高二数学倍角公式和半角公式

合集下载

半角与倍角公式

半角与倍角公式

半角与倍角公式在我们的数学世界里,半角与倍角公式就像是神秘的魔法咒语,虽然它们看起来有些复杂,但一旦掌握,就能为我们解决很多难题,打开神奇的数学大门。

还记得我上高中那会,有一次数学考试,最后一道大题就是关于半角与倍角公式的应用。

当时我瞅着那道题,心里就有点打鼓。

题目说:已知角α的正弦值为 3/5,且α在第一象限,求α/2 的余弦值。

我深吸一口气,开始在草稿纸上写写画画。

先根据已知条件,利用三角函数的平方关系算出α的余弦值是 4/5 。

然后呢,就该轮到半角公式登场啦。

半角的余弦公式是:cos(α/2) = ±√[(1 + cosα) / 2] 。

因为α/2也在第一象限,所以取正号。

把cosα = 4/5 代入公式,经过一番计算,终于算出了答案。

当我算出结果的那一刻,心里那叫一个美,就好像攻克了一座坚固的城堡。

咱们先来说说半角公式。

半角公式包括正弦、余弦和正切的半角公式。

就拿正弦的半角公式来说吧,sin(α/2) = ±√[(1 - cosα) / 2] 。

这里为啥有个正负号呢?这就得看角所在的象限啦,如果在第一、二象限就是正的,如果在第三、四象限就是负的。

可别小瞧这个正负号,一不小心就容易出错哟!再看看余弦的半角公式,cos(α/2) = ±√[(1 + cosα) / 2] 。

同样要注意正负号的判断。

还有正切的半角公式,tan(α/2) = ±√[(1 - cosα) / (1 + cosα)] 或者tan(α/2) = (1 - cosα) / sinα 或者tan(α/2) = sinα / (1 + cosα) 。

是不是感觉有点眼花缭乱?别慌,多做几道题,熟练了就好。

说完半角公式,咱们再来聊聊倍角公式。

倍角公式那也是相当重要的。

比如正弦的倍角公式sin2α = 2sinαcosα 。

想象一下,一个角变成了它的两倍,正弦值也跟着有了新的变化。

余弦的倍角公式就有三种形式:cos2α = cos²α - sin²α ,cos2α =2cos²α - 1 ,cos2α = 1 - 2sin²α 。

倍角公式和半角公式

倍角公式和半角公式

半角公式利用某个角(如A)的正弦,余弦,正切,及其他三角函数,来求某个角的半角(如A/2)的正弦,余弦,正切,及其他三角函数的公式。

si n^2(α/2)=(1-cosα)/2c os^2(α/2)=(1+c osα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=si nα/(1+c osα)=(1-cosα)/si nα=+或-[1-cosα)/(1+c osα)]开二次方倍角公式是三角函数中非常实用的一类公式.现列出公式如下:sin2α=2sinαco sαt an2α=2t anα/(1-tan^2(α))c os2α=c os^2(α)-si n^2(α)=2c os^2(α)-1=1-2si n^2(α)可别轻视这些字符,它们在数学学习中会起到重要作用.号外:tan(α/2)=si nα/(1+c osα)=(1-c osα)/si nαtan(2α)=2tanα/[1-tan^2(α)]·倍角公式:si n(2α)=2sinα·c osαc os(2α)=c os^2(α)-sin^2(α)=2c os^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]其他一些公式·三倍角公式:si n3α=3sinα-4si n^3(α)c os3α=4c os^3(α)-3c osαtan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)·半角公式:si n^2(α/2)=(1-cosα)/2c os^2(α/2)=(1+c osα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=si nα/(1+c osα)=(1-c osα)/si nα·万能公式:si nα=2tan(α/2)/[1+tan^2(α/2)]c osα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:si nα·cosβ=(1/2)[si n(α+β)+sin(α-β)]c osα·si nβ=(1/2)[si n(α+β)-sin(α-β)]c osα·c osβ=(1/2)[c os(α+β)+c os(α-β)]si nα·si nβ=-(1/2)[c os(α+β)-cos(α-β)]·和差化积公式:si nα+si nβ=2si n[(α+β)/2]cos[(α-β)/2]si nα-si nβ=2cos[(α+β)/2]si n[(α-β)/2]c osα+c osβ=2c os[(α+β)/2]c os[(α-β)/2]c osα-c osβ=-2si n[(α+β)/2]si n[(α-β)/2]·其他:si nα+si n(α+2π/n)+sin(α+2π*2/n)+si n(α+2π*3/n)+……+si n[α+2π*(n-1)/n]=0c osα+c os(α+2π/n)+c os(α+2π*2/n)+cos(α+2π*3/n)+……+c os[α+2π*(n-1)/n]=0 以及si n^2(α)+si n^2(α-2π/3)+si n^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式:si n4A=-4*(cosA*si nA*(2*si nA^2-1))c os4A=1+(-8*c os A^2+8*c os A^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式:si n5A=16si nA^5-20si nA^3+5si nAc os5A=16c os A^5-20c os A^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式:si n6A=2*(cosA*si nA*(2*si nA+1)*(2*sinA-1)*(-3+4*si nA^2))c os6A=((-1+2*c os A^2)*(16*c os A^4-16*c os A^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角公式:si n7A=-(sinA*(56*si nA^2-112*si nA^4-7+64*si nA^6))c os7A=(c osA*(56*c osA^2-112*c osA^4+64*c os A^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)八倍角公式:si n8A=-8*(cosA*si nA*(2*si nA^2-1)*(-8*si nA^2+8*sinA^4+1))c os8A=1+(160*c os A^4-256*c os A^6+128*c os A^8-32*c os A^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍角公式:si n9A=(sinA*(-3+4*si nA^2)*(64*sinA^6-96*si nA^4+36*si nA^2-3))c os9A=(c osA*(-3+4*cosA^2)*(64*c os A^6-96*cosA^4+36*c os A^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)十倍角公式:si n10A=2*(c os A*sinA*(4*sinA^2+2*si nA-1)*(4*sinA^2-2*si nA-1)*(-20*si nA^2+5+16*si nA^4))c os10A=((-1+2*c os A^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*c os A^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)【本讲教育信息】一. 教学内容:3.1 和角公式3.2 倍角公式和半角公式二. 教学目的1. 了解两角和与差的余弦、正弦、正切公式的推导和证明过程,能够利用两角和与差的余弦、正弦、正切公式进行简单的三角函数式的求值、化简和证明,了解两角和与差的余弦、正弦、正切公式的内在联系;2. 掌握倍角、半角的正弦、余弦、正切公式的推导过程,能够利用倍角、半角的正弦、余弦、正切公式进行求值、化简和证明,了解倍角、半角的正弦、余弦、正切公式的内在联系。

