机械设计 - 摩擦磨损和润滑

合集下载

摩擦、磨损和润滑

摩擦、磨损和润滑

摩擦、磨损和润滑§1 摩擦在一定的压力下,表面间摩擦阻力的大小与两表面间的摩擦状态有密切关系,不同摩擦状态下,产生摩擦的物理机理是不同的。

一、摩擦状态按摩擦状态,即表面接触情况和油膜厚度,可以将滑动摩擦分为四大类,干摩擦、边界摩擦(润滑)、液体摩擦(润滑)和混合摩擦(润滑),如图所示。

1.干摩擦两摩擦表面间无任何润滑剂或保护膜的纯净金属接触时的摩擦,称为干摩擦。

在工程实际中没有真正的干摩擦,因为暴露在大气中的任何零件的表面,不仅会因氧气而形成氧化膜,且或多或少也会被润滑油所湿润或受到"污染",这时,其摩擦系数将显著降低。

在机械设计中,通常把不出现显著润滑的摩擦,当作干摩擦处理。

2.边界摩擦两摩擦表面各附有一层极薄的边界膜,两表面仍是凸峰接触的摩擦状态称为边界摩擦。

与干摩擦相比,摩擦状态有很大改善,其摩擦和磨损程度取决于边界膜的性质、材料表面机械性能和表面形貌。

3.液体摩擦两摩擦表面完全被液体层隔开、表面凸峰不直接接触的摩擦。

此种润滑状态亦称液体润滑,摩擦是在液体内部的分子之间进行,故摩擦系数极小。

这时的摩擦规律已有了根本的变化,与干摩擦完全不同。

关于液体摩擦(液体润滑)的问题,将在滑动轴承中进一步讨论。

4.混合摩擦两表面间同时存在干摩擦、边界摩擦和液体摩擦的状态称为混合摩擦。

二、干摩擦理论干摩擦理论主要有:(1)机械理论认为摩擦力是两表面凸峰的机械啮合力的总和,因而可解释为什么表面愈粗糙,摩擦力愈大;(2)和表面分子相互吸引分子-机械理论认为摩擦力是由表面凸峰间的机械啮合力F1两部分组成,因而这一理论可解释为什么当接触表面光滑时,摩擦力也会力F2很大。

但上述两种理论不能解释能量是如何被消耗的;(3)粘着理论;(4)能量理论等。

a) 结点b) 界面剪切c) 软金属剪切a) 结点b) 界面剪切c) 软金属剪切大量的试验表明,工程表面的实际接触面积约为名义接触面积的10-2~10-3,这样接触区压力很高,使材料发生塑性变形,表面污染膜遭到破坏,从而使基体金属发生粘着现象,形成冷焊结点(如图a 所示)。

机械设计第四章:摩擦、磨损与润滑概述

机械设计第四章:摩擦、磨损与润滑概述

化学吸附膜(化学键)
度影响较大
反应膜:比较稳定
§4-1 摩擦
三、流体摩擦
流体摩擦:指运动副的摩擦表面被流体膜隔开(λ>3~4) 摩擦性质取决于流体内部分子间粘性阻力的摩擦。 摩擦系数最小(f=0.001-0.008),无磨损产生,是理想的 摩擦状态。
四、混合摩擦
混合摩擦:摩擦表面间处于边界摩擦和流体摩擦的混合状 态(=1~3) 。 混合摩擦能有效降低摩擦阻力,其摩擦系数比边界摩擦时 要小得多。 边界摩擦和混合摩擦在工程实际中很难区分,常统称为 不完全液体摩擦。
汽车的磨合期如同运动员在参赛前的热身运动
目的:汽车磨合也叫走合。汽车磨合期是指新车
或大修后的初驶阶段。机体各部件机能适应环境的 能力得以调整提升。新车、大修车及装用大修发动 机的汽车在初期使用阶段都要经过磨合,以便相互 配合机件的磨擦表面进行吻合加工,从而顺利过渡
到正常使用状态。汽车磨合的优劣,会对汽车寿命、
滴油润滑、浸油润滑、飞溅润滑、喷油润滑、油雾润滑等 用于低速 用于高速
§4-3 润滑剂、添加剂和润滑办法
三、润滑方法
滴油润滑、浸油润滑、飞溅润滑、喷油润滑、油雾润滑等
用于低速
用于高速
浸油与飞溅润滑
喷油润滑
油脂润滑常用于运转速度较低的场合,将润滑脂涂抹于需润 滑的零件上。润滑脂还可以用于简单的密封。

思考题:
4—1 4—5 4—10 4—11
§4-1 摩擦
滑动摩擦分为:
干摩擦、边界摩擦、流体摩擦、混合摩擦
一、干摩擦 表面间无任何润滑剂或保护膜的纯金属接触时的摩擦。通 常将未经人为润滑的摩擦状态当作“干摩擦”处理。
§4-1 摩擦
二、边界摩擦

