固体物理题目与解答
固体物理答案
![固体物理答案](https://img.taocdn.com/s3/m/35ae282971fe910ef02df877.png)
3.1 已知一维单原子链,其中第j 个格波,在第n 个格点引起的位移nj μ为:sin()nj j j j j a t naq μωδ=++j δ为任意相位因子。
并已知在较高温度下每个格波的平均能量为B k T 。
具体计算每个原子的平方平均位移。
解:(1)根据2011sin ()2T j j j t naq dt T ωδ⎰++= 其中2jT πω=为振动周期,所以22221sin ()2nj j j j j j a t naq a μωδ=++=(2) 第j 个格波的平均动能 (3) 经典的简谐运动有:每个格波的平均动能=平均势能=12格波平均能量=12B k T 振幅222B j j k T a Nm ω=, 所以 22212B nj j jk T a Nm μω==。
而每个原子的平方平均位移为:222221()2B n nj nj j jjjjjk Ta Nm μμμω====∑∑∑∑。
3.2讨论N 个原胞的一维双原子链(相邻原子间距为a ),其2N 个格波的解。
当m M =时与一维单原子链一一对应。
解:(1)一维双原子链: 22q a aππ-≤<声学波:12222411sin ()m M mM aq mM m M ωβ-⎧⎫⎡⎤+⎪⎪=--⎨⎬⎢⎥+⎣⎦⎪⎪⎩⎭当m M =时,有2224(1cos )sin 2aqaq m m ββω-=-= 。
光学波:12222411sin ()m M mM aq mM m M ωβ+⎧⎫⎡⎤+⎪⎪=+-⎨⎬⎢⎥+⎣⎦⎪⎪⎩⎭当m M =时,有2224(1cos )cos 2aqaq m m ββω+=+= 。
(2)一维双原子链在m M =时的解 22224sin 2422cos 2aq m q aq aam βωππβω-+⎧=⎪⎪-≤<⎨⎪=⎪⎩与一维单原子链的解 224sin 2aqq m aaβππω=-≤<是一一对应的。
初中固体物理试题及答案
![初中固体物理试题及答案](https://img.taocdn.com/s3/m/f468218e48649b6648d7c1c708a1284ac950051a.png)
初中固体物理试题及答案一、选择题(每题2分,共20分)1. 固体的三种基本类型是()。
A. 晶体、非晶体、准晶体B. 晶体、非晶体、多晶体C. 晶体、非晶体、单晶体D. 晶体、多晶体、准晶体答案:A2. 晶体的特点是()。
A. 无规则排列B. 规则排列C. 部分规则排列D. 完全无序排列答案:B3. 非晶体与晶体的主要区别在于()。
A. 原子排列方式B. 原子大小C. 原子种类D. 原子数量答案:A4. 晶体的熔点通常比非晶体的熔点()。
A. 低B. 高C. 相同D. 不可比较答案:B5. 准晶体是一种介于晶体和非晶体之间的固体,其特点是()。
A. 完全无序排列B. 长程有序但不具备周期性C. 规则排列D. 完全有序排列答案:B6. 晶体的X射线衍射图样是()。
A. 无规则的斑点B. 规则的点状图案C. 连续的曲线D. 无规则的条纹答案:B7. 固体的热膨胀系数是指()。
A. 固体在加热时体积不变B. 固体在加热时体积变化的比率C. 固体在冷却时体积变化的比率D. 固体在加热时质量变化的比率答案:B8. 固体的导电性主要取决于()。
A. 原子的质量B. 原子的排列方式C. 原子的体积D. 原子的数量答案:B9. 金属导电的原因是()。
A. 金属内部有自由移动的电子B. 金属内部有自由移动的原子C. 金属内部有自由移动的离子D. 金属内部有自由移动的分子答案:A10. 半导体的导电性介于()之间。
A. 金属和绝缘体B. 金属和非金属C. 非金属和绝缘体D. 金属和晶体答案:A二、填空题(每题2分,共20分)1. 晶体的三种基本类型是单晶体、多晶体和________。
答案:准晶体2. 晶体的原子排列具有________性。
答案:长程有序3. 非晶体的原子排列具有________性。
答案:短程有序4. 晶体的熔点较高是因为其内部________。
答案:原子排列紧密5. 准晶体的原子排列具有________性。
初中固体物理试题及答案
![初中固体物理试题及答案](https://img.taocdn.com/s3/m/cb5ed3a1c9d376eeaeaad1f34693daef5ef71396.png)
初中固体物理试题及答案一、选择题(每题2分,共20分)1. 固体物质的分子排列特点是:A. 无规则排列B. 规则排列C. 部分规则排列D. 完全无序排列答案:B2. 固体物质的分子间作用力是:A. 引力B. 斥力C. 引力和斥力D. 无作用力答案:C3. 下列物质中,属于晶体的是:A. 玻璃B. 橡胶C. 食盐D. 沥青答案:C4. 晶体与非晶体的主要区别在于:A. 颜色B. 形状C. 熔点D. 分子排列答案:D5. 固体物质的熔化过程需要:A. 吸收热量B. 放出热量C. 保持热量不变D. 无法判断答案:A6. 固体物质的硬度与下列哪项因素有关:A. 分子间作用力B. 分子质量C. 分子体积D. 分子形状答案:A7. 固体物质的导电性与下列哪项因素有关:A. 分子间作用力B. 分子运动速度C. 电子的自由移动D. 分子的排列方式答案:C8. 晶体的熔点与下列哪项因素有关:A. 晶体的纯度B. 晶体的颜色C. 晶体的形状D. 晶体的密度答案:A9. 固体物质的热膨胀现象说明:A. 分子间距离不变B. 分子间距离减小C. 分子间距离增大D. 分子间距离先增大后减小答案:C10. 固体物质的热传导性与下列哪项因素有关:A. 分子间作用力B. 分子运动速度C. 电子的自由移动D. 分子的排列方式答案:A二、填空题(每空1分,共20分)1. 固体物质的分子排列特点是________,而非晶体物质的分子排列特点是________。
答案:规则排列;无规则排列2. 固体物质的熔化过程中,分子间________,分子间距离________。
答案:作用力减弱;增大3. 晶体的熔点与________有关,而非晶体没有固定的熔点。
