第五章材料相结构及相图
合集下载
大学材料科学基础 第五章材料的相结构和相图(1)
弗兰克尔空位
肖脱基空位
2) 为了保持电中性,离子间数量不等的置换会 在晶体内部形成点缺陷。 如:2Ca2+→Zr4+ ,形成氧离子空缺。 3) 陶瓷化合物中存在变价离子,当其电价改变 时,也会在晶体中产生空位。 如:方铁矿中,部分Fe2+被氧化为Fe3+时, 2FeO+O → Fe2O3中,产生阳离子空缺。 同理,TiO2中,部分Ti4+被还原为Ti3+时,产 生阴离子空缺。 这种由于维持电中性而出现的空位,可以 当作电子空穴。欠缺或多出的电子具有一定的 自由活动性,因而降低了化合物的电阻。这种 现象在材料的电性能方面有重要意义。
3.陶瓷材料中的固溶方式
陶瓷材料——一般不具备金属特性,属无机非金属。 无机非金属化合物可以置换或间隙固溶的方式溶入其 它元素而形成固溶体,甚至无限固溶体,但是一般形 成有限固溶体。 如:Mg[CO3] → (Mg,Fe)[CO3] →(Fe,Mg)[CO3] →Fe[CO3] 菱镁矿 含铁菱镁矿 含镁菱铁矿 菱铁矿 不改变原来的晶格类型,晶格常数略有改变。
(3) 多为金属间或金属与类金属间的化合物, 以金属键为主,具有金属性,所以也称金属 间化合物。 (4) 晶体结构复杂。 (5) 在材料中是少数相,分布在固溶体基体 上,起到改善材料性能、强化基体的作用。 中间相可分为以下几类: 正常价化合物;电子化合物;间隙相;间隙 化合物;拓扑密堆相。
1. 正常价化合物 • 通常是由金属元素与周期表中第Ⅳ、Ⅴ、 Ⅵ族元素形成,它们具有严格的化合比, 成分固定不变,符合化合价规律,常具有 AB、AB2、A2B3分子式。 • 它的结构与相应分子式的离子化合物晶体 结构相同,如分子式具有AB型的正常价化 合物其晶体结构为NaCl型。正常价化合物 常见于陶瓷材料,多为离子化合物。如 Mg2Si、Mg2Pb、MgS、AuAl2等。 • 在合金材料中,起弥散强化的作用。
材料科学基础第5章 材料的相结构与相图 ppt课件[1]
一、纯金属特点
1、优良的导电、导热性能; 2、高的化学稳定性; 3、美观的金属光泽; 4、但强度、硬度较低; 5、制取困难;价格高;资源有限
2020/10/28
4
二、合金的基本概念
1、定义
是由两种或两种以上金属元素, 或金属元素与非金属元素,经熔 炼、烧结等方法组合而成并具有 金属特性的物质。
2020/10/28
5
钢:Fe-C合金;
黄铜:Cu-Zn合金; 黄铜 防锈铝:Al-Mg合金。
2、合金的特点 Al-Cu两相合金 强度高、硬度高;性能可大幅 度调节;价格较低、应用广。
2020/10/28
6
3、相
是合金中具有晶体结构相同、 成分相同和性能相同,并以界 面相互分开的组成部分。
2020/10/28
7
纯铁:由α-Fe(铁素体相) 单相构成,为单相合金;
3、作用:为合金的强化相。
2020/10/28
28
(二)金属间化合物
1、定义
合金结晶时,当其溶质浓度大 于溶解度时,将析出结构不同于任 何组元的新相,该相具有一定的金 属特征,称为金属间化合物。
2020/10/28
29
3、分类:
正常价化合物、电子化合物 、 间隙相和间隙化合物 。
1)正常价化合物
P(珠光体)= F + Fe3C Fe3C形状:片状和球状。
2020/10/28
12
❖ 当Fe3C为片状 时,构成P片状
❖ HB≈200 ❖ δ=15% ❖ Ψ=30%
2020/10/28
珠光体
13
当Fe3C为球状 时,构成P球状
HBS≈163 δ=20% Ψ=40%
2020/10/28
金属材料3_第五章 铁碳合金相图和碳钢
第一节 纯铁、铁碳合金的相结构及其性能
一、纯铁及其同素异构转变
图5-1 纯铁的冷却曲线及晶体转变
第一节 纯铁、铁碳合金的相结构及其性能
P58.tif
二、 Fe-Fe3C合金的相结构及其性能 (1)铁素体 纯铁在912℃以下具有体心立方晶格。 (2)奥氏体 碳溶于γ-Fe中的间隙固溶体称为奥氏体,以符号A表示。 (3)渗碳体 渗碳体的分子式为Fe3C,它是一种具有复杂晶格的间 隙化合物。
(1)普通碳素结构钢 这类钢冶炼容易、工艺性好、价廉,而且在 力学性能上也能满足一般工程结构及普通机器零件的要求,所以 应用很广。
P72.TIF
1.碳素结构钢的牌号、性能及用途
(2)优质碳素结构钢 这类结构钢的硫、磷含量较低(wS≤0.030%, wP≤0.035%),非金属夹杂物也较少,钢的品质较高,塑性、韧性都 比(普通)碳素结构钢更佳,出厂时既保证化学成分,又保证力学性 能,主要用于制造较重要的机械零件。
表5-1 Fe-F C相图中的特性点
第二节 Fe-Fe3C相图分析
表5-2 Fe-F C相图中的特性线
二、碳钢的组织转变过程
第二节 Fe-Fe3C相图分析
图5-5 Fe-F C相图钢的部分
1.共析钢结晶后的组织转变
第二节 Fe-Fe3C相图分析
5z7.tif
5-41.eps
1.碳素结构钢的牌号、性能及用途
表5-5 优质碳素结构钢的牌号、性能和用途(参见GB/T 699—1999)
1.碳素结构钢的牌号、性能及用途
表5-5 优质碳素结构钢的牌号、性能和用途(参见GB/T 699—1999)
1.碳素结构钢的牌号、性能及用途
(3)碳素铸钢 在机器制造和工程结构上,有许多形状复杂难以用 锻造、切削加工等方法成形的零件,如轧钢机机架、水压机横梁、 机车车架及大齿轮等,用铸铁铸造又难以满足性能要求,这时一 般选用铸钢铸造。
