地震数据处理方法复习资料
地震数据处理重点整理
地震数据处理重点整理(个人观点)一、题型判断题20分/10个名词解释30分/5个简答题30分/3个计算题20分/2个二、名词解释1、地震剖面的“三高”:高信噪比、高分辨率和高保真度。
2、野外静校正:对陆上资料,把所有炮点和接收点位置均校正到一个公共基准面上以消除高程、低降速带和井深对旅行时的影响。
剩余静校正:野外静校正后,在地震数据中仍然残留有各种剩余静态时移,对这些的校正称为剩余静校正。
3、反褶积:沿时间坐标轴作用,通过压缩地震子波提高地震时间分辨率。
4、最小相位信号:是具有对相同振幅谱的物理可实现信号中相位最小的信号,或者说能量延迟最小的信号。
5、视波数:k=f/v,由于地震勘探是沿测线观测的,因此可以用视波长、视速度、视波数来描述地震波特征,可表示为k*=f/v*,其中k*为视波数。
6、预白化:为了解决带限问题,在地震信号的功率谱P(w)中,从低频到高频统一加一白噪。
7、子波整形反褶积:将不同相位的子波转变为最佳子波的反褶积。
8、速度分析:为叠加提供最佳叠加速度的方法。
9、静校正:存在地形起伏、低速带的厚度变化和速度的横向变化等,此时时距曲线发生畸变,对这些因素的校正,称为静校正。
10、动校正:在水平界面的情况下,从观测到的反射波旅行时中减去正常时差t,得到相当于自激自收的时间,这一过程叫做动校正。
11、正常时差:在界面水平时,对界面上某点以跑检距进行观测得到的反射波旅行时与自激自收观测的旅行时之差,称为正常时差。
12、拉伸畸变:动校正结果出现频率畸变,同相轴移向低频。
13、水平叠加:水平叠加是将CMP道集记录经NMO动校后叠加起来,目的是压制随机噪音,提高地震信噪比。
14、速度谱:把每一种速度所得的叠加结果并排显示在速度-双程零炮检距时间平面中,称此为速度谱。
15、速度扫描:应用一系列常速度在CMP道集进行动校正,并将结果并列显示,从中选出能使反射波同相轴拉平程度最高的速度作为NMO速度的速度分析方法称为速度扫描。
地震第1章 地震数据处理基础
∞ ) 上满足下列条件:
(1) x (t ) dt 存在 (2) 满足狄利克莱(Dirichlet)条件: 以x(t)只有有限个极值点和有限个间断点且在间断点 t 0 处,函数
x( t )=[x( t +0)+( t 0 -0)],则函数x(t) 傅里叶变换及反变换存在。这 里,函数x(t)的傅里叶变换为:
0 0
X ( w)
~
x(t )e iwt dt
(1-1)
(1-2)
其相应的反变换为
~ 1 x(t ) X ( w)e iwt dw 2 π
式中 —— 傅里叶变换变量; i —— 虚数单位; ~ X ( w) —— 函数x(t)的傅里叶变换。
如果变量t表示时间,x(t)表示地震记录道,由于实际地震记录道通常 是连续的,满足傅里叶变换存在条件,则利用上述(1一1)式可以得到其傅 ~ 里叶变换分X ( w),其变量 表示圆频率,它与频率 f 之间的关 2 f π 为 X ( w) ,称为地震道x(t)的频谱。 由于傅里叶变换是可逆的,如果已知地震道的频谱 X ( w) ,则利用傅 里叶反变换(1-2)式可以得到原来的地震道函数x(t)。 通常由傅里叶变换(1-l)式得到的频谱为一个复函数,称为复数谱。 它可以写成指数形式
我们知道,在野外地震数据采集中,每一炮在每个检波点所记录的 地震道记录表示在该检波点所观测到的地震波场。在数字地震记录中, 每个地震道是一个按一定时间采样间隔排列的时间序列,如图1-1所示。 t,, , nt排列的振 2 , 图中地震道采样间隔为△t,按采样时刻 t= 幅采样值 x(t ) {x1 , x2 , xn为一个时间序列。 ,}
的傅里叶变换为
地震数据处理方法(DOC)
安徽理工大学一、名词解释(20分)1、、地震资料数字处理:就是利用数字计算机对野外地震勘探所获得的原始资料进行加工、改进,以期得到高质量的、可靠的地震信息,为下一步资料解释提供可靠的依据和有关的地质信息。
2、数字滤波:用电子计算机整理地震勘探资料时,通过褶积的数学处理过程,在时间域内实现对地震信号的滤波作用,称为数字滤波。
(对离散化后的信号进行的滤波,输入输出都是离散信号)3、模拟信号:随时间连续变化的信号。
4、数字信号:模拟数据经量化后得到的离散的值。
5、尼奎斯特频率:使离散时间序列x(nΔt)能够确定时间函数x(t)所对应的两倍采样间隔的倒数,即f=1/2Δt.6、采样定理:7、吉卜斯现象:由于频率响应不连续,而时域滤波因子取有限长,造成频率特性曲线倾斜和波动的现象。
8、假频:抽样数据产生的频率上的混淆。
某一频率的输入信号每个周期的抽样数少于两个时,在系统的的输出端就会被看作是另一频率信号的抽样。