答案:晶体的纯度4. 固体物质的硬度与分子间________有关,分子间作用力越强,硬度越大。
答案:作用力5. 固体物质的热膨胀现象是由于温度升高,分子间距离________。
答案:增大三、简答题(每题10分,共30分)1. 简述晶体与非晶体的区别。
(完整word版)固体物理学习题解答(完整版)
![(完整word版)固体物理学习题解答(完整版)](https://img.taocdn.com/s3/m/6653efbebb4cf7ec4afed0de.png)
《固体物理学》部分习题参考解答第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。
从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于面心的原子与顶角原子的距离为:R f=2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a 那么,Rf Rb31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。
答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。
分别如图所示:1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。
因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此123o o o a n hda n kd a n id=== ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°由于a 3=–(a 1+ a 2)313()o o a n a a n =-+把(1)式的关系代入,即得()id hd kd =-+ ()i h k =-+根据上面的证明,可以转换晶面族为(001)→(0001),(13)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133)1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为(1)简立方:6π(2)体心立方:8(3)面心立方:6(4)六方密堆积:6(5)金刚石:。
固体物理学考试题及答案
![固体物理学考试题及答案](https://img.taocdn.com/s3/m/021f5a8c112de2bd960590c69ec3d5bbfd0adadb.png)
固体物理学考试题及答案一、选择题(每题2分,共20分)1. 固体物理学中,描述晶体中原子排列的周期性规律的数学表达式是()。
A. 布洛赫定理B. 薛定谔方程C. 泡利不相容原理D. 费米-狄拉克统计答案:A2. 固体中电子的能带结构是由()决定的。
A. 原子的核外电子B. 晶体的周期性势场C. 原子的核电荷D. 原子的电子云答案:B3. 在固体物理学中,金属导电的原因是()。
A. 金属中存在自由电子B. 金属原子的电子云重叠C. 金属原子的价电子可以自由移动D. 金属原子的电子云完全重叠答案:C4. 半导体材料的导电性介于导体和绝缘体之间,这是因为()。
A. 半导体材料中没有自由电子B. 半导体材料的能带结构中存在带隙C. 半导体材料的原子排列无序D. 半导体材料的电子云完全重叠答案:B5. 固体物理学中,描述固体中电子的波动性的数学表达式是()。
A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 热力学第一定律答案:A6. 固体中声子的概念是由()提出的。
A. 爱因斯坦B. 德拜C. 玻尔D. 费米答案:B7. 固体中电子的费米能级是指()。
A. 电子在固体中的最大能量B. 电子在固体中的最小能量C. 电子在固体中的平均水平能量D. 电子在固体中的动能答案:A8. 固体物理学中,描述固体中电子的分布的统计规律是()。
A. 麦克斯韦-玻尔兹曼统计B. 费米-狄拉克统计C. 玻色-爱因斯坦统计D. 高斯统计答案:B9. 固体中电子的能带理论是由()提出的。
A. 薛定谔B. 泡利C. 费米D. 索末菲答案:D10. 固体中电子的跃迁导致()的发射或吸收。
A. 光子B. 声子C. 电子D. 质子答案:A二、填空题(每题2分,共20分)1. 固体物理学中,晶体的周期性势场是由原子的______产生的。
答案:周期性排列2. 固体中电子的能带结构中,导带和价带之间的能量区域称为______。
答案:带隙3. 金属导电的原因是金属原子的价电子可以______。
大学固体物理试题及答案
![大学固体物理试题及答案](https://img.taocdn.com/s3/m/d2a0d85382c4bb4cf7ec4afe04a1b0717fd5b33f.png)
大学固体物理试题及答案一、选择题(每题5分,共20分)1. 下列关于晶体结构的描述,错误的是:A. 晶体具有规则的几何外形B. 晶体内部的原子排列是无序的C. 晶体具有各向异性D. 晶体具有固定的熔点答案:B2. 固体物理中,描述电子在晶格中运动的方程是:A. 薛定谔方程B. 牛顿运动方程C. 麦克斯韦方程D. 热力学第一定律答案:A3. 固体中,电子能带的宽度与下列哪个因素有关?A. 电子的电荷B. 电子的质量C. 晶格的周期性D. 电子的自旋答案:C4. 金属导电的原因是:A. 金属内部存在自由电子B. 金属内部存在空穴C. 金属内部存在离子D. 金属内部存在分子答案:A二、填空题(每题5分,共20分)1. 晶体的周期性结构可以用_________来描述。
答案:晶格常数2. 能带理论中,电子在能带之间跃迁需要吸收或释放_________。
答案:光子3. 根据泡利不相容原理,一个原子轨道内最多可以容纳_________个电子。
答案:24. 半导体的导电性介于金属和绝缘体之间,其原因是半导体的_________较窄。
答案:能带间隙三、简答题(每题10分,共30分)1. 简要说明什么是费米能级,并解释其在固体物理中的重要性。
