解方程(二)
2022年人教版五年级上册数学第五单元教案2 解简易方程 第3课时
第三课时教学内容解方程(二)。
(教材第69页)教学目标1.使学生会用等式的性质解形如ax±b=c类型的方程,并会用方程的解进行验算。
2.使学生会把小括号内的式子看作一个“整体”,来解形如(x+b)a=c类型的方程,体会“整体”思想在教学中的运用。
重点难点重点:连续两次运用等式的性质,解形如ax±b=c、(x+b)a=c类型的方程。
难点:体会“整体”思想在教学中的运用。
教具学具多媒体课件。
教学过程一导入1.请学生默写或者默背等式的性质,然后指名回答。
(1)等式两边同时加上或减去同一个数,等式两边仍然相等。
(2)等式两边同时乘同一个数,或除以同一个不为0的数,左右两边仍然相等。
2.说说解下面方程的根据。
x+3.5=79.41.5x=7.5x÷5=4.23-x=2.5二教学实施教学教材第69页例4。
1.投影出示。
师:图中左边有几盒水彩笔,每盒多少支?右边散放着几支?整盒的水彩笔有多少支?一共有多少支?生:从图中可以看出,有3盒水彩笔,每盒x支,所以整盒的水彩笔应该有x+x+x=3x(支),散放着4支,一共有(3x+4)支水彩笔。
师:大括号表示什么意思?40支和大括号有什么关系?生:上图中的大括号表示把整盒的和散放着的加在一起是40支。
师:你能根据图列方程吗?生:根据图中给出的信息可以得出,3盒水彩笔的支数+4=40,所以可以列出方程3x+4=40。
2.探索3x+4=40的解法。
师:观察这个方程的形式和前面学习过的方程有什么不同?你会计算吗?(学生独立思考)追问:能否用等式的性质解这种形式的方程?怎样算?根据学习解方程的经验,尝试解这个方程。
学生独立完成,集体订正。
师:解方程3x+4=40时,一般把“3x”看作“整体”,根据等式的性质1先在方程的两边都减去4,把方程转化为3x=36,然后再根据等式的性质2求出方程的解。
学生汇报交流算法。
先把3x看作一个数,把这题看成是x+b=c形式的方程,运用等式性质1:等式两边同时减去同一个数,等式两边仍然相等来解方程。
2.2 一元二次方程的解法(2)
首页
上一页
下一页
末页
你能解决这 个问题吗? 3倍有可能相等吗?如果相 一个数的平方与这个数的
x 2 3x.
小亮是这样解的 :
小明是这样解的 :
等,这个数是几?你是怎样求出来的? 小明,小亮都设这个数为x,根据题意得
解 : 方程x 2 3x两 边都同时约去 x, 得. x 3.
(一次项系数为0)(容易x+5
2
25 2 x - 5
x-
2 用配方法解二次项系数是 1 的一元二次方程在时,添 4x+___=(______) 上的常数项与一次项系数之间存在的关系: 2 2 2
常数项是一次项系数的一半的平方 x +6x+___=(______) x-
6x+___=(_______)
2
首页 上一页 下一页 末页
探索发现二:
解方程: x 6 x 1 0
2
只要形成
x m
2
n(n 0)
x 6 x 9 10 0, ( x 3) 10, x 3 10
2 2
x1 3 10, x2 3 10
我们把一元二次方程通 过配方法转换成:
2
形 为
x -2x=8
首页
上一页
下一页
末页
练一练:添上一个适当的数,使下
1 x+1 2 2 x +2x+___=(______) 4 x+2 2 9 x+3
列的多项式成为一个完全平方式:
1 4 x-1 2 x -x - 2
2x+___=(______)
人教五年级数学上册解方程(二)
?[选自《创优作业100分》P45] 1.解:设这个数是x。
2.解:设这个数是x。
5x-6.8=12.7
1.4x+3.2×3=23.6
x=3.9
x=10
答:这个数是3.9。
答:这个数是10。
六、如果x+x+x+y+y=54,x +x +y +y=46,那么x和y 各是多[少选自?《创优作业100分》P45]
x=4.2
解: x-45=128 x-45+45=128+45 x=173
解: 9x=18 9x÷9=18÷9
x=2
解: x÷4=75 x÷4×4=75×4
x=300
2.看图列方程并求解。 [教材P72 练习十五 第11题 ]
周长36m
xm
2(x+5)=36
5m 解:
2(x+5)÷2=36÷2
=8 =方程右边
8 2x-32+32=8+32所以,x=20是方程的解。
