地震数据处理方法复习资料
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t − = t ABCD − t DEFG + t ABFG
t+
t+ = t ABCD 2 + t D1 EFG − t ABFG −
D1D2 vb
t−
Ў
t − = t ABCD 2 − t D1 EFG + t ABFG
ẕഄᜬ߱ྟൟ
ℷ ܲ ᩥ ਜ਼ ߱ Ⴗ ᯊ ℹ ɘǃDŽ˄Ẵ 3 ᑓ ˅ Н˅ඃ ᗻ ড ⓨ ᡬ ᇘ ☝ ᷵ ℷ ᅲ Ո ┉ ߱ Ⴗ Ϣ ᅲ ┉ ߱ Ⴗ ᯊ Ⓒ ↨ ṇ ਘ˖བ ᠔ ߾ Ẃࠄஂᑺ ৺ ׂᬍൟ ᰃ ᩥਜ਼☝᷵ℷₓ ᑓ Н ඃ ᗻ ড ⓨ ᩥ ਜ਼ ẕ ഄᜬ ൟ ⌕ ࣏
t + = t ABCD + t DEFG − t ABFG
D ࡴ ޣ ⊩ ᡬ ᇘ ☝ ᷵ ℷ ߾ ᛣ E ᑓ Н Ѧ ᤶ ⊩ ᡬ ᇘ ☝ ᷵ ℷ ߾ ᛣ ˅ᑓ Н Ѧ ᭄ᢆ⌟ிඣ ᤶ ⊩ ᡬ ᇘ ☝ ᑊ᷵ ϡ࿁ֱ ℷ ॳ ˊ ᪅ഄ☦Ϟ $ǃ* ' ⚍ ᳝ བ D ᠔ ߾ Ոᇘ ඃ Ჳ ᕘ ݇ ிDŽ E ᜬ ߾ $ǃ* ' ⚍ П Ⓒ ᱂ ἑ Ո݇ ிDŽ ℸᯊ ৃᜬ߾Ў
ǃ Ў Ҕ М ᡅ ẟ ᜐ ࡼ ᷵ ℷ ˄ 3 ৰ ϔ ↉ ˅ ˈ ˛ ࡼ ᷵ ợ ᑺ ᇍ ࡼ ᷵ ℷ ᳝ Ҕ М ᕅ ડ ˄3 ਘ˖˅ࡼ ˅ ᷵ ℷ Ո ֲ Ո ᰃ⍜ ┨ ⚂ Ẕ Ს ᇍড ᇘ ⊶ ᮙ ᜐ ᯊ Ո ᕅ ડ ˈ᷵ ᑇ ݅ ⏅ ᑺ ⚍ড ᇘ ⊶ ᯊ Ს
᳆ ඃ ˅ Ո Ḭ ᆩ ẽ ợ ˈᑺ أᔎ ʌ ߽ ˈࡼϬ ᷵ ࡴ ℷ ᡔ ৢ ᴃ Ո य़ ৠ ࠊ ּ ᑆ Ḹ ᡄ ϟ Ո ᢝ ࿁ ˈ ࢴ ˈࡼ ޣ᷵ ᇣϡ ᱷ ࡴ ˗ẋ ᆩ ࣏ ợ ᓩ ᑺ ᰻ أՈ Ԣ ড ˈࡼᇘ ⊶ ᷵ ৠ ℷ ּ ৢ Ḹ Ո м ৠ ব ּ DŽ Ḹ Ϟ ᡯ ǃˈ ࢴ ᡅ ࡼ ভ᷵ ẋẴ ₓ ⚂ ˗ᔧ⚍ ợ ޚᑺ ☦ ড় ☝Ệ ᯊ ᷵ ˈࡼℷ Ո ᷵ ᩥ ℷ ਜ਼ ৢ ẋՈ ৠ࣏ ּ ᑊ Ḹ ┈ ߭ ᝯ ᪸ ᢝ ᯢ ᑇ DŽ DŽ˄3 ˅ ˅ ˄D˅ඝ ߎ њ া ᳝ ϔ Ͼ ࣪ ሖ Ո ऩ ẕ ഄ ᜬ ൟ ˈഄ ☦ $ǃ% ⚍ᇍᑨ ࣪ ሖ ᑩ А Ո ǃ ⚍ˈᇍᑨ ☦ ޚϞ Ո ˈ ⚍DŽϟ ☦ ᇍ $ǃ% Ϟ Ո ഄ ○ ᩴᔩ ẟ ᜐ ᯊ Ⓒ᷵ ℷ ˈՓ П Ḱ ࣪ Ў ˈ ⚍ᩴᔩ ᠔ ᢆ ⌟ ࠄՈ ᩴᔩ ᯊ ⒸˈϨ ☦ ޚП ϟ ᮴ ࣪ ሖ Ԣ ợ ᏺ Ո ᄬ DŽ Ўẝ Ͼ ẋ ࣏ Ո ৰ ϔ ℹ ᰃ࠹ এ ࣪ ሖ Ո ᕅ ડ ˈབ ˄E˅᠔ ߾ ˈᇚ ഄ ☦ $ǃ% ⚍Ո ᩴ ᔩ ᯊ Ⓒ᫇ ᭈ Ў ࣪ ሖ ᑩ А ǃ ⚍Ո ᩴᔩ ᯊ ⒸDŽ $ ⚍ˈृ ẋ ࣪ ሖ Ո ᯊ ⒸЎ $ ⚍ࠄ Ո Ӵ ᪁ ᯊ ⒸˈᩴЎ ˈ% ⚍ृ ẋ ࣪ ሖ Ո ᯊ ⒸЎ DŽẝ ⍜ ┨ ࣪ ሖ ᕅ ડ Ո ᷵ ℷ ࢴ ৰ ЎѠ ℹ ࣪ ˈབሖ ᷵ ℷ ˄ DŽ F˅᠔ ߾ ˈ ݡᇚ ഄ ○ ᩴᔩ ᯊ Ⓒϵ ࣪ ሖ Ո ᑩ А ᷵ ℷ ࠄখ ☦ ޚϞ ˈᇍ $ ⚍໐ ᣄ ˈ᷵ ℷ ᯊ ⒸЎ ࠄ Ո Ӵ ᪁ ᯊ ⒸˈᩴЎ ˗ି Ԑ ഄ ˈ% ⚍Ո ᷵ ℷ ᯊ ⒸᩴЎ ˈẝ ⍜ ┨ ʌ ࣏ ᕅ ડ Ո ᷵ ℷ ࢴ Ўʌ ࣏ ᷵ ℷ DŽ ഄᜬ ഄᜬ ࣪ሖ ࣪ሖ ☦ޚ ☦ޚ ˄˅ ˄˅
˅ খ᭄ọᢽՈᮍ⊩ ˄˅8 ⌟⌟ ℹ ⑃ᄤ ˈ ݇ᑺ ⏲ˈখᡅ ᭄Ệ ˈ8 ⌟ ড ࢳᔶ ᬜ ሒ ᵰ ᾬ Ϣ ⊶ ℸ ࡼ ᳝ ˗݇ ˗ˈ ࡴ Ẕ ਜ਼ ₓ ˈּ ড ᇘ ঞ ా ໄ ˄˅8 ⑃ ᅰ ˈᇣˈ⊶ ᕅ ડ ˄˅8 ˗ Ձ ࣪ ₓ ˈ ࡴ ∖ ᢧ Ո ࣷ ᅮ ᗻ ˈ◄ ḍ ా ໄ ∈ ᑇ ᴹ ᅮ DŽ
AW BW
AR
BR
AR
BR
பைடு நூலகம்AW
BW
AW
∆T AW
∆TBW
AW
AR
∆T AR
∆TBR
A
B
A
B
AW AR
∆TAW AW
BR
∆TBW
BW
BW
1
1
a
b
2
A
B
থɴ⒲L᪻᫂ᴀЁᶹᡒ ℸ $ ⚍Ո ☝ ☦ ޚ᷵ ℷ ₓ Ў
BR
∆TBR
AW
∆TAR
AR
BW
ഄᜬ ࣪ሖ ☦ޚ
∆TA = ∆TAW + ∆TAR
ˆ (t + α ) x
ˆ (t + α ) = c(t ) * x(t ) = ∑ c(τ ) x(t − τ ) x
m τ =0
ˆ (t + α ) ε (t + α ) = x(t + α ) − x
1
থɴ⒲L᪻᫂ᴀЁᶹᡒ
ॳ ˊ ˈᕫ བ ϟ ᮍ ࣏ ˖ Ҹ
∑ c(τ )∑ x(t − τ ) x(t − s) = ∑ x(t + α ) x(t − s), (s = 0,1,2,L, m)
% ⚍Ո ☝ ☦ ޚ᷵ ℷ ₓ Ў
∆TB = ∆TBW − ∆TBR
˄˅
1
c
ǃ ǃ Ẵ ࡴ ޣ ⊩ ᡬ ᇘ ☝ ᷵ ℷ ঞ ˈ ᑊ ┈ ᑓ Н᪸ Ѧᯢ ᤶDŽ˄⊩ 3 ᡬ ᇘ ☝ ᷵ ℷ ॳ ˊ ˅ ਘ˖
˅ ࡴ ޣ ⊩ ᡬ ᇘ ☝ ᷵ ℷ ॳ ˊ ᪩ᮍ⊩ ҡ ◄ ᡅ ᣒ প Ŋ ⊶ ˈ Ԛ ᮴ / ᩥ ਜ਼ ߱ Ⴗᡬ ᇘᯊ ☝ⒸՈ᷵ ℷ᭰ ɋ߾ Ს DŽ D ᰃࡴ ޣ ⊩ ᛣ ˈᜬ ߾ Ϣ ϝ ᇍ ⚂ Ẕ Ს $' Ոǃ' * ܄ࣙ $ᣀ * ϸּ Ͼ༘ ᯊி Ⓒؐˈे Ո ᇘ ඃ Ჳ ࡴᕘ ޣDŽ᪩ᮍ ⊩ؐ˖ ᯊⒸ
থɴ⒲L᪻᫂ᴀЁᶹᡒ
ഄ○᭄໘ˊᮍ⊩дᰈ᭭ ਘ˖᭄ ǃ ߎ ݭᢧ ഄ ේ ○ ėࡴᰈ ᭭ ᢆ ໘⌟ ி ˊ ඣ Ո ėẔϔ ჰ ᶹ ℹ ᢆ ɘ⌟ ி˛ඣ ė☝ ᷵ ℷ ėợ ᑺ ߚ ᵤ ėࡼ ᷵ ℷ ė߱ ℹ ࡴ ė