《机械设计》第三节-摩擦-磨损-润滑

《机械设计》第三节-摩擦-磨损-润滑

t
度不会继续改变,所占时
间比率较小
O
时间t
2、稳定磨损阶段
经磨合的摩擦表面加工硬化,形成了稳定的表面粗糙度,摩擦
条件保持相对稳定,磨损较缓,该段时间长短反映零件的寿命
3、急剧磨损阶段 经稳定磨损后,零件表面破坏,运动副间隙增大→动载振动
→润滑状态改变→温升↑→磨损速度急剧上升→直至零件失效
二、磨损的类型
弹性变形
流体摩擦(润滑)
塑性变形
边界膜
边界摩擦(润滑)—最低要求
边界膜 液体

混合摩擦(润滑)
边界膜
液体
一、干摩擦
摩擦理论: 库仑公式 Ff f () Fn
新理论:分子—机械理论、能量理论、粘着理论
简单粘着理论:
Ff
Ar B
Fn
sy
B
a
n
Ar Ari i 1
f () Ff B Fn sy
(3)条件粘度(相对粘度)—恩氏粘度
3、影响润滑油粘度的主要因素
(1)温度 润滑油的粘度随着温度的升高而降低
粘度指数VI ,35,85,110
(2)压力
p 0 ep
P>10MP时,随P↑→ηP↑
4、配油计算
K v vB vA vB
配油比
1、根据摩擦面间存在润滑剂的状况,滑动摩擦分
为哪几种? 2、获得流体动力润滑的基本条件是什么?
3、典型的磨损分哪三个阶段?磨损按机理分哪几 种类型?
4、什么是流体的粘性定律?
5、粘度的常用单位有哪些?影响粘度的主要因素是 什么?如何影响?
6、评价润滑脂和润滑油性能的指标各有哪几个?
润滑油压分布
v1
v2

第三章 摩擦、磨损和润滑

第三章  摩擦、磨损和润滑
摩擦是一种不可逆过程,其结果使摩擦表面的物质丧失或转移, 即发生磨损。过度磨损会使机器丧失应有的精度,产生振动和噪 声,缩短使用寿命。
适当的润滑是减小摩擦、减轻磨损和降低能量消耗的有效手 段。
第一节 摩 擦
摩擦的种类 1)内摩擦:发生在物质内部,阻碍分子间相对运动的摩擦。 2)外摩擦:当相互接触的两个物体发生相对滑动或有相对滑
在液体摩擦状态下,其摩擦性能取决于流体内部分子之间的 粘滞阻力,故摩擦因数极小(约为0.001~0.008),是一种理想的 摩擦状态。摩擦规律也已有了根本的变化,与干摩擦完全不同。
四、混合摩擦
当两摩擦表面不能被具有压力的液体层完全分隔开,摩擦表 面间处于既有边界摩擦又有液体摩擦的混合状态称为混合摩擦。
边界膜有两大类:吸附膜和化学反应膜。吸附膜又分为物理 吸附膜与化学吸附膜。
物理吸附膜是由分子引力所 形成的。吸附膜吸附在金属表面 的模型如图2.3.4所示。
化学吸附膜是润滑油分子 以其化学键力作用在金属表面 形成保护膜,它的剪切强度与 抗粘着能力较低,但熔点较高 (约120°C)。所以,能在中等 速度及中等载荷下起润滑作用。
机械零件的磨损过程分为:磨合阶段、稳定磨损阶段和剧烈磨损 阶段。
按照磨损失效的机理,磨损主要有四种基本类型,即磨粒磨损、 粘着磨损、接触疲劳磨损和腐蚀磨损。
(1)磨粒磨损 外界进入摩擦表面间的硬质颗粒或摩擦表面上 的硬质凸峰,在摩擦过程中引起表面材料脱落的现象。特征是摩擦表 面沿着滑动方向形成划痕,在一些脆性材料上还会有崩碎和颗粒。
中心值列于表2.3.1。
此外,常用的还有比较法测定粘度,称为条件粘度(或相对粘 度)。我国常用的条件粘度为恩氏粘度,即在规定温度下200cm3的 油样流过恩氏粘度计的小孔(直径2.8 mm)所需时间(s)与同体积的 蒸馏水在20°C下流过相同小孔时间的比值即为该油样的恩氏粘度, 以符号°Et表示,其角标t表示测定时的温度。美国常用赛氏通用 秒(SUS),英国常用雷氏秒(R)作为条件湿或吸附于金属摩擦表面 形成边界膜的性能称为油性。吸附能力强,则愈有利于边界油膜的 形成,油性愈好。

机械设计中的摩擦和磨损问题

机械设计中的摩擦和磨损问题

机械设计中的摩擦和磨损问题机械设计中摩擦和磨损问题一直是工程师们关注的焦点。

摩擦和磨损的存在直接影响着机械设备的性能、寿命和可靠性。

本文将就摩擦和磨损问题在机械设计中的影响及其解决方法进行探讨。

1. 摩擦的定义与分类摩擦可以被定义为两个物体表面相互接触并发生相对运动时的力的阻碍。

按照摩擦力的起因和性质,摩擦可以分为干摩擦、液体摩擦和边界摩擦。

干摩擦是指物体表面在无润滑剂存在的情况下直接接触产生摩擦力;液体摩擦发生在润滑剂的存在下,液体形成摩擦层减小物体直接接触带来的摩擦力;边界摩擦是相对于干摩擦和液体摩擦的一种摩擦形式,润滑剂无法形成稳定的摩擦层,导致物体表面间的直接接触。