一、纯铁及其同素异构转变
图5-1 纯铁的冷却曲线及晶体转变
第一节 纯铁、铁碳合金的相结构及其性能
P58.tif
二、 Fe-Fe3C合金的相结构及其性能 (1)铁素体 纯铁在912℃以下具有体心立方晶格。 (2)奥氏体 碳溶于γ-Fe中的间隙固溶体称为奥氏体,以符号A表示。 (3)渗碳体 渗碳体的分子式为Fe3C,它是一种具有复杂晶格的间 隙化合物。
(1)普通碳素结构钢 这类钢冶炼容易、工艺性好、价廉,而且在 力学性能上也能满足一般工程结构及普通机器零件的要求,所以 应用很广。
P72.TIF
1.碳素结构钢的牌号、性能及用途
(2)优质碳素结构钢 这类结构钢的硫、磷含量较低(wS≤0.030%, wP≤0.035%),非金属夹杂物也较少,钢的品质较高,塑性、韧性都 比(普通)碳素结构钢更佳,出厂时既保证化学成分,又保证力学性 能,主要用于制造较重要的机械零件。
表5-1 Fe-F C相图中的特性点
第二节 Fe-Fe3C相图分析
表5-2 Fe-F C相图中的特性线
二、碳钢的组织转变过程
第二节 Fe-Fe3C相图分析
图5-5 Fe-F C相图钢的部分
1.共析钢结晶后的组织转变
第二节 Fe-Fe3C相图分析
5z7.tif
5-41.eps
1.碳素结构钢的牌号、性能及用途
表5-5 优质碳素结构钢的牌号、性能和用途(参见GB/T 699—1999)
1.碳素结构钢的牌号、性能及用途
表5-5 优质碳素结构钢的牌号、性能和用途(参见GB/T 699—1999)
1.碳素结构钢的牌号、性能及用途
(3)碳素铸钢 在机器制造和工程结构上,有许多形状复杂难以用 锻造、切削加工等方法成形的零件,如轧钢机机架、水压机横梁、 机车车架及大齿轮等,用铸铁铸造又难以满足性能要求,这时一 般选用铸钢铸造。
第五章材料相结构和相图
材料科学基础材料的相结构固溶体中间相置换固溶体间隙固溶体正常价化合物电子化合物尺寸因素化合物间隙化合物置换固溶体间隙固溶体有限固溶体无限固溶体无序固溶体有序固溶体间隙相间隙化合物理解重点理解重点影响置换固溶体溶解度的因素陶瓷与金属固溶体的差别中间相和固溶体的区间隙固溶体间隙相间隙化合物的区别典型材料的相结构的辨别材料科学基础陶瓷与金属固溶体的差别形成弗兰克尔空位的可能性较小形成肖脱基空位时移出的正负离子总电价为零
一般认为热力学上平衡状态的无序固溶体溶质原子 分布在宏观上是均匀的,在微观上是不均匀的。
在一定条件下,溶质原子和溶剂原子在整个晶体中按 一定的顺序排列起来,形成有序固溶体。有序固溶体 中溶质原子和溶剂原子之比是固定的,可以用化学分 子式来表示,因此把有序固溶体结构称为超点阵。
例如:在Cu-Al合金中,Cu:Al原子比是1:1或3:1 时从液态缓冷条件下可形成有序的超点阵结构,用 CuAl或Cu3Al来表示。
HRTEM for Ni precipitate in 8YSZ/Ni Nanocomposites
size of precipitated Ni nanoparticle ~ 20 nm
pore Ni
10 nm
Ni nanoparticle and accompanied nano-pore in 8YSZ/0.6 vol%Ni Nanocomposite
中间相分类:正常价化合物、电子化合物(电子 相)、间隙化合物
材料科学基础
1. 材料的相结构
材料的 相结构
固溶体
置换固溶体 间隙固溶体 正常价化合物
中间相
电子化合物 尺寸因素化合物
间隙化合物 拉弗斯相
2.1 正常价化合物
材料科学基础
一般认为热力学上平衡状态的无序固溶体溶质原子 分布在宏观上是均匀的,在微观上是不均匀的。
在一定条件下,溶质原子和溶剂原子在整个晶体中按 一定的顺序排列起来,形成有序固溶体。有序固溶体 中溶质原子和溶剂原子之比是固定的,可以用化学分 子式来表示,因此把有序固溶体结构称为超点阵。
例如:在Cu-Al合金中,Cu:Al原子比是1:1或3:1 时从液态缓冷条件下可形成有序的超点阵结构,用 CuAl或Cu3Al来表示。
HRTEM for Ni precipitate in 8YSZ/Ni Nanocomposites
size of precipitated Ni nanoparticle ~ 20 nm
pore Ni
10 nm
Ni nanoparticle and accompanied nano-pore in 8YSZ/0.6 vol%Ni Nanocomposite
中间相分类:正常价化合物、电子化合物(电子 相)、间隙化合物
材料科学基础
1. 材料的相结构
材料的 相结构
固溶体
置换固溶体 间隙固溶体 正常价化合物
中间相
电子化合物 尺寸因素化合物
间隙化合物 拉弗斯相
2.1 正常价化合物
材料科学基础
相图的基本知识及单元系相图
5.1 相图的基本知识
相律的应用
① 利用相律可以判断在一定条件下系统最多可能平衡共存的相数 f=C-P+1 P=C-f+1
压力给定时,最多平衡相数比组元数多1 P=C+1 (压力给定时,最多平衡相数比组元数多1) 单元系,C=1 P=2 最多两相共存。 例:单元系,C=1,P=2 最多两相共存。
利用它可解释纯金属与二元合金结晶时的差别。 ② 利用它可解释纯金属与二元合金结晶时的差别。 纯金属结晶, 固共存, 说明结晶为恒温。 纯金属结晶,液-固共存,f=0,说明结晶为恒温。 二元系金属结晶两相平衡, 二元系金属结晶两相平衡,f= 2-2+1=1,说明有一个可变因 表明它在一定( 范围内结晶。 素(T),表明它在一定(T)范围内结晶。 二元系三相平衡, 此时温度恒定, 成分不变, 二元系三相平衡 , f= 2 - 3 + 1=0, 此时温度恒定 , 成分不变 , 各因素恒定。 各因素恒定。