࠽ ԭ ☝ ǃ᷵ ᅲ ℷ ┉ ėợЁ ᑺᡅ ߚ ∖ ᵤ Ⓒ ė ఼ ⊶ݡ᳝ ાࡴ ė࠽ ԭ ☝ ᷵ ℷ ėأ ࢿ ѯ ᗻ ᯬ ˛ ˄ 3 ˈ ˈ ᇍ Ⓒ ⊶ ఼ Ո ᡅ ∖ ˅ ਘ˖˅ॅ ߎ ᳝ ᬜ ֵ ো ˈय़ ࠊ ᑆ ᡄ ֵ ো ˗ ˅Ⓒ ⊶ ఼ ᑨ ᪩ ᰃ► ּ ԡ Ո ˈẝ ḋ ≵ ᳝ ּ ԡ м ব ˗ ˅Ⓒ ⊶ ఼ Ո E ᑨ ᪩ ᰃ☢ ᯣ Ո ᅲ ي ߑ ᭄ ˈ݊Ⓒ ⊶ ᄤ ᰃᅲ ߑ ᭄ DŽ ࿁ ǃ ₓǃᐌ▊ ЁẴϬ ᳔∖ Ŋ ᇣᄤ ᾬ ּ⊶ ԡՈ ֵᮍ ো⊩ Ո᳝ Ľા ⚍ѯ DŽ ˛ ˄ 3 ˅ ˅ ਘ˖˅ָᢆ⌟⊩˄Ệ Ϭ Ѣ ⍋ Ϟ ˅˗ ˅Ⴎ ּ ݇ ⊩˖ ∖ ܜᄤ ⊶ ࡳ ɋ ˄Ϣ ഄ ○ ᩴ ᔩ ࡳ ɋ ּ ˅ˈ∖ ݡ ᄤ ⊶ ּ ԡ ˄ּ ԡ ˈ ˅ˈᄤ ⊶ ˗ ∫ ߽ ᯊˈ✊ Ϭ ⌟ѩ ৢ ᰈ ᩥ ᭭ ਜ਼ ∖ ড ᄤ ᇘ ⊶ ி ˖Ŋ᭄ ˈᇍѩ ܜᇚ ໄ ᮕ ⊶ ഄ ᯊᏂ○ ᩴ Ḱ ᔩ ࣪ Ў ড ໄ ᇘ ⊶ ி ợ ᭄ ᑺ ẟ ˈ✊ᜐ ٙ ৢ ⇣ ˈẟব ᤶৢᜐ ⏅ ˈৃᯊḰᕫ ᤶˈᰃ ঠՈ ሖE ˅ ᮙ ᜐˈ᳔ ࠄ ᄤ ⊶ ৢ ᇍᄤ ⊶ E ٙ ⇣ ড ব ᤶህ ᕫ ࠄ ഄ ○ ᄤ ⊶ ˗ ˅ ᇍ ᭄ ߚ ᢧ ⊩ ˖ᇍֵ ো ܜ Ҭ ⇣ ℷ ব ᤶˈݡ প ᇍ᭄ ˈ✊ ৢ ẟ ᜐ Ҭ ⇣ ড ব ᤶˈϬ Ԣ Ở Ⓒ ⊶ ᇚ ᄤ ⊶ ǃᇍ᭄ ޚ ☦ᑣ ᳝߫ ߚ ા ࡿ ѯ ߎ ˈᴹ ᳝ ˈᇍ݊Ҭ ⇣ ℷ ব ᤶˈݡ প ᣛ ᭄ ˈ᳔ ৢ ẟ ᜐ Ҭ ⇣ ড ব ᤶˈेᕫ ᄤ ⊶ DŽ ԩ Ϭ ˈ ᪻ ᡅ ভ Ẵ DŽ ˄ 3 ᳔ ᳔ ৢ ϸ ↉ ˅ ਘ˖˅ খ ޚ ☦ ˖ഄ ○ ᭄ ᝯ ᷵ ℷ ࠄ খ ޚ ☦ Ϟ ˈ⍜ ┨ њ ഄ ᜬ ᰻ ӣ ࣪ ሖ ῾ ব ࣪ ˅ Ո ᕅ ⍂ ડ ࡼ DŽ ˖ ☦ ޚᅗ ᰃỞ ẋ ᇍϔ Ͼ Ͼ & 0 3 ▊ ᠔ ⍝ ঞ Ո ☝ ᷵ ℷ ₓ ẟ ᜐ ᑇ ഛ ˈᕫ ࠄ Ո ϔ Ͼ ؛ǃᬥ᭄ ᄫ ޚⒸ☦ ˈᅗ ᰃϔ Ͼ ᯊⒸ ޚ ☦ ˈି Ԑ Ѣ ᇍ ޚ ☦ ᳆ ඃ ẟ ᜐ ा Ⓒ Ⓒ ⊶ DŽ བ Ո ԩ Ӿ ᢧ ⒬ ˄˛ৃˈ އ 3Փ ˅ ⊶ ࡿ ᬷ᳝ ᗻ ા ѯ ᭄ Ľ ᄫ ⅞ Ⓒ ׂ ⊶ ڟЁ ˈ ᑆ ˅ᡄ ⊶ Ở ẋ Ӿ ⒬ ֱ Н ϟ ᴹ DŽЎ ὃ ਘ˖˅ϵ Ѣ ѻ ϣ ࿁ ܡĀӾ ⒬ āỤ ៤ Ո ᕅ ડ ˈৃ ҹ ᰃỆ ᔧ Ո ọ ᢽ ₋ ḋ Ⓒ ╘ WՓ ৰ ϔ Ͼ ĀӾ ⒬ āߎ ɴ ᑆ ᡄ ⊶ Ո E ˅ᔧ ᇇ ೈ ПE ɋ DŽ Ľ ᗻ ᳆ ඃ ᰃϡ Ả න ߑ ᭄ ໐ ᇍⒸ ⊶ ᄤ প ᳝ └ ᯊˈᇚ ѻ ϣ ঢ় Ꮧ ᮃ ˄* L E E V ˅ɴ ᬥDŽЎ њ ὃ ܡঢ় Ꮧ ᮃ ɴᬥỤ ៤ Ո ᕅ ડ ˈৃ ₋ Ϭ ṽ ⊩ ˈे E ɋ Ľ ᗻ ᳆ ඃ Ո ϡ Ả න ⚍ ┈ ẕ ˈ ϞϔᴵẢනՈṽDŽ
| X (e jω ) |2 =| B(e jω ) |2 α (ω ) = ln | X (e jω ) |
