2016年陕西省中考数学试题(副题)【最新精选】

合集下载

2016年陕西省中考数学试卷及答案解析

2016年陕西省中考数学试卷及答案解析

2016年陕西省中考数学试卷及答案解析2016年陕西省中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.计算:(﹣)×2=()A.﹣1 B.1 C.4 D.﹣42.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A.B.C.D.3.下列计算正确的是()A.x2+3x2=4x4B.x2y?2x3=2x4y C.(6x2y2)÷(3x)=2x2D.(﹣3x)2=9x24.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°5.b)设点A(a,是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=0 6.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.107.已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N 是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有())A.2对B.3对C.4对D.5对9.OC.⊙O的半径为4,△ABC是⊙O的内接三角形,如图,连接OB、若∠BAC与∠BOC互补,则弦BC的长为()A.3B.4C.5D.610.已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A.B.C.D.2二、填空题(共4小题,每小题3分,满分12分)11.不等式﹣x+3<0的解集是.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是.B.运用科学计算器计算:3sin73°52′≈.(结果精确到0.1)13.已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为.14.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为.三、解答题(共11小题,满分78分)15.计算:﹣|1﹣|+(7+π)0.16.化简:(x﹣5+)÷.)17.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)18.某校为了进一步改变本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?19.如图,在?ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.20.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,)这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.21.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?22.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶、红茶和可乐,抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.)23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF ∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC?BG.24.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N(3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.25.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决)(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.)2016年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.计算:(﹣)×2=()A.﹣1 B.1 C.4 D.﹣4【考点】有理数的乘法.【分析】原式利用乘法法则计算即可得到结果.【解答】解:原式=﹣1,故选A2.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是(A.B.C.D.【考点】简单组合体的三视图.【分析】根据已知几何体,确定出左视图即可.【解答】解:根据题意得到几何体的左视图为,故选C3.下列计算正确的是()A.x2+3x2=4x4B.x2y?2x3=2x4y C.(6x2y2)÷(3x)=2x2D.(﹣3x)2=9x2【考点】整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】A、原式合并得到结果,即可作出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可作出判断;C、原式利用单项式除以单项式法则计算得到结果,即可作出判断;D、原式利用积的乘方运算法则计算得到结果,即可作出判断.【解答】解:A、原式=4x2,错误;B、原式=2x5y,错误;C、原式=2xy2,错误;D、原式=9x2,正确,故选D4.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()))A.65°B.115°C.125°D.130°【考点】平行线的性质.【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB 的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.5.b)设点A(a,是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=0 【考点】一次函数图象上点的坐标特征.【分析】直接把点A(a,b)代入正比例函数y=﹣x,求出a,b的关系即可.【解答】解:把点A(a,b)代入正比例函数y=﹣x,可得:﹣3a=2b,可得:3a+2b=0,故选D6.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.10【考点】三角形中位线定理;等腰三角形的判定与性质;勾股定理.)【分析】根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.【解答】解:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,∴AC===10,∵DE是△ABC的中位线,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=8.故选B.7.已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】两条直线相交或平行问题.【分析】根据k的符号来求确定一次函数y=kx+b的图象所经过的象限,然后根据b的情况即可求得交点的位置.【解答】解:∵一次函数y=kx+5中k>0,∴一次函数y=kx+5的图象经过第一、二、三象限.又∵一次函数y=k′x+7中k′<0,∴一次函数y=k′x+7的图象经过第一、二、四象限.∵5<7,∴这两个一次函数的图象的交点在第一象限,故选A.8.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N 是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有())A.2对B.3对C.4对D.5对【考点】正方形的性质;全等三角形的判定.【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′由此即可对称结论.【解答】解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.9.OC.⊙O的半径为4,△ABC是⊙O的内接三角形,如图,连接OB、若∠BAC与∠BOC互补,则弦BC的长为()A.3D.6【考点】垂径定理;圆周角定理;解直角三角形.)B.4C.5【分析】首先过点O作OD⊥BC于D,由垂径定理可得BC=2BD,又由圆周角定理,可求得∠BOC的度数,然后根据等腰三角形的性质,求得∠OBC的度数,利用余弦函数,即可求得答案.【解答】解:过点O作OD⊥BC于D,则BC=2BD,∵△ABC内接于⊙O,∠BAC与∠BOC互补,∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB==30°,∵⊙O的半径为4,∴BD=OB?cos∠OBC=4×∴BC=4.故选:B.=2,10.已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A.B.C.D.2【考点】抛物线与x轴的交点;锐角三角函数的定义.【分析】先求出A、B、C坐标,作CD⊥AB于D,根据tan∠ACD=即可计算.【解答】解:令y=0,则﹣x2﹣2x+3=0,解得x=﹣3或1,不妨设A(﹣3,0),B(1,0),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点C(﹣1,4),如图所示,作CD⊥AB于D.)在RT△ACD中,tan∠CAD===2,故答案为D.二、填空题(共4小题,每小题3分,满分12分)11.不等式﹣x+3<0的解集是x6【考点】解一元一次不等式.【分析】移项、系数化成1即可求解.【解答】解:移项,得﹣x<﹣3,系数化为1得x>6.故答案是:x>6.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是8 .B.运用科学计算器计算:3sin73°52′≈11.9.(结果精确到0.1)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方;多边形内角与外角.【分析】(1)根据多边形内角和为360°进行计算即可;(2)先分别求得3和sin73°52′的近似值,再相乘求得计算结果.【解答】解:(1)∵正多边形的外角和为360°∴这个正多边形的边数为:360°÷45°=8sin73°52′≈12.369×0.961≈11.9 (2)3故答案为:8,11.913.已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为.【考点】反比例函数与一次函数的交点问题.【分析】根据已知条件得到A(﹣2,0),B(0,4),过C作CD⊥x轴于D,根据相似三角形的性质得到==,求得C(1,6),即可得到结论.【解答】解:∵一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,∴A(﹣2,0),B(0,4),过C作CD⊥x轴于D,∴OB∥CD,∴△ABO∽△ACD,∴==,∴CD=6,AD=3,∴OD=1,∴C(1,6),)设反比例函数的解析式为y=,∴k=6,∴反比例函数的解析式为y=.故答案为:y=.14.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为2﹣2.【考点】菱形的性质;等腰三角形的判定;等边三角形的性质.【分析】如图连接AC、BD交于点O,以B为圆心BC为半径画圆交BD于P.此时△PBC是等腰三角形,线段PD最短,求出BD即可解决问题.【解答】解:如图连接AC、BD交于点O,以B为圆心BC为半径画圆交BD于P.此时△PBC是等腰三角形,线段PD最短,∵四边形ABCD是菱形,∠ABC=60°,∴AB=BC=CD=AD,∠ABC=∠ADC=60°,∴△ABC,△ADC是等边三角形,∴BO=DO=×2=,∴BD=2BO=2,∴PD最小值=BD﹣BP=2故答案为2﹣2.﹣2.)三、解答题(共11小题,满分78分)15.计算:﹣|1﹣|+(7+π)0.【考点】实数的运算;零指数幂.【分析】直接化简二次根式、去掉绝对值、再利用零指数幂的性质化简求出答案.【解答】解:原式=2﹣(﹣1)+1=2﹣+2=+2.16.化简:(x﹣5+)÷.【考点】分式的混合运算.【分析】根据分式的除法,可得答案.【解答】解:原式==(x﹣1)(x﹣3)=x2﹣4x+3.17.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)?【考点】作图—相似变换.【分析】过点A作AD⊥BC于D,利用等角的余角相等可得到∠BAD=∠C,则可判断△ABD与△CAD相似.【解答】解:如图,AD为所作.)18.某校为了进一步改变本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是比较喜欢;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?【考点】众数;用样本估计总体;扇形统计图;条形统计图.【分析】(1)根据条形统计图与扇形统计图可以得到调查的学生数,从而可以的选B的学生数和选B和选D的学生所占的百分比,从而可以将统计图补充完整;(2)根据(1)中补全的条形统计图可以得到众数;(3)根据(1)中补全的扇形统计图可以得到该年级学生中对数学学习“不太喜欢”的人数.【解答】解:(1)由题意可得,调查的学生有:30÷25%=120(人),选B的学生有:120﹣18﹣30﹣6=66(人),B所占的百分比是:66÷120×100%=55%,D所占的百分比是:6÷120×100%=5%,故补全的条形统计图与扇形统计图如右图所示,(2)由(1)中补全的条形统计图可知,所抽取学生对数学学习喜欢程度的众数是:比较喜欢,故答案为:比较喜欢;(3)由(1)中补全的扇形统计图可得,该年级学生中对数学学习“不太喜欢”的有:960×25%=240(人),即该年级学生中对数学学习“不太喜欢”的有240人.)19.如图,在?ABCD中,连接BD,在BD的延长线上取一点E,在DB 的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】由平行四边形的性质得出AD∥BC,AD=BC,证出∠1=∠2,DF=BE,由SAS证明△ADF≌△CBE,得出对应角相等,再由平行线的判定即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠1=∠2,∵BF=DE,∴BF+BD=DE+BD,即DF=BE,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴∠AFD=∠CEB,∴AF∥CE.20.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,)这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.【考点】相似三角形的应用.【分析】根据镜面反射原理结合相似三角形的判定方法得出△ABC∽△EDC,△ABF∽△GFH,进而利用相似三角形的性质得出AB的长.【解答】解:由题意可得:∠ABC=∠EDC=∠GFH=90°,∠ACB=∠ECD,∠AFB=∠GHF,故△ABC∽△EDC,△ABF∽△GFH,则即==,,=,=,解得:AB=99,答:“望月阁”的高AB的长度为99m.21.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?)【考点】一次函数的应用.【分析】(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.【解答】解:(1)设线段AB所表示的函数关系式为:y=kx+b,依题意有解得.,故线段AB所表示的函数关系式为:y=﹣96x+192(0≤x≤2);(2)12+3﹣(7+6.6)=15﹣13.6=1.4(小时),112÷1.4=80(千米/时),÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.22.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶、红茶和可乐,抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.)【考点】列表法与树状图法;概率公式.【分析】(1)由转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客经过两次“有效随机转动”后,获得一瓶可乐的情况,再利用概率公式求解即可求得答案.∵转盘被等分成五个扇形区域,“绿”、“乐”、“茶”、【解答】解:(1)每个区域上分别写有“可”、“红”字样;∴一次“有效随机转动”可获得“乐”字的概率为:;(2)画树状图得:∵共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为:.23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF ∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC?BG.【考点】相似三角形的判定与性质;垂径定理;切线的性质.)【分析】(1)由平行线的性质得出EF⊥AD,由线段垂直平分线的性质得出FA=FD,由等腰三角形的性质得出∠FAD=∠D,证出∠DCB=∠G,由对顶角相等得出∠GCF=∠G,即可得出结论;(2)连接AC,由圆周角定理证出AC是⊙O的直径,由弦切角定理得出∠DCB=∠CAB,证出∠CAB=∠G,再由∠CBA=∠GBA=90°,证明△ABC ∽△GBA,得出对应边成比例,即可得出结论.【解答】证明:(1)∵EF∥BC,AB⊥BG,∴EF⊥AD,∵E是AD的中点,∴FA=FD,∴∠FAD=∠D,∵GB⊥AB,∴∠GAB+∠G=∠D+∠DCB=90°,∴∠DCB=∠G,∵∠DCB=∠GCF,∴∠GCF=∠G,∴FC=FG;(2)连接AC,如图所示:∵AB⊥BG,∴AC是⊙O的直径,∵FD是⊙O的切线,切点为C,∴∠DCB=∠CAB,∵∠DCB=∠G,∴∠CAB=∠G,∵∠CBA=∠GBA=90°,∴△ABC∽△GBA,∴=,∴AB2=BC?BG.24.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N(3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.)【考点】二次函数综合题.【分析】(1)把M、N两点的坐标代入抛物线解析式可求得a、b的值,可求得抛物线解析式,再根据一元二次方程根的判别式,可判断抛物线与x轴的交点情况;(2)利用A点坐标和等腰三角形的性质可求得B点坐标,设出平移后的抛物线的解析式,把A、B的坐标代入可求得平移后的抛物线的解析式,比较平移前后抛物线的顶点的变化即可得到平移的过程.【解答】解:(1)由抛物线过M、N两点,把M、N坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣3x+5,令y=0可得x2﹣3x+5=0,该方程的判别式为△=(﹣3)2﹣4×1×5=9﹣20=﹣11<0,∴抛物线与x轴没有交点;(2)∵△AOB是等腰直角三角形,A(﹣2,0),点B在y轴上,∴B点坐标为(0,2)或(0,﹣2),可设平移后的抛物线解析式为y=x2+mx+n,①当抛物线过点A(﹣2,0),B(0,2)时,代入可得∴平移后的抛物线为y=x2+3x+2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),,解得,∴将原抛物线先向左平移3个单位,再向下平移3个单位即可获得符合条件的抛物线;②当抛物线过A(﹣2,0),B(0,﹣2)时,代入可得∴平移后的抛物线为y=x2+x﹣2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),,解得,∴将原抛物线先向左平移2个单位,再向下平移5个单位即可获得符合条件的抛物线.25.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.)问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.【考点】四边形综合题.【分析】(1)作B关于AC 的对称点D,连接AD,CD,△ACD即为所求;(2)作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,得到此时四边形EFGHDE′=DE=2,∠A=90°,的周长最小,根据轴对称的性质得到BF′=BF=AF=2,于是得到AF′=6,AE′=8,求出E′F′=10,EF=2即可得到结论;(3)根据余角的性质得到1=∠2,推出△AEF≌△BGF,根据全等三角形的性质得到AF=BG,AE=BF,BF=AE=2,设AF=x,则AE=BF=3﹣x根据勾股定理列方程得到AF=BG=1,作△EFG关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,于是得到四边形EFGH′是符合条件的最大部件,根据矩形的面积公式即可得到结论.【解答】解:(1)如图1,△ADC即为所求;(2)存在,理由:作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,交BC于G,交CD于H,连接FG,EH,则F′G=FG,E′H=EH,则此时四边形EFGH的周长最小,由题意得:BF′=BF=AF=2,DE′=DE=2,∠A=90°,∴AF′=6,AE′=8,∴E′F′=10,EF=2,∴四边形EFGH的周长的最小值=EF+FG+GH+HE=EF+E′F′=2+10,∴在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小,最小值为2+10;(3)能裁得,理由:∵EF=FG=,∠A=∠B=90°,∠1+∠AFE=∠2+AFE=90°,∴∠1=∠2,)在△AEF与△BGF中,,∴△AEF≌△BGF,∴AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x,。

2016年陕西省中考数学试题及详细解析

2016年陕西省中考数学试题及详细解析
A.2对B.3对C.4对D.5对
9.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB,OC,若∠BAC与∠BOC互补,则弦BC的长为()
A. B. C. D.
10.已知抛物线 与x轴交于A,B两点,将这条抛物线的顶点记为C,连接AC,BC,则tan∠CAB的值为()
A. B. C. D.2
根据下面图象,回答下列问题:
(1)2千米,求他何时到家?
22.(本题满分7分)
某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动.奖品是三种瓶装饮料,它们分别是:绿茶(500 ml)、红茶(500 ml)和可乐(600 ml).抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应的奖品一瓶;不相同时,不能获得任何奖品.
如图,已知:AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.
21.(本题满分7分)
昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回.如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.
二、填空题(共4小题,每小题3分,计12分)

2016陕西中考数学试题及答案word版

2016陕西中考数学试题及答案word版

2016陕西中考数学试题及答案word版一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个是正确的,请将正确选项的字母填入题后的括号内。

)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 如果一个角的度数是90°,那么这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:B3. 计算下列表达式的值:(2+3)×4A. 20B. 24C. 28D. 32答案:A4. 一个数的平方根是4,这个数是:A. 16B. -16C. 4D. 8答案:A5. 以下哪个是二次方程?A. x + 2 = 0B. x^2 + 2x + 1 = 0C. x^3 - 4 = 0D. x^2 - 4x = 0答案:B6. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π答案:B7. 以下哪个是不等式的解集?A. x > 3B. x < 3C. x = 3D. x ≤ 3答案:A8. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5 或 -5D. 都不是9. 一个三角形的内角和是:A. 90°B. 180°C. 270°D. 360°答案:B10. 如果一个数的立方根是3,那么这个数是:A. 27B. 9C. 3D. 81答案:A二、填空题(本题共5小题,每小题3分,共15分。

请将答案填写在题后的横线上。

)11. 一个数的相反数是-5,这个数是 __________。

答案:512. 如果一个三角形的两边长分别是3和4,第三边长x满足1 < x < 7,那么x的取值范围是 __________。

答案:1 < x < 713. 一个数的平方是25,这个数是 __________。

答案:±514. 一个圆的周长是2πr,其中r是圆的半径,如果圆的周长是12π,那么半径r是 __________。

2016年陕西省中考数学试卷(含答案解析)

2016年陕西省中考数学试卷(含答案解析)