系中旧相 新相的转变过程称为相变。 新相的转变过程称为相变。 若转变前后均为固相 , 则称为 固态相变 ( solid phase transformation )。 从液相转变为固相的过程称为凝固 凝固( 从液相转变为固相的过程称为凝固(solidification)。若凝 ) 固后的产物为晶体称为结晶 结晶( 固后的产物为晶体称为结晶(crystallization)。 )
1 相图的基本知识
相律是检验、分析和使用相图的重要工具。 相律是检验、分析和使用相图的重要工具。利用它 可以分析和确定系统中可能存在的相数, 可以分析和确定系统中可能存在的相数,检验和研究 相图。 相图。 注意使用相律有一些限制: 注意使用相律有一些限制: 只适用于热力学平衡状态,各相温度相等( (1)只适用于热力学平衡状态,各相温度相等(热量 平衡) 各相压力相等(机械平衡) 平衡)、各相压力相等(机械平衡)、各相化学势相 化学平衡) 等(化学平衡)。 只表示体系中组元和相的数目, (2)只表示体系中组元和相的数目,不能指明组元和 相的类型和含量。 相的类型和含量。 不能预告反应动力学(即反应速度问题) (3)不能预告反应动力学(即反应速度问题)。 ( 4 ) f ≧0
第五章材料的相结构及相图
电子浓度为21/13时,为复杂立方结构,或称γ黄铜结构
电子浓度为21/12时,为密排六方结构,或称ε黄铜结构。 其他影响因数:尺寸因素及组元的电负性差。 例:电子浓度21/14的电子化合物,当组元原子尺寸差较小时,倾向于形成密排六方 结构;当尺寸差较大时,倾向于形成体心立方结构;若电负性差较大,则倾向于形 成复杂立方及密排六方结构。 性能:结合键为金属键,具有明显的金属特性。电子化合物的熔点及硬度较高 ,脆性较大
有些与金属固溶体类似,如原子半径差越小,温度越高,电负性差越小,离子间的 代换越易进行 ,其固溶度也就越大。当两化合物的晶体结构相同,且在其他条件 有利的情况下 ,相同电价的离子间有可能完全互换而形成无限固溶体 。
此外,必须考虑以下情况 (1) 保持晶格的电中性 ,代换前后离子的总电价必须相等 若相互代换的离子间电价相等,称为等价代换, 例 钾 长 石 K [AlSi303]与钠长石Na [AlSi303〕中的K+与Na+的代换及上例中Si4+代 换 Ti4+, Mg2+与Fe2+的互换等。
eC、eA分别为在非电离状态下正离子及负离子的价电子数
类型:一般有AB、A2B(或AB2)等类型 特点:种类繁多,晶体结构十分复杂,包括从离子键、共价键过渡到 金属键为主的一系列化合物 如: Mg2Si 电负性影响大,较强的离子键
Mg2Sn 电负性差减小,共价键为主,呈半导体特征 Mg2Pb 金属键占主导地位
之差超过14%~15%,则固溶度(摩尔分数)极为有限;
原因:点阵畸变导致能量升高,Δ r越大,点阵畸变能越高
2
r
rA rB rA
按弹性力学方法计算
2 3 r rB 3 8 G rB A 8 G rB r rA
材料科学基础-第五章 材料的相结构及相图
相律在相图中的应用
C
2 二元系
P 1 2
3 1
f 2 1 0
3 2 1 0
含义
单相合金,成分和温度都可变 两相平衡,成分、相对量和温度 等因素中只有一个独立变量 三相平衡,三相的成分、相对 量及温度都确定 单相合金其中两个组元的含量 及温度三个因素均可变 两相平衡,两相的成分、数量 及温度中有两个独立变量 三相平衡,所有变量中只有 一个是独立变量 四相平衡所有因素都确定不变
结构简单的具有极高的硬度及熔点,是合金工具钢和硬 质合金的重要组成相。
I. 间隙化合物
间隙化合物和间隙固溶体的异同点
相同点: 非金属原子以间隙的方式进入晶格。
不同点: 间隙化合物:间隙化合物中的金属组元大多与自 身原来的结构类型不同 间隙固溶体:间隙固溶体中的金属组元仍保持自 身的晶格结构
I. 尺寸因素
II. 晶体结构因素 组元间晶体结构相同时,固溶度一般都较大,而且有可 能形成无限固溶体。若不同只能形成有限固溶体。
III. 电负性差因素
两元素间电负性差越小,越易形成固溶体,且形成的 固溶体的溶解度越大;随两元素间电负性差增大,固 溶度减小。
1)电负性差值ΔX<0.4~0.5时,有利于形成固溶体 2)ΔX>0.4~0.5,倾向于形成稳定的化合物
Mg2Si
Mg—Si相图
(2)电子化合物
由ⅠB族或过渡金属元素与ⅡB,ⅢB,ⅣB族元素 形成的金属化合物。 不遵守化合价规律,晶格类型随化合物电子浓度 而变化。 电子浓度为3/2时: 呈体心立方结构(b相); 电子浓度为21/13时:呈复杂立方结构(g相); 电子浓度为21/12时。呈密排六方结构(e相);
NaCl型 CaF2型 闪锌矿型 硫锌矿型 (面心立方) (面心立方) (立方ZnS) (六方ZnS)
材料科学基础(讲稿5章)
Cu-Ni合金的铸态组织 ×50 树枝状
39
3)特点 (ⅰ) 冷却速度较快. (ⅱ) 开始结晶温度低于液相线. (ⅲ) 结晶中,剩余液相特别是晶粒内部成分不 均匀,先结晶的部分含高熔点组元较多,后 结晶的部分含低熔点组元较多;固相平均成 分偏离固相线,液相平均成分是否偏离液相 线随冷却速度而异. (ⅳ) 结晶终了温度低于固相线. (ⅴ) 通常不能应用杠杆定律. (ⅵ) 室温铸态有晶内偏析,形成树枝状组织.
