深度优先搜索的基本思想
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深度优先搜索的基本思想
搜索是人工智能中的一种基本方法,也是信息学竞赛选手所必须熟练掌握的一种方法,它最适合于设计基于一组生成规则集的问题求解任务,每个新的状态的生成均可使问题求解更接近于目标状态,搜索路径将由实际选用的生成规则的序列构成。我们在建立一个搜索算法的时候.首要的问题不外乎两个:以什么作为状态?这些状态之间又有什么样的关系?我们就简单的说一下深度优先搜索的基本思想吧。
如算法名称那样,深度优先搜索所遵循的搜索策略是尽可能“深”地搜索树。在深度优先搜索中,对于当前发现的结点,如果它还存在以此结点为起点而未探测到的边,就沿此边继续搜索下去,若当结点的所有边都己被探寻过.将回溯到当前结点的父结点,继续上述的搜索过程直到所有结点都被探寻为止。
深度优先搜索在树的遍历中也称作树的先序遍历。对于树而言,深度优先搜索的思路可以描述为:
(1)将根结点置为出发结点。
(2)访问该出发结点.
(3)依次将出发结点的子结点置为新的出发结点.进行深度优先遍历(执行(2))。
(4)退回上一层的出发结点。
深度优先搜索的具体编程可用递归过程或模拟递归来实现。他们各有各的优缺点。递归形式的程序符合思维习惯.编写起来较容易.但由于递归过程的调用借助较慢的系统栈空间传递参数和存放局部变量,故降低了执行效率。模拟递归使用数组存放堆栈数据,在管理指针和每层选择决策上不如递归容易编程.但一旦熟悉了程序框架,调试起来要比递归程序方便,由于数组一般使用静态内存.访问速度较快,执行效率也较高.
经典例子、找零钱(money.pas)
问题描述:有2n个人排队购一件价为0.5元的商品,其中一半人拿一张1元人民币,另一半人拿一张0.5元的人民币,要使售货员在售货中,不发生找钱困难,问这2n个人应该如何排队?找出所有排队的方案。(售货员一开始就没有准备零钱)
输入:
输入文件money.in仅一个数据n
输出:
输出文件money.out若干行,每行一种排队方案,每种方案前加序号No.i,每种方案0表示持0.5元钞票的人,1表示持1元钞票的人
样例:
money.in
3
money.out NO.1:000111 No.2:001011 No.3:001101 No.4:010011 No.5:010101