抽样频率的一半叫作褶叠频率或尼奎斯特频率fN;大于尼奎斯特频率的频率fN+Y,会被看作小于它的频率fN-Y。
这两个频率fN+Y和fN-Y相互成为假频。
9、伪门:对连续的滤波因子h(t)用时间采样间隔Δt离散采样后得到h (nΔt)。
如果再按h (nΔt)计算出与它相应的滤波器的频率特性,这时在频率特性图形上,除了有同原来的H (ω)对应的'门'外,还会周期性地重复出现许多门,这些门称为伪门。
产生伪门的原因就是由于对h(t)离散采样造成的。
10、地震子波:由于大地滤波作用,使震源发出的尖脉冲经过地层后,变成一个具有一定时间延续的波形w(t)。
11、道平衡:指在不同的地震记录道间和同一地震记录道德不同层位中建立振幅平衡,前者称为道间均衡,后者称为道内均衡。
12、几何扩散校正:球面波在传播过程中,由于波前面不断扩大,使振幅随距离呈反比衰减,即Ar=A0/r,是一种几何原因造成的某处能量的减小,与介质无关,叫几何扩散,又叫球面扩散。
第五章地震资料处理资料
一维地震记录的形成通常采用褶积模 型,二维地震剖面和三维数据体的形成 通常使用射线理论或波动理论,统称为 数值模拟或地震正演模拟技术。
(二)地震剖面的数学模型—射线理论
不同速度对均匀介质水平面反射的动校正: 如果所用速度高于介质速度,双曲线不能完全拉平,称为欠校正。 所用速度低于介质速度,双曲线上翘,称为过校正。 传统速度分析的基础:对 CMP 道集通过一系列常速度进行动校试验,
使该道集的反射曲线拉得最平的速度就是叠前最佳动校正速度。
动校正产生的问题:动校拉伸—动校正结果出现频率畸变,同相轴移向低频。 主周期为 T 的波形经 NMO 动校之后拉伸为 T ' ,拉伸量为:
剩余静校正:在作了基准面校正之后,由于低速 带速度和厚度的横向变化,校正后相对基准面有或正 或负的误差,这个误差称为剩余静校正。
剩余静校正量的影响:
严重降低速度谱分析的质量;
导致错误的叠加剖面,形成暗点和假构造。
6.水平叠加——水平叠加是利用野外多次覆盖资 料把共中心点道集记录经动、静校正之后再叠加起 来,以压制多次波和随机干扰、提高信噪比为主要 目标的处理方法。水平叠加剖面上的各道都已经转 换为自激自收记录。
f f tNMO t(0) 其中 f 是主频, f 是所引起的频率变化, tNMO 为动校正量。
影响:大炮检距上波形拉伸将严重损害浅层同相轴叠加效果。 解决办法:切除。
未切除时,CMP的浅层部分可见一个低频的拉伸带
5.静校正——研究地形、地表结构对地震波传播时 间的影响,设法把由于激发和接收时地表条件变化 所引起的时差求取出来,再对其进行校正,使畸变 了的时距曲线恢复成双曲线,以便对地下构造作出 准确解释,这一过程称为静校正。
《地震资料数字处理》复习
《地震资料数字处理》复习地震资料数字处理围绕以下三方面工作:1、提高信噪比;2、提高分辨率;3、提高保真度。
一、提高信噪比的处理1、原理利用噪声和信号在时间、空间、频率和其他变换域中的分布差异,设计滤波因子,将噪声进行压制。
2、处理顺序提高信噪比包含消除噪声和增强信号两部分内容。
消除噪声一般在叠前的各种道集上进行,主要针对规则干扰如多次波和面波等,增强信号一般在叠后剖面上进行,主要针对随机噪声。
3、随机噪声是指没有固定的频率、时间、方向的振幅扰动和震动,其成因大致是来自环境因素、次生因素和仪器因素,其中次生干扰的强度与激发能量有关。
随机噪声在记录上表现为杂乱无章的波形或脉冲,在频率上分布宽而不定,在空间上没有确定的视速度。
随机噪声的随机性与道间距有关,如果道间距减小到一定程度,许多随机噪声表现出道间的相干性,当道距大于随机噪声的相干半径才表现出随机性。
4、一维滤波器(伪门、Gibbs现象)频率滤波器是根据信号和噪声在频率分布上的差异而设计时域或频域一维滤波算子。
它压制通放带以外的频率成分,保留通放带以内的频率成分。
Gibbs现象是由于频率域的不连续或截断误差引起的,通放带和压制带之间设置过渡带可克服此现象,设计滤波器就是控制过度带的形状和宽度。
5、二维滤波器二维滤波是根据有效信号和相干噪声在视速度分布上的差异,来压制噪声或增强信号。
通常用来压制低视速度相干噪声,在f-k平面上占据低频高波数区域。
二维滤波比较容易产生蚯蚓化现象,而且混波相现象明显,在空间采样条件不满足或陡倾角的情况下受到空间假频的影响,一般常用于压制一些规则干扰,如面波和多次波等。
6、频率-波数域二维滤波实现步骤:(1)把时间和空间窗口里的数据变换到f-k域;(2)在f-k域,通过外科切除,按径向扇形划分压制区C(乘振幅置零)、过渡区S(乘振幅置0至1变化)、通放区P (乘振幅置1) ;(3)从f-k域反变换到t-x域。
8、数字滤波有两个特殊性质:(1)数字滤波由于时域离散化会带来伪门现象,(2)由于频域截断会造成吉卜斯现象。
(整理)地震资料处理001.