Zn 2+、Ga 3+、Ge 4+、As 5+在Cu+中的最大固溶度(摩尔分数) 分别为38%、20%、12%、7%
6
Zn 2+、Ga 3+、Ge 4+、As 5+在Cu+中达最大 固溶度时所对应的e/a≈1.4→极限电子浓度
超过极限电子浓度,固溶体就不稳定,会 形成新相。 计算电子浓度时,元素的原子价指的是: 原子平均贡献出的共有电子数,与该元素 在化学反应时的价数不完全一致。
不平衡共晶形成原因分析
56
3)离异共晶——合金中 先共晶相的量很多,共晶 体的量很少时,共晶体中 与先共晶相相同的相依附 于先共晶相生长,将共晶 体中的另一相孤立在先共 晶相的晶界处.这种共晶 体两相分离的组织称为离 异共晶.
57ቤተ መጻሕፍቲ ባይዱ
Pb-Sb共晶离异组织(铸态)×400 α 相依附初生晶α 析出,形成离异的 白色网状β
58
3、包晶相图及其结晶
(1)相图分析 液相线 单相区 两相区 固相线 三相区 固溶度曲线 (2)包晶反应 在一定温度下,由一固定成分的液相与一个固定成 分的固相作用,生成另一个成分固定的固相的反应, 称为包晶反应。
材料科学基础 第五章 5.1-5.4相图
5.2.3 杠杆定律
设成份为 X的合金的总重量为1,液相的相对重量为 QL,其 成份为 X1,固相相对重量为Qα,其成份为X2,则 :
5.2.4 相图的类型和结构 根据组元的多少,可分为单元系、二元系、三元 系 …. 相图。
二元系相图的类型有:
① 液态无限溶解,固态无限溶解 -匀晶相图; ②液态无限溶解,固态有限溶解 -共晶相图和包晶
共晶组织:共晶转变产物。(是两相混合物)
共晶合金的特殊性质: ①比纯组元熔点低,简化了熔化和铸造的操作; ②共晶合金比纯金属有更好的流动性,其在凝固之 中防止了阻碍液体流动的枝晶形成,从而改善铸造 性能; ③恒温转变(无凝固温度范围)减少了铸造缺陷, 例如偏聚和缩孔; ④共晶凝固可获得多种形态的显微组织,尤其是规 则排列的层状或杆状共晶组织可能成为优异性能的 原位复合材料(in-situ composite )。
5.2.2 相律
相律(phase rule)是表示在平衡条件下,系统的自 由度数、组元数和相数之间的关系,是系统的平 衡条件的数学表达式。 相律数学表达式:f = C – P + 2 式中 P—平衡相数 C—体系的组元数 f—体系自由度(degrees of freedom) 数 2-温度和压力 自由度数 f:是指不影响体系平衡状态的独立可 变参数(温度、压力、浓度等)的数目。 在恒压下,相律表达式: f = C – P + 1
相律的应用
① 利用它可以确定系统中可能存在的最多平衡相数 单元系,因f ≥0,故 P≤1-0+1=2,平衡相最大为二个。 注意:这并不是说,单元系中能够出现的相数不能超过二 个,而是说,某一固定 T下,单元系中不同的相只能有两 个同时存在,而其它相则在别的条件下存在。
机械工程材料第五章 铁碳合金
4、共晶白口铁
L
L→ Ld( A+Fe3C) A→ (Fe3C)Ⅱ
A→P(α+Fe3C)
室温组织:Ld′ 即 P+(Fe3C)Ⅱ+Fe3C 室温相:α+Fe3C
5、亚共晶白口铁
L L→A L→ Ld (A+Fe3C) A→ (Fe3C)Ⅱ
A→P(α+Fe3C)
室温组织: Ld′+P+(Fe3C)Ⅱ 即(P+(Fe3C)Ⅱ+Fe3C)+P+Fe3CⅡ 室温相:α+Fe3C
四、 Fe-Fe3C相图的应用
1.为选材提供成分依据
低碳钢(0.10-0.25%C):建筑结构和容器等 中碳钢(0.25-0.60%C):如轴等 高碳钢(0.6-1.3%C):如工具等 白口铁:如拔丝模、轧辊和球磨机的铁球等
34
2.为制定热加工工艺提供依据
(1)在铸造生产方面的应用 根据Fe-Fe3C相图可以确定铁碳合金的浇注温度, 浇注温度一般在液相线以上50℃~100℃。 共晶成分的铸铁凝固区间最小(为零),流动性 好,分散缩孔少,可使缩孔集中在冒口内,有可 能得到致密的铸件得到较广泛的应用。
其性能特点是强度低,硬度不高,易于塑性变形。
⑸ Fe3C相(又称渗碳体):根据其生成条件不同有条状、网状、
片状、粒状等形态,对铁碳合金的力学性能有很大影响。
1600 A 1400 N 1200 1000
+L
B 0.53 J 0.17 H 0.09 1495
L
2.11 E
4.3 1148 C
+
注意:由于不保证化学成分,所以热处理时不能 依甲类钢来选材,应依乙类钢选,才能根据相图 制定热处理工艺。
材料科学基础第五章 材料的相结构及相图
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学 2)尺寸因素
化学与材料科学学院
溶质原子溶入溶剂晶格会引起晶格点阵畸变,使晶体能量升高。 晶格畸变能
能量越高,晶格越不稳定。
单位体积畸变能的大小与溶质原子溶入的数量及溶质原子的相对尺寸有关:
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
1)晶体结构因素
溶质与溶剂的晶格结构相同→固溶度大。 例如:具有面心立方结构的Mn、Co、Ni、Cu,在γ-Fe中 固溶度较大,而在α-Fe中固溶度较小。 溶质与溶剂的晶格结构相同是形成无限固溶体的必要条件。
贵州师范大学
化学与材料科学学院
1)无限固溶体
无限固溶体都是置换固溶体? 2)有限固溶体 间隙固溶体只能是有限固溶体?