2. 摩擦的影响及解决方法摩擦力的产生会导致机械设备的性能下降和能源浪费。

为了解决摩擦的问题,工程师们采取了一系列的解决措施:2.1 使用润滑剂润滑剂的使用是减小摩擦力的常见解决方法之一。

润滑剂可以在物体表面形成一个摩擦降低的薄膜,减小表面接触,其分子结构可吸附在金属表面,在外加力下形成晶格变形而起到润滑作用。

有机润滑剂可分为固体、液体和气体,根据不同的应用场景选择适当的润滑剂。

2.2 采用合适的材料和涂层在机械设计中,选择适当的材料和涂层对减小摩擦起着重要的作用。

例如,使用高硬度表面涂层,可以减少物体表面间的接触,降低摩擦和磨损。

在特殊的应用场景中,还可以使用减摩降噪材料,如聚四氟乙烯(PTFE)等,以提高机械设备的性能。

3. 磨损的定义与分类磨损是指物体表面与外力作用下相互滑动或接触产生的材料损耗。

根据磨损机制和特征,磨损分为磨粒磨损、疲劳磨损、热磨损和化学磨损等几种类型。

4. 磨损的影响及解决方法磨损的存在会加速机械设备的老化,降低使用寿命。

为了解决磨损问题,以下方法常常被工程师们采用:4.1 加强材料硬度增加材料硬度是减少磨损的一种方法。

高硬度的材料可以有效降低磨粒对工作表面的损伤。

在一些高负荷和高速运动的设备上,使用高硬度材料来制造关键零部件可以显著提高耐磨性。

机械设计----摩擦

机械设计----摩擦

第三章 磨擦、磨损及润滑(一)教学要求掌握摩擦副分类及基本性质、磨损过程和机理及润滑的类型及润滑剂类型。

(二)教学的重点与难点摩擦副基本性质和典型磨损过程(三)教学内容§3—1 摩擦摩擦——两接触的物体在接触表面间相对滑动或有一趋势时产生阻碍其发生相对滑动的切向阻力,——这种现角叫磨擦磨损——由于摩擦引起的摩擦能耗和导致表面材料的不断损耗或转移,即形成磨损。

使零件的表面形状与尺寸遭到缓慢而连续破坏→精度、可靠性↓效率↓直至破坏润滑——减少摩擦、降低磨损的一种有效手段。

摩擦学(Tribology )——包含力学、流变学、表面物理、表面化学及材料学、工程热物理学等学科,是一门边缘和交叉学科。

摩擦 内摩擦——发生在物质内部外摩擦——两个相互接触表面之间的摩擦接运动状态——摩擦 静摩擦——仅有相对滑动趋势时的摩擦动摩擦本节只讨论金属摩擦副的滑动摩擦根据摩擦面间存在润滑剂的状况,干摩擦 ——最不利滑动摩擦 边界摩擦(边界润滑) ——最低要求流体摩擦(流体润滑) ——如图3-1所示混合摩擦(混合润滑) ——最理想各种状态下的摩擦系数见表3-1,图3-2为摩擦特性曲线p v f /ηλ=-的关系。

一、干摩擦——两摩擦表面直接接触,不加入任何润滑剂的摩擦而实际上,即使很洁净的表面上也存在脏污膜和的氧化膜,∴实际f 比在真空中测定值小很多。

摩擦理论:①库仑公式 n f fF F =(n F —法向力)——至今沿用机理:②机械摩擦理论→认为两个粗糙表面接触时,接触点相互啮合,摩擦力为啮合点问切向阻力的总和,表面越粗糙,摩擦力就越大。

但不能解释光滑表面间的摩擦现象——表面愈光滑、接触面越大,f F 越大,且与滑动速度V 有关。

③新理论:分子—机械理论、能量理论、粘着理论—常用简单粘着理论:如图3-3所示,摩擦副真实接触面积Ar 只有表现接触面积A 的百分之一和万分之一,)10000~100/(A Ar =,∴接触面上压力很大,很容易达到材料的压缩屈服极限sy σ→产生塑性流动→接触面↑,∴n F ↑应力并不升高 ∴sy nF Ar σ= (3-1)接触点塑性变形后→脏污膜遭破坏,容易使基本金属产生粘着现象→产生冷焊结点→滑动时,先将结点切开,设结点的剪切强度极限为B τ,则摩擦力为B sy nB r f F A F τστ== (3-2) ∴金属摩擦系数syB n fF F f στ== (3-3) B τ 两接触金属中较软者的剪切强度——剪切发生在软金属站界面的剪切强度极限B f f B ττττ<<=,(脏污表面)——剪切发生在结点金属上 sy σ——较硬的基本材料的压缩屈服极限∵大多数金属sy B στ/很相近,∴f 很相近∴降低摩擦系数的措施:在硬金属基体表面涂覆一层极薄的软金属(使)sy σ取决于基体材料,B τ取决于软金属。

机械设计摩擦磨损润滑

机械设计摩擦磨损润滑



分开结点的力就是摩擦力:Ff=Arτ
B
b)修正粘附理论:轮廓峰接触同时存在
法向力和切向力,金属的塑性变形取决于 压应力和切应力组成的复合应力。 法向力作用 切向力 摩擦系数: 产生结点 结点发生塑性流动
Ff
接触面积Ari 极限 f Fn sy 较软基体的压缩屈服强度极限
润滑油的主要性质


