题的发现中去。
2.类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质,类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。
3.正确认识合情推理在数学中的重要作用,养成从小开始认真观察事物、分析问题、发现事物之间的质的联系的良好个性品质,善于发现问题,探求新知识。
认识数学在日常生产生活中的重要作用,培养学生学数学,用数学,完善数学的正确数学意识。
二、教学重点:了解合情推理的含义,能利用类比进行简单的推理。
了解归纳推理的含义,能利用归纳进行简单的推理。
教学难点:用类比进行推理,做出猜想。
三、教学方法:教具准备:与教材内容相关的资料。
课时安排:1课时四、教学过程一.问题情境从一个传说说起:春秋时代鲁国的公输班(后人称鲁班,被认为是木匠业的祖师)一次去林中砍树时被一株齿形的茅草割破了手,这桩倒霉事却使他发明了锯子.他的思路是这样的:茅草是齿形的;茅草能割破手.我需要一种能割断木头的工具;它也可以是齿形的.这个推理过程是归纳推理吗?二.数学活动我们再看几个类似的推理实例。
例1、试根据等式的性质猜想不等式的性质。
等式的性质:猜想不等式的性质:(1) a=b⇒a+c=b+c; (1) a>b⇒a+c>b+c;(2) a=b⇒ ac=bc; (2) a>b⇒ ac>bc;(3) a=b⇒a2=b2;等等。
(3) a>b⇒a2>b2;等等。
问:这样猜想出的结论是否一定正确?例2、试将平面上的圆与空间的球进行类比.圆的定义:平面内到一个定点的距离等于定长的点的集合.球的定义:到一个定点的距离等于定长的点的集合.圆 球弦←→截面圆 直径←→大圆周长←→表面积面积←→体积 等的两截面圆不等,距球心较近的截面圆较大☆上述两个例子均是这种由两个(两类)对象之间在某些方面的相似或相同,推演出他们在其他方面也相似或相同;或其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.类比推理的一般步骤:⑴ 找出两类对象之间可以确切表述的相似特征;⑵ 用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;⑶ 检验猜想。
高中数学选修2-2推理与证明
高中数学选修2-2推理与证明
推理与证明是高中数学选修课的重要组成部分。
由于高中生往往拥有非常有限的数学基础,因此学习推理与证明往往可能会比较困难。
学习推理与证明时,首先需要建立正确的几何空间概念,理解如何正确地绘制几何图形,进而学习如何确定几何对象的形状和大小,以及如何使用几何图形的特性来解决问题。
其次,要学习如何从给定的数学定义或公式中发现与几何推理和证明相关的定理。
学习上述概念并不容易,但一旦熟练掌握之后,学习者就可以以正确的方式证明和推理几何数学定理。
此外,学习者还需要学会如何构建论证,通过比较分析几何关系来推导证明结果。
另外,学习者还需要学习利用经典几何定理和性质(如三角形不等式)这些定理,从而推导出结论并证明这一结论的准确性。
总的来说,学习推理与证明要求学习者有坚实的数学基础知识,需要学习者对几何空间概念有深入理解,并学习构建论证的基本方式,还需要学习者的思维逻辑能力和分析能力尤为重要。
【全程复习方略】2014-2015学年高中数学 第二章 推理与证明 阶段复习课课件 新人教A版选修2-2
即a≥-x2在[1,e]上恒成立,所以a≥-1. (2)当a=1时,f(x)= 1 x2+lnx,x∈[1,e].
2 令F(x)=f(x)- 2 x3= 1 x2+lnx- 2 x3, 3 2 3 2 1 x 1 x 2x 1 2
又F′(x)=x+
阶段复习课 第 二 章
【答案速填】 ①由部分到整体,由个别到一般 ③演绎推理 ⑤综合法 ⑦反证法 ②类比推理 ④由一般到特殊 ⑥执果索因 ⑧数学归纳法
【核心解读】 1.合情推理 (1)归纳推理:由部分到整体、由个别到一般的推理. (2)类比推理:由特殊到特殊的推理. (3)合情推理:归纳推理和类比推理都是根据已有的事实,经过 观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的 推理,我们把它们统称为合情推理.