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
按溶质原子分布分类 1)有序固溶体 2)无序固溶体
贵州师范大学
化学与材料科学学院
基本概念
组元:组成材料的最基本的、独立的物质,简称元。
金属元素:Cu、Al、Fe 非金属元素:C、N、O 化合物: Al2O3, MgO, Na2O, SiO2 单一组元组成:纯金属、 Al2O3晶体等 材料: 二元合金 多组元组成,含合金 三元合金
组元:
纯元素
合金:指由两种或两种以上的金属或金属与非金属 经熔炼或其它方法制成的具有金属特性的物质。
材料科学基础-第五章-材料的相结构及相图-PPT
相图上为一条垂直线。
Mg2Si
Mg—Si相图
(2)电子化合物
由ⅠB族或过渡金属元素与ⅡB,ⅢB,ⅣB族元素
形成的金属化合物。
不遵守化合价规律,晶格类型随化合物电子浓度而
变化。
电子浓度为3/2时: 呈体心立方结构(b相);
电子浓度为21/13时:呈复杂立方结构(g相);
电子浓度为21/12时。呈密排六方结构(e相);
体。
III. 电负性差因素
IV. 两元素间电负性差越小,越易形成固溶体,且形
成的固溶体的溶解度越大;随两元素间电负性差
增大,固溶度减小。
1)电负性差值ΔX<0.4~0.5时,有利于形成固溶体
2)ΔX>0.4~0.5,倾向于形成稳定的化合物
IV. 电子浓度因素
V. 电子浓度的定义是合金中各组成元素的价电子数总
子的价电子数恰好使负离子具有稳定的电子层
结构。
金属元素与周期表中的ⅣA,ⅤA,ⅥA元素
形成正常价化合物。
有较高的硬度,脆性很大。
例如:Mg2Si、Mg2Sn、Mg2Pb、MgS、MnS等
(1)正常价化合物
正常价化合物的分子式只有AB,A2B或AB2两种。
常见类型:
NaCl型
CaF2型
Cu原子形成四面体(16个)。
每个镁原子有4个近邻镁原子和12个近邻铜原子;
每个铜原子有6个近邻的铜原子和6个近邻的镁原子
。
Cu
Mg
II. 拉弗斯(Laves)相
②MgZn2型:六方晶系。
Mg原子形成硫锌矿结构;Zn原子形成四面体。
每个Mg原子有4个近邻Mg原子和12个近邻Zn原
子。
每个Zn原子有6个近邻Zn原子和6个近邻Mg原子
Mg2Si
Mg—Si相图
(2)电子化合物
由ⅠB族或过渡金属元素与ⅡB,ⅢB,ⅣB族元素
形成的金属化合物。
不遵守化合价规律,晶格类型随化合物电子浓度而
变化。
电子浓度为3/2时: 呈体心立方结构(b相);
电子浓度为21/13时:呈复杂立方结构(g相);
电子浓度为21/12时。呈密排六方结构(e相);
体。
III. 电负性差因素
IV. 两元素间电负性差越小,越易形成固溶体,且形
成的固溶体的溶解度越大;随两元素间电负性差
增大,固溶度减小。
1)电负性差值ΔX<0.4~0.5时,有利于形成固溶体
2)ΔX>0.4~0.5,倾向于形成稳定的化合物
IV. 电子浓度因素
V. 电子浓度的定义是合金中各组成元素的价电子数总
子的价电子数恰好使负离子具有稳定的电子层
结构。
金属元素与周期表中的ⅣA,ⅤA,ⅥA元素
形成正常价化合物。
有较高的硬度,脆性很大。
例如:Mg2Si、Mg2Sn、Mg2Pb、MgS、MnS等
(1)正常价化合物
正常价化合物的分子式只有AB,A2B或AB2两种。
常见类型:
NaCl型
CaF2型
Cu原子形成四面体(16个)。
每个镁原子有4个近邻镁原子和12个近邻铜原子;
每个铜原子有6个近邻的铜原子和6个近邻的镁原子
。
Cu
Mg
II. 拉弗斯(Laves)相
②MgZn2型:六方晶系。
Mg原子形成硫锌矿结构;Zn原子形成四面体。
每个Mg原子有4个近邻Mg原子和12个近邻Zn原
子。
每个Zn原子有6个近邻Zn原子和6个近邻Mg原子
5. 材料的相结构及相图
相律在相图中的应用
组元数(C) 相数(P) f=C–P+1
含义 单相合金,成分和温度都可变 两相平衡,成分、相对量和温度 等因素中只有一个独立变量 三相平衡,三相的成分、相对 量及温度都确定 单相合金其中两个组元的含量 及温度三个因素均可变 两相平衡,两相的成分、数量 及温度中有两个独立变量 三相平衡,所有变量中只有一 个是独立变量 四相平衡所有因素都确定不变
<2>晶体结构因素 组元间晶体结构相 同时,固溶度一般都较大,而且有可能形成 无限固溶体。若不同只能形成有限固溶体。 <3>电负性差因素 两元素间电负性差 越小,越易形成固溶体,而且形成的固溶体 的溶解度越大;随两元素间电负性差增大, 固溶度减小,当溶质与溶剂的电负性差很大 时,往往形成比较稳定的金属化合物。
(1)不同成分的材料在不同温度下存 在哪些变化 (2)各稳定相的相对量是多少
(3)成分与温度变化时所可能发生的变 化
了解相图的分析和使用方法后,就可以 了解合金的组织状态,进而预测合金的 性能。另外,可以根据相图来制订合金 的锻造和热处理工艺。 组元——组成材料最基本的、独立的物 质。
合金——有两种或两种以上的金属、或 金属与非金属经熔炼或用其它方法制成 的具有金属特性的物质。
Lc m n ●共晶反应:
tc
固相线: amcnb
●组成
液相线: acb
me 的溶解度变化线
nf 的溶解度变化线
●凝固过程: L 合金1:L 合金2 : L L
●不平衡凝固
<4>电子浓度因素 电子浓度的定义是 合金中各组成元素的价电子数总和与原 子总数的比值,记作e/a。电子浓度有 一极限,超过这一极限,固溶体就不稳 定,会形成新相。 二、间隙固溶体
材料的相结构及相图
的膨胀与收缩导致晶体能量升高,这种升高的能量称为晶 格畸变能。溶质原子引起的点阵畸变能越大,固溶体的溶 解度就越小。
(2) 晶体结构因素 组元间晶体结构相同时,固溶度较大,而且有可能形成
无限固溶体。组元间晶体结构不同,便只能形成有限固溶 体。
(3) 电负性差因素 两元素间电负性差越小,则越易形成固溶 体,而且所形成的固溶体的溶解度也就越大;溶质与溶剂 的电负性差很大时,往往形成比较稳定的金属化合物。