2 润滑油的主要性质
1)油性:是润滑油吸附于摩擦表面形成边界膜的能力。油性越好, 吸附能力就越强。 2)粘度:是表示油液内部相对运动时产生内摩擦阻力大小的性能 指标。 (粘度是选择润滑油的主要依据)。
O
下面分析粘度的物理意义:
υ
y
dy
两个平行的平板之间充满 润滑油,B板静止,A板以速度

2)边界摩擦:是指两摩擦面被吸附在

表面的边界膜(牢固的吸附在金属表面
的分子膜)隔开,摩擦性质取决于边 界膜和表面吸附性能的摩擦。 边界膜极薄,不能完全避免金属的直接
接触,所以仍存在较大的磨损。
摩 擦3

吸附膜 边界膜分为: 反应膜 物理吸附膜 化学吸附膜

边界摩擦靠边界膜起润滑作用,边界膜的类型如下:
增粘剂等

四、润滑方法
1、油润滑 方法: 滴油润滑 间歇式

连续式
油环润滑
飞溅和浸油润滑 压力循环润滑 2、脂润滑 旋盖式油脂杯





本章小结:

1、摩擦学的基本内容
2、干摩擦、边界摩擦、流体摩擦和混合摩擦的特征;
3、磨损过程和各种磨损的机理
4、润滑的作用和润滑油的性能指标

机械设计的摩擦学与润滑技术

机械设计的摩擦学与润滑技术

机械设计的摩擦学与润滑技术摩擦学和润滑技术是机械设计中非常重要的一部分,它们对于机械系统的性能、寿命和效率都有着直接的影响。

摩擦学主要研究机械表面之间的相互作用和摩擦现象,润滑技术则是为了减少摩擦和磨损而采取的措施。

本文将从摩擦学和润滑技术的基本原理、常见问题以及未来发展方向等方面进行探讨。

1. 摩擦学的基本原理摩擦是指两个物体相对运动时由于黏附和阻碍而产生的相互阻力。

摩擦力的大小取决于物体表面的粗糙程度、接触面积以及施加在物体上的压力等因素。

摩擦学通过研究摩擦系数、摩擦力和摩擦磨损等参数,来理解和优化摩擦现象。

2. 摩擦学的应用摩擦学的应用非常广泛,例如在机械传动系统中,通过合理选择润滑方式和材料来减少能量损失和磨损,提高传动效率和寿命;在轴承和密封件中,采用润滑剂和润滑膜形成的摩擦系统可以降低摩擦和磨损,减少能量损失;在工具刀具中,通过表面涂层和处理等方式,可以降低切削力和磨损,提高切削效率和使用寿命。

3. 润滑技术的基本原理润滑是通过在摩擦表面之间形成润滑膜,减少直接接触而减小摩擦和磨损的过程。

润滑技术主要包括干润滑和液体润滑两种形式。

干润滑通常是利用一些固体润滑剂,如固体脂肪酸、陶粒等,形成润滑膜来减小摩擦;液体润滑则是利用润滑油、润滑脂等液体材料来形成润滑膜。

4. 润滑技术的应用润滑技术在机械设计中起着至关重要的作用。

在发动机等高温高速摩擦系统中,润滑油可以起到降低摩擦、冷却和清洁的作用;在轴承和齿轮传动系统中,润滑油和润滑脂可以减少摩擦和磨损,提高传动效率和使用寿命;在光学器件、半导体制造等领域,可以利用特殊的润滑技术来保持系统的稳定性和精度。

5. 摩擦学与润滑技术的未来发展方向随着机械设计和制造的不断发展,摩擦学和润滑技术也在不断创新和改进。

未来的发展方向主要包括以下几个方面:发展更高效的润滑剂和润滑脂,以适应更高速、更高温和更重载的工况要求;研发基于纳米技术的新型润滑材料和润滑技术,以实现更小摩擦和更长使用寿命;研究润滑液的微观结构和流变性质,深入理解润滑膜的形成和破坏机制。

机械设计基础课件第章摩擦磨损及润滑概述

机械设计基础课件第章摩擦磨损及润滑概述
St=1cm2/s=100 cSt =10-4 m2/s。 常用St的百分之一cSt作为单位,称为厘斯,因而1
cSt= 1 mm2/s。
润滑油的牌号就是该润滑油在40C(或100C)时运动粘度
(以厘斯为单位)的平均值。例图2-7 L-AN15。
机械设计基础
第二十七页,编辑于星期五:十一点 三十八分。
或泊的百分之一,即厘泊(cP)。
1 P=0.1 Pa·s
1 cP=0.001 Pa·s
机械设计基础
第二十六页,编辑于星期五:十一点 三十八分。
2)、运动粘度
在工程中,常常将流体的动力粘度与其密度的比值作
为流体的粘度,这一粘度称为运动粘度,常用表示。运
动粘度的表达式为:
运动粘度单位:SI制——m2/s。 C.G.S. 制 : Stoke , 简 称 St ( 斯 ) , 1
到另一个表面,便形成粘附磨损。
机械设计基础
第十七页,编辑于星期五:十一点 三十八分。
❖2、磨粒磨损 也简称磨损。外部进入的硬质颗粒 或摩擦表面上的硬质突出物在较软材料的表面上进行 微切削(犁刨出很多沟纹时被移去的材料)的过程 叫磨粒磨损 。
机械设计基础
第十八页,编辑于星期五:十一点 三十八分。
3、疲劳磨损 也称点蚀,是由于摩擦表面材料 微体积在交变的摩擦力作用下,反复变形所产生 的材料疲劳所引起的磨损。
摩擦分类:
微观宏观
§2-1 摩擦
内摩擦 外摩擦
是否相对运动
静摩擦
滑动摩擦
动摩擦 位移形式 滚动摩擦
机械设计基础
第五页,编辑于星期五:十一点 三十八分。
滑动摩擦
干摩擦 边界摩擦 流体摩擦 混合摩擦
边界润滑 流体润滑 混合润滑