3 3
此时三个角的正弦值之和为0,且第一个角为α,第二个角与 第一个角的差与第三个角与第二个角的差相等,即有
( 4 2 2 2 ) ( ) ( ) . 3 3 3 3
依此类推,可得当四点等分单位圆时,为四个角正弦值之和
为0,且第一个角为α,第二个角为 2 +α,第三个角
为 2 =π+α,第四个角为π+α+ 2 3 +α,即其关
4 2 系为 sin sin( ) sin sin( 3 ) 0. 2 2 3 答案: sin sin( ) sin sin( ) 0 2 2 2 4 4 2
x1x 2 当0<x1<x2≤ a 时,因为a>0,b>0, b 所以x2-x1>0,0<x1x2< a , a >b, b x1x 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用文档选修2-2 第二章 推理与证明(A)一、选择题1、数列{a n }中,若a 1=12,a n =11-a n -1(n ≥2,n ∈N *),则a 2 011的值为( ) A .-1 B.12C .1D .22、下列说法中正确的是( )A .合情推理就是正确的推理B .合情推理就是归纳推理C .归纳推理是从一般到特殊的推理过程D .类比推理是从特殊到特殊的推理过程3、下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形内角和是180°归纳出所有三角形的内角和都是180°; ③某次考试张军成绩是100分,由此推出全班同学成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n-2)·180°.A.①②B.①③④C.①②④D.②④4、观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)等于( )A.f(x) B.-f(x)C.g(x) D.-g(x)5、有这样一段演绎推理“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( )A.大前提错误B.小前提错误C.推理形式错误D.非以上错误6、用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°相矛盾,∠A=∠B=90°不成立;实用文档②所以一个三角形中不能有两个直角;③假设∠A、∠B、∠C中有两个角是直角,不妨设∠A=∠B=90°.正确顺序的序号排列为( )A.①②③B.②③①C.③①②D.③②①7、类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列一些性质,你认为比较恰当的是( )①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.A.①B.①②C.①②③D.③8、用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N*),验证n=1时,左边应取的项是( )实用文档A.1 B.1+2C.1+2+3 D.1+2+3+49、若函数f(x)=x2-2x+m (x∈R)有两个零点,并且不等式f(1-x)≥-1恒成立,则实数m的取值范围为( )A.(0,1) B.[0,1)C.(0,1] D.[0,1]10、求证:1+5<2 3.证明:因为1+5和23都是正数,所以为了证明1+5<23,只需证明(1+5)2<(23)2,展开得6+25<12,即5<3,只需证明5<9.因为5<9成立.所以不等式1+5<23成立.上述证明过程应用了( )实用文档A.综合法B.分析法C.反证法D.间接证法11、若a,b,c均为实数,则下面四个结论均是正确的:①ab=ba;②(ab)c=a(bc);③若ab=bc,b≠0,则a-c=0;④若ab=0,则a=0或b=0.对向量a,b,c,用类比的思想可得到以下四个结论:①a·b=b·a;②(a·b)c=a(b·c);③若a·b=b·c,b≠0,则a=c;④若a·b=0,则a=0或b=0.其中结论正确的有( )A.0个B.1个C.2个D.3个12、用反证法证明命题“如果a>b,那么3a>3b”时,假设的内容应是( )A.3a=3b B.3a<3b实用文档实用文档 C.3a =3b ,且3a <3b D.3a =3b 或3a <3b二、填空题13、已知x >0,由不等式x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,…,启发我们可以得到推广结 论:x +mx n ≥n +1 (n ∈N *),则m =________.14、已知数列{a n },a 1=12,a n +1=3a n a n +3,则a 2,a 3,a 4,a 5分别为______________,猜 想a n =______.15、在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4.类似地,在 空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为______.16、观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律, 第五个等式为________.实用文档三、解答题17、 设f (x )=x 2+ax +b ,求证:|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.18、已知点P n (a n ,b n )满足a n +1=a n ·b n +1,b n +1=b n1-4a 2n (n ∈N *)且点P 1的坐标为 (1,-1).(1)求过点P 1,P 2的直线l 的方程;(2)试用数学归纳法证明:对于n ∈N *,点P n 都在(1)中的直线l 上.