空位时必须是电价总和为零的正、负离子同时移
弗兰克尔空位
出晶体,在晶体中形成正、负离子的空位对。
2) 为了保持电中性,离子间数量不等的置换会在晶体 内部形成点缺陷。
如:2Ca2+→Zr4+ ,形成氧离子空缺。 3) 陶瓷化合物中存在变价离子,当其电价改变时,也
会在晶体中产生空位。
如:方铁矿中,部分Fe2+被氧化为Fe3+时, 2FeO+O → Fe2O3中,产生阳离子空缺。 生阴同离理子,空T缺iO。2中,部分Ti4+被还原为Ti3+时,产
溶剂——摩尔分数大于50%,
溶质——小于50%的组元
3. 按溶质与溶剂原子相对分布分类:
无序固溶体——溶质原子统计式地或概率地分布在溶 剂的晶格中。
有序固溶体——溶质原子在溶剂晶格的结点位或溶剂 晶格的间隙中,有规律的排列。
1.置换固溶体
影响置换固溶体溶解度的因素:
(1) 尺寸因素 溶质原子溶入溶剂晶格引起晶格的点阵畸变。 溶质点阵
第一节 材料的相结构
相——合金中具有同一聚集状态、同一晶 体结构和性质并以界面相互隔开的均匀组 成部分。材料的性能与各组成相的性质、 形态、数量直接有关。
根据相的结构特点分类: 固溶体 中间相
(2) 晶体结构因素 组元间晶体结构相同时,固溶度较大,而且有可能形成
无限固溶体。组元间晶体结构不同,便只能形成有限固溶 体。
(3) 电负性差因素 两元素间电负性差越小,则越易形成固溶 体,而且所形成的固溶体的溶解度也就越大;溶质与溶剂 的电负性差很大时,往往形成比较稳定的金属化合物。
空位时必须是电价总和为零的正、负离子同时移
弗兰克尔空位
出晶体,在晶体中形成正、负离子的空位对。
2) 为了保持电中性,离子间数量不等的置换会在晶体 内部形成点缺陷。
如:2Ca2+→Zr4+ ,形成氧离子空缺。 3) 陶瓷化合物中存在变价离子,当其电价改变时,也
会在晶体中产生空位。
如:方铁矿中,部分Fe2+被氧化为Fe3+时, 2FeO+O → Fe2O3中,产生阳离子空缺。 生阴同离理子,空T缺iO。2中,部分Ti4+被还原为Ti3+时,产
溶剂——摩尔分数大于50%,
溶质——小于50%的组元
3. 按溶质与溶剂原子相对分布分类:
无序固溶体——溶质原子统计式地或概率地分布在溶 剂的晶格中。
有序固溶体——溶质原子在溶剂晶格的结点位或溶剂 晶格的间隙中,有规律的排列。
1.置换固溶体
影响置换固溶体溶解度的因素:
(1) 尺寸因素 溶质原子溶入溶剂晶格引起晶格的点阵畸变。 溶质点阵
第一节 材料的相结构
相——合金中具有同一聚集状态、同一晶 体结构和性质并以界面相互隔开的均匀组 成部分。材料的性能与各组成相的性质、 形态、数量直接有关。
根据相的结构特点分类: 固溶体 中间相
材料科学基础_第5章_二元相图
不大时,它们不仅可以在液态或熔融状态完全互溶,而且 在固态也完全互溶,形成成分可变的连续固溶体,称为无 限固溶体或连续固溶体,它们形成的相图即为匀晶相图或 互溶相图。 ➢ 由液相结晶出单相固溶体的过程称为匀晶转变。液固态完 全互溶的体系不多,但是包含匀晶转变部分的相图却不少 ,几乎所有的二元系统都含有匀晶转变部分。
Cu
18 20
30 40
66 60 80
Ni 相对质量为1/4。溶体合金的平衡凝固及组织
➢ 平衡凝固是指凝固过程中每个阶段都能达到平衡,因此 平衡凝固是在极其缓慢的冷速下实现的。现以30%Ni和 70%Cu的铜镍合金为例来说明固溶体的平衡冷却过程及其 组织的。
11
冷却曲线 t Ⅱ
23
X2合金结晶过程分析
L
(共晶合金)
T,C
183
L
L+
L+
c
d
e
+
T,C
(+ )
围内凝固,具有变温凝固的特征 ②还需要成分起伏
15
5.3.2 二元共晶相图 两组元在液态无限互溶,固态有限溶解,通过共晶反
应形成两相机械混合物的二元合金称为二元共晶相图。共 晶反应是液相在冷却过程中同时结晶出两个结构不同的固
相的过程。 L
16
Ta,tb分别是Pb,Sn的熔点 M:锡在铅中的最大溶解度。N:铅在锡中的最大溶解度 E:为共晶点,具有该点成分的合金在恒温183℃发生共 晶转变LE→aM+ΒN,共晶转变是具有一定成分的液相在恒 温下同时转变为两个具有一定成分和结构的固相的过程。 F:室温时锡在铅中的溶解度;G:室温时铅在锡中的溶 解度
之间一定是由这两个相组成的两相区。如铁区(线)区(
Cu
18 20
30 40
66 60 80
Ni 相对质量为1/4。溶体合金的平衡凝固及组织
➢ 平衡凝固是指凝固过程中每个阶段都能达到平衡,因此 平衡凝固是在极其缓慢的冷速下实现的。现以30%Ni和 70%Cu的铜镍合金为例来说明固溶体的平衡冷却过程及其 组织的。
11
冷却曲线 t Ⅱ
23
X2合金结晶过程分析
L
(共晶合金)
T,C
183
L
L+
L+
c
d
e
+
T,C
(+ )
围内凝固,具有变温凝固的特征 ②还需要成分起伏
15
5.3.2 二元共晶相图 两组元在液态无限互溶,固态有限溶解,通过共晶反
应形成两相机械混合物的二元合金称为二元共晶相图。共 晶反应是液相在冷却过程中同时结晶出两个结构不同的固
相的过程。 L
16
Ta,tb分别是Pb,Sn的熔点 M:锡在铅中的最大溶解度。N:铅在锡中的最大溶解度 E:为共晶点,具有该点成分的合金在恒温183℃发生共 晶转变LE→aM+ΒN,共晶转变是具有一定成分的液相在恒 温下同时转变为两个具有一定成分和结构的固相的过程。 F:室温时锡在铅中的溶解度;G:室温时铅在锡中的溶 解度
之间一定是由这两个相组成的两相区。如铁区(线)区(
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据金属化合物的形成规律及结构特点,可将其分为以下类型。 1 正常价化合物 (1)形成:电负性差起主要作用,符合原子价规则。 (2)键型:随电负性差的减小,分别形成离子键、共价键、金属键。 (3)组成:AB或AB2。如MnS, Mg2Si.
