经典整式的乘除运算专题训练
整式的乘除测试题练习8套(含答案)
整式的乘除练习题(8套)含答案整式的乘除测试题练习一一、精心选一选(每小题3分,共30分) 1、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅ 2、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x ++B 、2m x +C 、1m x +D 、2n m x ++ 3、下列算式中,不正确的是( )A 、xy 21y x y x 21)xy 21)(1x2x (n 1n 1n n -+-=-+-+-B 、1n 21n n x )x (--= C 、y x x 2x31)y x 2x 31(x n 1n n 2nn --=--+D 、当n 为正整数时,n 4n 22a )a (=- 4、下列运算中,正确的是( )A 、222ac 6c b 10)c 3b 5(ac 2+=+B 、232)a b ()b a ()1b a ()b a (---=+--C 、c b a )c b a (y )a c b (x )1y x )(a c b (-+-----+=++-+D 、2)a b 2(5)b a 3)(b 2a ()a 2b 11)(b 2a (--+-=-- 5、下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)y x 1(+-D 、222)y x 1(-- 6、已知5x 3x 2++的值为3,则代数式1x 9x 32-+的值为( ) A 、0 B 、-7 C 、-9 D 、3 7、当m=( )时,25x )3m (2x 2+-+是完全平方式 A 、5± B 、8 C 、-2 D 、8或-28、某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有5106⨯个水龙头,5102⨯个抽水马桶漏水。
整式的乘除计算题专项练习
整式的乘除计算题专项练习
1、化简4(a+b)+2(a+b)-5(a+b)得到a+6b。
2、展开(3mn+1)(3mn-1)-8mn得到9m^2n^2-1-8mn。
3、化简[(xy-2)(xy+2)-2xy+4]÷(xy),得到xy-2.
4、将a代入(2a-1)^2+(2a-1)(a+4)中,得到-15.
5、展开(x+2)(x-3)-(x+1)(x-2)得到x-5.
6、化简(-2xy+22)/(4-22/xy),得到(11xy-1)/2.
7、化简(9abc)/(2ab)·(-3abc),得到-27c。
8、将表达式展开得到-x^2-y^2+xy+xxxxxxx/4.
9、将分子展开得到-5xy+4y^2+1/3x。
10、将(2a+b)^4展开,得到
16a^4+32a^3b+24a^2b^2+8ab^3+b^4,再除以2a+b得到
8a^3+16a^2b+12ab^2+4b^3.
11、无法确定题目意思,无法改写。
12、将分子展开得到x^2+3x+2,再除以-x得到-(x+1)-2/x。
13、将124×122展开得到,再除以2得到7524.
14、将表达式展开得到16,再除以-4x得到-4.
15、将表达式化简得到-47x^2y,再代入x=2,y=1得到-94.
16、无法确定题目意思,无法改写。
17、将分子展开得到2a^2b+2ab^2-2a^2+2b^2,再代入
a=-1/2,b=24得到-2216.
18、将表达式展开得到-3y^2,再代入x=-2,y=1得到-7.