精心整理2016年陕西省中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)计算:(﹣)×2=()A.﹣1 B.1 C.4 D.﹣42.(3分)如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A .B .C .D .3.(3分)下列计算正确的是()A.x2+3x2=4x4B.x2y?2x3=2x4y C.(6x3y2)÷(3x)=2x2D.(﹣3x)2=9x24.(3分)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°5.(3分)设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=06.(3分)如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE 交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.107.(3分)已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对 D.5对9.(3分)如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A.3B.4C.5D.610.(3分)已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A .B .C .D.2二、填空题(共4小题,每小题3分,满分12分)11.(3分)不等式﹣x+3<0的解集是.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是.B.运用科学计算器计算:3sin73°52′≈.(结果精确到0.1)13.(3分)已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为.14.(3分)如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为.三、解答题(共11小题,满分78分)15.(5分)计算:﹣|1﹣|+(7+π)0.16.(5分)化简:(x﹣5+)÷.17.(5分)如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)18.(5分)某校为了进一步改进本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?19.(7分)如图,在?ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.20.(7分)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.21.(7x(时)(1(222.(7①“可”、“”(当”);③次“(1(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.23.(8分)如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC?BG.24.(10分)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N (3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.25.(12分)问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G 分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.2016年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)计算:(﹣)×2=()A.﹣1 B.1 C.4 D.﹣4【分析】原式利用乘法法则计算即可得到结果.【解答】解:原式=﹣×2=﹣1,故选A【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.2.(3分)如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A.B.C. D.【分析】根据已知几何体,确定出左视图即可.【解答】解:根据题意得到几何体的左视图为,故选C【点评】此题考查了简单组合体的三视图,锻炼了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)下列计算正确的是()A.x2+3x2=4x4B.x2y?2x3=2x4y C.(6x3y2)÷(3x)=2x2D.(﹣3x)2=9x2【分析】A、原式合并得到结果,即可作出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可作出判断;C、原式利用单项式除以单项式法则计算得到结果,即可作出判断;D、原式利用积的乘方运算法则计算得到结果,即可作出判断.【解答】解:A、原式=4x2,错误;B、原式=2x5y,错误;C、原式=2x2y2,错误;D、原式=9x2,正确,故选D【点评】此题考查了整式的除法,合并同类项,幂的乘方与积的乘方,以及单项式乘单项式,熟练掌握运算法则是解本题的关键.4.(3分)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.【点评】本题考查了角平分线定义和平行线性质的应用,注意:平行线的性质有:①两条平行线被第三条直线所截,同位角相等,②两条平行线被第三条直线所截,内错角相等,③两条平行线被第三条直线所截,同旁内角互补.5.(3分)设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=0【分析】直接把点A(a,b)代入正比例函数y=﹣x,求出a,b的关系即可.【解答】解:把点A(a,b)代入正比例函数y=﹣x,可得:﹣3a=2b,可得:3a+2b=0,故选D【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6.(3分)如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE 交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.10【分析】根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.【解答】解:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,∴AC===10,∵DE是△ABC的中位线,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=8.故选B.【点评】本题考查三角形中位线定理、等腰三角形的判定和性质、勾股定理等知识,解题的关键是灵活应用三角形中位线定理,掌握等腰三角形的判定和性质,属于中考常考题型.7.(3分)已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据k的符号来求确定一次函数y=kx+b的图象所经过的象限,然后根据b的情况即可求得交点的位置.【解答】解:∵一次函数y=kx+5中k>0,∴一次函数y=kx+5的图象经过第一、二、三象限.又∵一次函数y=k′x+7中k′<0,∴一次函数y=k′x+7的图象经过第一、二、四象限.∵5<7,∴这两个一次函数的图象的交点在第一象限,故选A.【点评】本题主要考查两直线相交问题.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.8.(3分)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对 D.5对【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′.由此即可得出答案.【解答】解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.【点评】本题考查正方形的性质、全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定方法,属于基础题,中考常考题型.9.(3分)如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A.3B.4C.5D.6【分析】首先过点O作OD⊥BC于D,由垂径定理可得BC=2BD,又由圆周角定理,可求得∠BOC 的度数,然后根据等腰三角形的性质,求得∠OBC的度数,利用余弦函数,即可求得答案.【解答】解:过点O作OD⊥BC于D,则BC=2BD,∵△ABC内接于⊙O,∠BAC与∠BOC互补,∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB=(180°﹣∠BOC)=30°,∵⊙O的半径为4,∴BD=OB?cos∠OBC=4×=2,∴BC=4.故选:B.【点评】此题考查了圆周角定理、垂径定理、等腰三角形的性质以及三角函数等知识.注意掌握辅助线的作法,注意数形结合思想的应用.10.(3分)已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A.B.C.D.2【分析】先求出A、B、C坐标,作CD⊥AB于D,根据tan∠ACD=即可计算.【解答】解:令y=0,则﹣x2﹣2x+3=0,解得x=﹣3或1,不妨设A(﹣3,0),B(1,0),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点C(﹣1,4),如图所示,作CD⊥AB于D.在RT△ACD中,tan∠CAD===2,故答案为D.【点评】本题考查二次函数与x轴交点坐标,锐角三角函数的定义,解题的关键是熟练掌握求抛物线与x轴交点坐标的方法,记住锐角三角函数的定义,属于中考常考题型.二、填空题(共4小题,每小题3分,满分12分)11.(3分)不等式﹣x+3<0的解集是x>6.【分析】移项、系数化成1即可求解.【解答】解:移项,得﹣x<﹣3,系数化为1得x>6.故答案是:x>6.【点评】本题考查了一元一次不等式的解法,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是8.B.运用科学计算器计算:3sin73°52′≈11.9.(结果精确到0.1)【分析】(1)根据多边形内角和为360°进行计算即可;(2)先分别求得3和sin73°52′的近似值,再相乘求得计算结果.【解答】解:(1)∵正多边形的外角和为360°∴这个正多边形的边数为:360°÷45°=8(2)3sin73°52′≈12.369×0.961≈11.9故答案为:8,11.9【点评】本题主要考查了多边形的外角和以及近似数,解决问题的关键是掌握多边形的外角和定理以及近似数的概念.在取近似值时,需要运用四舍五入法求解.13.(3分)已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为y=.【分析】根据已知条件得到A(﹣2,0),B(0,4),过C作CD⊥x轴于D,根据相似三角形的性质得到==,求得C(1,6),即可得到结论.【解答】解:∵一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,∴A(﹣2,0),B(0,4),过C作CD⊥x轴于D,∴OB∥CD,∴△ABO∽△ACD,∴==,∴CD=6,AD=3,∴OD=1,∴C(1,6),设反比例函数的解析式为y=,∴k=6,∴反比例函数的解析式为y=.故答案为:y=.【点评】本题考查了反比例函数与一次函数的交点,相似三角形的判定和性质,求函数的解析式,正确的作出图形是解题的关键.14.(3分)如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为2﹣2.【分析】分三种情形讨论①若以边BC为底.②若以边PC为底.③若以边PB为底.分别求出PD 的最小值,即可判断.【解答】解:①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P与点A重合时,PD值最小,为2;②若以边PC为底,∠PBC为顶角时,以点B为圆心,BC长为半径作圆,与BD相交于一点,则弧AC(除点C外)上的所有点都满足△PBC是等腰三角形,当点P在BD上时,PD最小,最小值为2√3﹣2;③若以边PB为底,∠PCB为顶角,以点C为圆心,BC为半径作圆,则弧BD上的点A与点D均满足△PBC为等腰三角形,当点P与点D重合时,PD最小,显然不满足题意,故此种情况不存在;综上所述,PD的最小值为2﹣2.【点评】本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.三、解答题(共11小题,满分78分)15.(5分)计算:﹣|1﹣|+(7+π)0.【分析】直接化简二次根式、去掉绝对值、再利用零指数幂的性质化简求出答案.【解答】解:原式=2﹣(﹣1)+1=2﹣+2=+2.【点评】此题主要考查了实数运算,正确利用绝对值的性质去掉绝对值是解题关键.16.(5分)化简:(x﹣5+)÷.【分析】根据分式的除法,可得答案.【解答】解:原式=?=(x﹣1)(x﹣3)=x2﹣4x+3.【点评】本题考查了分式混合运算,利用分式的除法转化成分式的乘法是解题关键.17.(5分)如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)【分析】过点A作AD⊥BC于D,利用等角的余角相等可得到∠BAD=∠C,则可判断△ABD与△CAD相似.【解答】解:如图,AD为所作.【点评】本题考查了作图﹣相似变换:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.解决本题的关键是利用有一组锐角相等的两直角三角形相似.18.(5分)某校为了进一步改进本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是比较喜欢;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?【分析】(1)根据条形统计图与扇形统计图可以得到调查的学生数,从而可以的选B的学生数和选B和选D的学生所占的百分比,从而可以将统计图补充完整;(2)根据(1)中补全的条形统计图可以得到众数;(3)根据(1)中补全的扇形统计图可以得到该年级学生中对数学学习“不太喜欢”的人数.选BBD(2(319.(7F,使求证:【分析】由平行四边形的性质得出AD∥BC,AD=BC,证出∠1=∠2,DF=BE,由SAS证明△ADF ≌△CBE,得出对应角相等,再由平行线的判定即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠1=∠2,∵BF=DE,∴BF+BD=DE+BD,即DF=BE,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴∠AFD=∠CEB,∴AF∥CE.【点评】本题考查了平行四边形的性质,全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.20.(7分)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.【分析】根据镜面反射原理结合相似三角形的判定方法得出△ABC∽△EDC,△ABF∽△GFH,进而利用相似三角形的性质得出AB的长.【解答】解:由题意可得:∠ABC=∠EDC=∠GFH=90°,∠ACB=∠ECD,∠AFB=∠GHF,故△ABC∽△EDC,△ABF∽△GFH,则=,=,即=,=,解得:AB=99,答:“望月阁”的高AB的长度为99m.【点评】此题主要考查了相似三角形的判定与性质,正确利用已知得出相似三角形是解题关键.21.(7分)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?【分析】(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.【解答】解:(1)设线段AB所表示的函数关系式为:y=kx+b,依题意有,解得.故线段AB所表示的函数关系式为:y=﹣96x+192(0≤x≤2);(2)12+3﹣(7+6.6)=15﹣13.6=1.4(小时),112÷1.4=80(千米/时),(192﹣112)÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.【点评】本题主要考查一次函数的应用,解决本题的关键是利用待定系数法求一次函数的解析式.同时考查了速度、路程和时间之间的关系.22.(7分)某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500ml)、红茶(500ml)和可乐(600ml),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.【分析】(1)由转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客经过两次“有效随机转动”后,获得一瓶可乐的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;∴一次“有效随机转动”可获得“乐”字的概率为:;(2)画树状图得:∵共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为:.【点评】此题考查了列表法或树状图法求概率.注意此题是放回实验;用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC?BG.【分析】(1)由平行线的性质得出EF⊥AD,由线段垂直平分线的性质得出FA=FD,由等腰三角形的性质得出∠FAD=∠D,证出∠DCB=∠G,由对顶角相等得出∠GCF=∠G,即可得出结论;(2)连接AC,由圆周角定理证出AC是⊙O的直径,由弦切角定理得出∠DCB=∠CAB,证出∠CAB=∠G,再由∠CBA=∠GBA=90°,证明△ABC∽△GBA,得出对应边成比例,即可得出结论.【解答】证明:(1)∵EF∥BC,AB⊥BG,∴EF⊥AD,∵E是AD的中点,∴FA=FD,∴∠FAD=∠D,∵GB⊥AB,∴∠GAB+∠G=∠D+∠DCB=90°,∴∠DCB=∠G,∵∠DCB=∠GCF,∴∠GCF=∠G,∴FC=FG;(2)连接AC,如图所示:∵AB⊥BG,∴AC是⊙O的直径,∵FD是⊙O的切线,切点为C,∴∠DCB=∠CAB,∵∠DCB=∠G,∴∠CAB=∠G,∵∠CBA=∠GBA=90°,∴△ABC∽△GBA,∴=,∴AB2=BC?BG.【点评】本题考查了圆周角定理、相似三角形的判定与性质、等腰三角形的判定与性质、弦切角定理等知识;熟练掌握圆周角定理和弦切角定理,证明三角形相似是解决问题(2)的关键.24.(10分)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N (3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.【分析】(1)把M、N两点的坐标代入抛物线解析式可求得a、b的值,可求得抛物线解析式,再根据一元二次方程根的判别式,可判断抛物线与x轴的交点情况;(2)利用A点坐标和等腰三角形的性质可求得B点坐标,设出平移后的抛物线的解析式,把A、B的坐标代入可求得平移后的抛物线的解析式,比较平移前后抛物线的顶点的变化即可得到平移的过程.【解答】解:(1)由抛物线过M、N两点,把M、N坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣3x+5,令y=0可得x2﹣3x+5=0,该方程的判别式为△=(﹣3)2﹣4×1×5=9﹣20=﹣11<0,∴抛物线与x轴没有交点;(2)∵△AOB是等腰直角三角形,A(﹣2,0),点B在y轴上,∴B点坐标为(0,2)或(0,﹣2),可设平移后的抛物线解析式为y=x2+mx+n,①当抛物线过点A(﹣2,0),B(0,2)时,代入可得,解得,∴平移后的抛物线为y=x2+3x+2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),∴将原抛物线先向左平移3个单位,再向下平移3个单位即可获得符合条件的抛物线;②当抛物线过A(﹣2,0),B(0,﹣2)时,代入可得,解得,∴平移后的抛物线为y=x2+x﹣2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),∴将原抛物线先向左平移2个单位,再向下平移5个单位即可获得符合条件的抛物线.【点评】本题为二次函数的综合应用,涉及知识点有待定系数法、函数与方程的关系、等腰三角形的性质、坐标平移和分类讨论等.在(1)中注意方程与函数的关系,在(2)中确定出B点的坐标是解题的关键,注意抛物线顶点坐标的求法.本题属于基础题,难度不大.25.(12分)问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G 分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出。