一些正常价化合物及其晶格类型 NaCl结构 反CaF2结构 CaF2结构 立 方 ZnS 结 构 ZnS 六 方 ZnS 结 构 ZnS
(1)平衡相成分的确定(根据相律,若温度一定,则自 由度为0,平衡相成分随之确定。) (2)数值确定:直接测量计算或投影到成分轴测量计算。 (3)注意:只适用于两相区;三点(支点和端点)要选准。
合金成分为C,总重量为W。在T温度时,由液相和固相组成, 液 相的成分为CL ,重量为WL,固相成份为C α ,重量为Wα。 则 W=WL+Wα (1) WL· L+Wα· α =W· C C C (2) 由(1)、(2)可得:WL/W α=(C α-C) / (C- CL) 故 WL/W α=rb / ar 上式还可换写成:WL/W =rb / ab
4.相图的表示与测定
A
mA m A mB
mB B m A mB nA xA n A nB nB xB n A nB
例:有一焊剂, Sn 0.6, Pb 0.4 试求每一种元素的摩尔分数。
mSn 118.69 xSn Sn 0.6 M M mPb 207.19 xPb Pb 0.4 M M xSn 2.6 xPb xSn xPb 1 xSn 72% xPb 28%
第五章 材料的相结构及相图
为何工业上很少使用纯金属,而 多使用合金? 4h
第五章 材料的相结构及相图
合金:由两种或两种以上的元素组成,其中至少有一种为金属, 组成具有金属性的材料称为合金。 组元:通常把组成材料的最简单、最基本、能够独立存在的物 质称为组元。组元大多数情况下是元素;在研究的范围内既不 分解也不发生任何化学反应的稳定化合物也可称为为组元。 合金相(或相):凡成分相同、结构相同并与其它部分有界面 分开的物质均匀组成部分,称之为相。 组织:在一定的外界条件下,一定成分的合金可能由不同成分、 结构和性能的合金相所组成,这些相的总体便称为合金的组织。 在固态材料中,按其晶格结构的基本属性来分,可将合金相 分为固溶体和化合物两大类。
3.电子浓度因素(原子价因素) 电子浓度是固熔体中价电子数目与原子数目的比值
e/a V (100 x ) ux 100
原子价效应: 一价贵金属Cu、Au、Ag做溶剂时,加入不同原子价的溶 质元素时,在尺寸因素同样有利的条件下,溶质元素的原子价越高, 则形成固溶体的极限固溶度越小。 相对价效应:高价元素在低价中的溶解度较大,而低价元素在高价元素 中的溶解度较小。
二 中间相(金属间化合物)
金属化合物是合金组元间相互作用所形成的一种晶格类型及性 能均不同于任一组元的合金固相。 特点: (1)它们在二元相图上所处的位置总是在两个端际固熔体之 间的中间部位,所以它们统称为中间相。 (2)中间相大多数是由不同的金属或金属与亚金属组成的化 合物,故这类中间相又称为金属间化合物。 (3)构成各类中间相的结合键各不相同,中间相的结合键取 决于组元元素之间的电负性差。电负性相近的元素,形成的中 间相多以金属键为主,而电负性相差较大时,倾向于以离子键 或共价键结合。但一般都具有一定程度的金属性(因此中间相 的化学键多不是单一的,而是各种化学键的混合,只是组元性 质不同时,各种化学键比例会有所不同。
也可以用原子百分比表示,即
1)无限固溶体(连续固熔体)
2)有限固溶体(端际固熔体)
3.按溶质原子在溶剂晶格中的分布特点
1)无序固溶体 溶质原子在溶剂晶格中分布是任意的,没有任 何规律性,仅统计角度上是均匀分布的。 2)有序固溶体 溶质原子以一定的比例,按一定方向和顺序 有规律地分布在溶剂的晶格间隙中或结点上。
(4)中间相通常按一定或大致一定的原子比组成,可以用化学分 子式来表示,但是除正常价化合物外,大多数中间相的分子式不 遵循化学价规则。许多中间相的成分可以在一定范围内变化,在 相图上表现为一个域,形成以化合物为基的二次固熔体,比分子 式原子比多出的某组元的原子可以占据中间相中其它组元的位置, 或者中间相中某一不足原子比的组元所占据的位置空缺,形成所 谓缺位固熔体。 (5)中间相具有不同于各组成元素的晶体结构,组成原子各占据 一定的点阵位置,呈有序排列。但也有一些中间相的有序程度不 很高,甚至在高温时无序而在较低温度时才转变为有序排列,如 Cu3Au、CuZn等。 (6)中间相的性能明显不同于各组元的性能,一般是硬而脆的。 有些金属间化合物具有特殊的性能。例如形状记忆合金Ni-Ti。 (7)中间相的形成也受原子尺寸、电子浓度、电负性等因素的 影响。
第五章 材料的相结构及相图
第一节 材料的相结构
一.固溶体 固熔体是固态下一种组元(熔质)熔解在另一 种组元(熔剂)中而形成的新相,其特点是固熔体 具有熔剂组元的点阵类型。 晶格与固熔体相同的组元称为熔剂,其他组元称为 熔质。