答案:费米能级是指在绝对零度时,电子占据的最高能级。
在固体物理中,费米能级是描述电子分布状态的重要参数,它决定了固体的导电性、磁性等物理性质。
2. 解释为什么金属在常温下具有良好的导电性。
答案:金属具有良好的导电性是因为其内部存在大量的自由电子,这些电子可以在电场作用下自由移动,形成电流。
3. 什么是超导现象?请简述其物理机制。
答案:超导现象是指某些材料在低于某一临界温度时,电阻突然降为零的现象。
其物理机制与电子之间的库珀对形成有关,这些库珀对在低温下能够无阻碍地流动,从而实现零电阻。
四、计算题(每题15分,共30分)1. 假设一个一维晶格,晶格常数为a,电子的有效质量为m*,求电子在第一能带的最低能级。
固体物理习题带答案
![固体物理习题带答案](https://img.taocdn.com/s3/m/9ed15d24915f804d2b16c11a.png)
第二章:原子的结合
1. 设原子间的互作用能表示为 u (r ) 态,则 n>m. 解:原子间的相互作用能为: u (r )
作用能处于极小值: 这时有
r
m
rn
。证明:要使两原子处于平衡状
r
m
rn
。若两原子处于平衡状态时,则其相互
du (r ) (m) m 1 (n) n 1 dr r r
子晶格的情形比较, 与 q 之间存在着两种不同的色散关系。一维复式晶体中可以存在两 种独立的格波。两种不同的格波的色散关系:
2 2
(m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M ) (m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M )
xn (t ) A cos(t 2 naq) 。试求格波的色散关系。
解:一维单原子链中,牛顿方程为:
n ( x n 1 xn 1 2 xn ) m x
若将其振动位移写成 xn (t )
A cos(t 2 naq) 代入牛顿方程,则有
2
2 [1 cos(2aq)] 因此其色散关系为 m
0 。 所 以 有
r0
m
r0
m 1
n
r0
n 1
。所以
m nm r0 。 n
0
r0
同
时
有
d 2u ( r ) (m)( m 1) m 2 (n)( n 1) n 2 2 dr r r
。
所
以
固体物理复习题答案完整版
![固体物理复习题答案完整版](https://img.taocdn.com/s3/m/7f230b172f60ddccda38a0a2.png)
一·简答题1.晶格常数为a 的体心立方、面心立方结构,分别表示出它们的基矢、原胞体积以及最近邻的格点数。
(答案参考教材P7-8)(1)体心立方基矢:123()2()2()2ai j k a i j k ai j k ααα=+-=-++=-+,体积:312a ,最近邻格点数:8(2)面心立方基矢:123()2()2()2a i j a j k ak i ααα=+=+=+,体积:314a ,最近邻格点数:122.习题1.5、证明倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。
证明:因为33121323,a aa a CA CB h h h h =-=-,112233G h b h b h b =++ 利用2i j ij a b πδ⋅=,容易证明12312300h h h h h h G CA G CB ⋅=⋅=所以,倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。
3.习题 1.6、对于简单立方晶格,证明密勒指数为(,,)h k l 的晶面系,面间距d 满足:22222()d a h k l =++,其中a 为立方边长;解:简单立方晶格:123a a a ⊥⊥,123,,a ai a aj a ak === 由倒格子基矢的定义:2311232a a b a a a π⨯=⋅⨯,3121232a a b a a a π⨯=⋅⨯,1231232a a b a a a π⨯=⋅⨯倒格子基矢:123222,,b i b j b k a a aπππ=== 倒格子矢量:123G hb kb lb =++,222G hi k j l k a a aπππ=++ 晶面族()hkl 的面间距:2d Gπ=2221()()()h k l a a a=++4.习题1.9、画出立方晶格(111)面、(100)面、(110)面,并指出(111)面与(100)面、(111)面与(110)面的交线的晶向。
固体物理试题解答
![固体物理试题解答](https://img.taocdn.com/s3/m/49e8bf47804d2b160b4ec0dd.png)
一.简答题(20)1、玻恩-卡门边界条件及其重要意义。
玻恩-卡门边界条件:设想在一长为Na 的有限晶体边界之外,仍然有无穷多个相同的晶体,并且各块晶体内相对应的原子的运动情况一样,即第j 个原子和第tN +j个原子的运动情况一样,其中t=1,2,3…。
书P109其重要意义:P992、说明淬火后的金属材料变硬的原因。
P143我们已经知道晶体的一部分相对于另一部分的滑移,实际是位错线的滑移,位错线的移动是逐步进行的,使得滑移的切应力最小。
这就是金属一般较软的原因之一。
显然,要提高金属的强度和硬度,似乎可以通过消除位错的办法来实现。
但事实上位错是很难消除的。
相反,要提高金属的强度和硬度,通常采用增加位错的办法来实现。
金属淬火就是增加位错的有效办法。
将金属加热到一定高温,原子振动的幅度比常温时的幅度大得多,原子脱离正常格点的几率比常温时大得多,晶体中产生大量的空穴、填隙缺陷。
这些点缺陷容易形成位错。
也就是说,在高温时,晶体内的位错缺陷比常温时多得多。
高温的晶体在适宜的液体中急冷,高温时新产生的位错来不及恢复和消退,大部分被保留了下来。
数目众多的位错相互交织在一起,某一方向的位错的滑移,会受到其他方向位错的牵制,使位错滑移的阻力大大增加,使得金属变硬。
3、杂化轨道理论。