2016年陕西省中考数学试卷及答案解析

2016年陕西省中考数学试卷及答案解析

2016年陕西省中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.计算:(﹣)×2=()A.﹣1 B.1 C.4 D.﹣42.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A.B.C.D.3.下列计算正确的是()A.x2+3x2=4x4B.x2y•2x3=2x4y C.(6x2y2)÷(3x)=2x2D.(﹣3x)2=9x24.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65° B.115° C.125° D.130°5.设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=06.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE 交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.107.已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对9.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A.3B.4C.5D.610.已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A.B.C.D.2二、填空题(共4小题,每小题3分,满分12分)11.不等式﹣x+3<0的解集是.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是.B.运用科学计算器计算:3sin73°52′≈.(结果精确到0.1)13.已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为.14.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为.三、解答题(共11小题,满分78分)15.计算:﹣|1﹣|+(7+π)0.16.化简:(x﹣5+)÷.17.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)18.某校为了进一步改变本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?19.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.20.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.21.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x (时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?22.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶、红茶和可乐,抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.24.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N(3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.25.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.2016年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.计算:(﹣)×2=()A.﹣1 B.1 C.4 D.﹣4【考点】有理数的乘法.【分析】原式利用乘法法则计算即可得到结果.【解答】解:原式=﹣1,故选A2.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据已知几何体,确定出左视图即可.【解答】解:根据题意得到几何体的左视图为,故选C3.下列计算正确的是()A.x2+3x2=4x4B.x2y•2x3=2x4y C.(6x2y2)÷(3x)=2x2D.(﹣3x)2=9x2【考点】整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】A、原式合并得到结果,即可作出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可作出判断;C、原式利用单项式除以单项式法则计算得到结果,即可作出判断;D、原式利用积的乘方运算法则计算得到结果,即可作出判断.【解答】解:A、原式=4x2,错误;B、原式=2x5y,错误;C、原式=2xy2,错误;D、原式=9x2,正确,故选D4.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65° B.115° C.125° D.130°【考点】平行线的性质.【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.5.设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=0【考点】一次函数图象上点的坐标特征.【分析】直接把点A(a,b)代入正比例函数y=﹣x,求出a,b的关系即可.【解答】解:把点A(a,b)代入正比例函数y=﹣x,可得:﹣3a=2b,可得:3a+2b=0,故选D6.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE 交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.10【考点】三角形中位线定理;等腰三角形的判定与性质;勾股定理.【分析】根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.【解答】解:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,∴AC===10,∵DE是△ABC的中位线,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=8.故选B.7.已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】两条直线相交或平行问题.【分析】根据k的符号来求确定一次函数y=kx+b的图象所经过的象限,然后根据b的情况即可求得交点的位置.【解答】解:∵一次函数y=kx+5中k>0,∴一次函数y=kx+5的图象经过第一、二、三象限.又∵一次函数y=k′x+7中k′<0,∴一次函数y=k′x+7的图象经过第一、二、四象限.∵5<7,∴这两个一次函数的图象的交点在第一象限,故选A.8.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对【考点】正方形的性质;全等三角形的判定.【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′由此即可对称结论.【解答】解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.9.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A.3B.4C.5D.6【考点】垂径定理;圆周角定理;解直角三角形.【分析】首先过点O作OD⊥BC于D,由垂径定理可得BC=2BD,又由圆周角定理,可求得∠BOC的度数,然后根据等腰三角形的性质,求得∠OBC的度数,利用余弦函数,即可求得答案.【解答】解:过点O作OD⊥BC于D,则BC=2BD,∵△ABC内接于⊙O,∠BAC与∠BOC互补,∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB==30°,∵⊙O的半径为4,∴BD=OB•cos∠OBC=4×=2,∴BC=4.故选:B.10.已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A.B.C.D.2【考点】抛物线与x轴的交点;锐角三角函数的定义.【分析】先求出A、B、C坐标,作CD⊥AB于D,根据tan∠ACD=即可计算.【解答】解:令y=0,则﹣x2﹣2x+3=0,解得x=﹣3或1,不妨设A(﹣3,0),B(1,0),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点C(﹣1,4),如图所示,作CD⊥AB于D.在RT△ACD中,tan∠CAD===2,故答案为D.二、填空题(共4小题,每小题3分,满分12分)11.不等式﹣x+3<0的解集是x>6.【考点】解一元一次不等式.【分析】移项、系数化成1即可求解.【解答】解:移项,得﹣x<﹣3,系数化为1得x>6.故答案是:x>6.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是8.B.运用科学计算器计算:3sin73°52′≈11.9.(结果精确到0.1)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方;多边形内角与外角.【分析】(1)根据多边形内角和为360°进行计算即可;(2)先分别求得3和sin73°52′的近似值,再相乘求得计算结果.【解答】解:(1)∵正多边形的外角和为360°∴这个正多边形的边数为:360°÷45°=8(2)3sin73°52′≈12.369×0.961≈11.9故答案为:8,11.913.已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为y=.【考点】反比例函数与一次函数的交点问题.【分析】根据已知条件得到A(﹣2,0),B(0,4),过C作CD⊥x轴于D,根据相似三角形的性质得到==,求得C(1,6),即可得到结论.【解答】解:∵一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,∴A(﹣2,0),B(0,4),过C作CD⊥x轴于D,∴OB∥CD,∴△ABO∽△ACD,∴==,∴CD=6,AD=3,∴OD=1,∴C(1,6),设反比例函数的解析式为y=,∴k=6,∴反比例函数的解析式为y=.故答案为:y=.14.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为2﹣2.【考点】菱形的性质;等腰三角形的判定;等边三角形的性质.【分析】如图连接AC、BD交于点O,以B为圆心BC为半径画圆交BD于P.此时△PBC 是等腰三角形,线段PD最短,求出BD即可解决问题.【解答】解:如图连接AC、BD交于点O,以B为圆心BC为半径画圆交BD于P.此时△PBC是等腰三角形,线段PD最短,∵四边形ABCD是菱形,∠ABC=60°,∴AB=BC=CD=AD,∠ABC=∠ADC=60°,∴△ABC,△ADC是等边三角形,∴BO=DO=×2=,∴BD=2BO=2,∴PD最小值=BD﹣BP=2﹣2.故答案为2﹣2.三、解答题(共11小题,满分78分)15.计算:﹣|1﹣|+(7+π)0.【考点】实数的运算;零指数幂.【分析】直接化简二次根式、去掉绝对值、再利用零指数幂的性质化简求出答案.【解答】解:原式=2﹣(﹣1)+1=2﹣+2=+2.16.化简:(x﹣5+)÷.【考点】分式的混合运算.【分析】根据分式的除法,可得答案.【解答】解:原式=•=(x﹣1)(x﹣3)=x2﹣4x+3.17.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)【考点】作图—相似变换.【分析】过点A作AD⊥BC于D,利用等角的余角相等可得到∠BAD=∠C,则可判断△ABD 与△CAD相似.【解答】解:如图,AD为所作.18.某校为了进一步改变本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是比较喜欢;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?【考点】众数;用样本估计总体;扇形统计图;条形统计图.【分析】(1)根据条形统计图与扇形统计图可以得到调查的学生数,从而可以的选B的学生数和选B和选D的学生所占的百分比,从而可以将统计图补充完整;(2)根据(1)中补全的条形统计图可以得到众数;(3)根据(1)中补全的扇形统计图可以得到该年级学生中对数学学习“不太喜欢”的人数.【解答】解:(1)由题意可得,调查的学生有:30÷25%=120(人),选B的学生有:120﹣18﹣30﹣6=66(人),B所占的百分比是:66÷120×100%=55%,D所占的百分比是:6÷120×100%=5%,故补全的条形统计图与扇形统计图如右图所示,(2)由(1)中补全的条形统计图可知,所抽取学生对数学学习喜欢程度的众数是:比较喜欢,故答案为:比较喜欢;(3)由(1)中补全的扇形统计图可得,该年级学生中对数学学习“不太喜欢”的有:960×25%=240(人),即该年级学生中对数学学习“不太喜欢”的有240人.19.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】由平行四边形的性质得出AD∥BC,AD=BC,证出∠1=∠2,DF=BE,由SAS证明△ADF≌△CBE,得出对应角相等,再由平行线的判定即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠1=∠2,∵BF=DE,∴BF+BD=DE+BD,即DF=BE,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴∠AFD=∠CEB,∴AF∥CE.20.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.【考点】相似三角形的应用.【分析】根据镜面反射原理结合相似三角形的判定方法得出△ABC∽△EDC,△ABF∽△GFH,进而利用相似三角形的性质得出AB的长.【解答】解:由题意可得:∠ABC=∠EDC=∠GFH=90°,∠ACB=∠ECD,∠AFB=∠GHF,故△ABC∽△EDC,△ABF∽△GFH,则=,=,即=,=,解得:AB=99,答:“望月阁”的高AB的长度为99m.21.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x (时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?【考点】一次函数的应用.【分析】(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.【解答】解:(1)设线段AB所表示的函数关系式为:y=kx+b,依题意有,解得.故线段AB所表示的函数关系式为:y=﹣96x+192(0≤x≤2);(2)12+3﹣(7+6.6)=15﹣13.6=1.4(小时),112÷1.4=80(千米/时),÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.22.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶、红茶和可乐,抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.【考点】列表法与树状图法;概率公式.【分析】(1)由转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客经过两次“有效随机转动”后,获得一瓶可乐的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;∴一次“有效随机转动”可获得“乐”字的概率为:;(2)画树状图得:∵共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为:.23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.【考点】相似三角形的判定与性质;垂径定理;切线的性质.【分析】(1)由平行线的性质得出EF⊥AD,由线段垂直平分线的性质得出FA=FD,由等腰三角形的性质得出∠FAD=∠D,证出∠DCB=∠G,由对顶角相等得出∠GCF=∠G,即可得出结论;(2)连接AC,由圆周角定理证出AC是⊙O的直径,由弦切角定理得出∠DCB=∠CAB,证出∠CAB=∠G,再由∠CBA=∠GBA=90°,证明△ABC∽△GBA,得出对应边成比例,即可得出结论.【解答】证明:(1)∵EF∥BC,AB⊥BG,∴EF⊥AD,∵E是AD的中点,∴FA=FD,∴∠FAD=∠D,∵GB⊥AB,∴∠GAB+∠G=∠D+∠DCB=90°,∴∠DCB=∠G,∵∠DCB=∠GCF,∴∠GCF=∠G,∴FC=FG;(2)连接AC,如图所示:∵AB⊥BG,∴AC是⊙O的直径,∵FD是⊙O的切线,切点为C,∴∠DCB=∠CAB,∵∠DCB=∠G,∴∠CAB=∠G,∵∠CBA=∠GBA=90°,∴△ABC∽△GBA,∴=,∴AB2=BC•BG.24.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N(3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.【考点】二次函数综合题.【分析】(1)把M、N两点的坐标代入抛物线解析式可求得a、b的值,可求得抛物线解析式,再根据一元二次方程根的判别式,可判断抛物线与x轴的交点情况;(2)利用A点坐标和等腰三角形的性质可求得B点坐标,设出平移后的抛物线的解析式,把A、B的坐标代入可求得平移后的抛物线的解析式,比较平移前后抛物线的顶点的变化即可得到平移的过程.【解答】解:(1)由抛物线过M、N两点,把M、N坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣3x+5,令y=0可得x2﹣3x+5=0,该方程的判别式为△=(﹣3)2﹣4×1×5=9﹣20=﹣11<0,∴抛物线与x轴没有交点;(2)∵△AOB是等腰直角三角形,A(﹣2,0),点B在y轴上,∴B点坐标为(0,2)或(0,﹣2),可设平移后的抛物线解析式为y=x2+mx+n,①当抛物线过点A(﹣2,0),B(0,2)时,代入可得,解得,∴平移后的抛物线为y=x2+3x+2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),∴将原抛物线先向左平移3个单位,再向下平移3个单位即可获得符合条件的抛物线;②当抛物线过A(﹣2,0),B(0,﹣2)时,代入可得,解得,∴平移后的抛物线为y=x2+x﹣2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),∴将原抛物线先向左平移2个单位,再向下平移5个单位即可获得符合条件的抛物线.25.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.【考点】四边形综合题.【分析】(1)作B关于AC 的对称点D,连接AD,CD,△ACD即为所求;(2)作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,得到此时四边形EFGH 的周长最小,根据轴对称的性质得到BF′=BF=AF=2,DE′=DE=2,∠A=90°,于是得到AF′=6,AE′=8,求出E′F′=10,EF=2即可得到结论;(3)根据余角的性质得到1=∠2,推出△AEF≌△BGF,根据全等三角形的性质得到AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x根据勾股定理列方程得到AF=BG=1,BF=AE=2,作△EFG 关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,于是得到四边形EFGH′是符合条件的最大部件,根据矩形的面积公式即可得到结论.【解答】解:(1)如图1,△ADC即为所求;(2)存在,理由:作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,交BC于G,交CD于H,连接FG,EH,则F′G=FG,E′H=EH,则此时四边形EFGH的周长最小,由题意得:BF′=BF=AF=2,DE′=DE=2,∠A=90°,∴AF′=6,AE′=8,∴E′F′=10,EF=2,∴四边形EFGH的周长的最小值=EF+FG+GH+HE=EF+E′F′=2+10,∴在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小,最小值为2+10;(3)能裁得,理由:∵EF=FG=,∠A=∠B=90°,∠1+∠AFE=∠2+AFE=90°,∴∠1=∠2,。

2016年陕西中考数学试题及答案

2016年陕西中考数学试题及答案

2016年陕西中考数学试题及答案以下是2016年陕西中考数学试题及答案的内容:2016年陕西中考数学试题及答案一、选择题:1. 设正数a、b、c、d满足abcd=1,那么a+b+c+d的最小值为多少?A.1 B.2 C.3 D.4解析:根据均值不等式得:(a+b+c+d)/4 ≥ (abcd)^(1/4) = 1∴ a+b+c+d ≥ 4最小值为4,选D。

2. 小明现在的年龄是小红的3/4,5年前小明的年龄是小红的2/3,那么5年后小明的年龄是小红的几分之几?A.3/5 B.4/5 C.6/7 D.7/8解析:设小明的年龄为x,小红的年龄为y。

根据题意得:x = (3/4)y (1)(x-5) = (2/3)(y-5) (2)联立解方程组(1)和(2),得x=15,y=20。

5年后小明的年龄为15+5=20,小红的年龄为20+5=25。

∴ 5年后小明的年龄是小红的4/5,选B。

二、填空题:1. 一批图书按照定价的88%出售,共卖出11200元,那么原定价是______ 元。

解:设原定价为x元。

则0.88x = 11200∴ x = 11200 / 0.88 = 12727元2. 在长为4cm,宽为3cm的长方形中,两个相邻顶点用直线连接,形成两个三角形。

这两个三角形的面积之和是 ______ 平方厘米。

解:三角形1的面积为(1/2) * 4 * 3 = 6平方厘米三角形2的面积为(1/2) * 4 * 3 = 6平方厘米∴面积之和为6 + 6 = 12平方厘米三、解答题:1. 一根电线铺设在一块长方形的花坛周围,它的长度是36米。

花坛的长和宽分别是8米和5米,电线将绕过花坛多少次?解:电线将绕过花坛的次数等于电线长度除以长方形花坛的周长。

周长 = 2 * (长 + 宽) = 2 * (8 + 5) = 2 * 13 = 26米∴电线将绕过花坛36/26 ≈ 1.38次,约等于1次。

2. 某数与它的四分之一的和是50,这个数是多少?设这个数为x。

(完整word)2016年陕西省中考数学副题

(完整word)2016年陕西省中考数学副题

机密★启用前 试卷类型:A2016年陕西省初中毕业学业考试数学副卷本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至10页,全卷共120分。

考试时间为120分钟.第Ⅰ卷(选择题 共30分)注意事项:1.答第Ⅰ卷前,请你千万别忘了将自己的姓名、准考证号、考试科目、试卷类型(A 或B)用2B 铅笔和钢笔或中性笔准确涂写在答题卡上;并将本试卷左侧的项目填写清楚。

2.当你选出每小题的答案后,请用2B 铅笔把答题卡上对应题号的答案标号涂黑。

如需改动,请用橡皮擦干净后,再选涂其它答案标号。

把答案填在试题卷上是不能得分的.3。

考试结束,本卷和答题卡一并交给监考老师收回。

一、选择题(共10小题,每小题3分,计30分。

每小题只有一个选项是符合题意的) 1、计算:(—3)×(-错误!)=( ) A. —1B 。

1C. -9D 。

92、如图,下面的几何体由两个大小相同的正方体和一个圆柱体组成,则它的左视图是( )3、计算:(-2x 2y )3=( ) A.—8x 6y 3B 。

8x 6y 3C. -6x 6y 3D 。

6x 5y 34、如图,AB ∥CD 。

若∠1=40°,∠2=65°,则∠CAD =( )A 。

50°B 。

65° C. 75° D 。

85°5、设点A (-3,a ),B (b ,错误!)在同一个正比例函数的图象上,则ab 的值为( ) A 。

—错误!B. —错误!C 。

—6D. 错误!6、如图,在△ABC 中,∠BAC =90°,AB =20,AC =15,△ABC 的高AD 与角平分线CF 交于点E ,则AFDE的值ABCDABCD2 1为( )A. 错误! B 。

错误! C. 错误! D. 错误!7、已知两个一次函数y =3x +b 1和y =—3x +b 2.若b 1<b 2<0,则它们图象的交点在( ) A 。

2016年陕西省中考数学试卷附详细答案(原版+解析版)

2016年陕西省中考数学试卷附详细答案(原版+解析版)