2x=40 2x÷2=40÷2
x=20
三、巩固练习
1.看图列方程,并求出方程的解。[教材P69 做一做 第1题 ]
x元/本
7.5元 5x+1.5=7.5 解: 5x+1.5-1.5=7.5-1.5
5x=6 5x÷5=6÷5
x=1.2
0.4=1.7
x=37
x-
*3x-4×0.6=5.4
0.4+0.4=1.7+0.4
解:3x-2.4=5.4 方程左边=3×2.6-4×0.6
3x-2.4+2.4=5.4+2.4
x==27..81-2.4
3x=7.8
一元二次方程的解法(2)
一元二次方程的解法(2)一、新知:解:.522=+x x 原方程两边都加上1,得,15122+=++x x 即,6)1(2=+x 直接开平方,得.61±=+x 所以,61±-=x 即.61,6121--=+-=x x通过方程的简单变形,将左边配成一个含有未知数的完全平方式,右边是一个非负常数,从而可以直接开平方求解,这种解一元二次方程的方法叫做 .例1:用配方法解方程:;014)1(2=+-x x .065)2(2=--x x练习:;028)1(2=-+x x .01124)2(2=--x x二、应用:1. 用配方法解方程,0322=-+x x下列配方结果正确的是( ) A. 2)1(2=-x B.4)1(2=-x C.2)1(2=+x D.4)1(2=+x2.)A.3. 用配方法把一元二次方程,0162=+-x x 配成q p x =+2)(的形式,p为 ,q 为 .4. 一元二次方程式4882=-x x 可表示成b a x +=-48)(2的形式,其中a 、b 为整数,求a+b 之值为何( )A. 20B. 12C. −12D. −205. 用配方法解下列方程时,配方有错误的是( )A.09922=--x x化为 100)1(2=-x B.0982=++x x 化为25)4(2=+xC.04722=--t t 化为D.02432=--x x 化为6. 用配方法解方程0122=-+x x时,配方结果正确的是( ) A.2)2(2=+x B.2)1(2=+x C.3)2(2=+x D.3)1(2=+x7. 用配方法解方程,01632=+-x x则方程可变形为( )D.1)13(2=-x 8. 若方程01)1(252=+--x k x 的左边可以写成一个完全平方式;则k 的值为( ) A. −9或11 B. −7或8 C. −8或9 D. −6或7 9. 已知等腰三角形的一边长为8,另一边长为方程0962=+-x x 的根,则该等腰三角形的周长为( )A. 14B. 19C. 14或19D. 不能确定10. 在解方程2x2+4x+1=0时,对方程进行配方,文本框①中是嘉嘉作的,文本框②中是琪琪作的,对于两人的做法,说法正确的是( )A. 两人都正确B. 嘉嘉正确,琪琪不正确C. 嘉嘉不正确,琪琪正确D. 两人都不正确11. 把方程3102-=-x x左边化成含有x 的完全平方式,其中正确的是( ) A.28)5(1022=-+-x xB.22)5(1022=-+-x xC.2251022=++x xD.25102=+-x x12. 用配方法解关于x 的一元二次方程),0(02≠=++a c bx ax 此方程可变形为( )。
解方程例2
0.2x=6 解:0.2x÷0.2=6÷0.2
x=30 检验 方程左边=0.2×30
=6 =方程右边 所以,x=30是方程的解。
4. 看图列方程,并求出方程的解。
xm
2.7 m 6.9 m
原价:x 元 降价:45 元 现价:128元
x+2.7 = 6.9
ɑx= b
解:ax÷a = b÷ɑ
x = b÷ɑ
x÷a =b 解:x÷a×a = b×ɑ
x = b×ɑ
利用等式的性质2解类似于上面的方程时,方程左边乘几,两边就同时除以 几;方程左边除以几,两边就同时乘几。
巩固提高
2.列方程并解答。[教材P68 做一做 第2题 ]
x元
1.2元
4元
x+1.2=4 解:x+1.2-1.2=4-1.2
这个方程与乘法有关,我觉得可以根据等式 的性质2来解方程。
(教材第68页例2)
2 解方程 3x = 18。
x xx
3x = 18
等式两边除以同一个不等于 0的数,左右两边仍然相等。
3x÷( 3 )= 18÷( 3 )
方程左边有×3,两 边要“÷3” 是为了 消去左边的×3。
为什么要÷3?