P61为了解释金刚石中碳原子具有4个等同的共价键,1931年泡林(Pauling )和斯莱特(Slater )提出了杂化轨道理论。
碳原子有4个价电子2s ,2p x ,2p y ,2p z ,它们分别对应ϕ2s ,ϕ2px ,ϕ2py ,ϕ2pz 量子态,在构成共价键时,它们“混合”起来重新组成四个等价的轨道,其中每一个轨道包含有s 41和p 43的成分,这种轨道称为杂化轨道,分别对应4个新的量子态()z y x p p p 222s 2121ϕϕϕϕψ+++= ()z y x p p p 222s 2221ϕϕϕϕψ--+= ()z y x p p p 222s 2321ϕϕϕϕψ-+-= ()zy x p p p 222s 2421ϕϕϕϕψ+--= 4个电子分别占据ψ1,ψ2,ψ3,ψ4新轨道,在四面体顶角方向形成4个共价键。
固体物理学习题解答
![固体物理学习题解答](https://img.taocdn.com/s3/m/0e2284d776a20029bd642dad.png)
《固体物理学》习题解答第一章 晶体结构1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出这两种结构的原胞与晶胞基矢,设晶格常数为a 。
解:氯化钠与金刚石型结构都是复式格子。
氯化钠的基元为一个Na +和一个Cl -组成的正负离子对。
金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。
由于NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为:123()2()2()2a a a ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩a j k a k i a i j相应的晶胞基矢都为:,,.a a a =⎧⎪=⎨⎪=⎩a ib jc k2. 六角密集结构可取四个原胞基矢123,,a a a 与4a ,如图所示。
试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶面所属晶面族的晶面指数()h k l m 。
解:(1).对于13O A A '面,其在四个原胞基矢上的截矩分别为:1,1,12-,1。
所以,其晶面指数为()1121。
(2).对于1331A A B B 面,其在四个原胞基矢上的截矩分别为:1,1,12-,∞。
所以,其晶面指数为()1120。
(3).对于2255A B B A 面,其在四个原胞基矢上的截矩分别为:1,1-,∞,∞。
所以,其晶面指数为()1100。
(4).对于123456A A A A A A 面,其在四个原胞基矢上的截矩分别为:∞,∞,∞,1。
所以,其晶面指数为()0001。
3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的比为:简立方:6π;。
证明:由于晶格常数为a ,所以:(1).构成简立方时,最大球半径为2m aR =,每个原胞中占有一个原子,334326m a V a ππ⎛⎫∴== ⎪⎝⎭36m V a π∴= (2).构成体心立方时,体对角线等于4倍的最大球半径,即:4m R =,每个晶胞中占有两个原子,334322348m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭328m V a ∴=(3).构成面心立方时,面对角线等于4倍的最大球半径,即:4m R =,每个晶胞占有4个原子,334244346m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭346m V a ∴=(4).构成六角密集结构时,中间层的三个原子与底面中心的那个原子恰构成一个正四面体,其高则正好是其原胞基矢c 的长度的一半,由几何知识易知3m R =c 。
固体物理习题及解答
![固体物理习题及解答](https://img.taocdn.com/s3/m/0372b8374a35eefdc8d376eeaeaad1f3469311e4.png)
固体物理习题及解答⼀、填空题1. 晶格常数为a 的⽴⽅晶系 (hkl)晶⾯族的晶⾯间距为a该(hkl)晶⾯族的倒格⼦⽮量hkl G 为 k al j a k i a h πππ222++ 。
2. 晶体结构可看成是将基元按相同的⽅式放置在具有三维平移周期性的晶格的每个格点构成。
3. 晶体结构按晶胞形状对称性可划分为 7 ⼤晶系,考虑平移对称性晶体结构可划分为 14 种布拉维晶格。
4. 体⼼⽴⽅(bcc )晶格的结构因⼦为 []{})(ex p 1l k h i f S hkl ++-+=π,其衍射消光条件是奇数=++l k h 。
5. 与正格⼦晶列[hkl]垂直的倒格⼦晶⾯的晶⾯指数为 (hkl) ,与正格⼦晶⾯(hkl )垂直的倒格⼦晶列的晶列指数为 [hkl] 。
6. 由N 个晶胞常数为a 的晶胞所构成的⼀维晶格,其第⼀布⾥渊区边界宽度为a /2π,电⼦波⽮的允许值为 Na /2π的整数倍。
7. 对于体积为V,并具有N 个电⼦的⾦属, 其波⽮空间中每⼀个波⽮所占的体积为 ()V /23π,费⽶波⽮为 3/123?=V N k F π。
8. 按经典统计理论,N 个⾃由电⼦系统的⽐热应为 B Nk 23,⽽根据量⼦统计得到的⾦属三维电⼦⽓的⽐热为 F B T T Nk /22,⽐经典值⼩了约两个数量级。
9.在晶体的周期性势场中,电⼦能带在布⾥渊区边界将出现带隙,这是因为电⼦⾏波在该处受到布拉格反射变成驻波⽽导致的结果。
10. 对晶格常数为a 的简单⽴⽅晶体,与正格⽮R =a i +2a j +2a k 正交的倒格⼦晶⾯族的⾯指数为 (122) , 其⾯间距为 .11. 铁磁相变属于典型的⼆级相变,在居⾥温度附近,⾃由能连续变化,但其⼀阶导数(⽐热)不连续。
13.等径圆球的最密堆积⽅式有六⽅密堆(hcp )和⾯⼼⽴⽅密堆(fcc )两种⽅式,两者的空间占据率皆为74%。
14. ⾯⼼⽴⽅(fcc )晶格的倒格⼦为体⼼⽴⽅(bcc )晶格;⾯⼼⽴⽅(fcc )晶格的第⼀布⾥渊区为截⾓⼋⾯体。