第一章概述1.地震勘探包括:采集处理解释2.地震处理包括:反褶积叠加偏移成像3.地震处理包括:预处理,常规处理,特殊处理4.三高:高分辨率,高保真度,高信噪比第二章数字滤波1.滤波器:任何一种对输入信号的改造作用都可以看成滤波,实现这种滤波的系统成为滤波器2.模拟滤波器:通过不同结构的电网络实现滤波3.数字滤波器:用数学运算通过数字计算机技术实现滤波4.数字滤波与模拟滤波器的异同点:(1)模拟滤波是对连续信号进行滤波,输出的是连续信号,输入和输出信号都可以用一连续的图形表示出来,而数字滤波器是对离散化之后的信号进行滤波,输入和输出都是离散数据;(2)电滤波是用不同的点网络实现滤波的,数字滤波是用数学运算的方式通过数字计算机技术实现滤波的5.滤波器的物理性质:(1)滤波器是实参数的,(2)滤波器是物理可是实现,充要条件h(n)=0,n<0,(3)稳定性,(4)能量是有限输出的(5)最小相位性质,最小相位信号对相同振幅的物理可实现信号,分辨率是最高的。
6.最小相位信号:具有相同振幅的物理可实现信号中最小的信号、7.最小相位滤波器:具有相同振幅相应的一切可能的滤波器中能量延迟最小的滤波器8.纯振幅滤波器:也成为零相位滤波器,信号通过这个滤波器之后,只有振幅的变化,没有相位的变化,又称为理想滤波器19.理想滤波器:低通理想滤波器,带通理想滤波器,带陷理想滤波器,高通理想滤波器10.频率域滤波的实现步骤:首先对地震记录x(t)作傅里叶变换,得到其频谱X(ω),进行频谱分析。
根据有效波的频带范围,设计合适的滤波器H(ω),在频率域进行滤波,然后对输出Y(ω)做傅里叶反变换,得到滤波后的输出y(t)。
11.使用fft应注意的问题输入数据:输入数据点数NFFT应是2k个点;输出数据,计算出的频谱宫NFFT个点,从第一个点开始,以NFFT/2+1处为对称点,与后面的点有共轭关系;输入与输出数据采样间隔的关系,ΔtΔf=1/NFFT12.时间域滤波的两种常用方法:褶积滤波、递归滤波13.褶积滤波的两种模型:无噪声,x(t)=b(t)* ξ(t),有噪声x(t)=b(t)* ξ(t)+n(t)14.设计递归滤波器应注意的问题递归滤波器的阶数,阶数越大越精确,但计算量大,通常,n=4,;滤波器的稳定性。
地震数据处理 重点
1.一维傅里叶变换及其应用:傅里叶变换是地震数据处理的主要数学基础。
它不仅是地震道、地震记录分析和数据滤波的基础,同时在地震数据处理的各个方面都有着广泛的应用。
2.采样定理:设x(t)是连续的时间函数,x(t)的最高截止频率为fn,则可用采样间隔为Δt=1/2fn的离散序列X(nΔt)唯一的确定。
采样过程:从模拟地震信号到数字地震信号的过程。
采样间隔/采样率:采样所用的时间间隔。
3.数字滤波:利用频谱特征的不同来压制干扰波,以突出有效波的方法。
4.频率域滤波的步骤:①对已知地震道进行频谱分析;②设计合适的滤波器:为了滤去干扰波的频谱成分,应当设计一个带通滤波器,保留有效波频率,把干扰波频率成分滤掉;③进行滤波运算;④对输出信号谱X(w)进行傅里叶反变换,便得到滤波后的输出X(t).5.相位性质:最小相位也叫相位滞后或最小能量延迟,实际上最小相位滞后是指频率域,而最小能量延迟则是指时间域而言。
最小能量延迟子波:能量聚集在首部;最大能量延迟子波:能量集中在尾部;混合延迟子波:能量聚集在中部。
6.褶积滤波的物理意义:单位脉冲响应:在时间域的表示方法中,令一个单位脉冲通过一个滤波器,然后观测滤波器的输出,这个滤波器输出的自然过程曲线称为滤波器的脉冲响应。
也称滤波器的时间特性。
褶积滤波的物理意义:它相当于把地震信息x(t)分解为起始时间、极性、幅度各不相同的脉冲序列,令这些脉冲按时间书序依次通过滤波器,这样在滤波器的输出端就得到对输入脉冲序列的脉冲响应,这些脉冲响应有不同的的起始时间、不同的极性和不同的幅度(这个幅度是与引起它的输入脉冲幅度成正比的),将它们叠加起来就得到滤波后的输出x(t).7.数字滤波的特殊性质:离散性:数字滤波是对离散的信号进行运算,这是所谓的离散性;有限性:在数字计算机上进行计算时,滤波因子不可能无穷项,而是取有限项,这就是所谓的有限性。
8.产生“伪门”原因:由于对A离散采样造成的,可以证明“伪门”在频率域出现的周期为A,为了避免“伪门”造成的影响,可以适当的选择采样间隔A,使第一个“伪门”出现在干扰波的频谱范围之外。
地震数据处理重点整理