三角形半角公式和倍角公式

三角形半角公式和倍角公式

三角形半角公式和倍角公式
三角形半角公式:
假设在三角形ABC中,已知A角的大小为α,B角的大小为β,C 角的大小为γ,则三角形ABC中任意一条边对应的半角记作β/2,则该半角所对应的角度θ可以用以下公式计算:
tan(θ/2) = √[(s-a)(s-b)/(s-c)(s)]
其中,s为半周长,即(s-a+b+c)/2,a、b、c分别为三角形ABC 中的三边长。

三角形倍角公式:
假设在三角形ABC中,已知A角的大小为α,则A角的倍角为
2α,则三角形ABC中任意一条边对应的倍角记作2α/2=α,则该倍角所对应的角度θ可以用以下公式计算:
sin 2α = 2 sin α cos α
另外,还存在余弦和正弦的倍角公式,它们分别如下:
cos 2α = cos²α - sin²α
sin 2α = 2sinα cosα
至于拓展,三角函数公式有很多,比如三角形的正弦余弦定理,三角形的面积公式等等,都是很重要的数学公式。

三角形倍角公式和半角公式

三角形倍角公式和半角公式

三角形倍角公式和半角公式大家好,今天我们来聊聊三角形倍角公式和半角公式。

这两个公式可是数学里的小宝贝哦!它们可以帮助我们解决很多三角形的问题。

不过,别看它们小小的,可是个个都是“大腕儿”呢!让我们来认识一下三角形倍角公式。

三角形倍角公式是这样的:sin2A + sin2B +sin2C = 2sin(A + B)cos(A B)。

你看,这个公式里面有三个角A、B、C,而且这三个角都是三角形的内角。

这个公式的意思是说,一个三角形的两个角的正弦值的平方之和等于另外两个角的正弦值的两倍乘以这两个角的余弦值之差。

这个公式可厉害了,它可以帮助我们求出三角形的各个角度,还可以用来判断一个三角形是不是直角三角形。

接下来,我们来说说半角公式。

半角公式是这样的:cos(A/2) = (1 tan(A/2)) / (1 + tan(A/2))。

这个公式里面只有一个角A,而且这个角也是三角形的一个内角。

这个公式的意思是说,一个三角形的一个角度的一半的余弦值等于这个角度一半的正切值减一除以这个角度一半的正切值加一。

这个公式可神奇了,它可以帮助我们求出一个三角形的一个角度的一半的余弦值,还可以用来判断一个三角形是不是等腰三角形。

那么,这两个公式有什么用呢?其实,它们在我们的日常生活中也有很多应用。

比如说,我们在装修房子的时候,需要测量墙角的角度,这时候就可以用到这两个公式了。

还有,我们在玩游戏的时候,如果要让角色沿着一个圆弧走,也可以用到这两个公式。

这两个公式可是我们生活中的小助手哦!学会了这两个公式还不够,我们还需要知道它们的逆运算。

比如说,我们知道了sin2A + sin2B + sin2C = 2sin(A + B)cos(A B),那么它的逆运算就是什么呢?没错,就是sin(A + B)cos(A B) = sin2A + sin2B + sin2C。

同样地,我们知道了cos(A/2) = (1 tan(A/2))/ (1 + tan(A/2)),那么它的逆运算就是什么呢?没错,就是tan(A/2) = (1 cos(A/2)) / (1 + cos(A/2))。

倍角公式和半角公式

倍角公式和半角公式

半角公式利用某个角(如A)的正弦,余弦,正切,及其他三角函数,来求某个角的半角(如A/2)的正弦,余弦,正切,及其他三角函数的公式。

sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=+或-[1-cosα)/(1+cosα)]开二次方倍角公式是三角函数中非常实用的一类公式.现列出公式如下:sin2α=2sinαcosαtan2α=2tanα/(1-tan^2(α))cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)可别轻视这些字符,它们在数学学习中会起到重要作用.号外:tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα tan(2α)=2tanα/[1-tan^2(α)]·倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]其他一些公式·三倍角公式:sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)八倍角公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍角公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)十倍角公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)【本讲教育信息】一. 教学内容:3.1 和角公式3.2 倍角公式和半角公式二. 教学目的1. 了解两角和与差的余弦、正弦、正切公式的推导和证明过程,能够利用两角和与差的余弦、正弦、正切公式进行简单的三角函数式的求值、化简和证明,了解两角和与差的余弦、正弦、正切公式的内在联系;2. 掌握倍角、半角的正弦、余弦、正切公式的推导过程,能够利用倍角、半角的正弦、余弦、正切公式进行求值、化简和证明,了解倍角、半角的正弦、余弦、正切公式的内在联系。