φ (ω ) = − HT [α (ω )] = − a (ω ) * b( n) = 1 2π 1 πω
π −π
B (e jω )e jωn dω
ǃ Ẵ 8 ⊶ Ո ˊ ˄ 3 ˅ ঞ ˄ 3 ˅ DŽ ˄ ভ ⌟ Ⓒ ॳ 8 ⌟ ড ࢳ খ ᭄ ọ ᢽ Ո ᮍ ⊩ ↉ ਘ˖˅ Ꮬ ᫂ ӊ 8 ˅⌟Ⓒ ⊶ ॳ ˊ
3
থɴ⒲L᪻᫂ᴀЁᶹᡒ
ਘ˖˅ ǃ᪻ ⚂ẔᲡߚᏗ Ẵ ᕅ ડ ợ ᑺ ߚ ᵤ Ո DŽ˄3 ˅
ᔧ ợ ᑺ ߚ ᵤ Ո ݅ Ё ᖗ ⚍ ▊ Ё У Ạ ⚂ Ẕ Ს Ոഄ○ ᯊ ˈợ ᑺ ࿁ₓ ༞ ⛺ ᗻ ব Ꮒ ˈợ ᑺ ߚᢝ ṬԌ ɋ ┑ Ԣ ˗ᔧ ợ ᑺ ߚ ᵤ Ո ݅ Ё ᖗ ⚍ ▊ Ё У Ạ ᇣ ⚂ Ẕ Ს Ոഄ○ ᯊ ˈ Ạ ⚂ Ẕ Ს ໘ ࡼ ᷵ ℷ ┑ Ԣ њ ợ ᑺ ߚ ᵤ ֵ ো Ոּ ݇ ᗻ ˈ ᇸ ݊ ᇍ Ѣ ⌙ ሖ ˈẝ ᕅ ડ ˗ ˈ ╓ ᥦ ߫ ⑃ ᑺ Ո ޣᇣ ˅ ˈợ ᑺ ࡴ ߚ Ṭ ᭄ ɋỔ ⏤ ┑ Ԣ DŽ ℸ ợ ᑺ ߚ ᵤ ▊ Ո⚂ Ẕ Ს ᑨ ᪩ Ạ ẕ ݐ2 ǃഛ ࣔ ߚ Ꮧ DŽ ẋ˅Ԣ ֵ Ոా ↨ ࡴ ợ ᑺ ᮴ ⊩ ֱ᪅ợ ᑺ Ոᯬ ₓ ẋ˅Ԣ ߛ ֵ ┨ ా ↨ Ӯ ┑ Ԣ ợ ᑺ ߚ ᵤ Ոᯬ ₓ ফ˅ߛ ợ ┨ ᑺ ᕅ ₋ ડ ḋ ᳔ ᆚ ᑺ Ոᰃ ⌙ ሖ ഄ○ ড ᇘ ợ˅ᑺ ᯊ ₋ ज़ ḋ ᆑ ẋ ᑺ Ꮰ Ӯ ┑ Ԣ ợ ᑺ ߚ Ṭ ɋˈᕅ ડ ợ ᑺ ߚ ᵤ ஂ ᑺ ᯊ˅ज़ ּ ᑆ ሲ ˈợᗻ Ո ᑺ ọ ᢽ Ոߚ Ṭ ɋ┑ Ԣ ˗ẋ ᇣ ߭ ᆍ ᯧ ᩶ ϔ Ͼ ഄ○ ড ᇘ ߚ ឆ ᓔ ᴹ ഄᜬ˅ẕ ᓖ ഄ ᐌ ᜬ ѻ ᓖ ϣ ᐌ Ո☝ ᷵ ℷ ⒲ L ᇍ ợ ᑺ ߚ ᵤ ᕅ ડ ṇ ˈ ࠽ ⑃⊶ ڱԭ ☝ ᷵ ℷ Ϲ ₑ ᕅ ડ ࡴ ᬜ ᵰˈ ┑ Ԣ њ ߽ Ϭ ࡴ ࿁ₓ ˄ ּ ݇ ᗻ ߚ ᵤ ˅ẟ ᜐ ợ ᑺ Ԅ ᩥ Ո᳝ ᬜ ᗻ ˈ⑃ ⊶⑃ ☝ ᷵ ℷ ৃ ࿁ϡᕅ ડ ݅ Ё ᖗ ⚍ ࡴ Ոᬜ ᵰˈ Ԛ ᆍ ᯧ ѻ ϣ ợ ᑺ ᓖ ᐌ ˅ ᭄ Ո E ᆑ ᑺ Eᏺ ᱎ ᆑ ˈợ ᑺ ߚ Ṭ ɋᱎ ད
᪂ Ў ɴ ؐ ˈ Ў ẋ এ ؐ བ ᵰ ᅮ Н 8 ⌟ ℹ ⑃ Ў ¢ˈϬ ɴ ؐ ẋ এ ؐ ᴹ 8 ⌟ ᇚ ᴹ ᯊࠏ Ո 8 ⌟ ؐ ˈे DŽ ᳔ ᇣ ˈᣝ ᳔ ᇣ ᑇ ᮍ Փ 8 ⌟ ؐ Ϣ ᅲ ┉ ᴹ ؐ Ո ᪳ Ꮒ ü8 ⌟ ᪳ Ꮒ
t +α
x (t )
x(t − i ), i = 1,2,⋅ ⋅ ⋅
m T T τ =0 τ =0 τ =0
rxx (τ − s) = ∑ x (t − τ ) x (t − s)
T τ =0
ˈ
rxx ( s + α ) = ∑ x(t + α ) x(t − s )
T τ =0
߭ϞᓣবЎ
τ =0
∑r
m
xx