19、将分子展开得到3a^2+6a-3,再除以a-2得到3a+12.。
整式的乘除法专题训练(含答案)
整式的乘除法专题训练类型一:幂的运算性质幂的运算性质共有六个:1同底数幂的乘法;2. 幂的乘方;3. 积的乘方;4.同底数幂的除法;5.负整数指数幂;6.零次幂运算需要注意的问题:1. 看清楚运算符号加、减、乘、除、乘方;2. 计算时注意“—”号;3. 3.认清楚指数和底数;4.正确联系运算性质和法则一、计算1.4353x x x x x ••+•2.()()()()x 211x 21x 21x 2432-•-+-•-3.()()4n 31n 35x x x x -•+•--4.()()()()a b b a a b b a 432-•-+-•-5.()()()344321044x 5x 2x 2x 2x 2•+-•+-6.()()()()y x xy 2y 2x x 32332•-•+-••-7.()()()2222332x x x 3x 2•+-+-8.()()()72335m m m-••-9.()()36x -x -÷10.()()63243x x x 2÷÷-11.()()()223223x -x -x x x x •÷+÷÷12.()()[]()[]322313x 2-y y -x 2y -x 2÷÷类型二:幂的运算性质的灵活运用13.已知的值。
求b a b a2,72,42+==14.已知,a 3a x =+用含a 的代数式表示.3x15.已知,5.133,63n m ==求m+n 的值。
16.已知的值。
求2n m n m a ,2a ,3a ++==17.已知的值。
求b 3a 2b a 10,610,510+==18.若的值。
求y x 328,03y 5x 3•=-+19.已知486331x 22x 2=-++,求x 的值。
20.已知(),a a a 113m 5=•求m 的值。
21.已知的值。
求n 2-1m n m 9,43,23+==22.若的值。
整式的乘除法专题训练(含答案)
整式的乘除法专题训练类型一:幂的运算性质幂的运算性质共有六个:1 同底数幂的乘法;2. 幂的乘方;3. 积的乘方;4. 同底数幂的除法;5. 负整数指数幂;6. 零次幂运算需要注意的问题:1. 看清楚运算符号加、减、乘、除、乘方;2. 计算时注意“—”号;3. 3.认清楚指数和底数;4. 正确联系运算性质和法则一、计算3?x5 x ?x3?x41.x2342.2x 1 2? 2x 1 32x 1 4? 1 2 x3. x 5 ?x 3n 1 x 3n x 44. a b 2 ? b a 3 a b 4 ? b a2 33 2 2 2 27. 2x 2 3x 3 x 2 ? x 25. 2x 4 42x 10 2x 2344 2x 4 ?5 x 4 6. 2 3 3 x ? x 3 ? 2y23 2xy ? x ? y63 9. - x - x32 211. x 3x 23 xx22 -x ?-x1312. 2x-y 13322x - y23 y- 2x类型二:幂的运算性质的灵活运用13.已知2a 4,2b 7, 求2a b的值。
14.已知3x a10. 2x3x 2 3x6a,用含 a 的代数式表示3x.15.已知3m6,3n13.5,求m+n 的值m n m n 2a m3,a n2, 求a m n 2的值16.已知17.已知10a5,10b6, 求102a 3b的值。
18.若3x 5y 3 0, 求8x?32y的值。
19.已知32x 232x 1486,求x 的值20.已知a5? a m 3a11,求m的值21.已知3m 2,3n 4,求9m 1-2n的值1212222.若 10m 20,10n 1,求9m 32n 的值。
5 23.已知 25a ?52b 56,4b 4c 4,则代数式 a+2b-c 的值类型三:运用幂的运算性质进行有理数的混合运算24. 48 0.2582019 201825. 5 2019 0.220182118 211726. 8 0.125 2019 27. -1 1 0.2520209 2019 2019-4 202110121222 2018 28.3 1.52018 - 1 30 29.-23 π-3.14 0 -1-20191 -1-330.-22π-3 0-1-2类型四:科学记数法31. 用小数表示下列各数(1) 3 106(2)8.7 10-3(3) 6.12 10-332. 滴水穿石的故事大家都听说过吧,现在测量出:水珠不断地滴在一块石头上,经过40 年,石头上形成一个深为 4 10-2m的小洞,问每年小洞的深度增加多少米?(用科学记数法表示)33. _________________________ 成人每天维生素 D 的摄入量约为0.000 004 6克。