2016年陕西省中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.计算:(﹣)×2=()A.﹣1 B.1 C.4 D.﹣42.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A.B.C.D.3.下列计算正确的是()A.x2+3x2=4x4B.x2y•2x3=2x4y C.(6x2y2)÷(3x)=2x2D.(﹣3x)2=9x2 4.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()5.设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=06.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.107.已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A .2对B .3对C .4对D .5对9.如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB 、OC .若∠BAC 与∠BOC 互补,则弦BC 的长为( )A .3B .4C .5D .610.已知抛物线y=﹣x 2﹣2x+3与x 轴交于A 、B 两点,将这条抛物线的顶点记为C ,连接AC 、BC ,则tan ∠CAB 的值为( )A .B .C .D .2二、填空题(共4小题,每小题3分,满分12分)11.不等式﹣x+3<0的解集是 .12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .一个多边形的一个外角为45°,则这个正多边形的边数是 .B .运用科学计算器计算:3sin73°52′≈ .(结果精确到0.1)13.已知一次函数y=2x+4的图象分别交x 轴、y 轴于A 、B 两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C ,且AB=2BC ,则这个反比例函数的表达式为 .14.如图,在菱形ABCD 中,∠ABC=60°,AB=2,点P 是这个菱形内部或边上的一点,若以点P 、B 、C 为顶点的三角形是等腰三角形,则P 、D (P 、D 两点不重合)两点间的最短距离为 .三、解答题(共11小题,满分78分)15.计算:﹣|1﹣|+(7+π)0.16.化简:(x﹣5+)÷.17.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)18.某校为了进一步改变本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?19.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.20.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.21.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x (时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?22.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶、红茶和可乐,抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.24.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N(3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.25.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.2016年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.计算:(﹣)×2=()A.﹣1 B.1 C.4 D.﹣4【考点】有理数的乘法.【分析】原式利用乘法法则计算即可得到结果.【解答】解:原式=﹣1,故选A2.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据已知几何体,确定出左视图即可.【解答】解:根据题意得到几何体的左视图为,故选C3.下列计算正确的是()A.x2+3x2=4x4 B.x2y•2x3=2x4y C.(6x2y2)÷(3x)=2x2 D.(﹣3x)2=9x2【考点】整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】A、原式合并得到结果,即可作出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可作出判断;C、原式利用单项式除以单项式法则计算得到结果,即可作出判断;D、原式利用积的乘方运算法则计算得到结果,即可作出判断.【解答】解:A、原式=4x2,错误;B、原式=2x5y,错误;C、原式=2xy2,错误;D、原式=9x2,正确,故选D4.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65° B.115° C.125° D.130°【考点】平行线的性质.【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.5.设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=0【考点】一次函数图象上点的坐标特征.【分析】直接把点A(a,b)代入正比例函数y=﹣x,求出a,b的关系即可.【解答】解:把点A(a,b)代入正比例函数y=﹣x,可得:﹣3a=2b,可得:3a+2b=0,故选D6.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE 交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.10【考点】三角形中位线定理;等腰三角形的判定与性质;勾股定理.【分析】根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.【解答】解:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,∴AC===10,∵DE是△ABC的中位线,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=8.故选B.7.已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】两条直线相交或平行问题.【分析】根据k的符号来求确定一次函数y=kx+b的图象所经过的象限,然后根据b的情况即可求得交点的位置.【解答】解:∵一次函数y=kx+5中k>0,∴一次函数y=kx+5的图象经过第一、二、三象限.又∵一次函数y=k′x+7中k′<0,∴一次函数y=k′x+7的图象经过第一、二、四象限.∵5<7,∴这两个一次函数的图象的交点在第一象限,故选A.8.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对【考点】正方形的性质;全等三角形的判定.【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′由此即可对称结论.【解答】解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.9.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A.3B.4C.5D.6【考点】垂径定理;圆周角定理;解直角三角形.【分析】首先过点O作OD⊥BC于D,由垂径定理可得BC=2BD,又由圆周角定理,可求得∠BOC的度数,然后根据等腰三角形的性质,求得∠OBC的度数,利用余弦函数,即可求得答案.【解答】解:过点O作OD⊥BC于D,则BC=2BD,∵△ABC内接于⊙O,∠BAC与∠BOC互补,∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB==30°,∵⊙O的半径为4,∴BD=OB•cos∠OBC=4×=2,∴BC=4.故选:B.10.已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A.B.C.D.2【考点】抛物线与x轴的交点;锐角三角函数的定义.【分析】先求出A、B、C坐标,作CD⊥AB于D,根据tan∠ACD=即可计算.【解答】解:令y=0,则﹣x2﹣2x+3=0,解得x=﹣3或1,不妨设A(﹣3,0),B(1,0),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点C(﹣1,4),如图所示,作CD⊥AB于D.在RT△ACD中,tan∠CAD===2,故答案为D.二、填空题(共4小题,每小题3分,满分12分)11.不等式﹣x+3<0的解集是x>6.【考点】解一元一次不等式.【分析】移项、系数化成1即可求解.【解答】解:移项,得﹣x<﹣3,系数化为1得x>6.故答案是:x>6.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是8.B.运用科学计算器计算:3sin73°52′≈11.9.(结果精确到0.1)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方;多边形内角与外角.【分析】(1)根据多边形内角和为360°进行计算即可;(2)先分别求得3和sin73°52′的近似值,再相乘求得计算结果.【解答】解:(1)∵正多边形的外角和为360°∴这个正多边形的边数为:360°÷45°=8(2)3sin73°52′≈12.369×0.961≈11.9故答案为:8,11.913.已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为y=.【考点】反比例函数与一次函数的交点问题.【分析】根据已知条件得到A(﹣2,0),B(0,4),过C作CD⊥x轴于D,根据相似三角形的性质得到==,求得C(1,6),即可得到结论.【解答】解:∵一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,∴A(﹣2,0),B(0,4),过C作CD⊥x轴于D,∴OB∥CD,∴△ABO∽△ACD,∴==,∴CD=6,AD=3,∴OD=1,∴C(1,6),设反比例函数的解析式为y=,∴k=6,∴反比例函数的解析式为y=.故答案为:y=.14.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为2﹣2.【考点】菱形的性质;等腰三角形的判定;等边三角形的性质.【分析】如图连接AC、BD交于点O,以B为圆心BC为半径画圆交BD于P.此时△PBC 是等腰三角形,线段PD最短,求出BD即可解决问题.【解答】解:如图连接AC、BD交于点O,以B为圆心BC为半径画圆交BD于P.此时△PBC是等腰三角形,线段PD最短,∵四边形ABCD是菱形,∠ABC=60°,∴AB=BC=CD=AD,∠ABC=∠ADC=60°,∴△ABC,△ADC是等边三角形,∴BO=DO=×2=,∴BD=2BO=2,∴PD最小值=BD﹣BP=2﹣2.故答案为2﹣2.三、解答题(共11小题,满分78分)15.计算:﹣|1﹣|+(7+π)0.【考点】实数的运算;零指数幂.【分析】直接化简二次根式、去掉绝对值、再利用零指数幂的性质化简求出答案.【解答】解:原式=2﹣(﹣1)+1=2﹣+2=+2.16.化简:(x ﹣5+)÷. 【考点】分式的混合运算.【分析】根据分式的除法,可得答案.【解答】解:原式=•=(x ﹣1)(x ﹣3)=x 2﹣4x+3.17.如图,已知△ABC ,∠BAC=90°,请用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形(保留作图痕迹,不写作法)【考点】作图—相似变换.【分析】过点A 作AD ⊥BC 于D ,利用等角的余角相等可得到∠BAD=∠C ,则可判断△ABD 与△CAD 相似.【解答】解:如图,AD为所作.18.某校为了进一步改变本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是比较喜欢;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?【考点】众数;用样本估计总体;扇形统计图;条形统计图.【分析】(1)根据条形统计图与扇形统计图可以得到调查的学生数,从而可以的选B的学生数和选B和选D的学生所占的百分比,从而可以将统计图补充完整;(2)根据(1)中补全的条形统计图可以得到众数;(3)根据(1)中补全的扇形统计图可以得到该年级学生中对数学学习“不太喜欢”的人数.【解答】解:(1)由题意可得,调查的学生有:30÷25%=120(人),选B的学生有:120﹣18﹣30﹣6=66(人),B所占的百分比是:66÷120×100%=55%,D所占的百分比是:6÷120×100%=5%,故补全的条形统计图与扇形统计图如右图所示,(2)由(1)中补全的条形统计图可知,所抽取学生对数学学习喜欢程度的众数是:比较喜欢,故答案为:比较喜欢;(3)由(1)中补全的扇形统计图可得,该年级学生中对数学学习“不太喜欢”的有:960×25%=240(人),即该年级学生中对数学学习“不太喜欢”的有240人.19.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】由平行四边形的性质得出AD∥BC,AD=BC,证出∠1=∠2,DF=BE,由SAS证明△ADF≌△CBE,得出对应角相等,再由平行线的判定即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠1=∠2,∵BF=DE,∴BF+BD=DE+BD,即DF=BE,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴∠AFD=∠CEB,∴AF∥CE.20.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.【考点】相似三角形的应用.【分析】根据镜面反射原理结合相似三角形的判定方法得出△ABC∽△EDC,△ABF∽△GFH,进而利用相似三角形的性质得出AB的长.【解答】解:由题意可得:∠ABC=∠EDC=∠GFH=90°,∠ACB=∠ECD,∠AFB=∠GHF,故△ABC∽△EDC,△ABF∽△GFH,则=,=,即=,=,解得:AB=99,答:“望月阁”的高AB的长度为99m.21.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x (时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?【考点】一次函数的应用.【分析】(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.【解答】解:(1)设线段AB所表示的函数关系式为:y=kx+b,依题意有,解得.故线段AB所表示的函数关系式为:y=﹣96x+192(0≤x≤2);(2)12+3﹣(7+6.6)=15﹣13.6=1.4(小时),112÷1.4=80(千米/时),÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.22.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶、红茶和可乐,抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.【考点】列表法与树状图法;概率公式.【分析】(1)由转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客经过两次“有效随机转动”后,获得一瓶可乐的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;∴一次“有效随机转动”可获得“乐”字的概率为:;(2)画树状图得:∵共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为:.23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.【考点】相似三角形的判定与性质;垂径定理;切线的性质.【分析】(1)由平行线的性质得出EF⊥AD,由线段垂直平分线的性质得出FA=FD,由等腰三角形的性质得出∠FAD=∠D,证出∠DCB=∠G,由对顶角相等得出∠GCF=∠G,即可得出结论;(2)连接AC,由圆周角定理证出AC是⊙O的直径,由弦切角定理得出∠DCB=∠CAB,证出∠CAB=∠G,再由∠CBA=∠GBA=90°,证明△ABC∽△GBA,得出对应边成比例,即可得出结论.【解答】证明:(1)∵EF∥BC,AB⊥BG,∴EF⊥AD,∵E是AD的中点,∴FA=FD,∴∠FAD=∠D,∵GB⊥AB,∴∠GAB+∠G=∠D+∠DCB=90°,∴∠DCB=∠G,∵∠DCB=∠GCF,∴∠GCF=∠G,∴FC=FG;(2)连接AC,如图所示:∵AB⊥BG,∴AC是⊙O的直径,∵FD是⊙O的切线,切点为C,∴∠DCB=∠CAB,∵∠DCB=∠G,∴∠CAB=∠G,∵∠CBA=∠GBA=90°,∴△ABC∽△GBA,∴=,∴AB2=BC•BG.24.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N(3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.【考点】二次函数综合题.【分析】(1)把M、N两点的坐标代入抛物线解析式可求得a、b的值,可求得抛物线解析式,再根据一元二次方程根的判别式,可判断抛物线与x轴的交点情况;(2)利用A点坐标和等腰三角形的性质可求得B点坐标,设出平移后的抛物线的解析式,把A、B的坐标代入可求得平移后的抛物线的解析式,比较平移前后抛物线的顶点的变化即可得到平移的过程.【解答】解:(1)由抛物线过M、N两点,把M、N坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣3x+5,令y=0可得x2﹣3x+5=0,该方程的判别式为△=(﹣3)2﹣4×1×5=9﹣20=﹣11<0,∴抛物线与x轴没有交点;(2)∵△AOB是等腰直角三角形,A(﹣2,0),点B在y轴上,∴B点坐标为(0,2)或(0,﹣2),可设平移后的抛物线解析式为y=x2+mx+n,①当抛物线过点A(﹣2,0),B(0,2)时,代入可得,解得,∴平移后的抛物线为y=x2+3x+2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),∴将原抛物线先向左平移3个单位,再向下平移3个单位即可获得符合条件的抛物线;②当抛物线过A(﹣2,0),B(0,﹣2)时,代入可得,解得,∴平移后的抛物线为y=x2+x﹣2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),∴将原抛物线先向左平移2个单位,再向下平移5个单位即可获得符合条件的抛物线.25.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.【考点】四边形综合题.【分析】(1)作B关于AC 的对称点D,连接AD,CD,△ACD即为所求;(2)作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,得到此时四边形EFGH 的周长最小,根据轴对称的性质得到BF′=BF=AF=2,DE′=DE=2,∠A=90°,于是得到AF′=6,AE′=8,求出E′F′=10,EF=2即可得到结论;(3)根据余角的性质得到1=∠2,推出△AEF≌△BGF,根据全等三角形的性质得到AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x根据勾股定理列方程得到AF=BG=1,BF=AE=2,作△EFG 关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,于是得到四边形EFGH′是符合条件的最大部件,根据矩形的面积公式即可得到结论.【解答】解:(1)如图1,△ADC即为所求;(2)存在,理由:作E关于CD的对称点E′,。

2016陕西中考数学副题答案

2016陕西中考数学副题答案

2016陕西中考数学副题答案【篇一:2014年陕西中考数学副题(含答案).doc】ass=txt>本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.全卷共120分.考试时间为120分钟.第Ⅰ卷(选择题共30分)注意事项:1.答第Ⅰ卷前,请你千万别忘了将自己的姓名、准考证号、考试科目、试卷类型(a或b)用2b铅笔和钢笔准确涂写在答题卡上;并将本试卷左侧的项目填写清楚.2.当你选出每小题的答案后,请用2b铅笔把答题卡上对应题号的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案标号.把答案填在试题卷上是不能得分的.3.考试结束,本卷和答题卡一并交给监考老师收回.一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.4的算术平方根是()11a.-2 b.2 c.- d. 222.下图是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是( )第2题图3.若点a(-2,m)在正比例函数y=-a.12x的图象上,则m的值是() 14b.-14 c.1 d.-14.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()1111a. b.c. d. 96510?x?2?15.把不等式组?,的解集表示在数轴上,正确的是()?3?x?06.某区10名学生参加市级汉字听写大赛,他们得分情况如下表:那么这10名学生所得分数的平均数和众数分别是()a.85和82.5b.85.5和85c.85和85 d.85.5和80()第7题图第9题图第10题图58.若x??2是关于x的一元二次方程x2?ax?a2?0的一个根,则a的值是() 2a.1或4b.-1或-4c.-1或4d.1或―49.如图,在菱形abcd中,ab?5,对角线ac?6,若过点a作ae?bc,垂足为e,则ae的长为()a.4b.21224 c. d.5 55 10.二次函数y?ax?bx?c(a?0)的图象如图所示,则下列结论正确的是()a.c-1b.b>0c.2a?b?0d.9a?c?3b第Ⅱ卷(非选择题共90分)1211.计算:(?)?_____.3.12.因式分解:m(x?y)?n(x?y)?.13.请从以下两个小题中任选一个作答,若多选,按选做的第一题计分. ....a.一个正五边形的对称轴共有条.b.3tan56??结果精确到0.01)14.如图:在正方形abcd中,ad=1,将△abd绕点b顺时针旋转得到△a?bd? ,此时a?d?与cd交于点e,则de的长度为.第14题图第16题图15.已知p1(x1,y1),p2(x2,y2)是同一反比例函数图象上的两点.若x2?x1?2,且111??,则这个反比例函数的表达式为. y2y1216.如图,⊙o的半径是2,直线l与⊙o相交于a、b两点,m、n 是⊙o上的两个动点,且在直线l的异侧.若∠amb=45o,则四边形manb面积的最大值是 .三、解答题(共9小题,计72分.解答应写出过程)2x2x1?17.(本题满分5分)先化简,再求值:2,其中x??.2x?1x?118.(本题满分6分)如图,在rt△abc中,∠abc=90?,点d在边ab上,使db=bc,过d作ef?ac,分别交ac于点e、cb的延长线于点f.求证:ab=bf.第18题图19.(本题满分7分)根据《2013年陕西省国民经济和社会发展统计公报》提供的大气污染物(a-二氧化硫,b-氮氧化物,c-化学需氧量,d-氨氮)排放量的相关数据,我们将这些数据用条形统计图和扇形统计图统计如下:第19题图根据以上统计图提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)国务院总理李克强在十二届全国人大二次会议的政府工作报告中强调,建设美好家园、加大节能减排力度,今年二氧化硫、化学需氧量的排放量在去年基础上都要减少2%.按此指示精神,求出陕西省2014年二氧化硫、化学需氧量的排放量共需减少约多少万吨?(结果精确到0.1)20.(本题满分8分)某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,现在河岸边选择了一点b(点b与河对岸岸边上的一棵树的底部点d所确定的直线垂直于河岸).根据以上测量过程及测量数据,请你求出河宽bd是多少米?第20 题图21.(本题满分8分)小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1 kg收费22元,超过1 kg,则超出部分按每千克10元加收费用,设该公司从西安到南昌快寄樱桃的费用为y(元),所寄樱桃为x(kg).(1)求y与x之间的函数关系式;(2)已知小李给外婆快寄了2.5 kg樱桃,请你求出这次快寄的费用是多少元?22.(本题满分8分)小英与她的父亲、母亲计划外出旅游,初步选择了延安、西安、汉中、安康四个城市,由于时间仓促,他们只能去其中一个城市,到底去哪一个城市三人意见不统一,在这种情况下,小英父亲建议,用小英学过的摸球游戏来决定,规则如下:①在一个不透明的袋子中装一个红球(延安)、一个白球(西安)、一个黄球(汉中)和一个黑球(安康),这四个球除颜色不同外,其余完全相同;②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀;然后让小英母亲从袋中随机摸出一球,父亲记录下它的颜色;③若两人所摸出球的颜色相同,则去该球所表示的城市旅游.否则,前面的记录作废,按规则②重新摸球,直到两人所摸出的球的颜色相同为止.按照上面的规则,请你解答下列问题:【篇二:2008-2015年陕西省中考数学副题汇编及答案】 class=txt>数学第Ⅰ卷(选择题共30分)一、选择题(共10小题,每小题3分,计30分. 每小题只有一个选项是符合题意的)1.计算-2-3的值为() a.-1 b.1 c.-5d.52.下面几何体中,主视图与俯视图相同的一个是( )45673344 b. c. d. 45535.:这组数据的众数和平均数分别为 ( )a.20 20b.19 20c.20 19d.16 196.下列函数中,图象经过第三象限,且y随x的增大而增大的是 ( )a.y?x-1b.y=-x+3c.y?23d.y=x-3 x(第7题图)7.如图,四边形abcd中,ac⊥bd,顺次连接四边形各边中点得到的四边形为 ( ) a.梯形b.矩形 c.菱形 d.正方形8.函数y=4x-1与y?x2?2x的图象均经过a点,则点a的坐标为 ( )a.(1,3)b.(-1,-5)c.(1,-5)d.(-1,3)9.设⊙o、⊙o?的半径分别为r、r?,若⊙o与⊙o?相交,oo?=8,r=3,则r?应满足的条件是 ( ) a. r?>5 b. r?<11 c. 3<r?<5d. 5<r?<11 10.若二次函数y?ax?bx?c的图象如图所示,则a、b、c间的大小关系正确的是 ( )a.a>b>cb.a<b<cc.a>c>bd.a<c<b2(第10题图)第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,计18分)-111. 计算:2?2-??212. 如图,正方形oabc的顶点b在函数y?的图象上,则点b的坐标为 .x13. 分解因式:a-4a?.3(第12题图)111235,,,,??,这列数的第8个数是 . 2358ec17. (本题满分6分)解方程:(第14题图)a(第16题图)三、解答题(共9小题,计72分,解答应写出过程)x1-?1. x-2x18.(本题满分6分)求证:△bde≌△adf.19.(本题满分7分)在2000年至2007年间,全球生物燃料的产量持续增长。