固体物理简答题及答案
![固体物理简答题及答案](https://img.taocdn.com/s3/m/68e7069c64ce0508763231126edb6f1aff007198.png)
固体物理简答题及答案简答题1、原子结合成晶体时,原子的价电子产生重新分布,从而产生不同的结合力,分析离子性、共价性、金属性和范德瓦耳斯性结合力的特点。
答案:离子性结合:正、负离子之间靠库仑吸引力作用而相互靠近,当靠近到一定程度时,由于泡利不相容原理,两个离子的闭合壳层的电子云的交迭会产生强大的排斥力。
当排斥力和吸引力相互平衡时,形成稳定的离子晶体;共价性结合:靠两个原子各贡献一个电子,形成所谓的共价键;金属性结合:组成晶体时每个原子的最外层电子为所有原子所共有,因此在结合成金属晶体时,失去了最外层(价)电子的原子实“沉浸”在由价电子组成的“电子云”中。
在这种情况下,电子云和原子实之间存在库仑作用,体积越小电子云密度越高,库仑相互作用的库仑能愈低,表现为原子聚合起来的作用。
XXX耳斯性结合:惰性元素最外层的电子为8个,具有球对称的稳定封闭结构。
但在某一瞬时由于正、负电中心不重合而使原子呈现出瞬时偶极矩,这就会使其它原子产生感应极矩。
非极性分子晶体就是依靠这瞬时偶极矩的互作用而结合的。
2.什么叫简正振动形式?简正振动数量、格波数量或格波振动形式数量是不是是一回事?答案:为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中的非线形项忽略掉的近似称为简谐近似.在简谐近似下,由N个原子构成的晶体的晶格振动,可等效成3N个独立的谐振子的振动.每个谐振子的振动模式称为简正振动模式,它对应着所有的原子都以该模式的频率做振动,它是晶格振动模式中最简单最基本的振动方式.原子的振动,或者说格波振动通常是这3N个简正振动模式的线形迭加.简正振动数目、格波数目或格波振动模式数目是一回事,这个数目等于晶体中所有原子的自由度数之和,即等于3N.3.长光学支格波与长声学支格波本质上有何差别?答案:长光学支格波的特征是每个原胞内的不同原子做相对振动,振动频率较高,它包含了晶格振动频率最高的振动模式.长声学支格波的特征是原胞内的不同原子没有相对位移,原胞做整体运动,振动频率较低,它包含了晶格振动频率最低的振动模式,波速是一常数.任何晶体都存在声学支格波,但简单晶格(非复式格子)晶体不存在光学支格波.4.长声学格波能否导致离子晶体的宏观极化?答案:长光学格波所以能导致离子晶体的宏观极化,其根源是长光学格波使得原胞内不同的原子(正负离子)产生了相对位移.长声学格波的特点是,原胞内所有的原子没有相对位移.因此,长声学格波不能导致离子晶体的宏观极化.5.何谓极化声子?何谓电磁声子?答案:长光学纵波引起离子晶体中正负离子的相对位移,离子的相对位移产生出宏观极化电场,称长光学纵波声子为极化声子.由本教科书的(3.103)式可知,长光学横波与电磁场相耦合,使得它具有电磁性质,人们称长光学横波声子为电磁声子.6、什么是声子?答案:晶格振动的能量量子。
初中固体物理试题及答案
![初中固体物理试题及答案](https://img.taocdn.com/s3/m/eb67d10ba88271fe910ef12d2af90242a895ab80.png)
初中固体物理试题及答案一、选择题(每题2分,共20分)1. 下列物质中,属于晶体的是:A. 玻璃B. 食盐C. 沥青D. 橡胶答案:B2. 晶体和非晶体的主要区别在于:A. 硬度B. 密度C. 熔点D. 内部原子排列答案:D3. 晶体熔化时,其温度:A. 升高B. 降低C. 不变D. 先升高后降低答案:C4. 下列物质中,熔点最高的是:A. 冰B. 铜C. 铁D. 钨答案:D5. 晶体和非晶体的熔化过程都需要:A. 吸热B. 放热C. 既不吸热也不放热D. 先吸热后放热答案:A6. 晶体和非晶体在凝固过程中的区别在于:A. 晶体放热,非晶体吸热B. 晶体吸热,非晶体放热C. 晶体和非晶体都放热D. 晶体和非晶体都吸热答案:C7. 晶体和非晶体在凝固过程中,晶体会:A. 释放热量B. 吸收热量C. 既不吸热也不放热D. 先吸热后放热答案:A8. 晶体和非晶体在凝固过程中,非晶体会:A. 释放热量B. 吸收热量C. 既不吸热也不放热D. 先吸热后放热答案:B9. 晶体和非晶体在凝固过程中,晶体和非晶体都会:A. 体积膨胀B. 体积缩小C. 体积不变D. 先膨胀后缩小答案:B10. 晶体和非晶体在凝固过程中,晶体和非晶体都会:A. 释放热量B. 吸收热量C. 既不吸热也不放热D. 先吸热后放热答案:A二、填空题(每空1分,共10分)11. 晶体的内部原子排列具有_________性,而非晶体的内部原子排列具有_________性。
答案:规则;无规则12. 晶体在熔化过程中,温度_________,而非晶体在熔化过程中,温度_________。
答案:不变;升高13. 晶体在凝固过程中,会_________热量,而非晶体在凝固过程中,会_________热量。
答案:释放;吸收14. 晶体和非晶体在凝固过程中,体积都会_________。
答案:缩小15. 晶体和非晶体在凝固过程中,都会_________热量。
初中固体物理试题及答案
![初中固体物理试题及答案](https://img.taocdn.com/s3/m/89204b974793daef5ef7ba0d4a7302768e996fbf.png)
初中固体物理试题及答案一、选择题(每题3分,共30分)1. 物体的内能与温度有关,温度升高,内能增大。