三角函数的倍角公式与半角公式应用

三角函数的倍角公式与半角公式应用

三角函数的倍角公式与半角公式应用三角函数是数学中重要的一部分,广泛应用于科学、工程和金融等领域。

在三角函数的应用中,倍角公式和半角公式是常见且重要的部分。

它们能够帮助我们简化复杂的计算,提高计算的效率和准确性。

本文将介绍三角函数的倍角公式和半角公式,并应用于实际问题中。

一、三角函数的倍角公式倍角公式是指将一个角的两倍用另外一个角的三角函数表达出来的公式。

对于正弦函数、余弦函数和正切函数而言,它们的倍角公式如下:1. 正弦函数的倍角公式:sin(2θ) = 2sinθcosθ2. 余弦函数的倍角公式:cos(2θ) = cos^2θ - sin^2θ = 2cos^2θ - 1 = 1 - 2sin^2θ3. 正切函数的倍角公式:tan(2θ) = 2tanθ / (1 - tan^2θ)倍角公式的应用十分广泛。

例如,在几何图形的计算中,我们可以利用倍角公式简化角的计算,从而简化问题的解决过程。

此外,在信号处理和电路分析中,倍角公式也能够帮助我们分析和处理复杂的信号。

二、三角函数的半角公式半角公式是指将一个角的一半用另外一个角的三角函数表达出来的公式。

与倍角公式类似,正弦函数、余弦函数和正切函数都有对应的半角公式:1. 正弦函数的半角公式:sin(θ/2) = ±√[(1 - cosθ) / 2]2. 余弦函数的半角公式:cos(θ/2) = ±√[(1 + cosθ) / 2]3. 正切函数的半角公式:tan(θ/2) = ±√[(1 - cosθ) / (1 + cosθ)]在实际问题中,半角公式也经常被使用。

例如,在概率论和统计学中,我们可以利用半角公式计算概率密度函数和累积分布函数,从而分析和解决与随机变量相关的问题。

三、三角函数公式的应用举例1. 应用倍角公式的例子:假设有一个直角三角形,已知一个角度θ的正弦函数值为0.6,我们想要计算该角的余弦函数值。

利用倍角公式,我们可以将该问题简化为计算2θ的正弦函数值和余弦函数值。

高二数学倍角公式和半角公式

高二数学倍角公式和半角公式

cos2 cos sin
2 2
tan tan tan( ) 1 tan tan tan tan tan( ) 1 tan tan
2 tan tan 2 1 tan 2
一、倍角公式
sin 2 2 sin cos (S2 )
公式左端的角是右端角的二倍
在这两个公式中分别 2a和cos2a 求出sin 2
1 cos 2 cos 2 2 2 cos 1 sin 2 2 sin 1 cos 2 2 2 2 cos2 cos sin (1 sin ) sin 2 2 2 cos (1 cos ) 1 2 sin 2 2 cos 1
三、公式应用:
例1、(公式巩固性练习)求值
1、 sin 22。 30, cos22。 30,
2 2、 2 cos 1 8 2
2

2 4
2 3、 sin cos 8 8 2
2 2


试试看 伴你学134页8题
1 4、 8 sin cos cos cos 2 48 48 24 12
3.2.1倍角公式
复习回顾:
• 完成下列和角公式
sin cos sin cos cos( ) cos cos sin sin tan( ) tan tan 1 tan tan 思考:
若 我们可以得到怎样的结论?
cos10 3 sin10 sin 50 cos10 2 sin 40 sin 50 cos10 2sin 40 cos 40 cos10 sin 80 1 cos10

高二数学倍角公式和半角公式

高二数学倍角公式和半角公式

3 (1) 当m=0时,求 f x 在 , 上的取值范围; 8 4 3 (2) 当 tan a 2 时,f a ,求m的值。 5
真题试炼
2.(2010山东文)已知函数
f ( x) sin( x)cos x cos2 x ( 0)
f (x ) max =
2+ 2
f (x ) min = 1
例2 已知函数
f (x ) = 2a cos x ( 3 sin x + cos x ) + a (a > 0)
2
(1)若对任意x∈R都有 f (x ) < 4 成立, 求a的取值范围; p (2)若 f (- ) = 4 ,求关于x的不等式 6 f (x ) > 8 的解集.
a Î [0, 1]
p (k p , k p + )(k ? Z ) 3
例3
3 3 已知向量a = (cos x , - sin x ) , 2 2
p x x b = (cos , sin ) ,其中 x Î [0, ] ,求函 2 2 2
数f(x)=a· b-|a+b|的值域.
3 [- , - 1] 2
若函数y=f(x)的图象关于直线x a ( a 0) 对称,求a的最小值.
f ( x ) [2 sin( x ) sin x]cos x 3 sin x 3
2
例4 已知函数
amin
12
真题试炼
1.(2010江西理)已知函数
2
f x 1 cot x sin x m sin x sin x 4 4
22sinsincos3sin3fxxxxx?????0xaa??min12a??????21cotsinsinsin44fxxxmxx?????????????????????fx384????????tan2a???35fa?1

高中数学半角及倍角公式有哪些

高中数学半角及倍角公式有哪些

高中数学半角及倍角公式有哪些高中数学半角及倍角公式半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA))cot(A/2)=-√((1+cosA)/((1-cosA)) 倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2高考数学选择题答题方法1.特值检验法对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