固溶体的类型
无限固溶体 按固溶度分 有限固溶体 按溶质原子所占位置 置换式固溶体 按原子排列的程序性分 无序固溶体 固溶体 有序固溶体 间隙固溶体 : 有限固溶体 端际固溶体(初级固溶体): 以纯金属为基的固溶体 按基体类型 次级固溶体 : 以金属间化合物为基的固溶体
方法: 测定二元相图最常用的方法是热分析法。现在以Cu— Ni合金系为例,说明用热分析法建立相图的具体步骤。 图4-1是用热分析法建立Cu-Ni合金相图的示意图。 过程:配制合金-测冷却曲线-确定转变温度 -填入坐标-绘出曲线。 相图具
例题:氧化铁的晶体结构与NaCl相同。若氧化铁中氧的摩尔分数xo=0.52, 其晶格常数为0.429nm,试求其密度为何?已知Fe的相对原子量为55.8,O 的相对原子量为16。 解:可选择一个基准——100个原子(=52个氧离子+48个铁离子)。由晶 体结构可知,52个氧离子需要13个单位晶胞,但是只有48个铁离子,故还 有4个空位。
间隙相(VC)的结构
Fe3C的晶格结构
(2)拉弗斯相
当组元间原子尺寸之差处于间隙化合物与电子化合物之间时,会形成拉弗斯 相。
通式:AB2,A, B均为金属原子rA/rB=1.225
MgCu2型:复杂立方结构
MgZn2型:密排六方结构,WFe2, MoFe2 , FeBe2, MgZn2 MgNi2型:六方结构,MoBe2,NbCo2,MgNi2
1.按熔质原子在固溶体(熔剂)晶格中的位置不同可分为: 1) 置换固熔体
纯铜的fcc结构 2) 间隙固溶体
Cu
Ni
Cu-Ni置换固熔体
C
Ni
bcc
r八 0.1547 r
fcc
r四 0.291 r
r八 0.414r
r四 0.225r
2.按溶解度
溶质原子溶于固溶体中的量称为固溶体的浓度,一般用重量百 分比表示,即
硫锌矿六方ZnS
CdS,MgTe,CdTe,AlN
2 电子化合物 (1)形成:电子浓度起主要作用,不符合原子价规则。 (2)键型:金属键(金属-金属)。 (3)组成:电子浓度对应晶体结构,可用化学式表示,可形 成以化合物为基的固溶体。
3 尺寸因素化合物 (1)间隙化合物 (a)形成:尺寸因素起主要作用。 (b)结构 简单间隙化合物(间隙相):金属原子呈现新结构,非金属原子位于其间隙,结 构简单。如面心立方VC。RX/RM<0.59. 复杂间隙 化合物 :主要是铁、钴、铬、锰的化合物,结构复杂。如 Fe3C。 RX/RM>0.59 (c)组成:可用化学式表示,可形成固溶体,复杂间隙化合物的金属元素可被 置换。 (d)键型:共价键和金属键。
影响置换固溶体固溶度的因素
4.晶体结构因素
– 晶体结构相同是组元间形成无限固溶体的必
要条件。 – 形成有限固溶体时,溶质元素与溶剂的结构 类型相同,则溶解度通常也较不同结构时为 大。
固溶体的性能特点
1) 由于固溶体的晶体结构与溶剂相同,固溶体的性能基本上与 原溶剂的性能相近,换句话说,固溶体的性能主要决定于溶 剂的性能,或在溶剂性能基础上发生一些改变。 2) 固溶体的性能与原溶剂性能的差别,或称性能变化的大小, 随着溶质的浓度(含量)的增加而加大。 3) 以金属元素为溶剂的固溶体,随着溶质的溶入,强度将提高, 称为固溶强化,溶质的溶入可造成晶格畸变,材料的塑性变 形的阻力加大,同时塑性略有下降,但不明显。在材料中是 有效提高金属材料力学性能的途径之一。 4) 点阵畸变和点阵常数的改变 5) 物理化学性能改变
有序固溶体-长程
有序固溶体-短程
有序固溶体-偏聚
影响置换固溶体固溶度的因素
1.原子尺寸因素:原子尺寸差别小于14~15%,才可能形成溶解度 较大甚至无限溶解的固溶体。
影响置换固溶体固溶度的因素
2.化学亲和力(电负性因素) ·电负性;原子吸引电子形成负离子的倾向,以电负性因素来衡量化 学亲和力。 1) 电负性差值ΔX<0.4~0.5时,有利于形成固溶体,随电负差值增 加固溶度增加。 2)ΔX>0.4~0.5,倾向于形成稳定的化合物,其电负性差值越大, 固溶体中固溶度越小。
一 相图的基本知识
1. 相律 系统:在热力学中,我们把所研究的原子、分子等集体称为系统,又称为 体系。
相:在一个系统中,具有同一聚集状态的均匀部分,称为相。 2.相平衡:在某一温度下,系统中各个相经过很长时间也不互相转变, 处于平衡状态,这种平衡称为相平衡。 3. 相律 (1)相律:热力学平衡条件下,系统的组元数、相数和自由度数之 间的关系。 (2)表达式:f=c-p+2; 压力一定时,f=c-p+1。 (3)应用 可确定系统中可能存在的最多平衡相数。如单元系2个,二元系3个。 可以解释纯金属与二元合金的结晶差别。纯金属结晶恒温进行,二 元合金变温进行。