这是因为()A. 物体的机械能增大B. 分子的动能增大C. 分子的势能增大D. 分子的动能和势能都增大2. 物质的三态变化中,下列哪种变化是吸热的?()A. 凝固B. 液化C. 升华D. 凝华3. 晶体和非晶体的主要区别在于()A. 颜色B. 硬度C. 熔点D. 有无规则的几何外形4. 以下哪种物质在常温下是固体?()A. 水银B. 酒精C. 氧气D. 冰5. 晶体熔化时,温度保持不变,这是因为()A. 吸收热量,温度升高B. 吸收热量,温度不变C. 放出热量,温度不变D. 放出热量,温度降低6. 物质由固态变为液态的过程叫做()A. 凝固B. 液化C. 熔化D. 升华7. 物质由气态直接变为固态的过程叫做()A. 凝固B. 液化C. 凝华D. 升华8. 物质由液态变为固态的过程叫做()A. 凝固B. 液化C. 熔化D. 凝华9. 物质由固态直接变为气态的过程叫做()A. 凝固B. 液化C. 升华D. 凝华10. 物质由液态变为气态的过程叫做()A. 凝固B. 液化C. 熔化D. 蒸发二、填空题(每空2分,共20分)11. 物质的三态变化中,由固态变为液态的过程叫做______,由液态变为固态的过程叫做______。
12. 晶体在熔化过程中,吸收热量,但温度保持______,而非晶体在熔化过程中,吸收热量,温度会______。
13. 物质由液态变为气态的过程叫做______,这个过程需要______热量。
14. 物质由气态变为液态的过程叫做______,这个过程会______热量。
15. 物质由固态变为气态的过程叫做______,这个过程需要______热量。
三、简答题(每题10分,共20分)16. 请简述晶体和非晶体在熔化过程中的主要区别。
17. 请解释为什么冬天室外的水管容易破裂。
四、实验题(每题15分,共30分)18. 实验目的:探究晶体熔化时温度的变化情况。
固体物理经典复习题及答案(供参考)
![固体物理经典复习题及答案(供参考)](https://img.taocdn.com/s3/m/119c1f1303020740be1e650e52ea551810a6c981.png)
固体物理经典复习题及答案(供参考)⼀、简答题1.理想晶体答:内在结构完全规则的固体是理想晶体,它是由全同的结构单元在空间⽆限重复排列⽽构成的。
2.晶体的解理性答:晶体常具有沿某些确定⽅位的晶⾯劈裂的性质,这称为晶体的解理性。
3.配位数答: 晶体中和某⼀粒⼦最近邻的原⼦数。
4.致密度答:晶胞内原⼦所占的体积和晶胞体积之⽐。
5.空间点阵(布喇菲点阵)答:空间点阵(布喇菲点阵):晶体的内部结构可以概括为是由⼀些相同的点⼦在空间有规则地做周期性⽆限重复排列,这些点⼦的总体称为空间点阵(布喇菲点阵),即平移⽮量123d 、d 、h h h d 中123,,n n n 取整数时所对应的点的排列。
空间点阵是晶体结构周期性的数学抽象。
6.基元答:组成晶体的最⼩基本单元,它可以由⼏个原⼦(离⼦)组成,整个晶体可以看成是基元的周期性重复排列⽽构成。
7.格点(结点)答: 空间点阵中的点⼦代表着结构中相同的位置,称为结点。
8.固体物理学原胞答:固体物理学原胞是晶格中的最⼩重复单元,它反映了晶格的周期性。
取⼀结点为顶点,由此点向最近邻的三个结点作三个不共⾯的⽮量,以此三个⽮量为边作的平⾏六⾯体即固体物理学原胞。
固体物理学原胞的结点都处在顶⾓位置上,原胞内部及⾯上都没有结点,每个固体物理学原胞平均含有⼀个结点。
9.结晶学原胞答:使三个基⽮的⽅向尽可能的沿空间对称轴的⽅向,以这样三个基⽮为边作的平⾏六⾯体称为结晶学原胞,结晶学原胞反映了晶体的对称性,它的体积是固体物理学原胞体积的整数倍,V=n ,其中n 是结晶学原胞所包含的结点数, 是固体物理学原胞的体积。
10.布喇菲原胞答:使三个基⽮的⽅向尽可能的沿空间对称轴的⽅向,以这样三个基⽮为边作的平⾏六⾯体称为布喇菲原胞,结晶学原胞反映了晶体的对称性,它的体积是固体物理学原胞体积的整数倍,V=n ,其中n 是结晶学原胞所包含的结点数,是固体物理学原胞的体积11.维格纳-赛兹原胞(W-S 原胞)答:以某⼀阵点为原点,原点与其它阵点连线的中垂⾯(或中垂线) 将空间划分成各个区域。
固体物理习题解答
![固体物理习题解答](https://img.taocdn.com/s3/m/7fa1eee5dc3383c4bb4cf7ec4afe04a1b171b05e.png)
方 (110)晶面的格点面密度最大。根据
dhkl
h2
a k2
l2
,有面心立方
d111
a ,体心立方 3
d110
a 2
因此,最大格点面密度表达式,
dh1h2h3 2 / Gh1h2h3
面心立方111
4 a3
a 3
43 3a2
,
体心立方110
2 a3
a 2
2 a2
第一章 习题
1.7 证明体心立方格子和面心立方格子互为倒格子。
k * N
由于晶体原胞数 N 很大,倒格子原胞体积 很小, k 在波矢空间准连续取值,因 此,同一能带中相邻 k 值的能量差别 很小, 所以 En(k) 可近似看成是 k 的 准连续函数。
第四章 思考题
5、近自由电子模型和紧束缚模型有何特点?它们有共同之处吗? 答: 近自由电子近似模型是当晶格周期势场起伏很小,电子的行为
第一章 思考题
2、晶体结构可分成布拉菲格子和复式格子吗?
答: 可以。 以原子为结构参考点,可以把晶体分成布拉菲格子和复式格
子。 任何晶体,以基元为结构参考点,都是布拉菲格子描述。 任何化合物晶体,都可以复式格子描述? 不是所有的单质晶体,都是布拉菲格子描述? 单质晶体,以原子为结构参考点,也可以分成布拉菲格子和
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1理论证明由10种对称素只能组成(32)种不同的点群即晶体的宏观对称只有32个不同类型1.2根据晶胞基矢之间的夹角、长度关系可将晶体分为(7大晶系)对应的只有(14种布拉伐格子)1.3面心立方晶体在(100)方向上表面二维布拉伐格子是(正方格子)在(111)方向上表面二维布拉伐格子是(密排结构)1.4晶体表面二维晶格的点群表示,由于晶格周期性在Z 轴方向的限制,二维晶格的对称素只有6个,即垂直于表面的n 重转轴1/2/3/4/6——5个,垂直于表面的镜面反演m ——1个。