初二整式的乘除必考练习题及答案
初二整式的乘除必考练习题及答案乘法练习题:1. 计算下列算式的乘积:a) 5 × 7 =b) 6 × 3 =c) 8 × 4 =d) 9 × 2 =e) 12 × 10 =2. 用竖式计算下列乘法问题:a) 24 × 3 =b) 15 × 6 =c) 27 × 4 =d) 18 × 5 =e) 32 × 12 =3. 用分配律计算下列乘法问题:a) 3 × (5 + 2) =b) 4 × (6 + 1) =c) 2 × (8 + 3) =d) 6 × (9 + 2) =e) 7 × (10 + 6) =除法练习题:1. 计算下列算式的商和余数:a) 14 ÷ 3 = 商____ 余____b) 21 ÷ 4 = 商____ 余____c) 36 ÷ 5 = 商____ 余____d) 47 ÷ 6 = 商____ 余____e) 52 ÷ 7 = 商____ 余____2. 用列竖式计算下列除法问题:a) 56 ÷ 8 = 商____ 余____b) 81 ÷ 9 = 商____ 余____c) 72 ÷ 6 = 商____ 余____d) 96 ÷ 12 = 商____ 余____e) 108 ÷ 9 = 商____ 余____3. 解决下列问题并用整式表达答案:a) Sara家有24个饼干,她打算将它们平均分给3个朋友。
每个朋友能得到多少个饼干?b) 在一个农场里,有36头牛,农民打算将它们平均分配在6个牲口场。
每个牲口场将有多少头牛?以上是初二整式乘除必考练习题及答案。
希望通过这些题目的练习能够提升你的整式的乘除能力。
加油!。
整式乘除试题及答案
整式乘除试题及答案一、选择题1. 下列哪个选项是整式乘法的运算法则?A. 同底数幂相乘,指数相加B. 同底数幂相除,指数相减C. 幂的乘方,指数相乘D. 积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘答案:A2. 计算 (2x^2)(3x^3) 的结果是:A. 6x^5B. 6x^6C. 6x^8D. 18x^5答案:A3. 已知 a^2 = 4,那么 a^3 的值是:A. 8B. 16C. 12D. 4答案:A二、填空题4. 计算 (3x^2 - 2x + 1)(2x^2 + 3x - 4) 的结果中,x^4 的系数是_______。
答案:65. 如果 (x+1)(x-1) = x^2 - _______,那么横线上的数字是_______。
答案:1三、解答题6. 计算 (2x^2 - 3x + 1)(3x^2 + 2x - 5) 的乘积,并展开。
答案:6x^4 + x^3 - 13x^3 - 9x^2 + 15x + 2x^2 - 3x - 5 = 6x^4- 11x^3 - 5x^2 + 12x - 57. 已知 (x^2 + 2x)^2 = x^4 + 4x^3 + 4x^2,求 (x^2 + 2x)^3 的值。
答案:(x^2 + 2x)^3 = (x^2 + 2x)(x^4 + 4x^3 + 4x^2) = x^6 +6x^4 + 12x^3 + 8x^2四、应用题8. 一个长方形的长是宽的两倍,如果宽是 x 米,那么面积是 (2x)(x) 平方米。
求当 x = 3 时,长方形的面积。
答案:当 x = 3 时,面积 = 2 * 3 * 3 = 18 平方米9. 一个数的平方是 25,求这个数的立方。
答案:这个数是 5 或 -5,所以立方分别是 125 或 -125。
整式的乘除整章练习题(完整)
5.已知 ,则 ____________.
6.计算:(1) ______________.(2) ____________.
7.下列计算正确的是( )
A. B.
C. D.
8.下列计算正确的个数为( )
(1) (2) (3) (4)
A.0个B.1个C.2个D.3个
10.计算.
(1)(2x 一3 +4x-1)(一3x);
(2) .
11.计算.
(1)2 - (2 -5b)-b(5 -b);
(2) .
12.先化简,再求值.
(1)m (m+3)+2m(m —3)一3m(m +m-1),其中m ;
(2)4 b( b- b + 6)一2 b (2 —3 b+2 ),其中 =3,b=2.
第1章整式的乘除
第1课时幂的运算(一)
1.计算:(1) _________;(2) _____________.
2.计算:(1) ___________;(2) ______________.
3.计算:(1) ________;(2) ____________.
4.计算: ____________.5.计算:(1) __________;(2) __________.