(τ − s )c (τ ) = rxx ( s + α ), ( s = 0,1,2,L , m)
t+
t+ = t ABCD 2 + t D1 EFG − t ABFG −
D1D2 vb
t−
Ў
t − = t ABCD 2 − t D1 EFG + t ABFG
ẕഄᜬ߱ྟൟ
ℷ ܲ ᩥ ਜ਼ ߱ Ⴗ ᯊ ℹ ɘǃDŽ˄Ẵ 3 ᑓ ˅ Н˅ඃ ᗻ ড ⓨ ᡬ ᇘ ☝ ᷵ ℷ ᅲ Ո ┉ ߱ Ⴗ Ϣ ᅲ ┉ ߱ Ⴗ ᯊ Ⓒ ↨ ṇ ਘ˖བ ᠔ ߾ Ẃࠄஂᑺ ৺ ׂᬍൟ ᰃ ᩥਜ਼☝᷵ℷₓ ᑓ Н ඃ ᗻ ড ⓨ ᩥ ਜ਼ ẕ ഄᜬ ൟ ⌕ ࣏
t + = t ABCD + t DEFG − t ABFG
D ࡴ ޣ ⊩ ᡬ ᇘ ☝ ᷵ ℷ ߾ ᛣ E ᑓ Н Ѧ ᤶ ⊩ ᡬ ᇘ ☝ ᷵ ℷ ߾ ᛣ ˅ᑓ Н Ѧ ᭄ᢆ⌟ிඣ ᤶ ⊩ ᡬ ᇘ ☝ ᑊ᷵ ϡ࿁ֱ ℷ ॳ ˊ ᪅ഄ☦Ϟ $ǃ* ' ⚍ ᳝ བ D ᠔ ߾ Ոᇘ ඃ Ჳ ᕘ ݇ ிDŽ E ᜬ ߾ $ǃ* ' ⚍ П Ⓒ ᱂ ἑ Ո݇ ிDŽ ℸᯊ ৃᜬ߾Ў
ǃ Ў Ҕ М ᡅ ẟ ᜐ ࡼ ᷵ ℷ ˄ 3 ৰ ϔ ↉ ˅ ˈ ˛ ࡼ ᷵ ợ ᑺ ᇍ ࡼ ᷵ ℷ ᳝ Ҕ М ᕅ ડ ˄3 ਘ˖˅ࡼ ˅ ᷵ ℷ Ո ֲ Ո ᰃ⍜ ┨ ⚂ Ẕ Ს ᇍড ᇘ ⊶ ᮙ ᜐ ᯊ Ո ᕅ ડ ˈ᷵ ᑇ ݅ ⏅ ᑺ ⚍ড ᇘ ⊶ ᯊ Ს
᳆ ඃ ˅ Ո Ḭ ᆩ ẽ ợ ˈᑺ أᔎ ʌ ߽ ˈࡼϬ ᷵ ࡴ ℷ ᡔ ৢ ᴃ Ո य़ ৠ ࠊ ּ ᑆ Ḹ ᡄ ϟ Ո ᢝ ࿁ ˈ ࢴ ˈࡼ ޣ᷵ ᇣϡ ᱷ ࡴ ˗ẋ ᆩ ࣏ ợ ᓩ ᑺ ᰻ أՈ Ԣ ড ˈࡼᇘ ⊶ ᷵ ৠ ℷ ּ ৢ Ḹ Ո м ৠ ব ּ DŽ Ḹ Ϟ ᡯ ǃˈ ࢴ ᡅ ࡼ ভ᷵ ẋẴ ₓ ⚂ ˗ᔧ⚍ ợ ޚᑺ ☦ ড় ☝Ệ ᯊ ᷵ ˈࡼℷ Ո ᷵ ᩥ ℷ ਜ਼ ৢ ẋՈ ৠ࣏ ּ ᑊ Ḹ ┈ ߭ ᝯ ᪸ ᢝ ᯢ ᑇ DŽ DŽ˄3 ˅ ˅ ˄D˅ඝ ߎ њ া ᳝ ϔ Ͼ ࣪ ሖ Ո ऩ ẕ ഄ ᜬ ൟ ˈഄ ☦ $ǃ% ⚍ᇍᑨ ࣪ ሖ ᑩ А Ո ǃ ⚍ˈᇍᑨ ☦ ޚϞ Ո ˈ ⚍DŽϟ ☦ ᇍ $ǃ% Ϟ Ո ഄ ○ ᩴᔩ ẟ ᜐ ᯊ Ⓒ᷵ ℷ ˈՓ П Ḱ ࣪ Ў ˈ ⚍ᩴᔩ ᠔ ᢆ ⌟ ࠄՈ ᩴᔩ ᯊ ⒸˈϨ ☦ ޚП ϟ ᮴ ࣪ ሖ Ԣ ợ ᏺ Ո ᄬ DŽ Ўẝ Ͼ ẋ ࣏ Ո ৰ ϔ ℹ ᰃ࠹ এ ࣪ ሖ Ո ᕅ ડ ˈབ ˄E˅᠔ ߾ ˈᇚ ഄ ☦ $ǃ% ⚍Ո ᩴ ᔩ ᯊ Ⓒ᫇ ᭈ Ў ࣪ ሖ ᑩ А ǃ ⚍Ո ᩴᔩ ᯊ ⒸDŽ $ ⚍ˈृ ẋ ࣪ ሖ Ո ᯊ ⒸЎ $ ⚍ࠄ Ո Ӵ ᪁ ᯊ ⒸˈᩴЎ ˈ% ⚍ृ ẋ ࣪ ሖ Ո ᯊ ⒸЎ DŽẝ ⍜ ┨ ࣪ ሖ ᕅ ડ Ո ᷵ ℷ ࢴ ৰ ЎѠ ℹ ࣪ ˈབሖ ᷵ ℷ ˄ DŽ F˅᠔ ߾ ˈ ݡᇚ ഄ ○ ᩴᔩ ᯊ Ⓒϵ ࣪ ሖ Ո ᑩ А ᷵ ℷ ࠄখ ☦ ޚϞ ˈᇍ $ ⚍໐ ᣄ ˈ᷵ ℷ ᯊ ⒸЎ ࠄ Ո Ӵ ᪁ ᯊ ⒸˈᩴЎ ˗ି Ԑ ഄ ˈ% ⚍Ո ᷵ ℷ ᯊ ⒸᩴЎ ˈẝ ⍜ ┨ ʌ ࣏ ᕅ ડ Ո ᷵ ℷ ࢴ Ўʌ ࣏ ᷵ ℷ DŽ ഄᜬ ഄᜬ ࣪ሖ ࣪ሖ ☦ޚ ☦ޚ ˄˅ ˄˅