由6种对称素可以组成10种二维点群,按照点群对基矢的要求划分,二维格子有4个晶系,5种布拉伐格子1.5在结晶学中,晶胞选取的原则是既要考虑晶体结构的(周期性)又要考虑晶体的(宏观对称性)1.6六角密积属(六角晶系),一个晶胞(平行六面体)包含(两个)原子.1.7对晶格常数为a 的SC 晶体,与正格矢R =ai +2aj +2ak 正交的倒格子晶面族的面指数为(122),其面间距为(a 32π).1.8典型离子晶体的体积为V ,最近邻两离子的距离为R ,晶体的格波数目为(343R V π),长光学波的(纵)波会引起离子晶体宏观上的极化. 1.9金刚石晶体的结合类型是典型的(共价结合)晶体,它有(6)支格波1.10在晶体衍射中,为什么不能用可见光?晶体中原子间距的数量级为1010-米,要使原子晶格成为光波的衍射光栅,光波的波长应小于1010-米.但可见光的波长为7.6¾4.0710-⨯米,是晶体中原子间距的1000倍.因此,在晶体衍射中,不能用可见光.2.1离子晶体的特征:一种离子的最近邻离子为异性离子;离子晶体的配位数最多只能是82.2离子晶体结合的稳定性——导电性能差、熔点高、硬度高和膨胀系数小2.3共价键结合的两个基本特征——饱和性和方向性;共价键的强弱取决于形成共价键的两个电子轨道相互交叠的程度2.4共价晶体结合的一对平衡力是(外层未配对的自旋方向相反的电子电子云重迭)和(内层相同电子态的电子之间的排斥)2.5金属晶体结合的一对平衡力是(共有化电子云和离子实之间的相互作用)和(共有化电子云浓度增加伴随电子动能上升)2.6共价结合,两原子电子云交迭产生吸引,而原子靠近时,电子云交迭会产生巨大的排斥力,如何解释?共价结合,形成共价键的配对电子,它们的自旋方向相反,这两个电子的电子云交迭使得体系的能量降低,结构稳定.但当原子靠得很近时,原子内部满壳层电子的电子云交迭,量子态相同的电子产生巨大的排斥力,使得系统的能量急剧增大. 2.7为什么许多金属为密积结构?金属结合中,受到最小能量原理的约束,要求原子实与共有电子电子云间的库仑能要尽可能的低(绝对值尽可能的大).原子实越紧凑,原子实与共有电子电子云靠得就越紧密,库仑能就越低.所以,许多金属的结构为密积结构.3.1由一个原胞中原子的3n个位移分量方程得到对应(同一波矢的3n个不同格波频率),而系统中的(波矢数等于系统原胞数),则格波数等于(晶体中总自由度数)3.2爱因斯坦模型:假定所有的原子以相同的频率振动成功之处:通过选取合适的爱因斯坦温度值,在较大温度变化的范围内,理论计算的结果和实验结果相当好地符合。
且热容量随着温度降低而趋于零不足之处:温度非常低时,热容量按温度的指数形式降低,而实验测得结果表明:热容量按温度的3次方降低原因:是爱因斯坦模型忽略了各格波的频率差别3.3德拜模型:以连续介质的弹性波来代表格波,将布喇菲晶格看作是各向同性的连续介质成功之处:温度愈低时,德拜模型近似计算结果愈好,原因:这是因为温度很低时,主要的只有长波格波的激发,把格波看成连续介质的弹性波是合适的3.4热膨胀的原因:如果振动是严格简谐的,则不存在热膨胀,实际的热膨胀是原子之间非谐作用引起的热传导的原因:不考虑电子对热传导的贡献,晶体中的热传导主要依靠声子来完成。
固体中存在温度梯度时,“声子气体”的密度分布是不均匀的,平均声子数随温度的关系是波色分布。
简谐近似得到的结果是不同格波间是完全独立的,则不存在不同声子之间的相互作用,类似于理想气体的情形。
实际上非谐作用使不同格波之间存在一定的耦合,从而可以保证不同格波之间可以交换能量,达到统计平衡。
3.5什么叫简正振动模式?简正振动数目、格波数目或格波振动模式数目是否是一回事?为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中的非线形项忽略掉的近似称为简谐近似.在简谐近似下,由N 个原子构成的晶体的晶格振动,可等效成3N个独立的谐振子的振动.每个谐振子的振动模式称为简正振动模式,它对应着所有的原子都以该模式的频率做振动,它是晶格振动模式中最简单最基本的振动方式.原子的振动,或者说格波振动通常是这3N个简正振动模式的线形迭加.简正振动数目、格波数目或格波振动模式数目是一回事,这个数目等于晶体中所有原子的自由度数之和,即等于3N.3.6长光学支格波与长声学支格波本质上有何差别?长光学支格波的特征是每个原胞内的不同原子做相对振动,振动频率较高,它包含了晶格振动频率最高的振动模式.长声学支格波的特征是原胞内的不同原子没有相对位移,原胞做整体运动,振动频率较低,它包含了晶格振动频率最低的振动模式,波速是一常数.任何晶体都存在声学支格波,但简单晶格(非复式格子)晶体不存在光学支格波.3.7温度一定,一个光学波的声子数目多呢,还是声学波的声子数目多?频率为ω的格波的(平均)声子数为11)(/-=T k B e n ωω .因为光学波的频率O ω比声学波的频率A ω高,(1/-T k B O e ω )大于(1/-T k B A e ω ),所以在温度一定情况下,一个光学波的声子数目少于一个声学波的声子数目.3.8长声学格波能否导致离子晶体的宏观极化?长光学格波所以能导致离子晶体的宏观极化,其根源是长光学格波使得原胞内不同的原子(正负离子)产生了相对位移.长声学格波的特点是,原胞内所有的原子没有相对位移.因此,长声学格波不能导致离子晶体的宏观极化.3.9你认为简单晶格存在强烈的红外吸收吗?实验已经证实,离子晶体能强烈吸收远红外光波.这种现象产生的根源是离子晶体中的长光学横波能与远红外电磁场发生强烈耦合.简单晶格中不存在光学波,所以简单晶格不会吸收远红外光波.3.10爱因斯坦模型在低温下与实验存在偏差的根源是什么?按照爱因斯坦温度的定义,爱因斯坦模型的格波的频率大约为Hz 1013,属于光学支频率.但光学格波在低温时对热容的贡献非常小,低温下对热容贡献大的主要是长声学格波.也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源.3.11在甚低温下,德拜模型为什么与实验相符?在甚低温下,不仅光学波得不到激发,而且声子能量较大的短声学格波也未被激发,得到激发的只是声子能量较小的长声学格波.长声学格波即弹性波.德拜模型只考虑弹性波对热容的贡献.