2.极端性原则极将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

3.排除法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

4.数形结合法由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

高考提高数学成绩的方法做好总结,专项训练每一道题,做错了都有做错的原因:公式使用不熟练,忽视了函数的值域,去绝对值忽视正负符号,三角函数变形生疏…..将错误的题目分类整理好,再进行专项训练,每种错误类型,连续找十道类似的题型进行训练,基本上可以克服,比起盲目的刷题,效率天差地别。

高数—二倍角与半角的余弦、正弦和正切教师版

高数—二倍角与半角的余弦、正弦和正切教师版
【难度】★★★
【答案】 证明:由 3sin2 1 2sin2 得 3sin2 cos 2 ……①
由 3sin 2 2sin 2 得 3sin cos sin 2 ……② , 都是锐角
①②得 sin cos 2 cos cos 2 sin sin 2 0 cos sin 2
22
2
二、半角公式和万能公式
(一)知识精讲
sin 1 cos ; cos 1 cos ; tan 1 cos
2
2
2
2
2 1 cos
( tan sin 1 cos ) 2 1 cos sin
2 tan
1 tan2
2 tan
13
5

【难度】★★
【答案】∵ 0 π ,∴ cos 1 sin2 5 .
2
13
又∵ 0 π , 0 π ,∴ 0 .若 0 π ,
2
2
2
∵ sin( ) sin ,∴ 不可能.故 π .∴ cos( ) 3 .
3 / 24
【难度】★★
【答案】 a b 1 ab
【例 8】(1)已知 sin 5 , ( , ) ,求 sin 2 , cos 2 , tan 2 的值;
13
2
(2) tan 1 , 则cos 2

2
(3)若 cos 48 a , 则sin 2004 的值是
0,
2

,则
sin


.
7 / 24
【难度】★★
【答案】 sin 4 2 . 9

三角函数二倍角公式和半角公式

三角函数二倍角公式和半角公式

三角函数二倍角公式和半角公式一、二倍角公式1.正弦函数的二倍角公式:sin2θ = 2sinθcosθ推导:设A = θ,B = θ,根据正弦函数的定义,有sin(A+B) = sinAcosB + cosAsinB。

将A=B=θ代入上述公式,即得到sin2θ =sinθcosθ + cosθsinθ = 2sinθcosθ。

2.余弦函数的二倍角公式:cos2θ = cos²θ - sin²θ = 1 - 2sin²θ = 2cos²θ - 1推导:同理可得cos2θ = cosθcosθ - sinθsinθ = cos²θ - sin²θ。

另一方面,根据单位圆上点(x, y)的性质,有x² + y² = 1,其中cosθ = x,sinθ = y。

代入该等式,得1 - sin²θ = cos²θ,即cos²θ - sin²θ = 1 - 2sin²θ。

同时,由正弦函数的二倍角公式sin2θ = 2sinθcosθ,我们可以得到sin²θ = (1 - cos2θ)/2,将其代入1 - 2sin²θ即可得到cos2θ = 2cos²θ - 13.正切函数的二倍角公式:tan2θ = (2tanθ)/(1 - tan²θ)推导:由正切函数的定义,tan2θ = (sin2θ)/(cos2θ) =(2sinθcosθ)/(cos²θ - sin²θ)。

代入sin²θ = (1 - cos2θ)/2和cos²θ = (1 + cos2θ)/2,消去cos²θ和sin²θ后即可得到tan2θ的公式。

二、半角公式1.正弦函数的半角公式:sin(θ/2) = ±√[(1 - cosθ)/2]推导:根据单位圆上点(x, y)的性质,有x² + y² = 1,其中cosθ = x,sinθ = y。

三角函数的倍角和半角公式

三角函数的倍角和半角公式

三角函数的倍角和半角公式三角函数中的倍角和半角公式,那可是数学世界里相当有趣又实用的家伙们!咱们先来说说倍角公式。

sin2α = 2sinαcosα,cos2α = cos²α - sin²α =2cos²α - 1 = 1 - 2sin²α,tan2α = 2tanα / (1 - tan²α)。

这些公式看起来有点复杂,但只要咱们好好理解,就会发现它们其实就像咱们熟悉的好朋友。

记得我以前教过一个学生小明,他一开始对这些公式那叫一个头疼。

有一次上课,我出了一道题:已知sinα = 3/5,α是锐角,求sin2α 的值。

小明瞪着题目,一脸茫然。

我就引导他,先根据sinα 求出cosα,然后再用倍角公式。

我一步一步地带着他算,最后得出了答案。

从那以后,小明像是突然开了窍,对倍角公式不再害怕了。

再说说半角公式,sin²(α/2) = (1 - cosα) / 2 ,cos²(α/2) = (1 + cosα) / 2 ,tan(α/2) = ±√[(1 - cosα)/(1 + cosα)] 。