地震数据处理重点整理(个人观点)一、题型判断题20分/10个名词解释30分/5个简答题30分/3个计算题20分/2个二、名词解释1、地震剖面的“三高”:高信噪比、高分辨率和高保真度。
2、野外静校正:对陆上资料,把所有炮点和接收点位置均校正到一个公共基准面上以消除高程、低降速带和井深对旅行时的影响。
剩余静校正:野外静校正后,在地震数据中仍然残留有各种剩余静态时移,对这些的校正称为剩余静校正。
3、反褶积:沿时间坐标轴作用,通过压缩地震子波提高地震时间分辨率。
4、最小相位信号:是具有对相同振幅谱的物理可实现信号中相位最小的信号,或者说能量延迟最小的信号。
5、视波数:k=f/v,由于地震勘探是沿测线观测的,因此可以用视波长、视速度、视波数来描述地震波特征,可表示为k*=f/v*,其中k*为视波数。
6、预白化:为了解决带限问题,在地震信号的功率谱P(w)中,从低频到高频统一加一白噪。
7、子波整形反褶积:将不同相位的子波转变为最佳子波的反褶积。
8、速度分析:为叠加提供最佳叠加速度的方法。
9、静校正:存在地形起伏、低速带的厚度变化和速度的横向变化等,此时时距曲线发生畸变,对这些因素的校正,称为静校正。
10、动校正:在水平界面的情况下,从观测到的反射波旅行时中减去正常时差t,得到相当于自激自收的时间,这一过程叫做动校正。
11、正常时差:在界面水平时,对界面上某点以跑检距进行观测得到的反射波旅行时与自激自收观测的旅行时之差,称为正常时差。
12、拉伸畸变:动校正结果出现频率畸变,同相轴移向低频。
13、水平叠加:水平叠加是将CMP道集记录经NMO动校后叠加起来,目的是压制随机噪音,提高地震信噪比。
14、速度谱:把每一种速度所得的叠加结果并排显示在速度-双程零炮检距时间平面中,称此为速度谱。
15、速度扫描:应用一系列常速度在CMP道集进行动校正,并将结果并列显示,从中选出能使反射波同相轴拉平程度最高的速度作为NMO速度的速度分析方法称为速度扫描。
地震勘探原理第5章地震波处理方法
2021/2/27
地震勘探原理第5章地震波处理方
3
法
▪在正式处理之前,需要对这些不正常 的记录进行编辑处理,例如对信噪比很 低的不正常道进行充零处理,发现极性 反转的工作道对它们进行改正等。
另外,还要显示有代表性的记录并 观察初至同相轴,以便进行初至切除。
2021/2/27
地震勘探原理第5章地震波处理方
10
法
参数提取与分析的目的是为寻找在常规处 理或其他处理中常用的最佳处理参数,以 及有用的地震信息,如频谱分析、速度分 析、相关分析等。这类数字处理还可为校 正与偏移及各种滤波等处理提供速度和频 率信息,并可以自成系统处理出相应的成 果图件,如频谱、速度谱,通过相关分析 进行相关滤波等。
2021/2/27
•
2021/2/27
地震勘探原理第5章地震波处理方
9
法
• 通常地震波振幅随时间呈指数衰减。 高频衰减比低频快。
• 与震源强度和震源耦合有关的影响, 检波器灵敏度和检波器耦合及偏移距 的影响。对这类影响主要通过地表一 致性振幅校正程序,类似于自动剩余 静校正来完成。
2021/2/27
地震勘探原理第5章地震波处理方
地震勘探原理第5章地震波处理方
11
法
• 地震勘探所得到的记录中包含有效波和干 扰波,这些波之间在频谱特征上存在很大 差别。为了解有效波和干扰波的频谱分布 范围,需要对随时间变化的地震记录讯号 进行傅里叶变换,得到随频率而变化的振 幅和相位的函数,(地震记录的频谱—振 幅谱和相位谱)。对地震波形函数进行傅 里叶变换求取频谱的过程叫频谱分析。
由(4.2.4):
N 1
R F (m e f) t f(n t)c2 o m s f n t
地震数据处理复习
地震资料的处理方法和结果在很大程度上受野外采集参数的影响。
地震剖面的“三高”:高信噪比、高分辨率和高保真度。
地震资料处理主要有三个阶段;每一个阶段都是为了提高地震分辨率,即分离出两个无论在空间上还是时间上都非常相近的同相轴的能力。
●(a)反褶积是通过压缩基本地震子波成为尖脉冲并压制交混回响,沿着时间方向提高时间分辨率;●(b)叠加是沿着偏移距方向压缩,把地震资料的数据量压缩成零偏移距剖面,以提高信噪比;●(c)偏移是一个使绕射收敛,并将叠加剖面上的倾斜同相轴归到它们地下的真实位置上,通常在叠加剖面(接近于零偏移距剖面)上做偏移,来提高横向分辨率。
●几何扩散校正:通过给数据加一增益恢复函数以校正波前(球面)扩散对振幅的影响。
●建立野外观测系统:把所有道的炮点和接收点位置坐标等测量信息都储存于道头中以保证各道的正确叠加。