机械设计第二章(摩擦磨损润滑)知识点详细总结

机械设计第二章(摩擦磨损润滑)知识点详细总结

第2章摩擦磨损润滑1.摩擦摩擦磨损、润滑和密封失效是现代机械系统的主要失效原因。

➢干摩擦:两摩擦表面间直接接触不加入任何润滑剂的摩擦称为干摩擦。

➢边界摩擦:两表面加入润滑油后,在金属表面会形成一层边界膜(约为0.02μm)。

油膜较薄时,在载荷的作用下,边界膜互相接触,横向剪切力比较弱,这种摩擦状态称为边界摩擦。

➢液体摩擦:两摩擦表面间被一层具有一定压力、一定厚度、连续的流体润滑剂完全隔开,摩擦性质取决于液体内部分子间粘性阻力的摩擦,称为液体摩擦。

➢混合摩擦:摩擦副处于干摩擦、边界摩擦和液体摩擦的混合状态,称为混合摩擦。

磨损曲线度。

此外,润滑剂还能防锈、减振、密封、清除污物和传递动力等。

润滑剂:润滑油、润滑脂(1)润滑油的主要性能指标➢粘度:液体在外力作用下流动时,分子间的内聚力阻止分子间的相对运动而产生的一种内摩擦力,称为液体的粘性。

分为动力粘度、运动粘度和相对粘度。

➢油性:反映在摩擦表面的吸附性能(边界润滑和粗糙表面尤其重要);➢闪点:润滑油蒸汽遇到火焰即能发出闪光的最低温度,是衡量润滑油易燃性的指标;➢凝点:冷却,由液体转变为不能流动的临界温度(低温启动性能);➢极压性:反映在金属表面生成化学反应膜的性能。

(2)润滑脂的主要性能指标➢针入度:在25℃恒温下,使重量为1.5N的标准锥体在5s内沉入润滑脂的深度(以0.1mm计)。

它标志着润滑脂内阻力的大小和流动性的强弱。

➢滴点:指润滑脂受热熔化后从标准测量杯的孔口滴下第一滴时的温度。

它标志着润滑脂耐高温的能力。

4.液体摩擦润滑根据两摩擦表面间形成压力油膜原理的不同,可将液体摩擦润滑分为液体动力润滑、弹性流体动力润滑和液体静压润滑。

5.摩擦学研究现状及发展趋势液体润滑理论;表面处理技术;纳米摩擦学;生物摩擦学;。

《机械设计》1章-4摩擦、磨损、润滑介绍

《机械设计》1章-4摩擦、磨损、润滑介绍

▲摩擦幅表面的粗糙度 ▲摩擦表面间的润滑——当摩擦表面间被加入润滑油时, 摩擦系数将大大下降。
边界润滑 混合润滑 F F 液体润滑
摩擦系数 摩擦系数µ
v
v h

v
h≈0 h=0 h>>0
ηn/p 摩擦特性曲线
机械中的磨损
磨损 ——摩擦表面上的物质不断损失的现象。 磨损率 ——单位时间材料的磨损量。 耐磨性 ——零件抗磨损的能力。 磨粒磨损(磨料磨损) 磨损的分类 粘着磨损(胶合磨损) 疲劳磨损(疲劳点蚀) 腐蚀磨损(腐蚀机械磨损)
机械中的润滑
润滑 ——是向承载的两个摩擦表面之间引入润滑剂,以减小摩 擦力及磨损等表面破坏的一种措施。 润滑的分类 流体润滑——两摩擦副表面被流体膜完全隔开, 由流体的压力来平衡载荷(如流 体动压润滑与流体静压润滑)。 非流体润滑(包括混合润滑与边界润滑) 厚膜润滑(如液体动力润滑、液体静力润滑) 薄膜润滑(如边界润滑、混合润滑)
x
形成流体动力润滑的基本条件 : (1)两相对滑动表面必须形 成收敛油楔(运动件带 着油从大口走向小口); (2)必须有一定的相对滑动速度; (3)供油充分; (4)油有一定的粘度。 例: v v v y F v
p
x
dp h-h0 dx =6ηv h3 ω
流体静压润滑 滑动轴承
油泵
油箱
润滑剂 润滑剂的主要作用——减小摩擦与磨损、降温、防锈、减振。 循环润滑的液体润滑剂还可以清洗摩 擦表面,将磨损产生的颗粒及其它污 物带走。 液体润滑剂(如润滑油) 半液体润滑剂(即润滑脂) 气体润滑剂(如空气、氢气) 固体润滑剂(如石墨)
人在下雨天为什么容易滑跤? 人在下雨天为什么容易滑跤?
G
(2)水 →流压→滑 Why? (1)水→滑 F