2016年陕西省中考数学试卷及答案解析

2016年陕西省中考数学试卷及答案解析

2016年陕西省中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.计算:(﹣)×2=()A.﹣1 B.1 C.4 D.﹣42.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A.B.C.D.3.下列计算正确的是()A.x2+3x2=4x4B.x2y•2x3=2x4y C.(6x2y2)÷(3x)=2x2D.(﹣3x)2=9x24.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65° B.115° C.125° D.130°5.设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=06.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE 交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.107.已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对9.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A.3B.4C.5D.610.已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A.B.C.D.2二、填空题(共4小题,每小题3分,满分12分)11.不等式﹣x+3<0的解集是.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是.B.运用科学计算器计算:3sin73°52′≈.(结果精确到0.1)13.已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为.14.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为.三、解答题(共11小题,满分78分)15.计算:﹣|1﹣|+(7+π)0.16.化简:(x﹣5+)÷.17.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)18.某校为了进一步改变本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?19.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.20.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.21.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x (时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?22.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶、红茶和可乐,抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.24.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N(3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.25.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.2016年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.计算:(﹣)×2=()A.﹣1 B.1 C.4 D.﹣4【考点】有理数的乘法.【分析】原式利用乘法法则计算即可得到结果.【解答】解:原式=﹣1,故选A2.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据已知几何体,确定出左视图即可.【解答】解:根据题意得到几何体的左视图为,故选C3.下列计算正确的是()A.x2+3x2=4x4B.x2y•2x3=2x4y C.(6x2y2)÷(3x)=2x2D.(﹣3x)2=9x2【考点】整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】A、原式合并得到结果,即可作出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可作出判断;C、原式利用单项式除以单项式法则计算得到结果,即可作出判断;D、原式利用积的乘方运算法则计算得到结果,即可作出判断.【解答】解:A、原式=4x2,错误;B、原式=2x5y,错误;C、原式=2xy2,错误;D、原式=9x2,正确,故选D4.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65° B.115° C.125° D.130°【考点】平行线的性质.【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.5.设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=0【考点】一次函数图象上点的坐标特征.【分析】直接把点A(a,b)代入正比例函数y=﹣x,求出a,b的关系即可.【解答】解:把点A(a,b)代入正比例函数y=﹣x,可得:﹣3a=2b,可得:3a+2b=0,故选D6.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE 交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.10【考点】三角形中位线定理;等腰三角形的判定与性质;勾股定理.【分析】根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.【解答】解:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,∴AC===10,∵DE是△ABC的中位线,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=8.故选B.7.已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】两条直线相交或平行问题.【分析】根据k的符号来求确定一次函数y=kx+b的图象所经过的象限,然后根据b的情况即可求得交点的位置.【解答】解:∵一次函数y=kx+5中k>0,∴一次函数y=kx+5的图象经过第一、二、三象限.又∵一次函数y=k′x+7中k′<0,∴一次函数y=k′x+7的图象经过第一、二、四象限.∵5<7,∴这两个一次函数的图象的交点在第一象限,故选A.8.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对【考点】正方形的性质;全等三角形的判定.【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′由此即可对称结论.【解答】解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.9.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A.3B.4C.5D.6【考点】垂径定理;圆周角定理;解直角三角形.【分析】首先过点O作OD⊥BC于D,由垂径定理可得BC=2BD,又由圆周角定理,可求得∠BOC的度数,然后根据等腰三角形的性质,求得∠OBC的度数,利用余弦函数,即可求得答案.【解答】解:过点O作OD⊥BC于D,则BC=2BD,∵△ABC内接于⊙O,∠BAC与∠BOC互补,∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB==30°,∵⊙O的半径为4,∴BD=OB•cos∠OBC=4×=2,∴BC=4.故选:B.10.已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A.B.C.D.2【考点】抛物线与x轴的交点;锐角三角函数的定义.【分析】先求出A、B、C坐标,作CD⊥AB于D,根据tan∠ACD=即可计算.【解答】解:令y=0,则﹣x2﹣2x+3=0,解得x=﹣3或1,不妨设A(﹣3,0),B(1,0),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点C(﹣1,4),如图所示,作CD⊥AB于D.在RT△ACD中,tan∠CAD===2,故答案为D.二、填空题(共4小题,每小题3分,满分12分)11.不等式﹣x+3<0的解集是x>6.【考点】解一元一次不等式.【分析】移项、系数化成1即可求解.【解答】解:移项,得﹣x<﹣3,系数化为1得x>6.故答案是:x>6.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是8.B.运用科学计算器计算:3sin73°52′≈11.9.(结果精确到0.1)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方;多边形内角与外角.【分析】(1)根据多边形内角和为360°进行计算即可;(2)先分别求得3和sin73°52′的近似值,再相乘求得计算结果.【解答】解:(1)∵正多边形的外角和为360°∴这个正多边形的边数为:360°÷45°=8(2)3sin73°52′≈12.369×0.961≈11.9故答案为:8,11.913.已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为y=.【考点】反比例函数与一次函数的交点问题.【分析】根据已知条件得到A(﹣2,0),B(0,4),过C作CD⊥x轴于D,根据相似三角形的性质得到==,求得C(1,6),即可得到结论.【解答】解:∵一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,∴A(﹣2,0),B(0,4),过C作CD⊥x轴于D,∴OB∥CD,∴△ABO∽△ACD,∴==,∴CD=6,AD=3,∴OD=1,∴C(1,6),设反比例函数的解析式为y=,∴k=6,∴反比例函数的解析式为y=.故答案为:y=.14.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为2﹣2.【考点】菱形的性质;等腰三角形的判定;等边三角形的性质.【分析】如图连接AC、BD交于点O,以B为圆心BC为半径画圆交BD于P.此时△PBC 是等腰三角形,线段PD最短,求出BD即可解决问题.【解答】解:如图连接AC、BD交于点O,以B为圆心BC为半径画圆交BD于P.此时△PBC是等腰三角形,线段PD最短,∵四边形ABCD是菱形,∠ABC=60°,∴AB=BC=CD=AD,∠ABC=∠ADC=60°,∴△ABC,△ADC是等边三角形,∴BO=DO=×2=,∴BD=2BO=2,∴PD最小值=BD﹣BP=2﹣2.故答案为2﹣2.三、解答题(共11小题,满分78分)15.计算:﹣|1﹣|+(7+π)0.【考点】实数的运算;零指数幂.【分析】直接化简二次根式、去掉绝对值、再利用零指数幂的性质化简求出答案.【解答】解:原式=2﹣(﹣1)+1=2﹣+2=+2.16.化简:(x﹣5+)÷.【考点】分式的混合运算.【分析】根据分式的除法,可得答案.【解答】解:原式=•=(x﹣1)(x﹣3)=x2﹣4x+3.17.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)【考点】作图—相似变换.【分析】过点A作AD⊥BC于D,利用等角的余角相等可得到∠BAD=∠C,则可判断△ABD 与△CAD相似.【解答】解:如图,AD为所作.18.某校为了进一步改变本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是比较喜欢;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?【考点】众数;用样本估计总体;扇形统计图;条形统计图.【分析】(1)根据条形统计图与扇形统计图可以得到调查的学生数,从而可以的选B的学生数和选B和选D的学生所占的百分比,从而可以将统计图补充完整;(2)根据(1)中补全的条形统计图可以得到众数;(3)根据(1)中补全的扇形统计图可以得到该年级学生中对数学学习“不太喜欢”的人数.【解答】解:(1)由题意可得,调查的学生有:30÷25%=120(人),选B的学生有:120﹣18﹣30﹣6=66(人),B所占的百分比是:66÷120×100%=55%,D所占的百分比是:6÷120×100%=5%,故补全的条形统计图与扇形统计图如右图所示,(2)由(1)中补全的条形统计图可知,所抽取学生对数学学习喜欢程度的众数是:比较喜欢,故答案为:比较喜欢;(3)由(1)中补全的扇形统计图可得,该年级学生中对数学学习“不太喜欢”的有:960×25%=240(人),即该年级学生中对数学学习“不太喜欢”的有240人.19.如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】由平行四边形的性质得出AD∥BC,AD=BC,证出∠1=∠2,DF=BE,由SAS证明△ADF≌△CBE,得出对应角相等,再由平行线的判定即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠1=∠2,∵BF=DE,∴BF+BD=DE+BD,即DF=BE,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴∠AFD=∠CEB,∴AF∥CE.20.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.【考点】相似三角形的应用.【分析】根据镜面反射原理结合相似三角形的判定方法得出△ABC∽△EDC,△ABF∽△GFH,进而利用相似三角形的性质得出AB的长.【解答】解:由题意可得:∠ABC=∠EDC=∠GFH=90°,∠ACB=∠ECD,∠AFB=∠GHF,故△ABC∽△EDC,△ABF∽△GFH,则=,=,即=,=,解得:AB=99,答:“望月阁”的高AB的长度为99m.21.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x (时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?【考点】一次函数的应用.【分析】(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.【解答】解:(1)设线段AB所表示的函数关系式为:y=kx+b,依题意有,解得.故线段AB所表示的函数关系式为:y=﹣96x+192(0≤x≤2);(2)12+3﹣(7+6.6)=15﹣13.6=1.4(小时),112÷1.4=80(千米/时),÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.22.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶、红茶和可乐,抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.【考点】列表法与树状图法;概率公式.【分析】(1)由转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客经过两次“有效随机转动”后,获得一瓶可乐的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;∴一次“有效随机转动”可获得“乐”字的概率为:;(2)画树状图得:∵共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为:.23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.【考点】相似三角形的判定与性质;垂径定理;切线的性质.【分析】(1)由平行线的性质得出EF⊥AD,由线段垂直平分线的性质得出FA=FD,由等腰三角形的性质得出∠FAD=∠D,证出∠DCB=∠G,由对顶角相等得出∠GCF=∠G,即可得出结论;(2)连接AC,由圆周角定理证出AC是⊙O的直径,由弦切角定理得出∠DCB=∠CAB,证出∠CAB=∠G,再由∠CBA=∠GBA=90°,证明△ABC∽△GBA,得出对应边成比例,即可得出结论.【解答】证明:(1)∵EF∥BC,AB⊥BG,∴EF⊥AD,∵E是AD的中点,∴FA=FD,∴∠FAD=∠D,∵GB⊥AB,∴∠GAB+∠G=∠D+∠DCB=90°,∴∠DCB=∠G,∵∠DCB=∠GCF,∴∠GCF=∠G,∴FC=FG;(2)连接AC,如图所示:∵AB⊥BG,∴AC是⊙O的直径,∵FD是⊙O的切线,切点为C,∴∠DCB=∠CAB,∵∠DCB=∠G,∴∠CAB=∠G,∵∠CBA=∠GBA=90°,∴△ABC∽△GBA,∴=,∴AB2=BC•BG.24.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N(3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.【考点】二次函数综合题.【分析】(1)把M、N两点的坐标代入抛物线解析式可求得a、b的值,可求得抛物线解析式,再根据一元二次方程根的判别式,可判断抛物线与x轴的交点情况;(2)利用A点坐标和等腰三角形的性质可求得B点坐标,设出平移后的抛物线的解析式,把A、B的坐标代入可求得平移后的抛物线的解析式,比较平移前后抛物线的顶点的变化即可得到平移的过程.【解答】解:(1)由抛物线过M、N两点,把M、N坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣3x+5,令y=0可得x2﹣3x+5=0,该方程的判别式为△=(﹣3)2﹣4×1×5=9﹣20=﹣11<0,∴抛物线与x轴没有交点;(2)∵△AOB是等腰直角三角形,A(﹣2,0),点B在y轴上,∴B点坐标为(0,2)或(0,﹣2),可设平移后的抛物线解析式为y=x2+mx+n,①当抛物线过点A(﹣2,0),B(0,2)时,代入可得,解得,∴平移后的抛物线为y=x2+3x+2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),∴将原抛物线先向左平移3个单位,再向下平移3个单位即可获得符合条件的抛物线;②当抛物线过A(﹣2,0),B(0,﹣2)时,代入可得,解得,∴平移后的抛物线为y=x2+x﹣2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),∴将原抛物线先向左平移2个单位,再向下平移5个单位即可获得符合条件的抛物线.25.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.【考点】四边形综合题.【分析】(1)作B关于AC 的对称点D,连接AD,CD,△ACD即为所求;(2)作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,得到此时四边形EFGH 的周长最小,根据轴对称的性质得到BF′=BF=AF=2,DE′=DE=2,∠A=90°,于是得到AF′=6,AE′=8,求出E′F′=10,EF=2即可得到结论;(3)根据余角的性质得到1=∠2,推出△AEF≌△BGF,根据全等三角形的性质得到AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x根据勾股定理列方程得到AF=BG=1,BF=AE=2,作△EFG 关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,于是得到四边形EFGH′是符合条件的最大部件,根据矩形的面积公式即可得到结论.【解答】解:(1)如图1,△ADC即为所求;(2)存在,理由:作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,交BC于G,交CD于H,连接FG,EH,则F′G=FG,E′H=EH,则此时四边形EFGH的周长最小,由题意得:BF′=BF=AF=2,DE′=DE=2,∠A=90°,∴AF′=6,AE′=8,∴E′F′=10,EF=2,∴四边形EFGH的周长的最小值=EF+FG+GH+HE=EF+E′F′=2+10,∴在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小,最小值为2+10;(3)能裁得,理由:∵EF=FG=,∠A=∠B=90°,∠1+∠AFE=∠2+AFE=90°,∴∠1=∠2,。