实用文档19、 在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD 2=1AB 2+1AC 2,那么在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想,并说明理由.20、已知a >0,求证:a 2+1a 2-2≥a +1a-2.21、 已知正数数列{a n }的前n 项和S n =12(a n +1a n),实用文档(1)求a 1,a 2,a 3;(2)归纳猜想a n 的表达式,并用数学归纳法证明你的结论.22、 用反证法证明:已知a 与b 均为有理数,且a 与b 都是无理数, 证明:a +b 是无理数.以下是答案一、选择题1、B [∵a 1=12,a n =11-a n -1,∴a 2=11-12=2,a3=11-2=-1,a4=11-(-1)=12.∴a n+3=a n,即周期为3.∴a2 011=a670×3+1=a1=1 2 .]2、D3、C [①是类比,②④是归纳推理.]4、D [由观察知,若f(x)为偶函数,则g(x)为奇函数.]5、C6、C7、C [因为正三角形的边和角可以与正四面体的面(或棱)和相邻的二面所成的二面角(或共顶点的两棱夹角)类比,所以①②③都恰当.]8、D [n=1时,n+3=4,∴左边=1+2+3+4.]9、B [∵f(x)=x2-2x+m有两个零点,实用文档实用文档∴Δ=4-4m >0,∴m <1,又f (1-x )=(1-x )2-2(1-x )+m =x 2+m -1≥m -1.而f (1-x )≥-1恒成立,∴m -1≥-1,∴m ≥0,∴0≤m <1.]10、B [本题中的证明执果索因,是分析法.]11、B [①正确,其余错误.]12、D二、填空题13、n n14、37,38,13,310 3n +515、1∶8解析 ∵两个正三角形是相似的三角形,∴它们的面积之比是相似比的平方.同理,两个正四面体是两个相似几何体,体积之比为相似比的立方,∴它们的体积比为1∶8.实用文档16、13+23+33+43+53+63=212.解析 由前三个式子可以得出如下规律:每个式子等号的左边是从1开始的连续正整数 的立方和,且个数依次多1,等号的右边是一个正整数的平方,后一个正整数依次比前 一个大3,4,…,因此,第五个等式为13+23+33+43+53+63=212.三、解答题17、证明 假设|f (1)|<12,|f (2)|<12,|f (3)|<12, 于是有-12<1+a +b <12,① -12<4+2a +b <12,② -12<9+3a +b <12.③ ①+③,得-1<10+4a +2b <1,所以-3<8+4a +2b <-1,所以-32<4+2a +b <-12. 由②知-12<4+2a +b <12,矛盾,实用文档所以假设不成立,即|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.18、(1)解 由P 1的坐标为(1,-1)知a 1=1,b 1=-1.∴b 2=b 11-4a 21=13,a 2=a 1·b 2=13. ∴点P 2的坐标为⎝ ⎛⎭⎪⎫13,13. ∴直线l 的方程为2x +y =1.(2)证明 ①当n =1时,2a 1+b 1=2×1+(-1)=1成立. ②假设n =k (k ∈N *,k ≥1)时,2a k +b k =1成立. 则2a k +1+b k +1=2a k b k +1+b k +1=b k 1-4a 2k (2a k +1)=b k1-2a k =1-2a k 1-2a k =1. ∴n =k +1时,命题也成立.由①②知,对n ∈N *,都有2a n +b n =1,即点P n 在直线l 上.19、①解如图①所示,由射影定理知AD2=BD·DC,AB2=BD·BC,AC2=BC·DC,∴1AD2=1BD·DC=BC2 BD·BC·DC·BC=BC2AB2·AC2.又BC2=AB2+AC2,∴1AD2=AB2+AC2AB2·AC2=1AB2+1AC2.所以1AD2=1AB2+1AC2.类比AB⊥AC,AD⊥BC猜想:四面体A-BCD中,AB、AC、AD两两垂直,实用文档AE⊥平面BCD,则1AE2=1AB2+1AC2+1AD2.②如图②,连接BE交CD于F,连接AF.∵AB⊥AC,AB⊥AD,∴AB⊥平面ACD.而AF⊂平面ACD,∴AB⊥AF.在Rt△ABF中,AE⊥BF,∴1AE2=1AB2+1AF2.在Rt△ACD中,AF⊥CD,∴1AF2=1AC2+1AD2.∴1AE2=1AB2+1AC2+1AD2,故猜想正确.实用文档实用文档20、证明 要证a 2+1a 2-2≥a +1a-2 只须证a 2+1a 2+2≥a +1a +2,∵a >0,故只要证(a 2+1a 2+2)2≥⎝ ⎛⎭⎪⎫a +1a +22. 即a 2+1a 2+4a 2+1a 2+4≥a 2+2+1a 2+22⎝ ⎛⎭⎪⎫a +1a +2. 从而只要证2a 2+1a 2≥2⎝ ⎛⎭⎪⎫a +1a . 只要证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+1a 2+2 即a 2+1a 2≥2,而上述不等式显然成立,故原不等式成立.21、解 (1)a 1=1,a 2=2-1,a 3=3- 2. (2)猜想a n =n -n -1.证明:①当n =1时,由a 1=1=1得结论成立;实用文档②假设n =k (k ∈N *)时结论成立,即a k =k -k -1.当n =k +1时,a k +1=S k +1-S k =12(a k +1+1a k +1)-12(a k +1a k) =12(a k +1+1a k +1)-12(k -k -1+1k -k -1),从而有a 2k +1+2ka k +1-1=0,又由a k +1>0,解得a k +1=-2k +4k +42=k +1-k ,这说明当n =k +1时结论成立.由①②可知,a n =n -n -1对任意正整数n 都成立.22、证明 假设a +b 为有理数,则(a +b )(a -b )=a -b ,由a >0,b >0,得a +b >0.∴a-b=a-b a+b∵a、b为有理数且a+b为有理数.∴a-ba+b,即a-b为有理数.∴(a+b)+(a-b),即2a为有理数.从而a也就为有理数,这与已知a为无理数矛盾,∴a+b一定为无理数.实用文档。