机械设计课件:摩擦、磨损及润滑概述

机械设计课件:摩擦、磨损及润滑概述

4.3潤滑劑、添加劑和潤滑方法
4.3.1潤滑劑
潤滑劑不僅可以改善摩擦狀體、減小摩擦、減輕磨損, 保護零件不遭受銹蝕,而且在採用迴圈潤滑時,還能起到 散熱作用。此外,潤滑油膜還具有緩衝、吸振的能力。使 用潤滑脂,既可以防止內部潤滑劑外泄,又可阻止外部雜 質侵入,避免加劇零件磨損,起到密封作用。
潤滑劑可分為液體潤滑劑、半固體潤滑劑、固體潤滑 劑以及氣體潤滑劑四種基本類型。其中以液體潤滑劑應用 最為廣泛。
液體摩擦是指兩摩擦表面完全被液體層隔開、表面凸峰 不直接接觸的摩擦,如圖4.1(c)所示。此種潤滑狀態亦稱 液體潤滑,摩擦是在液體內部的分子之間進行,故摩擦係數 極小(油潤滑時約為0.001~0.008),此時不會產生磨損, 是理想的摩擦狀態 。
4.2.1磨損過程分析
4.2磨損
摩擦導致零件表面材料的逐漸喪失或轉移,即形成磨 損。磨損改變零件的尺寸和形狀,降低零件工作的可靠性, 影響機器效率,甚至導致機器提前報廢。因此,機械設計時 應考慮如何避免或減緩磨損,以保證機器達到預期壽命。磨 損量可用體積、重量或厚度來衡量。通常把單位時間內材料 的磨損量稱為磨損率,用表示。磨損率是研究磨損的重要參 數。耐磨性是指磨損過程中材料抵抗脫落的能力,通常用磨 損率的倒數表示。另外,也應當指出,磨損也不都是有害的, 工程上有不少利用磨損作用的場合,如精加工中的磨削及拋 光,機器的“磨合”過程等都是磨損有利的一面。
4.1.2邊界摩擦
兩摩擦表面各附有一層極薄的邊界膜,兩表面仍是凸 峰接觸的摩擦狀態稱為邊界摩擦,如圖4.1(b)所示。與幹 摩擦相比,摩擦狀態有很大改善,其摩擦和磨損程度取決於 邊界膜的性質、材料表面機械性能和表面形貌。
當兩摩擦表面存在潤滑油時,由於潤滑油中的脂肪酸 是一種極性化合物,它的極性分子能牢固地吸附在金屬表 面上。單分子膜吸附在金屬表面上如圖4.4(a)所示,圖中 o為極性原子團。這些單分子膜整齊的呈橫向排列,很像一 把刷子。邊界摩擦類似兩把刷子間的摩擦,其模型如圖4.4 (b)所示。吸附在金屬表面的多層分子膜的模型如圖4.4 (c)所示。分子層距離金屬表面越遠,吸附能力越弱,抗 剪切強度越低,到若干層以後,就不再受約束。因此,摩 擦因數將隨著層數的增加而下降,三層時要比一層降低約 一半。比較牢固地吸附在金屬表面上的分子膜,稱為邊界 膜。邊界膜極薄,一個分子的長度約為2nm(1nm=109m)。如果邊界膜有10層,其厚度也僅0.02μm。