2016年陕西省中考数学副题附参考答案

2016年陕西省中考数学副题附参考答案

2016年陕西省初中毕业学业考试数学试卷一、选择题(共10小题,每小题3分,计30分. 每小题只有一个选项是符合题意的) 01、计算:(-3)×(-13)=A.-1B.1C.-9D.902、如图,下面的几何体由两个大小相同的正方体和一个圆柱体组成,则它的左视图是03、计算:(-2x 2y )3=A.-8x 6y 3B.8x 6y 3C.-6x 6y 3D.6x 5y 3 04、如图,AB ∥CD .若∠1=40°,∠2=65°,则∠CAD =A.50°B.65°C.75°D.85° 05、设点A (-3,a ),B (b ,12)在同一个正比例函数的图象上,则ab 的值为A.-23B.-32C.-6D.3206、如图,在△ABC 中,∠BAC =90°,AB =20,AC =15,△ABC 的高AD 与角平分线CF 交于点E ,则AFDE的值为 A.35 B.34 C.12 D.2307、已知两个一次函数y =3x +b 1和y =-3x +b 2. 若b 1<b 2<0,则它们图象的交点在A.第一象限B.第二象限C.第三象限D.第四象限 08、如图,在三边互不相等的△ABC 中,D 、E 、F 分别是AB 、AC 、BC 边的中点.连接DE ,过点C 作CM ∥AB交DE 的延长线于点M ,连接CD 、EF 交于点N ,则图中全等三角形共有 A.3对 B.4对 C.5对 D.6对 09、如图,在⊙O 中,弦AB 垂直平分半径OC ,垂足为D .若点P 是⊙O 上异于点A 、B 的任意点,则∠APB=A.30°或60°B.60°或150°C.30°或150°D.60°或120° 10、将抛物线M :y =-13x 2+2向左平移2个单位,再向上平移1个单位,得到抛物线M ′.若抛物线M ′与x轴交于A 、B 两点,M ′的顶点记为C ,则∠ACB =A.45°B.60°C.90°D.120°(第4题图) (第6题图) (第8题图) (第9题图)二、填空题(共4小题,每小题3分,计12分)11、不等式-2x +1>-5的最大整数解是________. 12、请从以下两个小题中任选一个....作答,若多选,则按第一题计分. A.如图,五边形ABCDE 的对角线共有________条.B.用科学计算器计算:373cos81°23′≈________.(结果精确到1) 13、如图,在x 轴上方,平行于x 轴的直线与反比例函数y =x k 1和y =xk2的图象分别交于A 、B 两点,连接OA 、OB .若△AOB 的面积为6,则k 1-k 2=________.14、如图,在正方形ABCD 中,AB =4,E 是BC 边的中点,F 是CD 边上的一点,且DF =1.若M 、N 分别是线段AD 、AE 上的动点,则MN +MF 的最小值为________.(第12题A 图) (第13题图) (第14题图)三、解答题(共11小题,计78分.解答应写出过程) 15、(本题满分5分)计算: (-3)2+|2-5|-20.16、(本题满分5分)化简:(937222--+a a a —34++a a )÷33-+a a .17、(本题满分5分)如图,已知锐角△ABC ,点D 是AB 边上的一定点,请用尺规在AC 边上求作一点E ,使△ADE 与△ABC 相似.(作出符合题意的一个点即可,保留作图痕迹,不写作法.)18、(本题满分5分)2016年4月23日是我国第一个“全民阅读日”.某校开展了“建设书香校园,捐赠有益图书”活动.我们在参加活动的所有班级中,随机抽取了一个班,已知这个班是八年级5班,全班共50名学生.现将该班捐赠图书情况的统计结果,绘制成如下两幅不完整的统计图.请你根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)求八年级5班平均每人捐赠了多少本书?(3)若该校八年级共有800名学生,请你估算这个年级学生共可捐赠多少本书?19、(本题满分7分)如图,在菱形ABCD中,点E是边AD上一点,延长AB至点F,使BF=AE,连接BE、CF.求证:BE=CF.20、(本题满分7分)某市为了创建绿色生态城市,在城东建了“东州湖”景区.小明和小亮想测量“东州湖”东西两端A、B间的距离.于是,他们去了湖边,如图,在湖的南岸的水平地面上,选取了可直接到达点B的一点C,并测得BC=350米,点A位于点C北偏西73°方向,点B位于点C北偏东45°方向.请你根据以上提供的信息,计算“东州湖”东西两端之间AB的长.(结果精确到1米)(参考数据:si n73°≈0.9563,cos73°≈0.2924,t an73°≈3.2709,2≈1.414.)上周六上午8点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家.如图,是小颖一家这次行程中距姥姥家的距离y(千米)与他们路途所用的时间x(时)之间的函数图象.请你根据以上信息,解答下列问题:(1)求线段AB所对应的函数关系式;(2)已知小颖一家出服务区后,行驶30分钟时,距姥姥家还有80千米,问小颖一家当天几点到达姥姥家?22、(本题满分7分)孙老师在上《等可能事件的概率》这节课时,给同学们提出了一个问题:“如果同时随机投掷两枚质地均匀的骰子,它们朝上一面的点数和是多少的可能性最大?”同学们展开讨论,各抒己见,其中小芳和小超两位同学给出了两种不同的回答.小芳认为6的可能性最大,小超认为7的可能性最大.你认为他们俩的回答正确吗?请用列表或画树状图等方法加以说明.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体.)23、(本题满分8分)如图,已知⊙O的半径为5,△ABC是⊙O的内接三角形,AB=8.过点B作⊙O的切线BD,过点A作AD⊥BD,垂足为D.(1)求证:∠BAD+∠C=90°;(2)求线段AD的长.如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,点A(2,1).(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的函数表达式;(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.25、(本题满分12分)(1)如图①,在△ABC中,BC=6,D为BC上一点,AD=4,则△ABC面积的最大值是________.(2)如图②,已知矩形ABCD的周长为12,求矩形ABCD面积的最大值.(3)如图③,△ABC是葛叔叔家的菜地示意图,其中AB=30米,BC=40米,AC=50米.现在他想利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔欲建的鱼塘是四边形ABCD,且满足∠ADC=60°.你认为葛叔叔的想法能否实现?若能,求出这个四边形鱼塘周长的最大值;若不能,请说明理由.2016年陕西省初中毕业学业考试数学答案及评分参考一、选择题(共题号 1 2 3 4 5 6 7 8 9 10 答案B D AC BA DC DC二、填空题(共4小题,题号 11 12 13 14 答案2A.5B.7589-12955三、解答题(共11小题,计15、原式=9+5-2-25=7- 5.16、原式=2a 2+7a -3-(a +4)(a -3)a 2-9÷a +3a -3=2a 2+7a -3-a 2-a +12a 2-9·a -3a +3=a 2+6a +9a 2-9·a -3a +3=(a +3)2(a +3)(a -3)·a -3a +3=117.、如图①或图②,点E 即为所求.(只要求作其中一种即可)18、(1)补全的条形统计图和扇形统计图如图所示.(2)24÷8%=300,300÷50=6. ∴八年级5班平均每人捐赠了6本书. (3)6×800=4800. ∴这个年级学生共可捐赠4800本书.19、∵四边形ABCD 是菱形, ∴AB =BC ,AD ∥BC . ∴∠A =∠CBF .又∵AE =BF , ∴△ABE ≌△BCF . ∴BE =CF . 20、如图,在Rt △BCD 中,∠BCD =45°,BC =350, ∴BD =350si n 45°=175 2. ∴CD =BD =175 2.在Rt △ACD 中,∠ACD =73°,∴AD =175 2 t an 73°. ∴AB =AD +BD =175 2 t an 73°+1752≈1057(米). 21、(1)设线段AB 所对应的函数关系式为y =kx +b (k ≠0),根据题意得 ⎩⎨⎧=+=,1202320b k b 解之得,320100⎩⎨⎧=-=b k∴线段AB 所对应的函数关系式为y =-100x +320(0≤x ≤2).(注:不写x 的取值范围不扣分)(2)由题意,当x =2.5时,y =120; 当x =3时,y =80. 设线段CD 所对应的函数关系式为y =k ′x +b ′(k ′≠0),根据题意得,80''3120''5.2⎩⎨⎧=+=+b k b k 解得,320'80'⎩⎨⎧=-=b k ∴线段CD 所对应的函数关系式为y =-80x +320.当y =0时,-80x +320=0,∴x =4. ∴小颖一家当天中午12点到达姥姥家.22、小超的回答正确,小芳的回答不正确.理由如下:由题意得:和 二 一1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 67891011126的结果共有5种. 实际上,和为7的结果最多. ∴P (点数和为7)=636=16,P (点数和为6)=536<16.∴小超的回答正确,小芳的回答不正确.23、(1)如图,连接BO 并延长交⊙O 于点E ,连接AE .∵BD 切⊙O 于点B ,∴BE ⊥BD .又∵AD ⊥BD ,∴AD ∥BE . ∴∠BAD =∠1.又∵BE 是⊙O 的直径,∴∠1+∠E =90°.∴∠BAD +∠E =90° 又∵∠E =∠C , ∴∠BAD +∠C =90°.(2)由(1)得∠BAD =∠1, 又∵∠D =∠BAE =90°,∴△ABD ∽△BEA .∴BE AB =BA AD ,即810=8AD . ∴AD =325.24、(1)如图,过点A 作AC ⊥x 轴,垂足为C ,过点B 作BD ⊥y 轴,垂足为D .∵△AOB 为等腰直角三角形,且A (2,1), ∴△AOC ≌△BOD . ∴BD =AC =1,OD =OC =2,∴B (-1,2).(2)设经过A 、O 、B 三点的抛物线的函数表达式为y =ax 2+bx (a ≠0),则,1242⎩⎨⎧=+=-b a b a 解之得 ,6765⎪⎩⎪⎨⎧-==b a ∴经过A 、O 、B 三点的抛物线的函数表达式为y =56x 2-76x . (3)存在.理由如下:设P (m ,56m 2-76m ),则0<m <2,如图,过点P 作P Q ∥y 轴交OA 于点Q ,连接OP 、AP. ∵点A (2,1),∴直线OA :y =12x . ∴点Q(m ,12m ). ∴P Q =12m -(56m 2-76m )=-56m 2+53m .∴S △AOP =12×2×(-56m 2+53m )=-56m 2+53m .又∵S △AOB =12×(5)2=52, ∴S 四边形ABOP =S △AOP +S △AOB =-56m 2+53m +52=-56(m -1)2+103.∵-56<0,∴当m =1时,四边形ABOP 的面积最大,此时P (1,-13).(2)设矩形ABCD的两邻边长分别为m、n,面积为S. 由题意得2(m+n)=12.∴n=6-m.(3分)∴S=mn=m(6-m)=-(m-3)2+9.∴当m=3时,S的最大值为9.(3)能实现.理由如下:如图,在△ABC的另一侧作等边△AEC,再作△AEC的外接圆⊙O,则满足∠ADC=60°的点D在优弧AEC上(点D不与A、C重合).当点D与点E重合时,S△ADC的最大值=S△AEC.又∵S△ABC为定值,∴此时,四边形ABCD的面积最大.设点D′是优弧AEC上任一点,连接AD′、CD′,延长AD′至点F,使D′F=D′C,则AD′+D′C=AF.连接CF,则∠AFC=30°. 以点E为圆心,AE长为半径作⊙E,则点F在⊙E上.∴当点D′与圆心E重合,即AF为⊙E的直径时,AD′+D′C最长,此时AD′+D′C=2AE=100.综上,当四边形ABCD的顶点D与点E重合时,其面积最大,同时周长最长.∴四边形ABCD周长的最大值=30+40+100=170(米).。

2016年陕西省中考数学试卷及答案

2016年陕西省中考数学试卷及答案

2016年陕西省中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2016•陕西)计算:(﹣)×2=()A.﹣1 B.1 C.4 D.﹣42.(3分)(2016•陕西)如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A.B.C.D.3.(3分)(2016•陕西)下列计算正确的是()A.x2+3x2=4x4B.x2y•2x3=2x4y C.(6x2y2)÷(3x)=2x2D.(﹣3x)2=9x24.(3分)(2016•陕西)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°5.(3分)(2016•陕西)设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=06.(3分)(2016•陕西)如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC 的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.107.(3分)(2016•陕西)已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.(3分)(2016•陕西)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对9.(3分)(2016•陕西)如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为()A.3 B.4C.5D.610.(3分)(2016•陕西)已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A.B.C.D.2二、填空题(共4小题,每小题3分,满分12分)11.(3分)(2016•陕西)不等式﹣x+3<0的解集是______.12.(3分)(2016•陕西)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是______.B.运用科学计算器计算:3sin73°52′≈______.(结果精确到0.1)13.(3分)(2016•陕西)已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为______.14.(3分)(2016•陕西)如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为______.三、解答题(共11小题,满分78分)15.(5分)(2016•陕西)计算:﹣|1﹣|+(7+π)0.16.(5分)(2016•陕西)化简:(x﹣5+)÷.17.(5分)(2016•陕西)如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)18.(5分)(2016•陕西)某校为了进一步改进本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是______;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?19.(7分)(2016•陕西)如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.20.(7分)(2016•陕西)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.21.(7分)(2016•陕西)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?22.(7分)(2016•陕西)某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500ml)、红茶(500ml)和可乐(600ml),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.23.(8分)(2016•陕西)如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.24.(10分)(2016•陕西)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N(3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.25.(12分)(2016•陕西)问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.2016年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2016•陕西)计算:(﹣)×2=()A.﹣1 B.1 C.4 D.﹣4【分析】原式利用乘法法则计算即可得到结果.【解答】解:原式=﹣1,故选A2.(3分)(2016•陕西)如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A.B.C.D.【分析】根据已知几何体,确定出左视图即可.【解答】解:根据题意得到几何体的左视图为,故选C3.(3分)(2016•陕西)下列计算正确的是()A.x2+3x2=4x4B.x2y•2x3=2x4y C.(6x2y2)÷(3x)=2x2D.(﹣3x)2=9x2【分析】A、原式合并得到结果,即可作出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可作出判断;C、原式利用单项式除以单项式法则计算得到结果,即可作出判断;D、原式利用积的乘方运算法则计算得到结果,即可作出判断.【解答】解:A、原式=4x2,错误;B、原式=2x5y,错误;C、原式=2xy2,错误;D、原式=9x2,正确,故选D4.(3分)(2016•陕西)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.5.(3分)(2016•陕西)设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=0【分析】直接把点A(a,b)代入正比例函数y=﹣x,求出a,b的关系即可.【解答】解:把点A(a,b)代入正比例函数y=﹣x,可得:﹣3a=2b,可得:3a+2b=0,故选D6.(3分)(2016•陕西)如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC 的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.10【分析】根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.【解答】解:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,∴AC===10,∵DE是△ABC的中位线,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=8.故选B.7.(3分)(2016•陕西)已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据k的符号来求确定一次函数y=kx+b的图象所经过的象限,然后根据b的情况即可求得交点的位置.【解答】解:∵一次函数y=kx+5中k>0,∴一次函数y=kx+5的图象经过第一、二、三象限.又∵一次函数y=k′x+7中k′<0,∴一次函数y=k′x+7的图象经过第一、二、四象限.∵5<7,∴这两个一次函数的图象的交点在第一象限,故选A.8.(3分)(2016•陕西)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′由此即可对称结论.【解答】解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.9.(3分)(2016•陕西)如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为()A.3 B.4C.5D.6【分析】首先过点O作OD⊥BC于D,由垂径定理可得BC=2BD,又由圆周角定理,可求得∠BOC的度数,然后根据等腰三角形的性质,求得∠OBC的度数,利用余弦函数,即可求得答案.【解答】解:过点O作OD⊥BC于D,则BC=2BD,∵△ABC内接于⊙O,∠BAC与∠BOC互补,∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB=(180°﹣∠BOC)=30°,∵⊙O的半径为4,∴BD=OB•cos∠OBC=4×=2,∴BC=4.故选:B.10.(3分)(2016•陕西)已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A.B.C.D.2【分析】先求出A、B、C坐标,作CD⊥AB于D,根据tan∠ACD=即可计算.【解答】解:令y=0,则﹣x2﹣2x+3=0,解得x=﹣3或1,不妨设A(﹣3,0),B(1,0),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点C(﹣1,4),如图所示,作CD⊥AB于D.在RT△ACD中,tan∠CAD===2,故答案为D.二、填空题(共4小题,每小题3分,满分12分)11.(3分)(2016•陕西)不等式﹣x+3<0的解集是x>6.【分析】移项、系数化成1即可求解.【解答】解:移项,得﹣x<﹣3,系数化为1得x>6.故答案是:x>6.12.(3分)(2016•陕西)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是8.B.运用科学计算器计算:3sin73°52′≈11.9.(结果精确到0.1)【分析】(1)根据多边形内角和为360°进行计算即可;(2)先分别求得3和sin73°52′的近似值,再相乘求得计算结果.【解答】解:(1)∵正多边形的外角和为360°∴这个正多边形的边数为:360°÷45°=8(2)3sin73°52′≈12.369×0.961≈11.9故答案为:8,11.913.(3分)(2016•陕西)已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为y=.【分析】根据已知条件得到A(﹣2,0),B(0,4),过C作CD⊥x轴于D,根据相似三角形的性质得到==,求得C(1,6),即可得到结论.【解答】解:∵一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,∴A(﹣2,0),B(0,4),过C作CD⊥x轴于D,∴OB∥CD,∴△ABO∽△ACD,∴==,∴CD=6,AD=3,∴OD=1,∴C(1,6),设反比例函数的解析式为y=,∴k=6,∴反比例函数的解析式为y=.故答案为:y=.14.(3分)(2016•陕西)如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为2﹣2.【分析】如图连接AC、BD交于点O,以B为圆心BC为半径画圆交BD于P.此时△PBC 是等腰三角形,线段PD最短,求出BD即可解决问题.【解答】解:如图连接AC、BD交于点O,以B为圆心BC为半径画圆交BD于P.此时△PBC是等腰三角形,线段PD最短,∵四边形ABCD是菱形,∠ABC=60°,∴AB=BC=CD=AD,∠ABC=∠ADC=60°,∴△ABC,△ADC是等边三角形,∴BO=DO=×2=,∴BD=2BO=2,∴PD最小值=BD﹣BP=2﹣2.故答案为2﹣2.三、解答题(共11小题,满分78分)15.(5分)(2016•陕西)计算:﹣|1﹣|+(7+π)0.【分析】直接化简二次根式、去掉绝对值、再利用零指数幂的性质化简求出答案.【解答】解:原式=2﹣(﹣1)+1=2﹣+2=+2.16.(5分)(2016•陕西)化简:(x﹣5+)÷.【分析】根据分式的除法,可得答案.【解答】解:原式=•=(x﹣1)(x﹣3)=x2﹣4x+3.17.(5分)(2016•陕西)如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)【分析】过点A作AD⊥BC于D,利用等角的余角相等可得到∠BAD=∠C,则可判断△ABD 与△CAD相似.【解答】解:如图,AD为所作.18.(5分)(2016•陕西)某校为了进一步改进本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是比较喜欢;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?【分析】(1)根据条形统计图与扇形统计图可以得到调查的学生数,从而可以的选B的学生数和选B和选D的学生所占的百分比,从而可以将统计图补充完整;(2)根据(1)中补全的条形统计图可以得到众数;(3)根据(1)中补全的扇形统计图可以得到该年级学生中对数学学习“不太喜欢”的人数.【解答】解:(1)由题意可得,调查的学生有:30÷25%=120(人),选B的学生有:120﹣18﹣30﹣6=66(人),B所占的百分比是:66÷120×100%=55%,D所占的百分比是:6÷120×100%=5%,故补全的条形统计图与扇形统计图如右图所示,(2)由(1)中补全的条形统计图可知,所抽取学生对数学学习喜欢程度的众数是:比较喜欢,故答案为:比较喜欢;(3)由(1)中补全的扇形统计图可得,该年级学生中对数学学习“不太喜欢”的有:960×25%=240(人),即该年级学生中对数学学习“不太喜欢”的有240人.19.(7分)(2016•陕西)如图,在▱ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.【分析】由平行四边形的性质得出AD∥BC,AD=BC,证出∠1=∠2,DF=BE,由SAS证明△ADF≌△CBE,得出对应角相等,再由平行线的判定即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠1=∠2,∵BF=DE,∴BF+BD=DE+BD,即DF=BE,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴∠AFD=∠CEB,∴AF∥CE.20.(7分)(2016•陕西)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.【分析】根据镜面反射原理结合相似三角形的判定方法得出△ABC∽△EDC,△ABF∽△GFH,进而利用相似三角形的性质得出AB的长.【解答】解:由题意可得:∠ABC=∠EDC=∠GFH=90°,∠ACB=∠ECD,∠AFB=∠GHF,故△ABC∽△EDC,△ABF∽△GFH,则=,=,即=,=,解得:AB=99,答:“望月阁”的高AB的长度为99m.21.(7分)(2016•陕西)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?【分析】(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.【解答】解:(1)设线段AB所表示的函数关系式为:y=kx+b,依题意有,解得.故线段AB所表示的函数关系式为:y=﹣96x+192(0≤x≤2);(2)12+3﹣(7+6.6)=15﹣13.6=1.4(小时),112÷1.4=80(千米/时),(192﹣112)÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.22.(7分)(2016•陕西)某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500ml)、红茶(500ml)和可乐(600ml),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.【分析】(1)由转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客经过两次“有效随机转动”后,获得一瓶可乐的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;∴一次“有效随机转动”可获得“乐”字的概率为:;(2)画树状图得:∵共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为:.23.(8分)(2016•陕西)如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.【分析】(1)由平行线的性质得出EF⊥AD,由线段垂直平分线的性质得出FA=FD,由等腰三角形的性质得出∠FAD=∠D,证出∠DCB=∠G,由对顶角相等得出∠GCF=∠G,即可得出结论;(2)连接AC,由圆周角定理证出AC是⊙O的直径,由弦切角定理得出∠DCB=∠CAB,证出∠CAB=∠G,再由∠CBA=∠GBA=90°,证明△ABC∽△GBA,得出对应边成比例,即可得出结论.【解答】证明:(1)∵EF∥BC,AB⊥BG,∴EF⊥AD,∵E是AD的中点,∴FA=FD,∴∠FAD=∠D,∵GB⊥AB,∴∠GAB+∠G=∠D+∠DCB=90°,∴∠DCB=∠G,∵∠DCB=∠GCF,∴∠GCF=∠G,∴FC=FG;(2)连接AC,如图所示:∵AB⊥BG,∴AC是⊙O的直径,∵FD是⊙O的切线,切点为C,∴∠DCB=∠CAB,∵∠DCB=∠G,∴∠CAB=∠G,∵∠CBA=∠GBA=90°,∴△ABC∽△GBA,∴=,∴AB2=BC•BG.24.(10分)(2016•陕西)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N(3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.【分析】(1)把M、N两点的坐标代入抛物线解析式可求得a、b的值,可求得抛物线解析式,再根据一元二次方程根的判别式,可判断抛物线与x轴的交点情况;(2)利用A点坐标和等腰三角形的性质可求得B点坐标,设出平移后的抛物线的解析式,把A、B的坐标代入可求得平移后的抛物线的解析式,比较平移前后抛物线的顶点的变化即可得到平移的过程.【解答】解:(1)由抛物线过M、N两点,把M、N坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣3x+5,令y=0可得x2﹣3x+5=0,该方程的判别式为△=(﹣3)2﹣4×1×5=9﹣20=﹣11<0,∴抛物线与x轴没有交点;(2)∵△AOB是等腰直角三角形,A(﹣2,0),点B在y轴上,∴B点坐标为(0,2)或(0,﹣2),可设平移后的抛物线解析式为y=x2+mx+n,①当抛物线过点A(﹣2,0),B(0,2)时,代入可得,解得,∴平移后的抛物线为y=x2+3x+2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),∴将原抛物线先向左平移3个单位,再向下平移3个单位即可获得符合条件的抛物线;②当抛物线过A(﹣2,0),B(0,﹣2)时,代入可得,解得,∴平移后的抛物线为y=x2+x﹣2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),∴将原抛物线先向左平移2个单位,再向下平移5个单位即可获得符合条件的抛物线.25.(12分)(2016•陕西)问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.【分析】(1)作B关于AC 的对称点D,连接AD,CD,△ACD即为所求;(2)作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,得到此时四边形EFGH 的周长最小,根据轴对称的性质得到BF′=BF=AF=2,DE′=DE=2,∠A=90°,于是得到AF′=6,AE′=8,求出E′F′=10,EF=2即可得到结论;(3)根据余角的性质得到1=∠2,推出△AEF≌△BGF,根据全等三角形的性质得到AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x根据勾股定理列方程得到AF=BG=1,BF=AE=2,作△EFG关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以EG 为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′GH′,则∠EH′G=45°,于是得到四边形EFGH′是符合条件的最大部件,根据矩形的面积公式即可得到结论.【解答】解:(1)如图1,△ADC即为所求;(2)存在,理由:作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,交BC于G,交CD于H,连接FG,EH,则F′G=FG,E′H=EH,则此时四边形EFGH的周长最小,由题意得:BF′=BF=AF=2,DE′=DE=2,∠A=90°,∴AF′=6,AE′=8,∴E′F′=10,EF=2,∴四边形EFGH的周长的最小值=EF+FG+GH+HE=EF+E′F′=2+10,∴在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小,最小值为2+10;(3)能裁得,理由:∵EF=FG=,∠A=∠B=90°,∠1+∠AFE=∠2+AFE=90°,∴∠1=∠2,在△AEF与△BGF中,,∴△AEF≌△BGF,∴AF=BG,AE=BF,设AF=x,则AE=BF=3﹣x,∴x2+(3﹣x)2=()2,解得:x=1,x=2(不合题意,舍去),∴AF=BG=1,BF=AE=2,∴DE=4,CG=5,连接EG,作△EFG关于EG的对称△EOG,则四边形EFGO是正方形,∠EOG=90°,以O为圆心,以OE为半径作⊙O,则∠EHG=45°的点在⊙O上,连接FO,并延长交⊙O于H′,则H′在EG的垂直平分线上,连接EH′、GH′,则∠EH′G=45°,此时,四边形EFGH′是要想裁得符合要求的面积最大的,∴C在线段EG的垂直平分线设,∴点F,O,H′,C在一条直线上,∵EG=,∴OF=EG=,∵CF=2,∴OC=,∵OH′=OE=FG=,∴OH′<OC,∴点H′在矩形ABCD的内部,。