˅ খ᭄ọᢽՈᮍ⊩ ˄˅8 ⌟⌟ ℹ ⑃ᄤ ˈ ݇ᑺ ⏲ˈখᡅ ᭄Ệ ˈ8 ⌟ ড ࢳᔶ ᬜ ሒ ᵰ ᾬ Ϣ ⊶ ℸ ࡼ ᳝ ˗݇ ˗ˈ ࡴ Ẕ ਜ਼ ₓ ˈּ ড ᇘ ঞ ా ໄ ˄˅8 ⑃ ᅰ ˈᇣˈ⊶ ᕅ ડ ˄˅8 ˗ Ձ ࣪ ₓ ˈ ࡴ ∖ ᢧ Ո ࣷ ᅮ ᗻ ˈ◄ ḍ ా ໄ ∈ ᑇ ᴹ ᅮ DŽ
AW BW
AR
BR
AR
BR
பைடு நூலகம்AW
BW
AW
∆T AW
∆TBW
AW
AR
∆T AR
∆TBR
A
B
A
B
AW AR
∆TAW AW
BR
∆TBW
BW
BW
1
1
a
b
2
A
B
থɴ⒲L᪻᫂ᴀЁᶹᡒ ℸ $ ⚍Ո ☝ ☦ ޚ᷵ ℷ ₓ Ў
BR
∆TBR
AW
∆TAR
AR
BW
ഄᜬ ࣪ሖ ☦ޚ
∆TA = ∆TAW + ∆TAR
ˆ (t + α ) x
ˆ (t + α ) = c(t ) * x(t ) = ∑ c(τ ) x(t − τ ) x
m τ =0
ˆ (t + α ) ε (t + α ) = x(t + α ) − x
1
থɴ⒲L᪻᫂ᴀЁᶹᡒ
ॳ ˊ ˈᕫ བ ϟ ᮍ ࣏ ˖ Ҹ
∑ c(τ )∑ x(t − τ ) x(t − s) = ∑ x(t + α ) x(t − s), (s = 0,1,2,L, m)
% ⚍Ո ☝ ☦ ޚ᷵ ℷ ₓ Ў
∆TB = ∆TBW − ∆TBR
˄˅
1
c
ǃ ǃ Ẵ ࡴ ޣ ⊩ ᡬ ᇘ ☝ ᷵ ℷ ঞ ˈ ᑊ ┈ ᑓ Н᪸ Ѧᯢ ᤶDŽ˄⊩ 3 ᡬ ᇘ ☝ ᷵ ℷ ॳ ˊ ˅ ਘ˖
˅ ࡴ ޣ ⊩ ᡬ ᇘ ☝ ᷵ ℷ ॳ ˊ ᪩ᮍ⊩ ҡ ◄ ᡅ ᣒ প Ŋ ⊶ ˈ Ԛ ᮴ / ᩥ ਜ਼ ߱ Ⴗᡬ ᇘᯊ ☝ⒸՈ᷵ ℷ᭰ ɋ߾ Ს DŽ D ᰃࡴ ޣ ⊩ ᛣ ˈᜬ ߾ Ϣ ϝ ᇍ ⚂ Ẕ Ს $' Ոǃ' * ܄ࣙ $ᣀ * ϸּ Ͼ༘ ᯊி Ⓒؐˈे Ո ᇘ ඃ Ჳ ࡴᕘ ޣDŽ᪩ᮍ ⊩ؐ˖ ᯊⒸ
থɴ⒲L᪻᫂ᴀЁᶹᡒ
ഄ○᭄໘ˊᮍ⊩дᰈ᭭ ਘ˖᭄ ǃ ߎ ݭᢧ ഄ ේ ○ ėࡴᰈ ᭭ ᢆ ໘⌟ ி ˊ ඣ Ո ėẔϔ ჰ ᶹ ℹ ᢆ ɘ⌟ ி˛ඣ ė☝ ᷵ ℷ ėợ ᑺ ߚ ᵤ ėࡼ ᷵ ℷ ė߱ ℹ ࡴ ė