7.下列运算中,正确的是( )
A.( 一2b)( -2b)= -4b B.(- +2b)( 一2b)=- 一2b
C.( +2b)( 一2b)=- -2b D.(一 一2b)(一 +2b)= -4b
8.在下列各式中,运算结果为36y +49x 的是( )
完整版)整式的乘除典型例题
完整版)整式的乘除典型例题1.若 $a=8$,$m+n=16$,则 $a=\frac{m+n}{n}=2$。
2.已知 $2m=3$,$2n=4$,则$23m+2n=23\times\frac{3}{2}+2\times2=19$。
3.若 $\frac{xy}{2x+5y}=4$,则 $xy=8x+20y$。
4.若 $a>5$,且 $a=2$ 或 $a=3$,则 $ax-y$ 的值为 $2^{x-y}$ 或 $3^{x-y}$。
5.已知 $x^8\times x^a=x^3a$,则 $a=5-3m$。
6.若 $a^{m+1}b^{n+2}\times a^{2n-1}b=a^5b^3$,则$m+n=3$。
7.若 $2a=5$,$2b=3$,$2c=45$,则 $a=\frac{5}{2}$,$b=\frac{3}{2}$,$c=15$。
8.若 $\frac{x-m}{x^2+x+a}=1$,则 $m=-\frac{a}{4}$,$a=12$。
9.若 $abc^2=5$,$2=3$,$2=30$,则$a=\frac{1}{\sqrt{15}}$,$b=\frac{\sqrt{5}}{3}$,$c=1$。
10.比较 $5$ 和 $\frac{24}{25}$ 的大小,$8$ 和$\frac{2514}{1000}$ 的大小。
11.计算$\frac{2011}{3}-\frac{1}{2}\times\frac{2012}{3}$。
12.计算 $\frac{-1}{8}\times2$,$1990\times\frac{3980}{825n}$。
13.若 $a+b=2013$,$a-b=1$,则 $a^2-b^2=2012\times2014$。
14.计算 $1232-\frac{124\times122}{2}$,$899\times901+1$。
15.计算 $\frac{2x+1}{2x-1}\times\frac{4x+1}{x^2+2x+1}\times\frac{2}{(x+2)^3}$。
(完整版)整式的乘除计算题汇总
《整式的乘除》测试题(B 卷)、填空题(每题2分,共20 分)D 、( -2x 2)(1-3x 3)= - 2x 2+6x 55、 若(a m+1b n+1)(a 2n b 2m )=a 5b 3,贝S m+n 的值为( )A 、1B 、2C 、3D 、-36、 下列各式中正确的是( )A 、(a + 4) (a -4)= a 2— 4B 、(5x - 1) (1 -5x )= 25x 2— 1C 、(-3x + 2) 2 = 4- 12x + 9x 2D 、(x -3) (x -9)= x 2-277、 如果 x 2- kx - ab =(x -a ) (x + b ),贝S k 应为( )A 、a + bB 、a — bC 、b — aD 、一 a — b&若多项式4x 2 4nx m 等于2x J ,则m 、n 满足( )A. m n 2 0B. m n 2 0C. m 2 n 0D. n m 2 09、因式分解x 2+2xy+y 2-4的结果是()班级 姓名 成绩1、 F 列运算中正确的是(. 3 4 f 3 A.x x x B. x x / 2 \3 C. (x ) x 5 D. 2、 计算 3a 2b 3 4的结果是( A 、 81a 8b 12 B 、12a 6b 7 C 、 12a 6b 7 81a 8b 12 3、 4、 若 3x 5 , 3y 4,则 32xy 等于( A 25 ; 4 ;下列计算正确的是 A 、a 2 • a 3=a 6 B.6 ; C.21;D.20.(B 、x ( x 2+x 2)=2x 4 + x 3C 、( -2x)4=-16x 4A . (x+y+2) (x+y-2)B . (x+y+4) (x+y-1 )C . (x+y-4) (x+y+1)D .