●野外静校正:对陆上资料,把所有炮点和接收点位置均校正到一个公共基准面上以消除高程、低降速带和井深对旅行时的影响。
关于分辩率的讨论:有一种普遍的误解,认为要增加时间分辨率只需要高频,这是不真实的。
只有低频或只有高频不能改善时间分辨率。
要增加时间分辨率低频和高频两者都需要。
时间分辨率取决于有效信号的频带宽度.最小平方法---根据误差的平方和最小来设计滤波器;最小相位信号是具有对相同振幅谱的物理可实现信号中相位最小的信号,或者说能量延迟最小的信号。
最小相位滤波器是具有同样振幅响应的一切可能的滤波器簇中能量延迟最小的滤波器,也称最小延迟滤波器。
若最小相位滤波器的输入是最小相位,则其输出也是最小相位,对于地震子波,除了零相位子波外,最小相位子波的分辨率最高。
下面的四个子波中哪一个是最小相位的:子波A :(4,0,-1) 子波B :(2,3,-2)子波C :(-2,3,2) 子波D :(-1,0,4)频率、视波数和视速度的关系为:**=k fV理想滤波器的滤波因子应为无穷序列,而数字滤波因子只能取有限个值。
(完整版)地震数据数字处理总结
中国石油大学(北京)《地震数据处理方法》勘查2011级复习重点总结第一章地震数据处理基础1、地震信号的特点:1)实信号2)离散3)有限长4)能量有限5)非周期2、采样定律内容:一个连续信号,如果其最高频率小于尼奎斯特折叠频率,即信号的采样频率大于信号最高频率的两倍,则利用离散采样后的信号可以恢复原始信号。
3、采样定律的应用条件:信号的采样频率大于信号最高频率的两倍,即:最高频率至少要在一个周期内采到两个样点4、采样频率、折叠(尼奎斯特)频率、信号最高频率定义:5、假频的定义:高于尼奎斯特频率的高频成分以尼奎斯特频率为中心向低频方向折叠,形成假的频率成分,称为假频。
6、假频的判断和计算:7、地震信号的频谱特点:1)有限带宽(带限)2)有一定主频(主频越高,分辨能力越强)8、判别相位性质的三种办法:1)相位延迟(不常用)2)能量延迟3)Z变换的多项式求根(根都在单位圆外,为最小相位(延迟)信号)9、一维数字滤波实现方法、具体步骤:1)频率域:实现方法:(以零相位为例,翻译略)具体步骤:a、地震频谱分析:确定分析有效频率范围b、设计滤波器:压制噪声保留有效信号c、地震记录FFT变换:标准化变换长度d、进行滤波运算:振幅谱相乘相位谱相加e、滤波结果IFFT2)时间域:(也叫褶积滤波)实现方法:(以零相位为例,翻译略)具体步骤:a、地震记录频谱分析:确定中心频率、带宽b、设计滤波器:确定滤波算子长度(频带越宽,长度越短)c、确定滤波因子离散值:双边对乘实参数d、进行滤波运算:地震记录与滤波因子褶积10、伪门的定义:对连续的滤波因子用时间采样间隔离散采样后,得到离散的滤波因子,若再按离散的滤波因子计算出与它相应的滤波器的频率特性,这时在频率特性的图形上,除了有同原来连续的滤波因子的频率特性对应的“门”外,还会周期性地重复出现很多“门”,这些门称为“伪门”。
产生“伪门”的原因:由于对滤波因子离散采样。
11、吉布斯现象:当对滤波因子用有限项代替无限项时,在原始信号突变点(间断点)处,通过信号出现的明显的振荡现象。
地震数据处理总结复习-成都理工大学
地震数据处理总结复习-成都理工大学1、传统手计算作了哪些假设:(传统手算的条件)仅限于规则的几何化形状,物性均匀、单个独立的矿体、不考虑剩磁、地表水平、而且多数是二维的规则几何形体。
2、电子计算机能够计算的情况是什么?1.任意形状2.物性分块均匀3.地表任意4、任意组合对一个不规则的复杂的“非均匀”的任意形体,可以通过将其分解成若干个相对来说是规则的,物性“均匀”的简单的物性体并且用数值计算的方法来计算3、什么叫正演:是在给定地质体的形状大小、空间位置及物性参数的条件下,求在它外部空间任意点上的物理场值。
4、各种正演方法对地质体的分割方式,以及对三重积分(二重积分)的处理方式,影响精度的因数有哪些?①“点元”法将一个任意形体按适当的方法划分为若干个规则几体形体(长方体、立方体),每一个均视作“点元”,先用解析方法求出各个点元的三重积分值,再累加求和即得整个形体的三重积分的近似值,近似程度取决于全部“点元”与该形体的吻合程度。
②“线元”法用两组相互垂直的平行面把任意形体分割成很多棱柱体,每一棱柱体的作用,以位于其柱中心线的“线元”来代替,用解析法求出各“线元”的作用值,然后在垂直于“线元”的截面上作二重数值积分,即得到整个形体的三重积分近似值,其近似程度除了取决于全部棱柱体与该形体的吻合程度以外,还取决于所采用的数值积分方法。