这些公式在解决一些复杂的三角问题时,往往能起到意想不到的效果。

就像有一次考试,有一道题是求一个角的半角的正弦值。

好多同学都被难住了,但平时认真掌握了半角公式的同学就轻松地做出来了。

其实啊,倍角和半角公式就像是数学大厦里的一块块基石,虽然它们本身可能不起眼,但组合起来就能构建出各种复杂而美妙的数学结构。

比如说在解决几何问题中,如果遇到角度之间的倍数或者半倍关系,这时候倍角和半角公式就能大显身手啦。

想象一下一个三角形,其中一个角是另一个角的两倍,我们就可以通过这些公式找到它们之间的关系,从而求出未知的角度或者边长。

在物理中,当研究波动、振动这些现象时,也常常会用到三角函数的倍角和半角公式。

比如声波的传播,电磁波的变化,都离不开这些公式的帮助。

三角函数倍角半角公式大全

三角函数倍角半角公式大全

三角函数倍角半角公式大全三角函数是数学中的一个重要分支,它在几何、物理、工程等领域都有着广泛的应用。

其中,倍角公式和半角公式是三角函数中常见的一类公式,它们可以帮助我们简化复杂的三角函数表达式,从而方便求解问题。

在本文中,我们将详细介绍三角函数的倍角公式和半角公式,帮助读者更好地理解和应用这些重要的数学工具。

1.倍角公式的概念和推导在三角函数中,倍角指的是角度的两倍。

而倍角公式则是用来表示一个角的两倍的三角函数值与该角的三角函数值之间的关系。

常见的倍角公式包括正弦函数的倍角公式、余弦函数的倍角公式和正切函数的倍角公式。

1.1正弦函数的倍角公式正弦函数的倍角公式可以表示为:sin(2θ) = 2sinθcosθ其中,θ表示原角的大小。

这个公式可以通过利用三角形的性质和勾股定理来进行推导。

假设在单位圆上,一个角的终边与x轴的交点为P(x, y),那么P点的坐标可以表示为(cosθ, sinθ)。

因此,角2θ的终边与x轴的交点可以表示为(cos2θ, sin2θ)。

通过单位圆的性质,我们可以得到:cos2θ = cos^2θ - sin^2θsin2θ = 2sinθcosθ将sin2θ的表达式带入上述公式中,即可得到正弦函数的倍角公式。

1.2余弦函数的倍角公式余弦函数的倍角公式可以表示为:cos(2θ) = cos^2θ - sin^2θcos(2θ) = 2cos^2θ - 1cos(2θ) = 1 - 2sin^2θ这个公式可以通过正弦函数的倍角公式推导得到。

首先,根据正弦函数的倍角公式,我们可以将cos2θ表示为cos2θ = 1 -2sin^2θ。

然后,利用三角恒等式sin^2θ + cos^2θ = 1,可以将cos2θ用sinθ表示出来。

1.3正切函数的倍角公式正切函数的倍角公式可以表示为:tan(2θ) = (2tanθ)/(1 - tan^2θ)这个公式可以通过利用sin2θ和cos2θ的表达式,以及tanθ = sinθ/cosθ的表达式,将sin2θ和cos2θ用tanθ表示出来,并进行简化得到。

高中数学 第三章 三角恒等变换 3.2 倍角公式和半角公

高中数学 第三章 三角恒等变换 3.2 倍角公式和半角公

3.2倍角公式和半角公式知识梳理 1.倍角公式(1)公式:sin2α=2sinαcosα;(S 2α)cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;(C 2α) tan2α=αα2tan 1tan 2-.(T 2α)(2)公式的理解①成立的条件:在公式S 2α、C 2α中,角α可以为任意角,T 2α则只有当α≠kπ+2π及α≠2πk +4π(k∈Z )时才成立. ②倍角公式不仅限于2α是α的二倍形式,其他如4α是2α的二倍、2α是4α的二倍、3α是23α的二倍等都是适用的.要熟悉多种形式的两个角的倍数关系,才能熟练地应用好二倍角公式,这是灵活运用公式的关键. ③cos2α的变形:cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; cos 2α=22cos 1α+,sin 2α=22cos 1α-;(这两个公式称为降幂公式) 1+cos2α=2cos 2α,1-cos2α=2sin 2α.(这两个公式称为升幂公式)2.半角公式 (1)公式:sin2α=±2cos 1α-;cos2α=±2cos 1α+;tan2α=±ααcos 1cos 1+-=ααsin cos 1-=ααcos 1sin +.(2)公式的理解①关于半角正切公式:tan2α=ααsin cos 1-不带有根号,而且分母为单项式,运用起来特别方便,但要注意它与以下两个公式:tan2α=±ααcos 1cos 1+-和tan 2α=ααcos 1sin +的使用范围不完全相同,后两个公式只要α≠(2k+1)π(k∈Z ),而第一个公式除α≠(2k+1)π(k∈Z )之外,还必须有α≠2kπ(k∈Z ).当然,这三个公式可以互化,在使用时要根据题目中式子的特征灵活选用.②对于半角公式,也必须明确“半角”是相对而言,不能认为2α才是半角.如2α是4α的半角,23α是3α的半角;反之,2α、2α分别是4α、α的倍角,正是根据这个思想,才由二倍角公式得出了半角公式.知识导学(1)要学好本节,有必要复习两角和的正弦、余弦、正切公式;(2)学好本节的小窍门:在公式的选择运用上,审题是关键,找准题目的突破口,选择适当的方法,定能事半功倍;(3)选择二倍角余弦公式形式的策略: ①加余弦想余弦;②减余弦想正弦;幂升一次角减半;幂降一次角翻番. 解释如下:疑难突破1.求半角的正切值常用什么方法?剖析:难点是半角的正切值公式有三种形式,到底选择哪个来处理问题.突破的路径是靠平时经验的积累.根据经验,处理半角的正切问题有三条途径:第一种方法是用tan2α=±ααcos 1cos 1+-来处理;第二种方法是用tan2α=ααsin cos 1-来处理;第三种方法是用tan 2α=ααcos 1sin +来处理.例如:已知cosα=33,α为第四象限的角,求tan 2α的值. 解法一:(用tan2α=±ααcos 1cos 1+-来处理)∵α为第四象限的角,∴2α是第二或四象限的角. ∴tan2α<0. ∴tan 2α=-ααcos 1cos 1+-=-331331+-=-32-=-21348-=-212)26(-=262-. 解法二:(用tan2α=ααsin cos 1-来处理)∵α为第四象限的角,∴sinα<0. ∴sinα=-α2cos 1-=-311-=-36.∴tan 2α=ααsin cos 1-=36331--=262-. 解法三:(用tan2α=ααcos 1sin +来处理) ∵α为第四象限的角,∴sinα<0. ∴sinα=-α2cos 1-=-311-=-36.∴tan 2α=ααcos 1sin +=33361--=3336--=262-. 比较上述三种解法可知:在求半角的正切tan2α时,用tan 2α=±ααcos 1cos 1+-来处理,要由α所在的象限确定2α所在的象限,再用三角函数值的符号取舍根号前的双重符号;而用tan 2α=ααsin cos 1-或tan 2α=ααcos 1sin +来处理,可以避免这些问题.尤其是tan 2α=ααsin cos 1-,分母是单项式,容易计算.因此常用tan 2α=ααsin cos 1-求半角的正切值.2.为什么说1+sinα和1-sinα是完全平方的形式?剖析:疑点是对此结论总是产生质疑.其突破的方法是学会推导.要明确这个问题,先从完全平方公式来分析.(a+b)2=a 2+2ab+b 2;(a-b)2=a 2-2ab+b 2,由此看一个式子是完全平方的形式,必须有a 2+2ab+b 2或a 2-2ab+b 2的形式特点.1±sinα要具备这种形式特点,需要进行恒等变形.观察到完全平方的式子中有a 2和b 2,联想1±sinα中的1能变形为平方和的形式,即变形的方向是1=a 2+b 2,sinα=2ab.由同角三角函数基本关系式和二倍角的正弦公式得1±sinα=sin 22α+cos 22α±2sin 2αcos 2α=(sin 2α±cos 2α)2,这个结论应用很广泛.。