不能分解10、计算x(1+x)-x(1-x)的结果是()二、填空题(每题3分,共30 分)2、 ____________________________________________ 分解因式: 5X82 — 20xb 2= __________________________________3、 _________________________________ — x 2 • ( — x ) 3 •( — x ) 2= .4、 _________________________________ 若 x 3m =2,则 x 2m (x m +x 4m -x 7m ) = .5、 如果代数式(ax-y)(x+y)的乘积中不含“ xy ”型的项,那么a 的值求 3(- ab) 2+(-2 a) 3bc-5 a 2•(- b) 2+3a 3bc 的值 3、已知:(a + b ) 2=7 , (a -b ) 2=9,求 a 2+ b 2 及 ab 的值2 a 2(x-y ) +b 2(y-x ).A 、2xB 、2x 2C 、0D 、 2x 2x 21、已知a 3 2b 6 2 b 3 3,那么 a 8 9 10b 4= ________4、下列各式进行因式分解.( 1)4x2 3(4xy 3y2 )5、某学校欲建如图所示的草坪(阴影部分),请你计算一下,一共需要铺是设草坪多少平方米?如果每平方米草坪需100元,则学校为是设草坪一共需投资多少元?(单位:米)6、( x4)3 ( x2)3?( x)3 ( x)2 = __________________7、____________________________________ 若a+b=3, ab=2,则护+b2二8、已知m2 n2 6m 10n 34 0,贝S m n= _________________________ .9、19922—1991X 1993= _________ .10、_______________________________________________________ 若2x2+3x+7的值是8,则代数式9-4x2-6x的值是____________________ 三、解答题(每题10分,共50分)1、已知32m 5,3n 10,求(1)9mn; (2)92mn2、已知(a+1)2=0, I b-4 I + I c-(-2) 3I =0,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的乘除运算
同底数幂的乘法、积的乘方、幂的乘方
1. 下列计算正确的是
A. B. C. D.
2. 计算:正确的结果是
A. B. C. D.
3. 的运算结果是
A. B. C. D.
4. 计算.
(x-y)3·(y-x)3·(y-x)4
5. 为正整数时,的计算结果为
A. B. C. D.
6.x=430,y=340,比较x与y的大小
7.有一道计算题:(-a4)2,李老师发现全班同学有以下四种解法,
①(-a4)2=(-a4)(-a4)=a4•a4=a8;②(-a4)2=-a4×2=-a8;
③(-a4)2=(-a)4×2=(-a)8=a8;④(-a4)2=(-1×a4)2=(-1)2•(a4)2=a8.
你认为其中完全正确的是(填序号)
公式的逆用
1. 计算:.
2. 已知,,则等于
A. B. C. D.
3. 若,求的值.
4. 已知,求的值.(为正整数)
5.已知2m+5n-3=0,则4m×32n的值为 .
整式的乘法
1. 计算的结果是
A. B. C. D.
2.-x2·(-x)3·(-x)4-x2·(-x3)2·(-x)
3. 计算:.
4.计算.
(x+5)(x-6) (x-1)(x+6) (x+2)(x+3) (x-2)(x+3)
(2x+1)(3x-2) (2x+3)(5x-1),
5.计算-5x(-x2+2x+1)-(2x+3)(5-x2)
6. 若,则
A. B. C. D.
7. 如果单项式与同类项,那么这两个单项式的积是
A. B. C. D.
化简求值
1. 已知,那么的值是
A. B. C. D.
2. 若,则代数式.
3. 已知,,则.
4. 先化简,再求值:,其中.
5. 先化简,再求值:,其中.
6. 先化简再求值:,其中,.
7. 已知,,则,的大小关系是
A. B. C. D. 无法确定字母参数
1. 若与的乘积中不含的一次项,则实数的值为
A. B. C. D.
2.要使(ax2-3x)(x2-2x-1)的展开式中不含x3项,则a=__________.
3.若化简(ax+3y)(x-y)的结果中不含xy项,则a的值为.
4.如果的乘积中不含项,则为( )
A、-5
B、5
C、
D、
5. 如果的展开式中不含项和项,则,的值分别为
A. ,
B. ,
C. ,
D. ,
6、若的展开式中不含和项,求、的值。
7. 试说明:.的值与m无关
挑战自我
甲、乙两人共同计算一道整式乘法:,由于甲抄错了第一个多项式中前面的符号,得到的结果为;由于乙漏抄了第二个多项式中的的系数,得到的结果为,请你计算出,的值各是多少,并写出这道整式乘法的正确结果.
解方程
1. 适合的的值为
A. B. C. D.
2. 解方程:.。