2016年陕西省中考数学试卷及答案解析

2016年陕西省中考数学试卷及答案解析

2016年陕西省中考数学试卷一、选择题(共10小题,每小题3分,满分301.计算:(﹣)×2=()A.﹣1 B.1 C.4 D.﹣42.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A.B.C.D.3.下列计算正确的是()A.x2+3x2=4x4B.x2y•2x3=2x4y C.(6x2y2)÷(3x)=2x2D.(﹣3x)2=9x24.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65° B.115° C.125° D.130°5.设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=06.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM 的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.107.已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对D.5对9.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为()A.3B.4C.5D.610.已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB 的值为()A.B.C.D.2二、填空题(共4小题,每小题3分,满分12分)11.不等式﹣x+3<0的解集是.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是.B.运用科学计算器计算:3sin73°52′≈.(结果精确到0.1)13.已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为.14.如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为.三、解答题(共11小题,满分78分)15.计算:﹣|1﹣|+(7+π)0.16.化简:(x﹣5+)÷.17.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)18.某校为了进一步改变本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?19.如图,在ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.20.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D 时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.21.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?22.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶、红茶和可乐,抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.23.如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.24.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N(3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.25.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH 部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.2016年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.【考点】有理数的乘法.【分析】原式利用乘法法则计算即可得到结果.【解答】解:原式=﹣1,故选A2.【考点】简单组合体的三视图.【分析】根据已知几何体,确定出左视图即可.【解答】解:根据题意得到几何体的左视图为,故选C3.【考点】整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】A、原式合并得到结果,即可作出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可作出判断;C、原式利用单项式除以单项式法则计算得到结果,即可作出判断;D、原式利用积的乘方运算法则计算得到结果,即可作出判断.【解答】解:A、原式=4x2,错误;B、原式=2x5y,错误;C、原式=2xy2,错误;D、原式=9x2,正确,故选D4.【考点】平行线的性质.【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.5.【考点】一次函数图象上点的坐标特征.【分析】直接把点A(a,b)代入正比例函数y=﹣x,求出a,b的关系即可.【解答】解:把点A(a,b)代入正比例函数y=﹣x,可得:﹣3a=2b,可得:3a+2b=0,故选D6.【考点】三角形中位线定理;等腰三角形的判定与性质;勾股定理.【分析】根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.【解答】解:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,∴AC===10,∵DE是△ABC的中位线,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=8.故选B.7. 【考点】两条直线相交或平行问题.【分析】根据k的符号来求确定一次函数y=kx+b的图象所经过的象限,然后根据b的情况即可求得交点的位置.【解答】解:∵一次函数y=kx+5中k>0,∴一次函数y=kx+5的图象经过第一、二、三象限.又∵一次函数y=k′x+7中k′<0,∴一次函数y=k′x+7的图象经过第一、二、四象限.∵5<7,∴这两个一次函数的图象的交点在第一象限,故选A.8.【考点】正方形的性质;全等三角形的判定.【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′由此即可对称结论.【解答】解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.9.【考点】垂径定理;圆周角定理;解直角三角形.【分析】首先过点O作OD⊥BC于D,由垂径定理可得BC=2BD,又由圆周角定理,可求得∠BOC的度数,然后根据等腰三角形的性质,求得∠OBC的度数,利用余弦函数,即可求得答案.【解答】解:过点O作OD⊥BC于D,则BC=2BD,∵△ABC内接于⊙O,∠BAC与∠BOC互补,∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB==30°,∵⊙O的半径为4,∴BD=OB•cos∠OBC=4×=2,∴BC=4.故选:B.10.【考点】抛物线与x轴的交点;锐角三角函数的定义.【分析】先求出A、B、C坐标,作CD⊥AB于D,根据tan∠ACD=即可计算.【解答】解:令y=0,则﹣x2﹣2x+3=0,解得x=﹣3或1,不妨设A(﹣3,0),B(1,0),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点C(﹣1,4),如图所示,作CD⊥AB于D.在RT△ACD中,tan∠CAD===2,故答案为D.二、填空题(共4小题,每小题3分,满分12分)11.不等式﹣x+3<0的解集是x>6.【考点】解一元一次不等式.【分析】移项、系数化成1即可求解.【解答】解:移项,得﹣x<﹣3,系数化为1得x>6.故答案是:x>6.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是8.B.运用科学计算器计算:3sin73°52′≈11.9.(结果精确到0.1)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方;多边形内角与外角.【分析】(1)根据多边形内角和为360°进行计算即可;(2)先分别求得3和sin73°52′的近似值,再相乘求得计算结果. 【解答】解:(1)∵正多边形的外角和为360° ∴这个正多边形的边数为:360°÷45°=8(2)3sin73°52′≈12.369×0.961≈11.9 故答案为:8,11.913.y=.【考点】反比例函数与一次函数的交点问题.【分析】根据已知条件得到A(﹣2,),B(0,4),过C作CD ⊥x 轴于D ,根据相似三角形的性质得到==,求得C (1,6),即可得到结论.【解答】解:∵一次函数y=2x+4的图象分别交x 轴、y 轴于A 、B 两点, ∴A (﹣2,0),B (0,4), 过C 作CD ⊥x 轴于D , ∴OB ∥CD ,∴△ABO ∽△ACD , ∴==,∴CD=6,AD=3, ∴OD=1, ∴C (1,6),设反比例函数的解析式为y=, ∴k=6,∴反比例函数的解析式为y=. 故答案为:y=.14. 2﹣2 .【考点】菱形的性质;等腰三角形的判定;等边三角形的性质.【分析】如图连接AC 、BD 交于点O ,以B 为圆心BC 为半径画圆交BD 于P .此时△PBC 是等腰三角形,线段PD 最短,求出BD 即可解决问题.【解答】解:如图连接AC 、BD 交于点O ,以B 为圆心BC 为半径画圆交BD 于P . 此时△PBC 是等腰三角形,线段PD 最短, ∵四边形ABCD 是菱形,∠ABC=60°, ∴AB=BC=CD=AD ,∠ABC=∠ADC=60°, ∴△ABC ,△ADC 是等边三角形, ∴BO=DO=×2=,∴BD=2BO=2,∴PD 最小值=BD ﹣BP=2﹣2.故答案为2﹣2.三、解答题(共11小题,满分78分) 15.计算:﹣|1﹣|+(7+π)0. 【考点】实数的运算;零指数幂.【分析】直接化简二次根式、去掉绝对值、再利用零指数幂的性质化简求出答案. 【解答】解:原式=2﹣(﹣1)+1 =2﹣+2 =+2.16.化简:(x ﹣5+)÷.【考点】分式的混合运算.【分析】根据分式的除法,可得答案.【解答】解:原式=•=(x﹣1)(x﹣3)=x2﹣4x+3.17.【考点】作图—相似变换.【分析】过点A作AD⊥BC于D,利用等角的余角相等可得到∠BAD=∠C,则可判断△ABD与△CAD相似.【解答】解:如图,AD为所作.18.【解答】解:(1)由题意可得,调查的学生有:30÷25%=120(人),选B的学生有:120﹣18﹣30﹣6=66(人),B所占的百分比是:66÷120×100%=55%,D所占的百分比是:6÷120×100%=5%,故补全的条形统计图与扇形统计图如右图所示,(2)由(1)中补全的条形统计图可知,所抽取学生对数学学习喜欢程度的众数是:比较喜欢,故答案为:比较喜欢;(3)由(1)中补全的扇形统计图可得,该年级学生中对数学学习“不太喜欢”的有:960×25%=240(人),即该年级学生中对数学学习“不太喜欢”的有240人.19.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】由平行四边形的性质得出AD∥BC,AD=BC,证出∠1=∠2,DF=BE,由SAS证明△ADF≌△CBE,得出对应角相等,再由平行线的判定即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠1=∠2,∵BF=DE,∴BF+BD=DE+BD,即DF=BE,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴∠AFD=∠CEB,∴AF∥CE.20.【解答】解:由题意可得:∠ABC=∠EDC=∠GFH=90°,∠ACB=∠ECD,∠AFB=∠GHF,故△ABC∽△EDC,△ABF∽△GFH,则=,=,即=,=,解得:AB=99,答:“望月阁”的高AB的长度为99m.21.【考点】一次函数的应用.【分析】(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.【解答】解:(1)设线段AB所表示的函数关系式为:y=kx+b,依题意有,解得.故线段AB所表示的函数关系式为:y=﹣96x+192(0≤x≤2);(2)12+3﹣(7+6.6)=15﹣13.6=1.4(小时),112÷1.4=80(千米/时),÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.22.【解答】解:(1)∵转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;∴一次“有效随机转动”可获得“乐”字的概率为:;(2)画树状图得:∵共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为:.23.【解答】证明:(1)∵EF∥BC,AB⊥BG,∴EF⊥AD,∵E是AD的中点,∴FA=FD,∴∠FAD=∠D,∵GB⊥AB,∴∠GAB+∠G=∠D+∠DCB=90°,∴∠DCB=∠G,∵∠DCB=∠GCF,∴∠GCF=∠G,∴FC=FG;(2)连接AC,如图所示:∵AB⊥BG,∴AC是⊙O的直径,∵FD是⊙O的切线,切点为C,∴∠DCB=∠CAB,∵∠DCB=∠G,∴∠CAB=∠G,∵∠CBA=∠GBA=90°,∴△ABC∽△GBA,∴=,∴AB2=BC•BG.24.(1)由抛物线过M、N两点,把M、N坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣3x+5,令y=0可得x2﹣3x+5=0,该方程的判别式为△=(﹣3)2﹣4×1×5=9﹣20=﹣11<0,∴抛物线与x轴没有交点;(2)∵△AOB是等腰直角三角形,A(﹣2,0),点B在y轴上,∴B点坐标为(0,2)或(0,﹣2),可设平移后的抛物线解析式为y=x2+mx+n,①当抛物线过点A(﹣2,0),B(0,2)时,代入可得,解得,∴平移后的抛物线为y=x2+3x+2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),∴将原抛物线先向左平移3个单位,再向下平移3个单位即可获得符合条件的抛物线;②当抛物线过A(﹣2,0),B(0,﹣2)时,代入可得,解得,∴平移后的抛物线为y=x2+x﹣2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),∴将原抛物线先向左平移2个单位,再向下平移5个单位即可获得符合条件的抛物线.25.【解答】解:(1)如图1,△ADC即为所求;(2)存在,理由:作E关于CD的对称点E′,作F关于BC的对称点F′,连接E′F′,交BC于G,交CD于H,连接FG,EH,则F ′G=FG ,E ′H=EH ,则此时四边形EFGH 的周长最小, 由题意得:BF ′=BF=AF=2,DE ′=DE=2,∠A=90°, ∴AF ′=6,AE ′=8, ∴E ′F ′=10,EF=2,∴四边形EFGH 的周长的最小值=EF+FG+GH+HE=EF+E ′F ′=2+10,∴在边BC 、CD 上分别存在点G 、H , 使得四边形EFGH 的周长最小, 最小值为2+10;(3)能裁得, 理由:∵EF=FG=,∠A=∠B=90°,∠1+∠AFE=∠2+AFE=90°,∴∠1=∠2,在△AEF 与△BGF 中,,∴△AEF ≌△BGF ,∴AF=BG ,AE=BF ,设AF=x ,则AE=BF=3﹣x ,∴x 2+(3﹣x )2=()2,解得:x=1,x=2(不合题意,舍去), ∴AF=BG=1,BF=AE=2, ∴DE=4,CG=5, 连接EG ,作△EFG 关于EG 的对称△EOG ,则四边形EFGO 是正方形,∠EOG=90°, 以O 为圆心,以EG 为半径作⊙O , 则∠EHG=45°的点在⊙O 上,连接FO ,并延长交⊙O 于H ′,则H ′在EG 的垂直平分线上, 连接EH ′GH ′,则∠EH ′G=45°,此时,四边形EFGH ′是要想裁得符合要求的面积最大的, ∴C 在线段EG 的垂直平分线设, ∴点F ,O ,H ′,C 在一条直线上, ∵EG=, ∴OF=EG=, ∵CF=2, ∴OC=,∵OH ′=OE=FG=, ∴OH ′<OC ,∴点H ′在矩形ABCD 的内部,∴可以在矩形ABCD 中,裁得符合条件的面积最大的四边形EFGH ′部件, 这个部件的面积=EG •FH ′=××(+)=5+,∴当所裁得的四边形部件为四边形EFGH ′时,裁得了符合条件的最大部件,这个部件的面积为(5+)m 2.。