高二数学倍角公式和半角公式

高二数学倍角公式和半角公式
银河址开户
下列关于评价资本预算项目特有风险的方法的说法中,正确的有。A.使用最大最小法时,根据净现值为零时选定变量的临界值评价项目的特有风险B.使用敏感程度法时,根据选定变量的敏感系数评价项目的特有风险C.使用情景分析法时,根据项目的期望净现值评价项目的特有风险D.使用蒙特卡洛 恙虫病的特征性体征是A.玫瑰疹B.瘀斑C.皮肤紫红色结节D.焦痂E.红斑 使用大功率会造成以下哪些后果A.会使公寓楼电力线路负荷太重而发生跳闸事故B.长期使用会使电线因长时期超负荷输电而老化极易发生火灾C.没有不良后果,能给我们带来方便D.点灯变暗 铁缺乏时,供给骨髓造血用的铁是A.血红蛋白铁B.肌红蛋白铁C.易变池铁D.贮存铁E.运转中的铁 关于转授权比例,下列表述错误的是。A.在基本权限额度内,对A类辖属机构转授权比例不得超过本级行权限的70%B.在基本权限额度内,对B类辖属机构转授权比例不得超过本级行权限的60%C.在基本权限额度内,对C类辖属机构转授权比例不得超过本级行权限的50%D.在基本权限额度内,对D类辖 梅尼埃病早期听力最常见的改变为()A.高频波动性听力下降B.卡氏切迹C.高频对称性听力下降D.低频波动性听力下降E.陡降型听力下降 玻璃体黄斑牵拉综合征是由于A.玻璃体与黄斑粘连太紧B.玻璃体后皮质与黄斑分离不完全C.玻璃体后皮质与黄斑完全分离D.玻璃体后皮质与黄斑完全不分离E.黄斑破孔形成 Internet上的安全问题主要来自两个方面:TCP/P协议本身的缺陷和___。A.人为因素B.自然因素C.A、B项都有D.其他 FIATA2006年年会在召开。A.上海B.纽约C.东京D.南非 进行维生素C负荷试验时,一次口服维生素C后收集几小时的尿液A.2小时B.3小时C.4小时D.5小时E.8小时 在SJ电路中,FDGJ接点的作用是。A.防止闪白光带B.防止轻型车跳动时错误解锁C.检查QJJ电路完整D.实现区段锁闭 某国驻华使馆一等秘书某甲,参与了我国国内某犯罪集团的绑架、抢劫犯罪,对某甲的刑事责任应如何解决()A.适用我国刑法追究某甲的刑事责任B.通过外交途径解决C.适用其本国法律追究其刑事责任D.直接驱逐出境 试述ARDS的治疗原则。 下列各项,不是望舌质内容的是。A.舌神B.舌色C.舌形D.舌态E.剥落 肺痨病久,呈现消瘦,面色萎黄,腹泻纳减。治疗宜用A.培土生金法B.养阴益脾法C.补肾养阴法D.养阴润肺法E.滋阴降火法 运行中发现汽轮机胀差变化大,应首先检查,并检查和,综合分析,采取措施。 确定医疗事故具体赔偿数额时,应考虑的法定因素之一是。A.患者家庭的经济收入状况B.医疗机构的支付能力C.医疗事故等级D.医患双方的意见E.卫生行政部门的意见 干粉灭火剂对于一些电气设备火灾,可以使用,但对一些精密仪器的火灾,也同样可以使用。A.正确B.错误 下列有关置信区间的定义正确的是。A.以真值为中心的某一区间包括测定结果的平均值的概率B.在一定置信度时,以测定值的平均值为中心的包括真值的范围C.真值落在某一可靠区间的概率D.在一定置信度时,以真值为中心的可靠范围 无激惹试验(NST) 男性,68岁。患慢性支气管炎和肺气肿10余年,近3d来咳嗽、气急加重,痰稍黄就诊。痰涂片见球状革兰氏阴性小杆菌。其可能病原体是A.肺炎链球菌B.铜绿假单胞菌C.流感嗜血杆菌D.肺炎克雷白杆菌E.不动杆菌 剖腹产后产妇必须在小时内禁止进食A、24小时B、12小时C、6小时D、10小时 葡萄糖是? 下列哪项不是晚期产后出血主要原因()A.胎盘、胎膜残留B.蜕膜残留C.剖宫术后子宫伤口裂开D.子宫复旧不全E.凝血功能障碍 下列抗体中是Graves病的直接致病原因的是A.TSAbB.TSBAbC.TGID.TPOAbE.TgAb 颤证痰热风动证的病机是A.肝郁阳亢,化火生风,扰动筋脉B.痰热内蕴,热极生风,筋脉失约C.痰浊中阻,经络阻塞,筋脉失养D.湿热蕴结,化火生风,扰动筋脉E.脾湿生痰,痰瘀经络,筋脉失养 根据《水污染防治法》关于防止地表水污染的具体规定,下列说法错误的是()。A.在生活饮用水水源地的水体保护区内,不得新建排污口B.禁止向水体排放油类、酸液、碱液或者剧毒废液C.向水体排放含热废水,应当采取措施,保证水体的水温符合水环境质量标准D.禁止排放含病原体的污水 下列哪种说法是正确的?A.