操作系统-连续分配存储管理方式
操作系统原理第5章 存储管理
• ⑶最佳适应算法
• 最佳适应算法的空闲链是按空闲区从小到大顺序排 列。为进程选择分区时总是寻找其大小最接近进程 所要求的存储区域。所谓“最佳”是指每次为进程 分配内存时,总是把能满足要求、又是最小的空闲 分区分配给进程,避免“大材小用”。
• 因为每次分配后所切割下来的剩余部分总是最小的, 这样将加速碎片的形成。
• ①如果被回收空闲分区没有空闲伙伴分区,那么保留该分区为一 个独立的空闲分区,否则执行②;
• ②合并回收分区及其伙伴分区,从而得到一个尺寸(2I+1)更大的 回收空闲分区,转移到①;
一个伙伴系统内存分配与回收的例子
• 伙伴系统克服了固定分区和动态分区存储管理技术的缺陷。但是伙伴 系统存在一个问题,即内存空间需要不断地进行分裂和合并,频繁的 伙伴分区合并操作会浪费很多时间。
• ③内存分配原则,以页帧为单位来分配内存,将进程若干个逻辑上连续的 页面装入若干个离散的页帧中,由页表提供进程的页号到存储空间帧号的 映射。
5.2.4伙伴系统
• 其实现原理如下: • 一个伙伴系统内存的用户可用空间为2U。进程申请存储空间时,
系统总是为其分配大小为2I的一个空闲分区。其中S≤I≤U,2S是系 统允许的最小分区尺寸。在实际操作系统中,最小分区尺寸一般 为212。 • 如果进程申请的存储空间大小为K,且2I-1<K≤2I,则将整个2I大小的 分区分配给该进程;否则,该分区被分割成两个大小相等的伙伴 分区,大小为2I-1;再判断K是否满足条件:2I-2<K≤2I-1,若满足条件, 则将两个伙伴中的任何一个分配给该进程。否则,将其中一个伙 伴又分成两个大小相等的伙伴分区;此过程一直继续进行,直到 产生的分区满足条件I-J≥S并2I-J-1<K≤2I-J,将2I-J大小的分区分配给该 进程;当I-J-1<S时,系统不再分割成两个大小相等的伙伴分区,将 2S大小的分区分配给该进程。 • 当进程执行完毕,释放一个尺寸为2I的分区时,系统用下面的算法 回收该分区。
计算机操作系统 第四版 汤小丹 梁红兵 哲凤屏_第4章(20162017)
4.3.4 基于顺序搜索的动态分区分配算法
2. 循环首次适应(next fit ,NF)算法
在为进程分配内存空间时,不再是每次都从链首开 始查找,而是从上次找到的空闲分区的下一个空闲分 区开始查找,直至找到一个能满足要求的空闲分区, 从中划出一块与请求大小相等的内存空间分配给作业。 该算法应设置一起始查寻指针,用于指示下一次起始 查寻的空闲分区,并采用循环查找方式。
的适当位置。
0
1000 L O A D 1 ,2 5 0 0
2500 365
10000
1 1 0 0 0 L O A D 1 ,2 5 0 0
12500
365
5000 作业地址空间
15000
内存空间
把在装入时对目标程 序中指令和数据地址的 修改过程称为重定位。
地址变换通常在进程装入 时依次完成的,以后不再改 变,静态重定位。
4.2 程序的装入和链接
将一个用户源程序变为内存中的一个可执行程序,通常 有以下几个步骤:
编译,由编译程序(Compiler)将用户源代码编译成若干 个目标模块(Object Module);
链接,由链接程序(Linker)将编译后形成的一组目标模 块,以及它们所需要的库函数链接在一起,形成一个完 整的装入模块(Load Module);
4.1.2 主存储器与寄存器
1.主存储器
简称内存或主存,用于保存进程运行时的程序和数据。
CPU的控制部件只能从主存储器中取得指令和数据,数 据能够从主存储器读取并将它们装入到寄存器中,或者 从寄存器存入到主存储器。 CPU与外围设备交换的信息一般也依托于主存储器地址 空间。由于主存储器的访问速度远低于CPU执行指令的 速度,为缓和这一矛盾,在计算机系统中引入了寄存器 和高速缓存。
操作系统第17讲 习题三new
A,B(1)提高系统吞吐量(2)提高存储空
间的利用率(3)降低存储费用(4)提高换入换出
的速度。
10
东北大学秦皇岛分校计算机与通信工程学院
第四章 存储器管理
5、对重定位存储管理方式,应(A),当程序执行时,
是由(B)与(A)中的(C)相加得到(D),用(D)
来访问内存。
A(1)在整个系统中设置一个重定位寄存器;(2)
Ⅰ. 修改页表 Ⅱ.磁盘I/O Ⅲ.分配页框
A.仅Ⅰ、Ⅱ B.仅Ⅱ C.仅Ⅲ D.Ⅰ、Ⅱ和Ⅲ
21
东北大学秦皇岛分校计算机与通信工程学院
第四章 存储器管理
10.当系统发生抖动(thrashing)时,可用采取
的有效措施是()
Ⅰ. 撤销部分进程
Ⅱ.增加磁盘交换区的容量
Ⅲ.提高用户进程的优先级