࠽ ԭ ☝ ǃ᷵ ᅲ ℷ ┉ ėợЁ ᑺᡅ ߚ ∖ ᵤ Ⓒ ė ఼ ⊶ݡ᳝ ાࡴ ė࠽ ԭ ☝ ᷵ ℷ ėأ ࢿ ѯ ᗻ ᯬ ˛ ˄ 3 ˈ ˈ ᇍ Ⓒ ⊶ ఼ Ո ᡅ ∖ ˅ ਘ˖˅ॅ ߎ ᳝ ᬜ ֵ ো ˈय़ ࠊ ᑆ ᡄ ֵ ো ˗ ˅Ⓒ ⊶ ఼ ᑨ ᪩ ᰃ► ּ ԡ Ո ˈẝ ḋ ≵ ᳝ ּ ԡ м ব ˗ ˅Ⓒ ⊶ ఼ Ո E ᑨ ᪩ ᰃ☢ ᯣ Ո ᅲ ي ߑ ᭄ ˈ݊Ⓒ ⊶ ᄤ ᰃᅲ ߑ ᭄ DŽ ࿁ ǃ ₓǃᐌ▊ ЁẴϬ ᳔∖ Ŋ ᇣᄤ ᾬ ּ⊶ ԡՈ ֵᮍ ো⊩ Ո᳝ Ľા ⚍ѯ DŽ ˛ ˄ 3 ˅ ˅ ਘ˖˅ָᢆ⌟⊩˄Ệ Ϭ Ѣ ⍋ Ϟ ˅˗ ˅Ⴎ ּ ݇ ⊩˖ ∖ ܜᄤ ⊶ ࡳ ɋ ˄Ϣ ഄ ○ ᩴ ᔩ ࡳ ɋ ּ ˅ˈ∖ ݡ ᄤ ⊶ ּ ԡ ˄ּ ԡ ˈ ˅ˈᄤ ⊶ ˗ ∫ ߽ ᯊˈ✊ Ϭ ⌟ѩ ৢ ᰈ ᩥ ᭭ ਜ਼ ∖ ড ᄤ ᇘ ⊶ ி ˖Ŋ᭄ ˈᇍѩ ܜᇚ ໄ ᮕ ⊶ ഄ ᯊᏂ○ ᩴ Ḱ ᔩ ࣪ Ў ড ໄ ᇘ ⊶ ி ợ ᭄ ᑺ ẟ ˈ✊ᜐ ٙ ৢ ⇣ ˈẟব ᤶৢᜐ ⏅ ˈৃᯊḰᕫ ᤶˈᰃ ঠՈ ሖE ˅ ᮙ ᜐˈ᳔ ࠄ ᄤ ⊶ ৢ ᇍᄤ ⊶ E ٙ ⇣ ড ব ᤶህ ᕫ ࠄ ഄ ○ ᄤ ⊶ ˗ ˅ ᇍ ᭄ ߚ ᢧ ⊩ ˖ᇍֵ ো ܜ Ҭ ⇣ ℷ ব ᤶˈݡ প ᇍ᭄ ˈ✊ ৢ ẟ ᜐ Ҭ ⇣ ড ব ᤶˈϬ Ԣ Ở Ⓒ ⊶ ᇚ ᄤ ⊶ ǃᇍ᭄ ޚ ☦ᑣ ᳝߫ ߚ ા ࡿ ѯ ߎ ˈᴹ ᳝ ˈᇍ݊Ҭ ⇣ ℷ ব ᤶˈݡ প ᣛ ᭄ ˈ᳔ ৢ ẟ ᜐ Ҭ ⇣ ড ব ᤶˈेᕫ ᄤ ⊶ DŽ ԩ Ϭ ˈ ᪻ ᡅ ভ Ẵ DŽ ˄ 3 ᳔ ᳔ ৢ ϸ ↉ ˅ ਘ˖˅ খ ޚ ☦ ˖ഄ ○ ᭄ ᝯ ᷵ ℷ ࠄ খ ޚ ☦ Ϟ ˈ⍜ ┨ њ ഄ ᜬ ᰻ ӣ ࣪ ሖ ῾ ব ࣪ ˅ Ո ᕅ ⍂ ડ ࡼ DŽ ˖ ☦ ޚᅗ ᰃỞ ẋ ᇍϔ Ͼ Ͼ & 0 3 ▊ ᠔ ⍝ ঞ Ո ☝ ᷵ ℷ ₓ ẟ ᜐ ᑇ ഛ ˈᕫ ࠄ Ո ϔ Ͼ ؛ǃᬥ᭄ ᄫ ޚⒸ☦ ˈᅗ ᰃϔ Ͼ ᯊⒸ ޚ ☦ ˈି Ԑ Ѣ ᇍ ޚ ☦ ᳆ ඃ ẟ ᜐ ा Ⓒ Ⓒ ⊶ DŽ བ Ո ԩ Ӿ ᢧ ⒬ ˄˛ৃˈ އ 3Փ ˅ ⊶ ࡿ ᬷ᳝ ᗻ ા ѯ ᭄ Ľ ᄫ ⅞ Ⓒ ׂ ⊶ ڟЁ ˈ ᑆ ˅ᡄ ⊶ Ở ẋ Ӿ ⒬ ֱ Н ϟ ᴹ DŽЎ ὃ ਘ˖˅ϵ Ѣ ѻ ϣ ࿁ ܡĀӾ ⒬ āỤ ៤ Ո ᕅ ડ ˈৃ ҹ ᰃỆ ᔧ Ո ọ ᢽ ₋ ḋ Ⓒ ╘ WՓ ৰ ϔ Ͼ ĀӾ ⒬ āߎ ɴ ᑆ ᡄ ⊶ Ո E ˅ᔧ ᇇ ೈ ПE ɋ DŽ Ľ ᗻ ᳆ ඃ ᰃϡ Ả න ߑ ᭄ ໐ ᇍⒸ ⊶ ᄤ প ᳝ └ ᯊˈᇚ ѻ ϣ ঢ় Ꮧ ᮃ ˄* L E E V ˅ɴ ᬥDŽЎ њ ὃ ܡঢ় Ꮧ ᮃ ɴᬥỤ ៤ Ո ᕅ ડ ˈৃ ₋ Ϭ ṽ ⊩ ˈे E ɋ Ľ ᗻ ᳆ ඃ Ո ϡ Ả න ⚍ ┈ ẕ ˈ ϞϔᴵẢනՈṽDŽ
| X (e jω ) |2 =| B(e jω ) |2 α (ω ) = ln | X (e jω ) |
φ (ω ) = − HT [α (ω )] = − a (ω ) * b( n) = 1 2π 1 πω