③“面元”法用一组相互平行的平面去分割任意形体,每个截面内用一个多边形去代替该形体在截面内的形状,用解析方法求出多边形域的二重积分值,然后在垂直于截面的方向上,用数值积分求出第三重积分,即得三重积分近似值。
其近似程度取决于各多边形吻合该形体的各截面的程度及所采用的数值积分的方法。
④表面积分法根据(1.1-11)式,积分是在包围形体的全表面进行的。
采用一系列多边形水平面的组合来近似全表面,用解析方法分别计算出每一个多边形水平面的积分值,然后累加求和。
其近似程度取决于多边形水平面对该形体外表面的吻合程度。
地震资料处理复习总结(第1-6章)
《地震勘探资料处理》第一章~第六章复习要点总结第一章 地震数据处理基础一维谱分析数字地震记录中,每个地震道是一个按一定时间采样间隔排列的时间序列,每一个地震道都可以用一系列具有不同频率、不同振幅、相位的简谐曲线叠加而成。
应用一维傅里叶变换可以得到地震道的各个简谐成分;应用一维傅里叶反变换可以将各个简谐成分合并为原来的地震道序列。
连续函数正反变换公式:dt et x X t i ωω-∞∞-⎰=)()(~ 正变换 ωωπωd e X t x t i ⎰∞∞-=)(~21)( 反变换 通常由傅里叶变换得到的频谱为一个复函数,称为复数谱。
它可以写成指数形式 )()()(|)(~|)(~ωφωφωωωi i e A e X X ==式中)(ωA 为复数的模,称为振幅谱;)(ωϕ为复数的幅角,称为相位谱。
)()()(22ωωωi r X X A +=,)()(tan )(1ωωωφr i X X -=(弧度也可换算为角度)离散情况下和这个差不多(看PPT 和书P2-3)一维傅里叶变换频谱特征:1、一维傅里叶变换的几个基本性质(推导)线性 翻转 共轭 时移 褶积 相关(功率谱),P3-72、Z 变换(推导)3、采样定理 假频 尼奎斯特频率,tf N ∆=21二维谱分析二维傅里叶变换),(k X ω称为二维函数),(t x X 的频——波谱。
其模量|),(|k X ω称为函数),(t x X 的振幅谱。
由),(k X ω这些频率f 与波数k 的简谐成分叠加即可恢复原来的波场函数),(t x X (二维傅里叶反变换)。
如果有效波和干扰波的在f-k 平面上有差异,就可以利用二维频率一波数域滤波将它们分开,达到压制干扰波,提高性噪比的目的。
二维频谱产生空间假频的原因数字滤波在地震勘探中,用数字仪器记录地震波时,为了保持更多的波的特征,通常利用宽频带进行记录,因此在宽频带范围内记录了各种反射波的同时,也记录了各种干扰波。
地震资料处理 复习
第一章概述1.地震勘探三个基本阶段及目的采集,处理,解释;采集是利用野外地震采集系统采集地震处理所需要的反射波数据,处理是对地震采集数据做各种处理提高反射波数据的信噪比,分辨率和保真度以便于解释,解释分为构造解释和言行解释,确定地震数据的地质特征和意义2.地震处理三个技术及目的反褶积,叠加,偏移成像;反褶积是压缩子波提高实践分辨率;叠加是压制随机噪声提高信噪比;偏移成像分射线偏移和波动方程偏移,实现反射界面的空间归位和恢复反射界面空间的波场特征、振幅变化和反射系数,提高空间分辨率和保真度。
3.地震处理的三个基本阶段及目的预处理,常规处理,特殊处理;预处理是将采集的数据转换成计算能处理的数据类型,并做初步的编辑和校正;常规处理是对数据做基本处理运算;特殊处理是针对不同目标采取不同手段,如叠前深度偏移,子波处理,属性分析和反演等4,三高:高分辨率,高保真度,高信噪比第二章数字滤波1.滤波器:任何一种对输入信号的改造作用都可以看成滤波,实现这种滤波的系统成为滤波器2.模拟滤波器:通过不同结构的电网络实现滤波3.数字滤波器:用数学运算通过数字计算机技术实现滤波4.抽样定理:频率域时间域5.电滤波与模拟滤波器的区别(1)电滤波是对连续信号进行滤波,输出的是连续信号,输入和输出信号都可以用一连续的图形表示出来,而数字滤波器是对离散化之后的信号进行滤波,输入和输出都是离散数据;(2)电滤波是用不同的点网络实现滤波的,数字滤波是用数学运算的方式通过数字计算机技术实现滤波的6.滤波器的物理性质(1)滤波器是实参数的,(2)滤波器是物理可是实现,充要条件h(n)=0,n<0,(3)稳定性,充要条件(4)能量是有限输出的,若,则滤波器能量是有限输出的(%)最小相位性质,最小相位信号对相同振幅的物理可实现信号,分辨率是最高的。