A.仅Ⅰ B.仅Ⅱ C.仅Ⅲ D.仅Ⅰ、Ⅱ
空闲区大小递减
8
东北大学秦皇岛分校计算机与通信工程学院
第四章 存储器管理
3、在回收内存时能出现下述几种情况(1)释放区与插
入点前一分区F1相邻,此时应(A);(2)释放区与
插入点后一分区F2相临界,此时应(B);(3)释放
区不与F1和F2相邻接,此时应(C)。
A,B,C:(1)为回收分区建立一分区表项,填上分
第四章 存储器管理
1、在动态分区式内存管理中,倾向于优先使用低
地址部分的空闲区的算法是(A);能使内存空间
中空闲分区分布得较均匀的算法是(B);每次分
配时,把即能满足需要,又能最小的空间区分配给
进程的算法是(C)
A,B,C:(1)最佳适应算法;(2)最坏适
应算法;(3)首次适应算法(4)循环首次适应算
计算机操作系统第四章-存储器管理
第四章存储器管理第0节存储管理概述一、存储器的层次结构1、在现代计算机系统中,存储器是信息处理的来源与归宿,占据重要位置。
但是,在现有技术条件下,任何一种存储装置,都无法从速度、容量、是否需要电源维持等多方面,同时满足用户的需求。
实际上它们组成了一个速度由快到慢,容量由小到大的存储装置层次。
2、各种存储器•寄存器、高速缓存Cache:少量的、非常快速、昂贵、需要电源维持、CPU可直接访问;•内存RAM:若干(千)兆字节、中等速度、中等价格、需要电源维持、CPU可直接访问;•磁盘高速缓存:存在于主存中;•磁盘:数千兆或数万兆字节、低速、价廉、不需要电源维持、CPU 不可直接访问;由操作系统协调这些存储器的使用。
二、存储管理的目的1、尽可能地方便用户;提高主存储器的使用效率,使主存储器在成本、速度和规模之间获得较好的权衡。
(注意cpu和主存储器,这两类资源管理的区别)2、存储管理的主要功能:•地址重定位•主存空间的分配与回收•主存空间的保护和共享•主存空间的扩充三、逻辑地址与物理地址1、逻辑地址(相对地址,虚地址):用户源程序经过编译/汇编、链接后,程序内每条指令、每个数据等信息,都会生成自己的地址。
●一个用户程序的所有逻辑地址组成这个程序的逻辑地址空间(也称地址空间)。
这个空间是以0为基址、线性或多维编址的。
2、物理地址(绝对地址,实地址):是一个实际内存单元(字节)的地址。
●计算机内所有内存单元的物理地址组成系统的物理地址空间,它是从0开始的、是一维的;●将用户程序被装进内存,一个程序所占有的所有内存单元的物理地址组成该程序的物理地址空间(也称存储空间)。
四、地址映射(变换、重定位)当程序被装进内存时,通常每个信息的逻辑地址和它的物理地址是不一致的,需要把逻辑地址转换为对应的物理地址----地址映射;地址映射分静态和动态两种方式。
1、静态地址重定位是程序装入时集中一次进行的地址变换计算。
物理地址= 重定位的首地址+ 逻辑地址•优点:简单,不需要硬件支持;•缺点:一个作业必须占据连续的存储空间;装入内存的作业一般不再移动;不能实现虚拟存储。
第十一讲存储器管理之连续分配方式
第十一讲存储器管理之连续分配方式连续分配是指将存储器中的空间按照一定的方式连续划分给进程使用的一种存储器管理方式。
常见的连续分配方式有三种:单一连续分配方式、固定分区分配方式和动态分区分配方式。
单一连续分配方式是最简单的分配方式,每个进程只有一个连续的存储区域。
操作系统将整个存储器分成两部分,一部分为操作系统占用,另一部分为用户程序占用。
优点是实现简单,缺点是无法有效利用存储器空间和不能同时运行多个程序。
2.固定分区分配方式固定分区分配方式是将存储器划分成若干个固定大小的区域,每个区域对应一个作业或进程。
每个进程的大小必须小于等于所分配的存储区域大小。
操作系统为每个进程分配存储空间时,优先从大小与所需存储空间最接近的空闲分区开始分配。
优点是管理简单,缺点是会导致存储空间的浪费和外部碎片的产生。
3.动态分区分配方式动态分区分配方式是将存储器分为多个大小不等的存储块,每个进程可以根据需要分配不同大小的存储块。
当新的进程需要存储空间时,操作系统从存储器的起始地址开始查找,找到第一个可用空闲块,并将其分配给进程。
优点是存储空间利用率高,可以同时运行多个进程,但缺点是会导致内部碎片的产生。
对于动态分区分配方式,还可以采用三种具体的分区算法:a. 首次适应算法(First Fit):从前向后遍历所有空闲分区,找到第一个大小大于或等于所需存储空间的空闲分区进行分配。
优点是速度快,但容易产生较多的碎片。
b. 循环首次适应算法(Next Fit):与首次适应算法类似,但从上一次分配的位置开始查找,减少了空闲分区的时间。
可以避免每次都从头开始,但仍会产生较多的碎片。