陕西数学中考副题

陕西数学中考副题

班级:________ 姓名:________ 得分:________机密★启用前 试卷类型:A2016年陕西省初中毕业学业考试数学试卷本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至10页,全卷共120分。

考试时间为120分钟。

第Ⅰ卷(选择题 共30分)一、 选择题(共10小题,每小题3分,计30分. 每小题只有一个选项是符合题意的)1.计算:(-3)×(-13)=A.-1B.1C.-9D.92.如图,下面的几何体由两个大小相同的正方体和一个圆柱体组成,则它的左视图是3.计算:(-2x 2y )3=A.-8x 6y 3B.8x 6y 3C.-6x 6y 3D.6x 5y 3 4.如图,AB ∥CD .若∠1=40°,∠2=65°,则∠CAD =A.50°B.65°C.75°D.85°(第4题图) (第6题图)5.设点A (-3,a ),B (b ,12)在同一个正比例函数的图象上,则ab 的值为A.-23B.-32C.-6D.326.如图,在△ABC 中,∠BAC =90°,AB =20,AC =15,△ABC 的高AD 与角平分线CF 交于点E ,则AFDE的值为 A.35 B.34 C.12 D.237.已知两个一次函数y =3x +b 1和y =-3x +b 2. 若b 1<b 2<0,则它们图象的交点在 A.第一象限 B.第二象限 C.第三象限 D.第四象限8.如图,在三边互不相等的△ABC 中,D 、E 、F 分别是AB 、AC 、BC 边的中点.连接DE ,过点C作CM ∥AB 交DE 的延长线于点M ,连接CD 、EF 交于点N ,则图中全等三角形共有A.3对B.4对C.5对D.6对(第8题图) (第9题图)9.如图,在⊙O 中,弦AB 垂直平分半径OC ,垂足为D .若点P 是⊙O 上异于点A 、B 的任意一点,则∠APB =A.30°或60°B.60°或150°C.30°或150°D.60°或120°10.将抛物线M :y =-13x 2+2向左平移2个单位,再向上平移1个单位,得到抛物线M ′.若抛物线M ′与x 轴交于A 、B 两点,M ′的顶点记为C ,则∠ACB =A.45°B.60°C.90°D.120° 机密★启用前2016年陕西省初中毕业学业考试数学试卷注意事项:1. 答卷前请你将密封线内的项目填写清楚。

陕西中考数学试题附有

陕西中考数学试题附有

2016 年陕西中考一、选择1、计算:(1) 2()2A -1B 1C 4D -42、如图,下边的几何体由三个大小同样的小立方块构成,则它的左视图是()3、以下计算正确的选项是()A x23x 24x4B x2 y 2 x32x6 y C(6x3 y2 )(3x) 2 x2D( 3x)29x24、如图, AB∥ CD,AE 均分∠ CAB交 CD于点 E。

若∠ C= 50°,则∠ AED=()A 65 °B 115°C 125 °D 130°5、设点 A( a, b)是正比率函数y 3x 图像上的随意一点,则以下等式必定建立的是()2A 2a3b0B2a3b 0C3a2b 0 D3a 2b06、如图,在△ ABC中,∠ ABC= 90°, AB= 8,BC= 6,若 DE是△ ABC的中位线,延伸DE交 ABC的外角∠ ACM的均分线于点F,则线段 DF 的长为()A 7B 8C 9D 107、已知一次函数y kx 5 和 y k ' x7 。

假定k>0且k’<0,则这两个一次函数图像的交点在()A 第一象限B第二象限C第三象限D第四象限8、如图,在正方形ABCD中,连结 BD,点 O是 BD 的中点,若 M、 N 是边 AD上的两点,连结MO、 NO,并分别延伸交边BC于两点 M’、 N’,则图中的全等三角形共有()A 2 对B 3对C 4对D 5对9、如图,⊙ O的半径为4,△ ABC是⊙ O的内接三角形,连结 OB、 OC,若∠ BAC与∠ BOC互补,则弦BC的长为()A 3 3B 4 3C 5 3D 6 310、已知抛物线y x22x3 与x轴交于A、B两点,将这条抛物线的极点记为C,连结 AC、 BC,则 tan ∠ CAB的值为()A 1B5C25255D 2二、填空11、不等式130的解集是 _________ x212、二选一A一个正多边形的一个外角为45°,则这个正多边形的边数是______B运用科学计算器计算:317 sin 73 52'______ (结果精准到)13、已知一次函数y 2x 4 的图像分别交x 轴、 y 轴于点A、 B,若这个一次函数的图像与一个反比例函数的图像在第一象限交于点C,且AB= 2BC,则这个反比率函数的表达式为_____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密☆启用前 试卷类型:B2009年陕西省初中毕业学业考试(副题)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3-9页,全卷共120分。

考试时间为120分钟。

第Ⅰ卷(选择题 共30分)注意事项:1.答第Ⅰ卷前,请你千万别忘了将自己的姓名、准考证号、考试科目、试卷类型(A 或B )用2B 铅笔和钢笔准确涂写在答题卡上;并将本试卷左侧的项目填写清楚。

2.当你选出每小题的答案后,请用2B 铅笔把答题卡上对应题号的答案标号涂黑。

如需改动,请用橡皮擦干净后,再选涂其它答案标号。

把答案填在试卷上是不能得分的。

3.考试结束,本卷和答题卡一并交给监考教师收回。

一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.-3的平方是A.9B.-9C.6D.-62.下列图形中,既是轴对称图形又是中心对称图形的是3.近三年,陕西加强农村公路建设,到2008年底,陕西农村公路总里程达到11.9万公里.将11.9万公里用科学计数法表示为A.11.9×104公里 B.1.19×105公里 C.1.19×106公里 D.11.9×105公里 4. 如图,CD 是Rt △ABC 斜边上的高.若AB=5,AC=3,则tan ∠BCD 为 A.34 B. 43 C. 54 D. 53 5.某篮球队员12名队员的年龄情况统计如下表: 则这12名队员的众数和中位数分别是年龄(单位:岁) 18 21 23 24 26 29 人 数241311A.23岁,21岁B.23岁,22岁C.21岁,22岁D.21岁,23岁 6.若正比例函数y=kx 经过点(2,-1),则它与反比例函数y=xk的图像的两个交点分别在A.第一、二象限B.第二、四象限C.第一、三象限D.第三、四象限 7.如图,在长70m ,宽40m 的长方形花园中,欲修宽度相等的观赏路(如阴影部分所示),要使观赏路面积占总面积的81,则路宽x (m )应满足的方程是A.(40-X)(70-X)=350B.(40-2X)(70-3X)=2450C.(40-2X)(70-3X)=350D.(40-X)(70-X)=24508.如图,在⊙o 中,∠ACB=250,则∠ABO 为 A.650B.600C.450D.3009.将抛物线y=x 2-4x+3平移,使它平移后的顶点为(-2,4),则需将该抛物线A. 先向右平移4个单位,再向上平移5个单位B. 先向右平移4个单位,再向下平移5个单位C. 先向左平移4个单位,再向上平移5个单位D. 先向左平移4个单位,再向下平移5个单位10.如图,四边形ABCD 和四边形BEFD 都是矩形,且点C 恰好在EF 上.若AB=1,AD=2,则S △BCE 为A.1B.552C.32D.54绝密☆启用前2009年陕西省初中毕业学业考试数学试卷第Ⅱ卷(非选择题共90分)注意事项:1.答卷前请你将密封线内的项目填写清楚。

2.请用钢笔、中性笔或圆珠笔直接答在试卷上。

二.填空题(共6小题,每小题3分,计18分)11.实数-3.14,0,-5, ,227中的无理数是 . 12.分解因式:a 3-2a 2b+ab 2= .13.在一次函数y=(1-m )x+1中,若y 的值随x 值的增大而减小,则m 的取值范围 .14.如图,∠A=900, ∠AOB=300,AB=2,△A ’OB ’可以看作是由△AOB 绕点O 逆时针旋转600得到的,则点A ’与点B 的距离为 .15.如图,过点P (4,3)作PA ⊥x 轴于点A, PB ⊥y 轴于点B ,且PA 、PB 分别与某双曲线上的一支交于点C,点D,则BDAC的值为 . 16.如图,在正方形ABCD中,E、F分别是边BC、DA上的点,且BE=DF.若AB=a,点B到AE的距离为b,则点B到CF的距离可用a、b表示为 .题号 二 三总分 总分人核分人 17 18 19 20 21 22 23 24 25 得分三、解答题(共9小题,计72分.解答应写出过程)17.(本题满分5分)先化简,在求值:4x 12x 2x 2-x 22-+-+, 其中x=-3.18. (本题满分6分)如图,在梯形ABCD中,AD∥BC,AB=DC,延长BC到点E,使CE=AD,连接BD、DE. 求证:DB=DE.19. (本题满分7分)某商店今年4月份销售A、B、C三种商品的销售量和利润情况的统计图表如下:根据图表信息,解答下列问题:(1)这家商店今年4月份销售这三种商品各获利多少元?(2)今年5月份该商店销售了A、B、C三种商品共600件,若这家商店5月份销售这三种的单件销售利润与4月份相同,请你估计这家商店今年5月份销售这三种商品共获利润多少元?20. (本题满分8分)某工程队承担了一项2100米的排水管道铺设任务.在施工过程中,前30天使按原计划进行施工的,后期提高了工效.铺设排水管道的长度y(米)与施工时间x(天)之间的关系如图所示.(1)求原计划多少天完成任务?(2)求提高功效后,y与x之间的函数表达式;(3)实际完成这项任务比原计划提前了多少天?21. (本题满分8分)在一次数学测验活动中,小明到操场测量旗杆AB的高度.他手拿一支铅笔MN,边观察边移动(铅笔MN始终与地面垂直).如示意图,当小明移动到D点时,眼睛C与铅笔、旗杆的顶端M、A共线,同时,眼睛C与它们的底端N、B也恰好共线.此时,测得DB=50m,小明的眼睛C到铅笔的距离为0.65m,铅笔MN的长为0.16m,请你帮助小明计算出旗杆AB的高度(结果精确到0.1m).(第21题图)22. (本题满分8分)一个均匀的正方体骰子,各面分别标有数字1、2、3、4、5、6.规定:设随机抛掷一次,朝上的数字为所得数字.按规定,随机抛掷骰子两次,并将得到的两个数字之差的绝对值计作m.(1)写出m所有的可能值;(2)m为何值的概率最大?并求出这个概率?23. (本题满分8分)如图,在⊙O中,M是弦AB定的中点,过点B做⊙O的切线,与OM延长线交于点C.(1)求证:∠A = ∠B;(2)若OA=5,AB=8,求线段OC的长.24. (本题满分10分)如图,一条抛物线经过原点,且顶点B的坐标(1,-1).(1)求这个抛物线的解析式;(2)设该抛物线与x轴正半轴的交点为A,求证:△OBA为等腰直角三角形;(3)设该抛物线的对称轴与x轴的交点为C,请你在抛物线位于x轴上方的图象上求两点E、F,使△ECF为等腰直角三角形,且∠EOF=90025. (本题满分12分)问题探究(1)在图①的半径为R的半圆O内(含弧),画出一边落在直径MN上的面积最大的正三角形,并求出这个正三角形的面积.(2)在图②的半径为R的半圆O内(含弧),画出一边落在直径MN上的面积最大的正方形,并求出这个正方形的面积.问题解决(3)如图③,现有一块半径R=6的半圆形钢板,是否可以裁出一边落在MN 上的面积最大的矩形?若存在,请说明理由,并求出这个矩形的面积:若不存在,说明理由.2009年陕西省初中毕业学业考试数学答案及评分参考第Ⅰ卷(选择题共30分)题号 1 2 3 4 5 6 7 8 9 10答案 A C B A C B B A C D第Ⅱ卷(非选择题共90分)二.填空题(共6小题,每小题3分,计18分)11. -5,π 12.a (a-b )213.m >1 14.2 15.4316.22b a -三、解答题(共9小题,计72分.)(以下给出的各题一种解法及评分参考,其它符合题意的解法请参照相应题的解答赋分)17.解:原式=))(()()(2x 2x 12x 2x 22-++--=))((2x 2x 12x 4x 4x 22-+--+-=))((2x 2x 8x 4-+--= -2x 4-……………………………………………………(4分) 当x=-3时,原式= - 234--=54………………………………………………(5分)18.证明:在梯形ABCD 中,AB=CD,∴∠ABC=∠DCB, ∠A + ∠ABC = 1800…………………(2分)而∠DCB + ∠DCE =∠1800∴∠A = ∠DCE.……………………………………………… (4分) 又AD = CE,∴△ABD ≌△CDE.∴BD = DE. ……………………………………………………(6分) 19.解:(1)销售A 种商品的利润:2×160=320(元); 销售B 种商品的利润:3×200=600(元);销售C 种商品的利润:5×40=200(元). ………………(3分) (2) 600400200600320⨯++=1680∴估计这家商店今年5月份销售这三种商品共获利1680元.(7分) 20.解:(1)∵ 750÷30=25, ∴ 2100÷25=84故原计划需要84天完成任务………………………(2分) (2)设提高工效后,y 与x 之间的表达式为y=kx+b. ∵其图象过点(33,750),(60,1560),∴⎩⎨⎧=+=+1560b k 60750b k 33解之,得⎩⎨⎧-==240b 30k∴y 与x 之间的表达式为y=33x-240.(33≤x ≤78)(5分) (注:评分时自变量取值范围不作要求) (3)当y=2100时,30x-240=2100, 解之,得x=78. ∴ 84-78=6.∴实际完成这项任务比原计划提前了6天……………(8分)21.解:过点C 作CF ⊥AB,垂足为F ,交MN于点E.则CF=DB=50, CE=0.65……(2分)∵ MN ∥AB,∴ △CMN ∽△CAB.∴ AB MN CF CE =………(5分) ∴ AB=0.65500.16CE CF MN ⨯=⋅≈12.3 ∴ 旗杆AB 的高度约为12.3米……………(8分)22.解:(1)m 所有的可能值为0,1,2,3,4,5……………………………………………………(3分)(2)列表如下:(5分)表中共有36种等可能结果.其中有10种结果为1,出现次数最多.∴ m 为1时的概率最大……………………………………………(6分)∴ P (m=1)=3610=185 …………………………………………………(8分) 23.(1)证明:连接OB ,则∠OBC=900, ∠A = ∠OBM , ∠OBM + ∠CBM=900. …………………………………………………………(2分)∵M 是AB 的中点,∴OM ⊥AB.∵∠C +∠CBM = 900.∴∠C = ∠OBM.∴∠A = ∠C. …………………………………………… (4分)(2)由(1)得△OMB ∽△OBC.∴ OBOM OC OB = …………………………………………(5分) ∴BM = 21AB = 4, OM = 224-5 = 3,∴OC=325OM OB 2=. ……………………………………… (8分) 24.解:(1)由题意,设抛物线的解析式为y=a (x-1)2-1,则0=a(0-1)2-1 ∴a=1. …………………………………………………… (2分) ∴y=(x-1)2-1 即y=x 2-2x. …………………………(3分)(2)当y=0时,x 2-2x=0 解得x=0 或 x=2.∴A (2,0)…………………………………………………(4分) 又B(1,-1),O(0,0),∴OB 2=2, AB 2=2, OA 2=4.∴OB 2 + AB 2 = OA 2∴∠OBA = 900 ,且OB=BA.∴△OBA 为等腰直角三角形. ………(6分)(3)如图,过C 作CE ∥BO,CF ∥AB,分别交抛物线于点E 、F ,过点F 作FD ⊥X 轴于D ,则∠ECF=900,EC=CF,FD=CD.∴△ECF 为等腰直角三角形. ……………………………(7分)令FD=m >0,则CD=m, OD=1+m∴ F(1+m ,m)………………………………………………(8分)∴ m =(1+m )2-2(1+m ),即 m 2-m-1=0. 解得 m=251± ∵m >0, ∴m=251+. ∴F(251,253++). ∵点E 、F 关于直线x=1对称,∴E=(251,25-1+). …………………………………(10分) 25. 解:(1)如图①,△ACB 为满足条件的面积最大的正三角形.连接OC ,则OC ⊥AB.∵AB=2OB ·tan300=332R ……(2分) ∴S △ACB =2R 33R R 33221OC AB 21=•⨯=•. …………… (3分) (2)如图②,正方形ABCD 为满足条件的面积最大的正方形.连接OA.令OB=a,则AB=2a.在Rt △ABO 中,a 2+(2a )2=R 2. 即22R 51a =. …………(6分) S 正方形ABCD =(2a)2=2R 54. … (7分) (3)存在. ………………………(8分)如图③,先作一边落在直径MN 上的矩形ABCD,使点A 、D 在弧MN 上,再作半圆O及矩形ABCD 关于直径MN 所在直线的对称图形,A 、D 的对称点分别是A '、D '.连接A 'D 、OD,则A 'D 为⊙O 的直径. ……………………(10分)∴S 正方形ABCD =AB ·AD=AD AA 21'•=S △D A A '. ∵在Rt △AA 'D 中,当OA ⊥A 'D 时, S △D A A '的面积最大. ∴S 矩形ABCD 最大=36R R R 2212==••. …………………………(12分)以下是附加文档,不需要的朋友下载后删除,谢谢顶岗实习总结专题13篇第一篇:顶岗实习总结为了进一步巩固理论知识,将理论与实践有机地结合起来,按照学校的计划要求,本人进行了为期个月的顶岗实习。

相关文档
最新文档