机械设计题库03_摩擦、磨损及润滑概述

机械设计题库03_摩擦、磨损及润滑概述

摩擦、磨损及润滑概述一 选择题(1) 摩擦副表面为液体动压润滑状态,当外载荷不变时,摩擦面间的最小油膜厚度随相对滑动速度的增加而 B 。

A. 变薄B. 增厚C. 不变(2) 两相对滑动的接触表面,依靠吸附油膜进行润滑的摩擦状态称为 B 。

A. 干摩擦B. 边界摩擦C. 混合摩擦D. 液体摩擦(3) 减少磨损的方法有很多种,其中 D 是错误的。

A. 选择合适的材料组合B. 改滑动摩擦为滚动摩擦C. 生成表面膜D. 增加表面粗糙度E. 建立压力润滑油膜(4) 各种油杯中, C 可用于脂润滑。

A. 针阀油杯B. 油绳式油杯C. 旋盖式油杯(5) 为了减轻摩擦副的表面疲劳磨损,下列措施中, D 是不合理的。

A. 降低表面粗糙程度B. 增大润滑油粘度C. 提高表面硬度D. 提高相对滑动速度(6) 摩擦副接触面间的润滑状态判据参数膜厚比λ值为 B 时 ,为混合润滑状态;λ值为 C 可达到液体润滑状态。

A. 0.35B. 1.5C. 5.2(7) 摩擦与磨损最小的摩擦状态是 D ,摩擦与磨损最大的摩擦状态是 A 。

A. 干摩擦B. 边界摩擦C. 混合摩擦D. 液体摩擦(8) 已知某机械油在工作温度下的运动黏度s mm /202=ν,该油的密度ρ为3/900m kg ,则其动力黏度为 D s Pa ⋅。

A. 18000B. 45C. 0.0018D. 0.018(9) 在一个零件的磨损过程中,代表使用寿命长短的是 B 。

A. 剧烈磨损阶段B. 稳定磨损阶段C. 磨合阶段D. 以上三个阶段之和(10) 润滑脂是 A 。

A. 润滑油与稠化剂的混合物B. 金属皂与稠化剂的混合物C. 润滑油与添加剂的混合物D. 稠化剂与添加剂的混合物(11) 对于齿轮、滚动轴承等零件的润滑状态,应采用 C 理论。

A. 流体动力润滑B. 流体静力润滑C. 弹性流体动力润滑D. 极压润滑(12) 采用含有油性和极压添加剂的润滑剂,主要是为了减少 A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
1
3 齿轮传动
Harbin Institute of Technology, 2010
4 蜗杆传动 蜗杆传动的效率:
1 2 3
5 滚动轴承
Harbin Institute of Technology, 2010
本章主要内容
1. 摩擦
2. 磨损
3. 润滑 4. 补充知识
Harbin Institute of Technology, 2010
Cycle Diagram
粘着 磨损 腐蚀 磨损 冲蚀 磨损
磨粒 磨损
磨损
疲劳 磨损
Harbin Institute of Technology, 2010
三、润滑剂
润滑剂
润滑油
有机油(动 植物油)、 矿物油(石 油产品)、 化学合成油
润滑脂
固体添加剂
油性添加剂、抗 磨剂、防锈剂、 降凝剂、纳米 添加剂,等
5)腐蚀磨损(电化学作用)
• 形成:空气中的酸、润滑油中的无机酸产生化学作用或电 化学作用。 • 现象:表面腐蚀并磨损。 • 影响因素:环境、润滑油的腐蚀性。
此外还有微动磨损
• 形成:小振幅、大频率、点或线接触。 • 现象:磨损面积小。 影响因素:载荷。
Harbin Institute of Technology, 2010
一、摩擦
摩 擦
内摩擦 流体内部产 生的粘剪力
外摩擦 存在于两物 体表面之间
Harbin Institute of Technology, 2010
• 按照两表面的润滑状况,摩擦分为: 1)干摩擦----无润滑状态
2)边界摩擦——边界润滑状态
3)流体摩擦——流体润滑状态
4)混合摩擦——混合润滑状态
Harbin Institute of Technology, 2010
摩擦、磨损、润滑和密封失效是现代机械系统的 主要失效原因。 • 消极影响:
消耗能源; 破坏精度(包括磨损和爬行); 增大噪声
• 积极作用:驱动(摩擦轮、无级变速)
缓冲,如宇航员座椅; 自锁,如钉子等
Harbin Institute of Technology, 2010
Harbin Institute of Technology, 2010
薄膜摩擦
它介于干摩擦和边界摩擦之间,薄膜厚度仅几纳米, 在现代精密机械系统(Ra很小)或MEMS中普遍存在,称为薄 膜摩擦。
Harbin Institute of Technology, 2010
二、磨损
• 磨损:运动副表面材料不断损失 • 磨损率: 单位时间内材料的磨损体积或质量
Harbin Institute of Technology, 2010
德萨居利斯在1734年出版的《实验物理学教程》一书中,把产生 摩擦力的原因归为摩擦表面的分子力的作用,并由此推断,摩擦表面 愈是光滑,摩擦力应该愈大。这一观念导致了润滑减小摩擦的研究, 对机械设计起着重要的指导作用。
Harbin Institute of Technology, 2010
Harbin Institute of Technology, 2010
库仑的研究
1781年,法国科学院悬奖竞赛,题目中有一个是关于摩擦定律和绳索 的牢固性问题。库仑当时是皇家工程部的高级军官,以其论文:《简单 机械的理论》赢得了该奖。 库仑采用的滑动摩擦实验装置:实验桌长约250厘米,上面嵌有两块平 行木板AB与A′B′,各长360厘米,宽20厘米,相隔7.5厘米。在嵌板的左 端BB′安装有直径30厘米的滑轮h,滑轮上挂着载有砝码的盘子P,P下 面挖了一个深120厘米的洞穴,为的是避免在测动摩擦时砝码盘降落下 来碰到地板。嵌板右端AA′上装有带杠杆的轴,用来收卷绳索。每次实 验,都事先用杠杆将重物拉回原处。重物有300公斤重,无法靠手来挪 动位置。