c. 最佳适应算法(Best Fit):从所有空闲分区中找到最小且大于所需存储空间的空闲分区进行分配。
优点是最大限度地避免碎片,但速度相对较慢。
综上所述,连续分配方式是一种常见的存储器管理方式。
根据应用场景和需求不同,可以选择合适的连续分配方式来管理存储器,以实现存储空间的高效利用和进程的有效管理。
连续分配存储管理方式
连续分配存储管理方式什么是连续分配存储管理方式连续分配存储管理方式指的是将内存空间划分为一系列连续的块,并按照一定的规则将这些块分配给进程使用。
这种存储管理方式广泛应用于操作系统中的进程管理和文件系统管理等领域。
连续分配存储管理的常见算法1. 首次适应算法(First Fit)首次适应算法是按照内存空间的地址顺序,从低地址到高地址依次查找可用的空闲块,并将进程分配到第一个满足大小要求的空闲块中。
该算法简单直接,但容易产生碎片。
2. 最佳适应算法(Best Fit)最佳适应算法是在所有可用的空闲块中选择最小且能满足进程大小要求的空闲块进行分配。
该算法能够充分利用内存空间,但是搜索过程较为复杂,效率较低。
3. 最坏适应算法(Worst Fit)最坏适应算法是在所有可用的空闲块中选择最大的空闲块进行分配,这样可以最大程度地保留大块空闲空间。
但是这种策略可能导致产生更多的碎片。
4. 快速适应算法(Next Fit)快速适应算法是首次适应算法的改进版本,在分配空闲块时,从上次分配的位置开始搜索。
这样可以避免每次都从头开始搜索,提高了搜索的效率。
连续分配存储管理的优点和缺点优点1.实现简单:连续分配存储管理算法相对而言比较简单,易于实现和理解。
2.内存利用率高:连续分配存储管理可以充分利用内存空间,减少空闲空间的浪费。
3.顺序访问性好:由于连续分配存储管理方式将内存空间划分为连续的块,所以对于顺序访问的进程来说,访问效率较高。
缺点1.碎片问题:连续分配存储管理容易产生内部碎片和外部碎片。
内部碎片是指分配给进程的内存块比进程所需的内存块大,造成内存空间浪费。
外部碎片是指内存空闲块的分布不连续,无法满足大块连续内存需求,导致内存的浪费。
2.分配效率低:由于需要搜索可用的空闲块,连续分配存储管理的分配效率相对较低。
3.控制粒度难以调整:连续分配存储管理方式中,分配块的大小通常是固定的,难以根据进程的需要进行灵活调整。
第十一讲存储器管理之连续分配方式
第十一讲存储器管理之连续分配方式所谓连续分配方式:是指为一个用户程序分配一个连续的内存空间。
又可把连续分配方式分为:单一连续分配,固定分区分配,动态分区分配,动态重定位分区分配,四种方式。
1 单一连续分配(单独分区分配)最简单的一种存储管理方式,但只能用于单用户、单任务的OS中。
概念:单一连续分配就是整个主存区域的用户空间均归一个用户作业使用。
存储管理方法:将内存分为系统区(内存低端,分配给OS用)和用户区(内存高端,分配给用户用)。
其中用户区是指除了系统区外的内存空间,提供给用户程序使用。
采用静态分配方式,即作业一旦进入内存,就要等待它运行结束后才能释放内存。
主要特点:管理简单,只需小量的软件和硬件支持,便于用户了解和使用。
但因内存中只装入一道作业运行,内存空间浪费大,各类资源的利用率也不高。
例子:一个容量为256KB的内存,操作系统占用32KB,剩下224KB全部分配给用户作业,如果一个作业仅需64KB,那么就有160KB的存储空间被浪费。
2 固定分区分配分区分配方式是满足多道程序设计需要的一种最简单的存储管理方法。
2.1 思想:将内存分成若干个分区(大小相等/不相等),除OS占一区外,其余的每一个分区容纳一个用户程序。
这样来实现多道并发。
2.2 分区划分方法:分区大小相等,分区大小不等。
但事先必须确定,在运行时不能改变。
即分区大小及边界在运行时不能改变。
2.3 内存分配:首先:要先建立一张分区说明表或使用表,以记录分区号、分区大小、分区的起始地址及状态(已分配或未分配)。
其次:当某个用户程序要装入内存时,由内存分配程序检索分区说明表,从表中找出一个满足要求的尚未分配的分区分配该程序,同时修改说明表中相应分区的状态;若找不到大小足够的分区,则拒绝为该程序分配内存。
第三:当程序执行完毕,释放占用的分区,管理程序将修改说明表中相应分区的状态为未分配,实现内存资源的回收。
2.4 特点主要特点:管理简单,但因作业的大小并不一定与某个分区大小相等,从而使一部分存储空间被浪费。
计算机操作系统文件系统了解文件管理和存储的原理
计算机操作系统文件系统了解文件管理和存储的原理计算机操作系统的文件系统是一种用于管理和存储计算机文件的机制。
它将文件组织成一个层次结构并提供了对文件的创建、读取、写入和删除等操作。