7.最小相位信号:具有相同振幅的物理可实现信号中最小的信号、8.最小相位滤波器:具有相同振幅相应的一切可能的滤波器中能量延迟最小的滤波器9.纯振幅滤波器:也成为零相位滤波器,信号通过这个滤波器之后,只有振幅的变化,没有相位的变化,又称为理想滤波器10.理想滤波器:分为低通理想滤波器(去除高频),带通理想滤波器(把想对于地震有效波太低和太高的频率成分滤去),带陷理想滤波器(去除某些特殊干扰,如工区高压线),高通理想滤波器(去除低频)11.频率域滤波的实现步骤:首先对地震记录x(t)作傅里叶变换,得到其频谱X(ω),进行频谱分析。
(完整版)地震资料数字处理复习题
地震资料数字处理复习题一、名词解释〔20分〕1、速度谱把地震波的能量相对于波速的变化关系的曲线称为速度谱。
在地震勘探中,速度谱通常指屡次覆盖技术中的叠加速度谱。
2、反滤波又称反褶积,是指为提高纵向分辨率,去掉大地滤波器的作用,把延续几十至100ms的地震子波b〔t〕压缩成原来的震源脉冲形式,地震记录变成反映反射系数序列的窄脉冲组合。
3、地震资料数字处理就是利用数字计算机对野外地震勘探所获得的原始资料进行加工、改良,以期得到高质量的、可靠的地震信息,为下一步资料解释提供可靠的依据和有关的地质信息。
4、数字滤波数字滤波就是指用数学运算的方式用数字电子计算机来实现滤波。
对离散化后的信号进行滤波,输入、输出都是离散数据。
5、水平叠加将不同接收点受到的来自地下同一反射点的不同激发点的信号,经动校正叠加起来。
6、叠加速度在一般情况下,都可将共中心点反射波时距曲线看作双曲线,用一个同样的式子来表示:t2=t2+x2/V2,其中,V 就是叠加速度。
0 αα7、静校正把由于激发和接收时地表条件变化所引起的时差找出来,再对其进行校正,使畸变了的时距曲线恢复成双曲线,以便能够正确地解释地下的构造情况,这个过程叫做静校正。
8、动校正消除由于接受点偏离炮点所引起的时差的过程,又叫正常时差校正。
9、假频一个连续信号用过大的采样得到的离散序列实际上含有连续信号中高频成分的奉献。
这些高频成分折叠到离散时间序列中较低的频率。
这种现象是由连续信号采样缺乏引起的,称作假频。
10、亮点技术所谓“亮点〞狭义地说是指地震反射剖面上由于地下油气藏存在所引起的地震反射波振幅相对增强的“点〞。
利用地震反射波的振幅异常,同时也利用反射波的极性反转、水平反射的出现、速度的降低及吸收系数的增大等一系列亮点标识综合指示地下油、气藏的存在,进而直接寻找油、气藏的技术。
11、相关定量地表示两个函数之间相似程度的一种数学方法。
12、自相关表示波形本身在不同相对时移值时的相关程度。
地震数据处理-知识点
第一章概述1.1 地震数据处理的目的是对地震采集数据做各种处理提高反射波数据的信噪比、分辨率和保真度以便于解释。
地震数据处理主要包括地震反褶积、叠加和偏移成像三大技术。
地震反褶积是通过压缩地震子波提高地震时间分辨率;叠加的目的是压制随机噪声提高地震信噪比;偏移成像包括射线偏移和波动方程偏移两大类,主要目的是实现反射界面的空间归位和恢复反射界面空间的波场特征、振幅变化和反射系数,提高地震空间分辨率和地震保真度。
1.2地震数据处理包括预处理、常规处理和特殊处理三个阶段。
常规处理包括反褶积、叠加和偏移三大技术。
预处理是把野外数据格式转换成适合计算机处理的格式并对数据做相应编辑和校正。
它包括数据解编、格式转换、编辑、几何扩散校正、建立野外观测系统和野外静校正等。
数据解编:把按时分道的数据记录方式变换成按道分时的数据记录方式。
道编辑:噪音道、带有瞬变噪音的道或单频信号道都要删除;极性反转的道要改正。
几何扩散校正:通过给数据加一增益恢复函数,以校正波前(球面)扩散对振幅的影响。
野外静校正:对路上资料,把所有炮点和接收点位置均校正到一个公共基准面上,以消除高程、低降速带和井深对旅行时的影响。
反褶积的基础是最佳维纳滤波。
特殊处理主要包括T-P变换、小波变换、三维叠前深度偏移、子波处理、属性分析和反演等。
T-P变换:将偏移距-时间域变换到射线参数-截距时间域,可用来压制面波和多次波。
小波变换:小波变换与多尺度分析可用于去噪、数据压缩、提高分辨率处理、信号增强和解波动方程等。
第二章数字滤波2.1 滤波器可以分为模拟滤波器和数字滤波器采样定理时域实参数的滤波器,其频率振幅谱是偶对称的,而相位谱是奇对称的。
一个滤波器如果是稳定的,这是指当输入信号为有限信号时,其输出也是有限信号。
最小相位,在时间域中也称最小能量延迟,在频率域则常称为最小相位滞后。
纯振幅滤波器也称零相位滤波器。
又称为理想滤波器。