3 流体摩擦
当两摩擦表面被流体(液体或气体)完全隔开时,摩 擦表面不会产生金属间的直接摩擦,流体分子层间的粘剪 阻力就是摩擦力,这种摩擦称为流体摩擦。属于内摩擦。 特点: f 最小, f = 0.001~0.01; 金属表面无磨损。
Harbin Institute of Technology, 2010
扫描隧道显微镜(scanning tunneling microscope, STM)
工作原理: 当原子尺度的针尖在不到一个纳米的高度上扫描样品时,此处电子云重 叠,外加一电压(2mV~2V),针尖与样品之间产生隧道效应而有电子 逸出,形成隧道电流。电流强度和针尖与样品间的距离有函数关系,当 探针沿物质表面按给定高度扫描时,因样品表面原子凹凸不平,使探针 与物质表面间的距离不断发生改变,从而引起电流不断发生改变。将电 流的这种改变图像化即可显示出原子水平的凹凸形态。 扫 描 隧 道 显 微 镜 的 分 辨 率 很 高 , 横 向 为 0.1~0.2nm , 纵 向 可 达 0.001nm。它的优点是三态(固态、液态和气态)物质均可进行观察, 而普通电镜只能观察制作好的固体标本。
Harbin Institute of Technology, 2010
3) 流体静压润滑
用油泵将润滑油经过节流器以所需要压力注入被润 滑表面的油室,再由油室的封油边流回油箱。
Harbin Institute of Technology, 2010
4 混合摩擦
当动压润滑条件不完全具备,且有的边界膜遭破坏时, 就会出现流体摩擦、边界摩擦和干摩擦同时存在的现象, 这种摩擦状态称为混合摩擦。
Harbin Institute of Technology, 2010
摩擦学的发展历史
人们了解摩擦学的相关知识要早于历史记录时间
钻木取火
碾谷物的石辊使用的轴承 古代的战车
Harbin Institute of Technology, 2010
摩擦学的发展历史 达芬奇
最早提出了摩擦因数的概念,认为摩擦因数是摩擦力与 正压力之比。
摩擦学的发展历史 摩擦学 Tribology
最早出现在1966年,来源于古希腊语 tribos 摩擦学是分析和解决装备中磨损、可靠性和维修的一 门科学。 国际摩擦学理事会 (International Tribology Council), 各国摩擦学学术团体联合组成的国际性学术组织,缩 写ITC。1973年成立。现有35个会员国,中国机械工 程学会代表中国参加。总部设在英国伦敦。
1 磨损过程(三阶段):
Harbin Institute of Technology, 2010
2 磨损分类:根据磨损机理可分为 1)粘着磨损 • 形成:边界摩擦,载荷大,速度高,边界膜破 坏,表面尖峰接触。 • 现象:形成材料转移。
• 影响因素:材料硬度,表面结构的粗糙度,载 荷、速度、温度,不同材料配副。
Harbin Institute of Technology, 2010
1 干摩擦
不加润滑剂时,相对运动的零件表面直接接触,这样产
生的摩擦称为干摩擦 (如真空中)。
特点:f 最大;摩擦功耗大;磨损严重。
古典摩擦理论:
Ff fFn
现在的观点:
Ff F分子 F机械 Ar Fn
库仑研究滚动摩擦的装置
Harbin Institute of Technology, 2010
采用数学模型对摩擦进行研究
17半球接成的模型(如图)当作摩擦面, 验证了凸凹说,可以说,这是用模型对摩 擦进行研究的最早尝试。
英国物理学家德萨居利斯(J.T.Desaguliers)提 出的粘合说。 他在1724年向英国皇家学会作的报告中明确地 把摩擦面之间的阻力归因于粘合力的产生。他介 绍了他曾经用两个铅球(分别重1英磅和2英磅) 做的实验:两个铅球都切去直径约1/4英寸的球 缺,用手再将两个切面对接,边捻边用力压,使 两个铅球的断面互相贴紧,粘合在一起,
Harbin Institute of Technology, 2010
2)弹性流体动压润滑
考虑了接触区弹性变形和压力对接触区润滑油粘度的 影响的动压润滑称为弹性流体动力润滑,简称为弹流润滑。 两表面的距离称为平均油膜厚度。接触区的出口处 油膜变薄,这种现象称为“颈缩”,此处两表面距离称为最 小油膜厚度。
Harbin Institute of Technology, 2010
2 边界摩擦
两表面加入润滑剂后,在金属表面会形成一层边界 膜(物理吸附膜或者化学反应膜)。 特点: 油膜较薄,在载荷的作用下,两金属表面微观的凸峰 互相接触,横向剪切力比较弱。
油性分子吸附在表面
Harbin Institute of Technology, 2010
19世纪的研究
英国的工程师雷尼(George Rennie)。他对各种材料之间的滑动摩擦 进行了大量研究。图示是他用过的实验装置,他在1829年指出,需要 建立一个更普遍的理论,把各种表面的弯曲和断面考虑在内。他最先 解释了润滑剂的作用,解释润滑剂填充了表面之间的不规则性,同时 使之更为光滑。他还注意到当压力超过某一数值时,摩擦系数迅速增 大。这表明,库仑摩擦定律的成立是有条件的,也说明,在摩擦过程 中应该考虑凸凹受到破坏这一情况。也就是说,摩擦和磨损是同时发 生的现象。
Harbin Institute of Technology, 2010
2)磨粒磨损/磨削 • 形成:表面微峰或外界硬质颗粒进入摩擦面。 • 现象:表面划伤或犁沟现象。
• 影响因素:环境,表面硬度、表面结构的粗糙度。
Harbin Institute of Technology, 2010
3)疲劳磨损(也称疲劳点蚀) • 形成:接触应力反复作用。如轴承、齿轮中。 • 现象:表层金属剥落,形成点蚀凹坑。
Harbin Institute of Technology, 2010
相关文档
最新文档