了解文件管理和存储的原理对于使用计算机的人来说是非常重要的。
本文将介绍文件系统的基本原理以及其在计算机操作系统中的作用。
一、文件系统的基本原理文件系统可以理解为一种虚拟的存储器,它通过记录文件的存储位置和相关属性来管理文件。
文件系统通常由文件、目录和文件描述符等组成。
1. 文件:文件是指一组有关联的数据的集合,可以是文本文件、图像文件、音频文件等。
文件在计算机中被划分为连续的块,每个块可以存储一部分文件数据。
2. 目录:目录是一种用于组织文件的结构。
它可以包含文件和其他目录。
通过目录,用户可以方便地找到所需的文件。
目录可以看作是一个树状结构,根目录位于最上层,下面是一些子目录和文件。
3. 文件描述符:文件描述符是操作系统为每个文件维护的一种数据结构。
它包含了文件的各种属性信息,比如文件大小、创建时间、修改时间等。
通过文件描述符,操作系统可以对文件进行管理和控制。
二、文件管理的原理文件管理是指对文件的创建、读取、写入和删除等操作。
计算机操作系统提供了一系列的系统调用来实现文件管理。
1. 创建文件:当用户需要创建一个新文件时,操作系统将为该文件分配一个唯一的文件名和一个文件描述符。
此时,文件系统会分配一部分空闲的存储空间来保存文件的数据。
2. 读取文件:当用户需要读取一个文件时,操作系统根据文件的文件名和文件描述符找到文件的存储位置,并将文件的数据读取到内存中供用户使用。
3. 写入文件:当用户需要向一个文件写入数据时,操作系统根据文件的文件名和文件描述符找到文件的存储位置,并将用户提供的数据写入到文件中。
4. 删除文件:当用户不再需要一个文件时,可以通过删除文件的方式来释放文件占用的存储空间。
操作系统会将文件的存储空间标记为可用,并从文件系统中删除该文件的相关信息。
操作系统第四章复习
页框号为21。 因为起始驻留集为空, 而0页对应的ห้องสมุดไป่ตู้框为空闲链表中的第三个空闲页框,其对应的页框号为21。
页框号为32。 因为11 > 10故发生第三轮扫描,页号为1的页框在第二轮已经处于空闲页框链表中,此刻该页又被重新访问,因此应被重新放回到驻留集中,其页框号为32。
页框号为41。 因为第2页从来没有被访问过,不在驻留集中。因此从空闲链表中取出链表头的页框,页框号为41。
4. 在虚拟内存管理中,地址变换机构将逻辑地址转换为物理地址,形成该逻辑地址的阶段是( )。 ① 编辑 ② 编译 ③ 链接 ④ 装载 5. 采用段式存储管理的系统中,若地址用24位表示,其中8位表示段号,则允许每段的最大长度是_______ A)224 B)28 C) 216 D) 232 6. 作业在执行中发生了缺页中断,经操作系统处理后,应让其执行______指令。 A)被中断的前一条 B)被中断的后一条 C)被中断的 D) 启动时的第一条
7、某基于动态分区存储管理的计算机,其主存容量为55MB(初始为空),采用最佳适配(Best fit)算法,分配和释放的顺序为:分配15MB,分配30MB,释放15MB,分配6MB,此时主存中最大空闲分区的大小是( ) A:7MB B:9MB C:10MB D:15MB
当该进程执行到时刻260时,要访问逻辑地址为17CAH的数据,请问答下列问题: (1)该逻辑地址对应的页号是多少? (2)若采用先进先出置换算法,该逻辑地址对应的物理地址是多少?要求给出计算过程。 (3)若采用时钟置换算法,该逻辑地址对应的物理地址是多少?(设搜索下一页的指针沿顺时针方向移动,且当前指向2号页框)
页号
存储块号
0 1 2 3
5 10 4 7
第9讲物理内存管理:连续内存分配
内容摘要
■ 计算机体系结构/内存层次 ■ 地址空间 & 地址生成
地址空间的定义 地址生成 地址检查 ■ 连续内存分配 ■ 伙伴系统
地址空间定义
■ 物理地址空间 — 硬件支持的地址空间
起始地址0,直到 MAXsys
MAXsys
MAXprog
■ 逻辑地址空间 — 在CPU运行的进程看到的地址
起始地址0, 直到 MAXprog
内存
外存
操作系统的内存管理方式
■ 操作系统中采用的内存管理方式
重定位(relocation) 分段(segmentation) 分页(paging) 虚拟存储(virtual memory)
· 目前多数系统(如 Linux)采用按需页式虚拟存储
■ 实现高度依赖硬件
与计算机存储架构紧耦合 MMU (内存管理单元): 处理CPU存储访问请求的硬件
Southwest University of Science and Technology
第9讲 物理内存管理: 连续内存分配
授课教师:马立平 联系方式:
内容摘要
■ 计算机体系结构/内存层次 计算机体系结构 内存层次 操作系统的内存管理方式
■ 地址空间 & 地址生成 ■ 连续内存分配 ■ 伙伴系统
MAX 进程P6
进程P5 进程P4
进程P3 进程P2
进程P1
0
最先匹配(First Fit Allocation)策略
思路:
分配n个字节,使用第 一个可用的空间比n大 的空闲块。
1K bytes
2K bytes
2K bytes
示例: 分配400字节,使用 第一个1KB的空闲块。
500 bytes
连续分配方式
(2) 分区大小不等。
2. 内存分配
图 4-4 固定分区使用表
1.3 动态分区分配
1. 分区分配中的数据结构 (1) 空闲分区表。
(2) 空闲分区链。
前
后
向
向
指
指
针
针
N
N个 字节 可 用 N
+
+
2
2
0
0
图 4-5 空闲链结构
30 KB
用户 程序6
14 KB 用户 程序9
26 KB
(a) 紧凑前
操作 系统 用户 程序1 用户 程序3 用户 程序6 用户 程序9
80 KB
(b) 紧凑后
2. 动态重定位的实现
0 10 0
LOA D1,2 500
25 00 36 5
相对地址 25 00
重定位寄存器 10 00 0
10 00 0 10 10 0 LOA D1,2 500
操作系统
连续分配方式
1.1 单一连续分配 这是最简单的一种存储管理方式,但只能用于单用户、 单任务的操作系统中。采用这种存储管理方式时,可把 内存分为系统区和用户区两部分,系统区仅提供给OS 使用,通常是放在内存的低址部分;用户区是指除系统 区以外的全部内存空间, 提供给用户使用。
1.2 固定分区分配
2. 对换空间的管理
为了能对对换区中的空闲盘块进行管理,在系统中应配 置相应的数据结构,以记录外存的使用情况。其形式与 内存在动态分区分配方式中所用数据结构相似,即同样 可以用空闲分区表或空闲分区链。在空闲分区表中的每 个表目中应包含两项, 即对换区的首址及其大小,它 们的单位是盘块号和盘块数。
操作系.ppt
……
[ X]段 (已经连接)
…
…
Y
200
…
…
200 12456
段名-段号对照表
段名
段号
MAIN 0
A
1
W
2
X
3
…
…
连接后
§4.1.4存储管理的机制和策略
在多道环境下,存储管理不但要为进程提供内存资 源,还要为内存的使用提供安全保障机制,如防止 进程非法访问不属于自已的空间。
为了提高内存资源的利用率,存储管理还要提供共 享机制,也就是当若干个进程调用同一段代码或数 据时,系统应为共享的代码或数据保留一个副本而 不是多个。
【存储管理的功能】
1.内存的分配与回收
每一个进程运行时都需要内存资源, 因此内 存空间的分配和回收是存储管理的基本功能。在 进程创建时按照一定的存储策略为其分配内存空 间,进程运行结束时,再将其所占用的内存空间 收回。
为了记录内存的使用情况,存储管理会依据存 储策略采用相应的数据结构,标识哪些区域尚未 分配,哪些区域已经分配以及分配给哪些进程等。 每一个进程运行时都需要内存资源, 因此内存 空间的分配和回收是存储管理的基本功能。系统 通过所采用的数据结构来管理内存空间。
(2)静态地址重定位
静态地址重定位是在程序执行之前由操作系统的重定位装入程 序完成的。在装入一个作业时,把作业中的指令地址全部转 换为绝对地址(地址转换工作是在作业执行前集中一次完成 的)在作业执行过程中就无须再进行地址转换工作。
静态地址重定位示例
静态地址重定位的优点
相对地址
是容易实现,无需硬件
支持,它只要求程序本 0
离散
段页式 虚拟页式
虚存 虚拟段式
内存分配的三种方式
内存分配的三种⽅式⼀、内存基本分配可编程内存在基本上分为这样的⼏⼤部分:静态存储区、堆区和栈区。
静态存储区:内存在程序编译的时候就已经分配好,这块内存在程序的整个运⾏期间都存在。
它主要存放静态数据、全局数据和常量。
栈区:在执⾏函数时,函数内局部变量的存储单元都可以在栈上创建,函数执⾏结束时这些存储单元⾃动被释放。
堆区:亦称动态内存分配。
程序在运⾏的时候⽤malloc或new申请任意⼤⼩的内存,程序员⾃⼰负责在适当的时候⽤free或delete释放内存。
动态内存的⽣存期可以由我们决定,如果我们不释放内存,程序将在最后才释放掉动态内存。
但是,良好的编程习惯是:如果某动态内存不再使⽤,需要将其释放掉,否则,我们认为发⽣了内存泄漏现象。
⼆、三者之间的区别我们通过代码段来看看对这样的三部分内存需要怎样的操作和不同,以及应该注意怎样的地⽅。