2.2 理想滤波器常设计成四种类型:低通滤波器、带通滤波器、带陷滤波器和高通滤波器。
(完整版)地震资料处理期末复习题
地震资料数字处理课程练习题第二章预处理与反射振幅处理(1)预处理主要包括的环节:a.数据加载(数据解编和格式转化;增益恢复;时序转为道序)b.道编辑(剔除坏道坏炮)c. 观测系统定义(将每个炮点和检波点的坐标存入计算机)d. 抽道集(2)影响反射振幅的主要因素有哪些:激发条件(声源耦合)、接收条件、波前(球面)扩散、地层吸收衰减、地质体散射、透射损失、微曲多次波、入射角的变化、波的干涉(层间干涉)、混合波和噪声。
(3)真振幅恢复处理的方法:球面(波前)扩散补偿、地层吸收补偿、地表一致性振幅补偿(自动增益补偿、程序增益补偿)第三章反褶积处理(1)褶积模型的实现(适应)条件是什么?a.反射界面是有一系列常速水平介质构成b. 震源产生一个平面压缩纵波,垂直反射界面入射,在此情况下,地震波在反射界面处不会产生转换波c. 地震波在传播过程中,子波波形不变。
即地震波在传播过程中波形是固定的。
(2)试推导维纳滤波方程上式即为维纳滤波方程及其矩阵形式。
(3)已知最小相位子波()b t,其中()()101,12b b==-,希望输出为单位脉冲函数,分别利用维纳滤波和Z变换法计算其反子波(),0,1a t t=。
并对两个滤波器的输出误差进行比较。
维纳滤波的输出误差小于Z变换法的输出误差。
(4)已知信号()a t,()()()11,03,12a a a-===与()()(),03,11b t b b==,分别计算其()()()(),,,bb abaa bar t r t r t r t及其两个信号的褶积()c t c(t)=(3,10,9,2)r aa(t)=(2,9,14,9,2) r bb(t)=(3,10,3) r ab(t)=(1,6,11,6) r ba(t)=(6,11,6,1)(5)利用测井资料计算地震子波的实现方式:a.根据声波测井、密度测井资料得到声速曲线v(H)、密度曲线ρ(H),求出波阻抗曲线ρv (H)b.再做时深转换把ρv (H)转化为随反射时间变化的声阻抗曲线ρv (t)c.然后利用反射系数公式计算出反射系数序列r(t)d.利用傅里叶变换求出r(t)和井旁地震记录x(t)的频谱R(ω)和 X (ω)e.得到地震子波的频谱W(ω)= X (ω)/R(ω)f.最后对W(ω)进行傅里叶反变换得到地震子波w(t)(6)脉冲反褶积和预测反褶积的基本假设是什么?为什么需要这些假设?褶积模型的假设为:1.反射界面是有一系列常速水平介质构成2.震源产生一个平面压缩纵波,垂直反射界面入射,在反射界面处不会产生转换波3.地震波在传播过程中,子波波形不变。
地震数据处理 第一章:地震数据处理基础
地震波不是简谐波,从波剖面中可得到相邻两峰或谷 间的距离称为视波长,其倒数为视波数。
地 震 波 场
地 震 波 场 时 间 切 片, 即 波 动 图
一维付里叶变换
一个正弦运动要用频率、振幅和相位才能完整 的描述。
在计算机中用快速算法实现付里叶变换(FFT)。
付里叶变换:
正变换:时域信号 分解 频域信号;
模拟与数字信号 一道地震信号是一个连续的时间函数。在地震记录中,连续(模拟) 的地震信号在时间域按照固定的比例取样,叫做采样间隔。典型采样间 隔范围在1到4ms,高分辨率要求采样间隔小到0.25ms。 一般地说,给定采样间隔 ,则可恢复的最高频率为尼奎斯特(Niquist) 频率。公式如下:
f N yq 1 2t
周期T: 一次全振动所需要的时间; 频率f=1/T: 单位时间内全振动的次数。 地震波不是简谐波,从振动图中 可得到相邻两峰或谷间的时间称 为视周期T*,其倒数为视频率 f*。
(2)波剖面——固定某时刻,观察质点位移随距离变化规律 的图形。
从简谐波的波剖面中可以得到: 波长: 传播一个波的距离 波数: k —单位距离内传播的波的个数。
图1.1-5 (a)连续模拟信号;(b)数字信号;(c)重建的模拟信号;连续模拟信号数字化后会失去尼奎斯 特频率以上的频率(数据由Rothman提供,1981)
图1.1-5显示了一个时间上的连续信号,可以精确记录的离散采样点表 示图上,一个离散时间函数称作一个时间序列。 图1.1-5底部的曲线试图重建原始连续信号,就像顶部的曲线所示。注意 重建的信号比原始信号细节上有所改变。这些细节相应于高频成分,在采 样时丢失了。 如果选择更小的采样间隔, 重建的信号将能更精确地代表原始信号。一 个极端的情况就是采样间隔为零,这时将能确切地表示连续信号