因此,在甚低温下,德拜模型与事实相符,自然与实验相符.4.1布洛赫定理:在周期势场中运动的电子,其波函数满足:()且本征函数为(振幅受到晶格周期调制的调幅平面波)4.2近自由电子近似模型:金属中电子受到(原子实周期性势场的作用)并假定(势场的起伏较小)4.3能量接近且具有相互作用的两个态,相互作用后的结果是原来能级较高的态(能量提高),原来能级较低的态(能量下降))()(r e R r m R k i m ψψ⋅=+4.4禁带宽度和(能带的序号)以及(周期势场的起伏)有关4.5能带底部电子的有效质量(大于零),能带顶部电子的有效质量(小于零)4.6赝势方法:4.7紧束缚近似方法的思想电子在一个原子(格点)附近时,主要受到该原子势场的作用,而将其它原子势场的作用看作是微扰,将晶体中电子的波函数近似看成原子轨道波函数的线性组合(LCAO 理论__LinearCombinationofAtomicOrbitals),得到原子能级和晶体中电子能带之间的关系紧束缚讨论中——只考虑了不同原子、相同原子态之间的相互作用4.8波矢空间与倒格空间有何关系?为什么说波矢空间内的状态点是准连续的?[解答]波矢空间与倒格空间处于同一空间,倒格空间的基矢分别为321 b b b 、、,而波矢空间的基矢分别为32N N / / /321b b b 、、1N ,N 1、N 2、N 3分别是沿正格子基矢321 a a a 、、方向晶体的原胞数目.倒格空间中一个倒格点对应的体积为*321) (Ω=⨯⋅b b b ,波矢空间中一个波矢点对应的体积为N N b N b N b *332211)(Ω=⨯⋅,即波矢空间中一个波矢点对应的体积,是倒格空间中一个倒格点对应的体积的1/N .由于N 是晶体的原胞数目,数目巨大,所以一个波矢点对应的体积与一个倒格点对应的体积相比是极其微小的.也就是说,波矢点在倒格空间看是极其稠密的.因此,在波矢空间内作求和处理时,可把波矢空间内的状态点看成是准连续的.4.9在布里渊区边界上电子的能带有何特点?[解答]电子的能带依赖于波矢的方向,在任一方向上,在布里渊区边界上,近自由电子的能带一般会出现禁带.若电子所处的边界与倒格矢n K 正交,则禁带的宽度)(2n K V E g =,)(n K V 是周期势场的付里叶级数的系数.不论何种电子,在布里渊区边界上,其等能面在垂直于布里渊区边界的方向上的斜率为零,即电子的等能面与布里渊区边界正交4.10当电子的波矢落在布里渊区边界上时,其有效质量何以与真实质量有显著差别?[解答]晶体中的电子除受外场力的作用外,还和晶格相互作用.设外场力为F ,晶格对电子的作用力为F l ,电子的加速度为)(1l m F F a +=.但F l 的具体形式是难以得知的.要使上式中不显含F l ,又要保持上式左右恒等,则只有F a *1m =.显然,晶格对电子的作用越弱,有效质量m*与真实质量m 的差别就越小.相反,晶格对电子的作用越强,有效质量m *与真实质量m 的差别就越大.当电子的波矢落在布里渊区边界上时,与布里渊区边界平行的晶面族对电子的散射作用最强烈.在晶面族的反射方向上,各格点的散射波相位相同,迭加形成很强的反射波.正因为在布里渊区边界上的电子与晶格的作用很强,所以其有效质量与真实质量有显著差别4.11电子的有效质量*m 变为∞的物理意义是什么?[解答]仍然从能量的角度讨论之.电子能量的变化m E m E m E 晶格对电子作的功外场力对电子作的功外场力对电子作的功)d ()(d )(d *+=[]电子对晶格作的功外场力对电子作的功)d ()(d 1E E m -=. 从上式可以看出,当电子从外场力获得的能量又都输送给了晶格时,电子的有效质量*m 变为∞.此时电子的加速度01*==F a m , 即电子的平均速度是一常量.或者说,此时外场力与晶格作用力大小相等,方向相反.4.12紧束缚模型下,内层电子的能带与外层电子的能带相比较,哪一个宽?为什么?[解答]以s 态电子为例.由图5.9可知,紧束缚模型电子能带的宽度取决于积分s J 的大小,而积分r R r R r r r d )()]()([)(*n at s n at N at s s V V J ----=⎰ϕϕΩ的大小又取决于)(r at s ϕ与相邻格点的)(n at s R r -ϕ的交迭程度.紧束缚模型下,内层电子的)(r at s ϕ与)(n at s R r -ϕ交叠程度小,外层电子的)(r at s ϕ与)(n at s R r -ϕ交迭程度大.因此,紧束缚模型下,内层电子的能带与外层电子的能带相比较,外层电子的能带宽.4.13等能面在布里渊区边界上与界面垂直截交的物理意义是什么?[解答]将电子的波矢k 分成平行于布里渊区边界的分量//k 和垂直于布里渊区边界的分量k ┴.则由电子的平均速度)(1k E k ∇= ν得到 ////1k E ∂∂=ν, ⊥⊥∂∂=k E1ν.等能面在布里渊区边界上与界面垂直截交,则在布里渊区边界上恒有⊥∂∂k E /=0,即垂直于界面的速度分量⊥ν为零.垂直于界面的速度分量为零,是晶格对电子产生布拉格反射的结果.在垂直于界面的方向上,电子的入射分波与晶格的反射分波干涉形成了驻波.5.1一维简单晶格中一个能级包含几个电子?[解答]设晶格是由N 个格点组成,则一个能带有N 个不同的波矢状态,能容纳2N 个电子.由于电子的能带是波矢的偶函数,所以能级有(N /2)个.可见一个能级上包含4个电子.5.2本征半导体的能带与绝缘体的能带有何异同?[解答]在低温下,本征半导体的能带与绝缘体的能带结构相同.但本征半导体的禁带较窄,禁带宽度通常在2个电子伏特以下.由于禁带窄,本征半导体禁带下满带顶的电子可以借助热激发,跃迁到禁带上面空带的底部,使得满带不满,空带不空,二者都对导电有贡献.5.3两种不同金属接触后,费米能级高的带(正)电.对导电有贡献的是(费米面附近)的电子.5.4费米面:根据能量最小原理,电子填充尽可能低能级,因此能量最高的电子处在一个等能面上,所有电子处于该等能面内,该等能面叫做费米面5.5为什么无外场时,处于满带和非满带中的电子宏观电流均没有贡献,有外场时,只有非满带中的电子才对宏观电流有贡献1、能带关于波矢是对称的;2、处于+K和-K的电子运动的速度大小相等方向相反;无外场时,电子处于尽可能低的能级,无任是满带还是非满带,电子关于波矢对称分布,处于+K和-K的电子对对宏观电流的贡献相互抵消;有外场时,外场不破坏满带中电子关于波矢的对称分布,同样,处于+K和-K 的电子对对宏观电流的贡献相互抵消;而非满带中电子关于波矢的对称性则受到破坏,因此带中有部分没有对应项的电子,其运动对宏观电流有贡献。