例⼀:静态存储区与栈区char* p = “Hello World1”;char a[] = “Hello World2”;p[2] = ‘A’;a[2] = ‘A’;char* p1 = “Hello World1;”这个程序是有错误的,错误发⽣在p[2] = ‘A’这⾏代码处,为什么呢?是指针变量p和变量数组a都存在于栈区的(任何临时变量都是处于栈区的,包括在main()函数中定义的变量)。
但是,数据“Hello World1”和数据“Hello World2”是存储于不同的区域的。
因为数据“Hello World2”存在于数组中,所以,此数据存储于栈区,对它修改是没有任何问题的。
因为指针变量p仅仅能够存储某个存储空间的地址,数据“Hello World1”为字符串常量,所以存储在静态存储区。
虽然通过p[2]可以访问到静态存储区中的第三个数据单元,即字符‘l’所在的存储的单元。
但是因为数据“Hello World1”为字符串常量,不可以改变,所以在程序运⾏时,会报告内存错误。
操作系统概论:内存管理
03
在最高层(L0层),是少量的快速 CPU寄存器,CPU可以在一个时钟
周期内访问他们
05
L3层是一个大的基于DRAM的主存, 可以再几十或几百个时钟周期内访
问他们
02
在这个层次系统中,从高层到底层 (L0-L5),较低层的存储设备访
问慢,容量更大、价格更便宜
L1、L2层是一个或多个小型或中
04
型的基于SRAM的高速缓存存储器,
两级和多级页表
将页表再进行分页
反置页表
为每个页框设一个表项,表项中存 放进程号和页号
空闲页框的管理
使用位图管理空闲页框 使用空闲页框的链表
内存管理
基于分页的虚拟存储系统
虚拟存储器是指具有请求调入功能和置换功能,能从逻辑上对内存容量进行扩充的一种存储器系统 在虚拟存储器系统中,进程无需全部装入,只需要装入一部分即可运行 虚拟存储技术实现的思想是,只把进程的一部分装入内存。进程执行过程中,CPU访问内存时如果发现所访问
动态分区分配
动态分区分配的流程
内存分配有内存分配程序完成。 内存不再被应用程序需要时,由系 统调用内存回收程序回收原来被占
用的内存分区
内存分配流程
内存管理
基本分页存储管理方式
01
把进程离散的 存储在内存中 物理地址不连 续的区域中, 这种内存管理 方式称为离散 内存管理方式
02
分页存储管理 的基本原理
3.程序中存在很多循环结构,他们虽然 由少数指令构成,但多次执行
4.程序中往往包括许多对数据结构的处 理,如对数组的操作,他们往往都局限 在很小的范围内。 总的来说,局部性 原理表现为时间和空间的局部性
局部性
时间局部性 如果程序中的某条指令一旦执行,
第四章 内存管理
2022/12/21
1
第四章 内存管理
4.0 问题导入
在现代操作系统中同时有多个进程在运行,每 个进程的程序和数据都需要放在内存中,那么 程序员在编写程序时是否需要知道程序和数据 的存放位置呢?
如果不知道,那么多个进程同时在内存中运 行,每个进程应占用哪些空间呢,
如何保证各个进程占用的空间不冲突呢? 内存空间如何进行分配和管理呢?
2022/12/21
2
第四章 内存管理
4.1 内存管理概述 4.2 内存管理的基础 4.3 连续内存分配存储方式 4.4 虚拟存储
2022/12/21
2
4.1 内存管理概述
4.1.1 存储结构
存储层次
➢ CPU寄存器
➢ 辅存:固定磁盘、可移动 介质
层次越高,访问速度越快,
价格也越高,存储容量也
最小
7
4.1 内存管理概述
4.1.3 操作系统在内存中的位置
图4-2 仅有RAM时操作系统与用户程序的内存分配
2022/12/21
8
4.1 内存管理概述
4.1.3 操作系统在内存中的位置
图4-3 备有ROM时操作系统和用户程序之内存分配
2022/12/21
9
4.1 内存管理概述
4.1.3 操作系统在内存中的位置
多个小分区 适量中分区 少量大分区
34
内存分配例子
分区号 大小(K) 起始地址(K) 状态
1
12
20
已分配
2
32
32
已分配
3
64
64
已分配
4
128
128
未分配
固定分区使用表
操作系统-连续分配存储管理方式
操作系统-连续分配存储管理方式操作系统连续分配存储管理方式在计算机操作系统中,存储管理是一项至关重要的任务,它负责有效地管理计算机内存资源,以确保系统的高效运行和各种程序的正常执行。
连续分配存储管理方式是其中的一种常见方法,接下来让我们详细了解一下。
连续分配存储管理方式,顾名思义,就是为程序或进程分配连续的内存空间。
这种方式相对直观和简单,易于理解和实现。
首先,我们来谈谈单一连续分配。
在这种方式下,内存被分为系统区和用户区两部分。
系统区通常存放操作系统内核等关键系统程序,而用户区则只供一个用户程序使用。