π −π
B (e jω )e jωn dω
ǃ Ẵ 8 ⊶ Ո ˊ ˄ 3 ˅ ঞ ˄ 3 ˅ DŽ ˄ ভ ⌟ Ⓒ ॳ 8 ⌟ ড ࢳ খ ᭄ ọ ᢽ Ո ᮍ ⊩ ↉ ਘ˖˅ Ꮬ ᫂ ӊ 8 ˅⌟Ⓒ ⊶ ॳ ˊ
3
থɴ⒲L᪻᫂ᴀЁᶹᡒ
ਘ˖˅ ǃ᪻ ⚂ẔᲡߚᏗ Ẵ ᕅ ડ ợ ᑺ ߚ ᵤ Ո DŽ˄3 ˅
ᔧ ợ ᑺ ߚ ᵤ Ո ݅ Ё ᖗ ⚍ ▊ Ё У Ạ ⚂ Ẕ Ს Ոഄ○ ᯊ ˈợ ᑺ ࿁ₓ ༞ ⛺ ᗻ ব Ꮒ ˈợ ᑺ ߚᢝ ṬԌ ɋ ┑ Ԣ ˗ᔧ ợ ᑺ ߚ ᵤ Ո ݅ Ё ᖗ ⚍ ▊ Ё У Ạ ᇣ ⚂ Ẕ Ს Ոഄ○ ᯊ ˈ Ạ ⚂ Ẕ Ს ໘ ࡼ ᷵ ℷ ┑ Ԣ њ ợ ᑺ ߚ ᵤ ֵ ো Ոּ ݇ ᗻ ˈ ᇸ ݊ ᇍ Ѣ ⌙ ሖ ˈẝ ᕅ ડ ˗ ˈ ╓ ᥦ ߫ ⑃ ᑺ Ո ޣᇣ ˅ ˈợ ᑺ ࡴ ߚ Ṭ ᭄ ɋỔ ⏤ ┑ Ԣ DŽ ℸ ợ ᑺ ߚ ᵤ ▊ Ո⚂ Ẕ Ს ᑨ ᪩ Ạ ẕ ݐ2 ǃഛ ࣔ ߚ Ꮧ DŽ ẋ˅Ԣ ֵ Ոా ↨ ࡴ ợ ᑺ ᮴ ⊩ ֱ᪅ợ ᑺ Ոᯬ ₓ ẋ˅Ԣ ߛ ֵ ┨ ా ↨ Ӯ ┑ Ԣ ợ ᑺ ߚ ᵤ Ոᯬ ₓ ফ˅ߛ ợ ┨ ᑺ ᕅ ₋ ડ ḋ ᳔ ᆚ ᑺ Ոᰃ ⌙ ሖ ഄ○ ড ᇘ ợ˅ᑺ ᯊ ₋ ज़ ḋ ᆑ ẋ ᑺ Ꮰ Ӯ ┑ Ԣ ợ ᑺ ߚ Ṭ ɋˈᕅ ડ ợ ᑺ ߚ ᵤ ஂ ᑺ ᯊ˅ज़ ּ ᑆ ሲ ˈợᗻ Ո ᑺ ọ ᢽ Ոߚ Ṭ ɋ┑ Ԣ ˗ẋ ᇣ ߭ ᆍ ᯧ ᩶ ϔ Ͼ ഄ○ ড ᇘ ߚ ឆ ᓔ ᴹ ഄᜬ˅ẕ ᓖ ഄ ᐌ ᜬ ѻ ᓖ ϣ ᐌ Ո☝ ᷵ ℷ ⒲ L ᇍ ợ ᑺ ߚ ᵤ ᕅ ડ ṇ ˈ ࠽ ⑃⊶ ڱԭ ☝ ᷵ ℷ Ϲ ₑ ᕅ ડ ࡴ ᬜ ᵰˈ ┑ Ԣ њ ߽ Ϭ ࡴ ࿁ₓ ˄ ּ ݇ ᗻ ߚ ᵤ ˅ẟ ᜐ ợ ᑺ Ԅ ᩥ Ո᳝ ᬜ ᗻ ˈ⑃ ⊶⑃ ☝ ᷵ ℷ ৃ ࿁ϡᕅ ડ ݅ Ё ᖗ ⚍ ࡴ Ոᬜ ᵰˈ Ԛ ᆍ ᯧ ѻ ϣ ợ ᑺ ᓖ ᐌ ˅ ᭄ Ո E ᆑ ᑺ Eᏺ ᱎ ᆑ ˈợ ᑺ ߚ Ṭ ɋᱎ ད
᪂ Ў ɴ ؐ ˈ Ў ẋ এ ؐ བ ᵰ ᅮ Н 8 ⌟ ℹ ⑃ Ў ¢ˈϬ ɴ ؐ ẋ এ ؐ ᴹ 8 ⌟ ᇚ ᴹ ᯊࠏ Ո 8 ⌟ ؐ ˈे DŽ ᳔ ᇣ ˈᣝ ᳔ ᇣ ᑇ ᮍ Փ 8 ⌟ ؐ Ϣ ᅲ ┉ ᴹ ؐ Ո ᪳ Ꮒ ü8 ⌟ ᪳ Ꮒ
t +α
x (t )
x(t − i ), i = 1,2,⋅ ⋅ ⋅
m T T τ =0 τ =0 τ =0
rxx (τ − s) = ∑ x (t − τ ) x (t − s)
T τ =0
ˈ
rxx ( s + α ) = ∑ x(t + α ) x(t − s )
T τ =0
߭ϞᓣবЎ
τ =0
∑r
m
xx
(τ − s )c (τ ) = rxx ( s + α ), ( s = 0,1,2,L , m)