将强制猥亵妇女罪中的"妇女"解释为包括男性在内的人,属于扩大解释B.将故意杀人罪中的"人"解释为"精神正常的人",属于应当禁止的类推解释C.将伪造货币罪中的"伪造"解释为包括变造货币,属于法律允许的类推解释D.将为境外窃取、刺探、收买、非法提供国家秘 疑有甲状腺碘有机化障碍疾病用哪种方法诊断A.B.甲状腺激素抑制试验C.过氯酸盐释放试验D.甲状腺显像E.以上均是 做好房屋修缮管理工作是搞好工作的基础。A.房地产经营B.房地产开发C.房地产管理D.房地产销售 方脸形的发型制作,应该是顶部要,两侧头发略带有弧形,使其紧贴腮部。A.蓬松B.平服C.略松D.拉高 关于治疗急性扁桃体炎,不正确的是A.应用抗生素首选青霉素B.口咽局部用漱口水C.必要时可用糖皮质激素D.在炎症期可紧急手术,切除扁桃体E.可行中医中药治疗 催化剂架桥 可以看作是南朝民歌的代表。 免疫检测自动化的首要目的是A.提高工作效率和检测的精密度B.减低操作者劳动强度C.减少操作程序D.自动检测及校对E.提高检测的可靠性 腹部概述 关于美曲膦酯(敌百虫)中毒患者的急救措施不妥的是A.对受污染的皮肤和头发用大量清水擦洗B.口服中毒者用清水反复洗胃C.喷洒农药时中毒患者应马上脱去污染衣物D.眼部污染者用2%碳酸氢钠连续冲洗E.早期足量反复给予阿托品解毒 红细胞添加液为哪种时,悬浮红细胞能保存42天。AS-1B.MAPCPDA-1D.SAGME.生理盐水 最能反映小儿骨骼发育的指标是。A、胸围B、体重C、身长D、牙齿E、坐高 WHO给健康下的定义是A.无病就是健康B.身体各器官结构完好,功能正常C.没有疾病,身体又不虚弱D.身体、心理和社会适应的完好状态,而不仅仅是没有疾病和虚弱E.身体强壮,精神饱满
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
国石油天然气行业标准SY/T5964-2006《钻井井控装置组合配套安装调试与维护》的规定,液压防喷器共有六个压力级别,即MPa。A、7、14、21、70、105、140B、14、21、35、105、140、160C、14、21、35、70、105、140 某项目部在北方地区承担某城市主干路道路工程施工任务,设计快车道宽11.25m,辅路宽9m。项目部应业主要求,将原计划安排在次年4月初施工的普通沥青混凝土面层,提前到当年11月上、中旬,抢铺出一条快车道以缓解市区交通沥青混凝土配合比设计中采用的马歇尔试验技术指标有:和残留稳 宫颈癌的普查时间为。A.每2年1次B.每1年1次C.每半年1次D.每1~2年1次E.有问题随时检查 要求保持床单位清洁干燥,无、、污迹,无,无。 在电力系统中,常用并列电容的方法,以提供感性负载所需要得功率、提高,用以减少线损。 下列那种类型偏头痛可呈常染色体显性遗传A.眼肌麻痹偏头痛B.有先兆的偏头痛C.基底动脉型偏头痛D.偏头痛等位发作E.晚发型偏头痛 图1-27、图1-28为A、B两个住宅规划方案。A小区用地面积21公顷,可住居民2430户。B小区用地面积23.5公顷,可住2850户。除B小区有两栋高层住宅外,其余均为5~6层住宅。小区内公共服务设施配套齐全。问题:试指出两个小区在适应居民组织管理、保障安全、解决行人交通与机动车交通矛 关于阳极制动电路的叙述不正确的是A.减少轴承的磨损B.延长X线管的寿命C.在很短的时间内使转速降到很低D.其原理是曝光结束后给启动绕组提供一个脉动直流电E.缩短了X线管的空转时间 负责全国中医药管理工作的部门是。A.国务院发展与改革行政管理部门B.国务院科技行政管理部门C.国务院中医药管理部门D.国务院事务管理局E.国务院办公厅 室内变电所的每台油量为100kg及以上的三相变压器,变压室内。A.应设在单独的B.可两台设在同一C.宜设在单独的D.应两台设在同一 体格检查时不包括。A.血压B.脉搏C.血红蛋白D.血型E.体温 肾癌的三大典型症状是A.血尿、肿块和疼痛B.血尿、发热和疼痛C.血尿、肿块和高血压D.肿块、发热和高血压E.肿块、血沉快和高血压 在糖酵解和糖异生中均起作用的酶是A.丙酮酸羧化酶B.磷酸甘油酸激酶C.果糖二磷酸酶D.丙酮酸激酶E.葡糖激酶 某油田地质储量6×104t,1996年末采出程度2.7%,综合含水58%,1997年末采出程度4.2%,综合含水65%,则该油田的含水上升率为A.7%B.4.67C.1.17%D.1.12% 求与直线及直线都平行且经过坐标原点的平面方程。 