这就好比一个房间被隔成了两个部分,一个部分是主人的私人空间,另一个部分则是留给客人的专属区域。
这种方式简单直接,但缺点也很明显,它只能用于单用户、单任务的操作系统,因为内存资源无法被多个程序共享,利用率较低。
接下来是固定分区分配。
这就像是把一个大房间提前划分成了几个固定大小的小房间。
每个小房间都有固定的大小,并且只能分配给大小合适的程序使用。
系统会预先将内存空间划分成若干个固定大小的分区,每个分区可以装入一个作业。
这种方式提高了内存的利用率,支持多道程序并发运行,但也存在一些问题。
比如,如果程序的大小小于分区的大小,就会造成内存空间的浪费,这就好比一个小个子住进了一个大房间,空间没有被充分利用。
而且,由于分区大小固定,缺乏灵活性,可能会出现大程序无法装入小分区的情况。
然后是动态分区分配。
这有点像一个灵活的仓库,根据货物的大小来随时调整存储空间。
在这种方式下,系统不会预先划分分区,而是在进程装入内存时,根据进程的实际需要,动态地划分出一块连续的内存空间分配给它。
当进程运行结束后,再将这块内存空间回收。
为了实现动态分区分配,系统通常需要使用一些数据结构来记录内存的使用情况,比如空闲分区表或者空闲分区链。
这种方式提高了内存的利用率,避免了固定分区分配中的一些浪费问题,但也带来了一些新的挑战。
比如说,随着进程的不断装入和退出,内存中会产生很多碎片,这些碎片可能很小,无法满足新进程的需求,从而导致内存的利用率降低。
计算机操作系统第4章存储器管理PPT课件
➢ 不支持多道程序
➢ 内存利用率不高
➢ 受内存容量限制
23
4.2.2 连续分区存储管理
➢ 将内存划分成若干个连续区域,称为分区 ➢ 每个分区只能存储一个程序,而且程序也只
能在它所驻留的分区中运行(连续性)
➢ 是实现多道程序的最简单的存储管理方案 ➢ 根据划定的分区是否可变,分为固定分区和
可变分区管理
编译/链接
地址映射
data1 3456
200
3456
1200
3456
15
三种装入方式
➢ 绝对装入
✓ 编译时给出绝对地址
✓ 相对地址与绝对地址相同,无须地址转换
✓ 适用于单道程序环境
➢ 静态重定位装入
✓ 相对地址与绝对地址不同
✓ 装入时一次性给出绝对地址
➢ 动态重定位装入
✓ 相对地址与绝对地址不同
✓ 地址的转换推迟到指令运行时才进行
24
1. 固定分区 ➢ 基本思想
✓ 由OS在初启时,将内存空间划分为若干连 续区域,一个区域称为一个分区
✓ 每个分区的大小固定不变,每个分区装一 个且只能装一个进程
✓ 每个分区大小可以相同也可以不同
25
➢ 数据结构 ✓ 分区说明表:分区号、起始地址、大小、状态 ✓ 分区请求表:进程号、内存大小
分区号 始址(K) 大小(K) 状态
要位置
➢ 任何一种存储装置,都无法同时从速度与
容量两方面,满足用户的需求
➢ 实际上它们组成了一个速度由快到慢,容
量由小到大的存储装置层次结构
5
存储器层次
存取时间减少
高速缓存
存取速度增加 存取成本增加
内存
存储容量减少
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 操作系统引论
图4-6 空闲分区表
6
第一章 操作系统引论
图4-7 空闲链结构
7
第一章 操作系统引论
2. 动态分区分配算法 为把一个新作业装入内存,须按照一定的分配算法,从 空闲分区表或空闲分区链中选出一分区分配给该作业。由于 内存分配算法对系统性能有很大的影响,故人们对它进行了 较为广泛而深入的研究,于是产生了许多动态分区分配算法。
16
第一章 操作系统引论
3. 最佳适应(best fit,BF)算法 所谓“最佳”是指,每次为作业分配内存时,总是把能 满足要求、又是最小的空闲分区分配给作业,避免“大材小 用”。为了加速寻找,该算法要求将所有的空闲分区按其容 量以从小到大的顺序形成一空闲分区链。
17
第一章 操作系统引论
4. 最坏适应(worst fit,WF)算法 由于最坏适应分配算法选择空闲分区的策略正好与最佳 适应算法相反:它在扫描整个空闲分区表或链表时,总是挑 选一个最大的空闲区,从中分割一部分存储空间给作业使用, 以至于存储器中缺乏大的空闲分区,故把它称为是最坏适应 算法。
15
第一章 操作系统引论
2. 循环首次适应(next fit,NF)算法 为避免低址部分留下许多很小的空闲分区,以及减少查 找可用空闲分区的开销,循环首次适应算法在为进程分配内 存空间时,不再是每次都从链首开始查找,而是从上次找到 的空闲分区的下一个空闲分区开始查找,直至找到一个能满 足要求的空闲分区,从中划出一块与请求大小相等的4.3.2 固定分区分配 1. 划分分区的方法 可用下述两种方法将内存的用户空间划分为若干个固定