车削时,工件上形成的三个表面是:、、。 对于M1正确的是A.骨髓增生活跃,原粒细胞占非红系有核细胞&gt;90%B.最易发生DIC及CNS白血病C.Ph多阳性D.NAP升高E.CD19(+)、CD33(-)、HLA-DR(+) 设计教学法的提出者是()。A.卡土威B.华虚朋C.克伯屈D.狄尔泰 口腔手术操作时乙肝病毒的传染通常是A.通过血液制品传播给患者B.医生之间相互传播C.患者之间相互传播D.由患者传播给口腔医生E.由口腔医生传播给患者 通常人们将社会分为和陌生的社会,我们的生活地是前者,我们在旅游过程中所感知的社会则是后者。 7个月男患儿,反复发作性快速点头样痉挛伴双上肢外展,下肢和躯干屈曲。1~2岁发现有智力低下。EEG为高度节律失调。4岁后发作停止。最可能的诊断A.特异性综合征B.特殊综合征C.早期肌阵挛性脑病D.WestsyndromeE.Lennox-Gastautsyndrome 下列成为感染体的是A.HBsAgB.HBcAgC.HBVDane颗粒D.管型颗粒E.球形颗粒 压力容器设计压力 设,则。A与B既合同又相似B.A与B合同但不相似C.A与B不合同但相似D.A与B既不合同又不相似 头颈部DSA检查不能将导管置于A.颈动脉B.椎动脉C.锁骨下静脉D.锁骨下动脉E.右头臂动脉 Berg平衡量表评定无支持闭目站立评分为1提示A.能够安全地站10sB.监护下能够安全地站10sC.能站3sD.闭眼不能达3s,但站立稳定E.为了不摔倒而需要2个人的帮助 下列有关支票的描述错误的是。A、出票人签发的支票金额不得超过其出票时在付款人处实有的存款金额。B、支票上的金额可以根据法律规定授权补记。C、支票的提示付款期限自出票日起10日,但中国人民银行另有规定的除外。D、支票限于见票即付,不得另行记载付款日期。 糖含量降低,在化脓性脑膜炎糖含量可低0.5mmol/L以下,甚至为零()</br>糖量降低至2.2mmol/L以下,氯化物降低最为明显,可低于102mmol/L()</br>糖含量一般正常()A.化脓性脑膜炎B.结核性脑膜炎C.病毒性脑膜炎D.真菌性脑膜炎E.原发性阿米巴性脑脓肿 ACD保养液全血保存期为。A.14天B.28天C.35天D.21天E.42天 初孕妇,25岁,妊娠40周,入院前1日出现不规律子宫收缩,入院24小时后静滴缩宫素引产,第1产程5小时,第2产程10分钟,胎儿娩出后2分钟,产妇突然出现寒战,咳嗽,发绀,血压60/40mmHg,随后阴道流血不止,立即配血进行抢救。最可能的诊断是A.缩宫素过敏B.羊水栓塞C.急性肺栓塞D.心 天王补心丹的辨证要点是A.失眠,惊悸,舌红,脉细数B.失眠心悸,手足心热,舌红少苔,脉细数C.虚烦失眠,咽干口燥,舌红,脉弦细D.精神恍惚,悲伤欲哭,舌红苔少,脉细E.心悸失眠,体倦食少,舌淡,脉细弱 小建中汤中倍用芍药的用意是A.调和营卫B.酸甘益阴,缓急止痛C.温中补虚,和里缓急D.凉血散瘀E.平肝止痛 在密闭的容器内的水蒸气与同温度条件下纯水的水蒸气压力的比值称为.A.HACCPB.水分活度(Aw)C.PSE肉D.嫩度 前牙缺失,牙槽嵴无倒凹,观测模型时应A.向后倾斜B.向前倾斜C.向左倾斜D.向右倾斜E.不倾斜、平放 人类疾病动物模型评估原则中,下述对相似性原则描述错误的是A、复制的动物模型应尽可能近似人类疾病。B、为了尽量做到与人类疾病相似,首先要在动物局部功能的选择上加以注意。C、其次在复制动物模型实验方法上不断探索改进。D、另外在观察指标等方面都应加以周密的设计,使其尽可 通信网按其所能实现的业务种类来分有。A、电话通信网B、数据通信网C、广播电视网D、传输网 病毒的分离培养的意义A.是病毒学实验研究的基础B.可用于制备疫苗C.可开发特异性诊断试剂D.有助于疾病模型的复制E.以上都是 粪便镜检大量脓细胞提示A.细菌性痢疾B.肠胃炎C.溃疡病D.胰腺炎E.肠炎 高副的特点是。A.承载能力大B.能传递复杂运动C.磨损小D.寿命长 营养性巨幼红细胞性贫血患儿血涂片检查时可见巨大幼稚粒细胞和中性粒细胞及中性粒细胞分叶过多现象,是因为A.合并严重感染B.缺乏维生素B12C.药物的毒性反应D.转化为白血病E.缺乏铁
相关文档
最新文档