大小的分区: (1) 分区大小相等(指所有的内存分区大小相等)。 (2) 分区大小不等。
2
第一章 操作系统引论
2. 内存分配 为了便于内存分配,通常将分区按其大小进行排队,并 为之建立一张分区使用表,其中各表项包括每个分区的起始 地址、大小及状态(是否已分配),如图4-5所示。
8
第一章 操作系统引论
3. 分区分配操作 1) 分配内存 系统应利用某种分配算法,从空闲分区链(表)中找到所 需大小的分区。设请求的分区大小为u.size,表中每个空闲分 区的大小可表示为m.size。
9
第一章 操作系统引论
图4-8 内存分配流程
10
第一章 操作系统引论
2) 回收内存 当进程运行完毕释放内存时,系统根据回收区的首址, 从空闲区链(表)中找到相应的插入点,此时可能出现以下四 种情况之一: (1) 回收区与插入点的前一个空闲分区F1相邻接,见图49(a)。此时应将回收区与插入点的前一分区合并,不必为回 收分区分配新表项,而只需修改其前一分区F1的大小。 (2) 回收分区与插入点的后一空闲分区F2相邻接,见图 4-9(b)。此时也可将两分区合并,形成新的空闲分区,但用 回收区的首址作为新空闲区的首址,大小为两者之和。
第一章 操作系统引论
4.3 连续分配存储管理方式
4.3.1 单一连续分配 在单道程序环境下,当时的存储器管理方式是把内存分
为系统区和用户区两部分,系统区仅提供给OS使用,它通常 是放在内存的低址部分。而在用户区内存中,仅装有一道用 户程序,即整个内存的用户空间由该程序独占。这样的存储 器分配方式被称为单一连续分配方式。
3
第一章 操作系统引论
图4-5 固定分区使用表
4
第一章 操作系统引论
4.3.3 动态分区分配 1. 动态分区分配中的数据结构 常用的数据结构有以下两种形式:① 空闲分区表,在系
统中设置一张空闲分区表,用于记录每个空闲分区的情况。 每个空闲分区占一个表目,表目中包括分区号、分区大小和 分区始址等数据项,如图4-6所示。② 空闲分区链。为了实 现对空闲分区的分配和链接,在每个分区的起始部分设置一 些用于控制分区分配的信息,以及用于链接各分区所用的前 向指针,在分区尾部则设置一后向指针。通过前、后向链接 指针,可将所有的空闲分区链接成一个双向链,如图4-7所 示。
12
第一章 操作系统引论
图4-9 内存回收时的情况
13
第一章 操作系统引论
图4-10 内存回收流程
14
第一章 操作系统引论
4.3.4 基于顺序搜索的动态分区分配算法 1. 首次适应(first fit,FF)算法 我们以空闲分区链为例来说明采用FF算法时的分配情况。
FF算法要求空闲分区链以地址递增的次序链接。在分配内存 时,从链首开始顺序查找,直至找到一个大小能满足要求的 空闲分区为止。然后再按照作业的大小,从该分区中划出一 块内存空间,分配给请求者,余下的空闲分区仍留在空闲链 中。若从链首直至链尾都不能找到一个能满足要求的分区, 则表明系统中已没有足够大的内存分配给该进程,内存分配 失败,返回。
18
第一章 操作系统引论
4.3.5 基于索引搜索的动态分区分配算法 1. 快速适应(quick fit)算法 该算法又称为分类搜索法,是将空闲分区根据其容量大
小进行分类,对于每一类具有相同容量的所有空闲分区,单 独设立一个空闲分区链表,这样系统中存在多个空闲分区链 表。同时,在内存中设立一张管理索引表,其中的每一个索 引表项对应了一种空闲分区类型,并记录了该类型空闲分区 链表表头的指针。
11
第一章 操作系统引论
(3) 回收区同时与插入点的前、后两个分区邻接,见图 4-9(c)。此时将三个分区合并,使用F1的表项和F1的首址,取 消F2的表项,大小为三者之和。
(4) 回收区既不与F1邻接,又不与F2邻接。这时应为回收 区单独建立一个新表项,填写回收区的首址和大小,并根据 其首址插入到空闲链中的适当位置。图4-10示出了内存回收 时的流程。
19
第一章 操作系统引论
2. 伙伴系统(buddy system) 该算法规定,无论已分配分区或空闲分区,其大小均为 2的k次幂(k为整数,l≤k≤m)。通常2m是整个可分配内存的大 小(也就是最大分区的大小)。假设系统的可利用空间容量为 2m 个字,则系统开始运行时,整个内存区是一个大小为2m的 空闲分区。在系统运行过程中,由于不断地划分,将会形成 若干个不连续的空闲分区,将这些空闲分区按分区的大小进 行分类。对于具有相同大小的所有空闲分区,单独设立一个 空闲分区双向链表,这样,不同大小的空闲分区形成了k个 空闲分区链表。