2 解方程 3x = 18。
ɑx= b
解:ax÷a = b÷ɑ
x = b÷ɑ
x÷a =b 解:x÷a×a = b×ɑ
x = b×ɑ
解: 4.6+x = 7.5 4.6+x-4.6 = 7.5-4.6
x = 2.9
将x=2.9代入方程ax=5.8
2.9a = 5.8 2.9a÷2.9 = 5.8÷2.9
第7讲 解一元一次方程(二)
探究类型之一 含分母的一元一次方程
例1 解方程:0.4 x 0.9 0.3 0.02 x 1 0.2 x 1.4
0.5 0.3 3
4 x 9 15 x x7 1 解:原方程可化为 5 15 15
. 去分母,得 3(4x+9)-(15+x)+15=x+7. 去括号,得 12x+27-15-x+15=x+7. 移项,得 12x-x-x=7-27-15+15. 合并同类项,得 10 x=-20. 系数化为1,得 x=-2.
解方程:(2)
(2)原方程可化为
4 y 1.5 5 y 0.8 1.2 y 3 0.5 0.2 0.1
2(4y-1.5)-5 (5y-0.8)=10(1.2- y)+3 8y-3-25 y+4=12-10y+3
去括号得
移项得 8y-25y+10 y=12+3+3-4 合并同类项得 系数化为 1 得 -7y=14 y=-2
2、形如| x – a | = b(b≥0)的方程的解法: 解: x– a = b 或 x– a = – b ; x = a + b 或x = a – b .
解形如| x | = a(a≥0)的方程的解法: 解:a > 0时,x = ±a ; a = 0时,x = 0 ; a < 0时,方程无解.
探究类型之二 含多重括Hale Waihona Puke 的一元一次方程例2 解方程:
1 1 1 2 3 3 x x x x 2 3 4 3 2 4
1 1 2 3 3 x x x 2 x 3 4 3 2 2
6一元二次方程的解法(二)配方法—知识讲解(提高)及其练习 含答案
一元二次方程的解法(二)配方法—知识讲解(提高)【学习目标】1.了解配方法的概念,会用配方法解一元二次方程; 2.掌握运用配方法解一元二次方程的基本步骤;3.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力。
【要点梳理】知识点一、一元二次方程的解法---配方法 1.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方; (2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±.知识点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. 4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 要点诠释:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.【典型例题】类型一、用配方法解一元二次方程1. (2016春•石景山区期末)用配方法解方程:2x 2﹣12x ﹣2=0.【思路点拨】首先将二次项系数化为1,再将方程的常数项移动方程右边,两边都加上9,左边化为完全平方式,右边合并,开方转化为两个一元一次方程,求出一次方程的解即可得到原方程的解. 【答案与解析】解:2x 2﹣12x ﹣2=0, 系数化为1得:x 2﹣6x ﹣1=0, 移项得:x 2﹣6x=1,配方得:x 2﹣6x +9=10,即(x ﹣3)2=10, 开方得:x ﹣3=±, 则x 1=3+,x 2=3﹣.【总结升华】此题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移动方程右边,然后两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解. 举一反三:【变式】 用配方法解方程 (1)(2)20x px q ++=【答案】(1)2235x x +=2253x x -=-25322x x -=- 2225535()()2424x x -+=-+251()416x -=5144x -=±123,12x x ==.(2)20x px q ++=222()()22p px px q ++=-+224()24p p qx -+=①当240p q -≥时,此方程有实数解,221244,p p q p p qx x -+----==; ②当240p q -<时,此方程无实数解.类型二、配方法在代数中的应用2. 用配方法证明21074x x -+-的值小于0.【思路点拨】本题不是用配方法解一元二次方程,但所用的配方法思想与自己学的配方法大同小异,即思路一致. 【答案与解析】22271074(107)410410x x x x x x ⎛⎫-+-=-+-=--- ⎪⎝⎭27494910410400400x x ⎛⎫=--+-- ⎪⎝⎭274910420400x ⎡⎤⎛⎫=----⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2274971111041020402040x x ⎛⎫⎛⎫=--+-=---⎪ ⎪⎝⎭⎝⎭. ∵ 2710020x ⎛⎫--≤ ⎪⎝⎭,∴ 271111002040x ⎛⎫---< ⎪⎝⎭, 即210740x x -+-<.故21074x x -+-的值恒小于0.【总结升华】证明一个代数式大于零或小于零,常用方法就是利用配方法得到一个含完全平方式和一个常数的式子来证明. 举一反三:【变式】试用配方法证明:代数式223x x -+的值不小于238. 【答案】 22123232x x x x ⎛⎫-+=-+ ⎪⎝⎭22211123244x x ⎡⎤⎛⎫⎛⎫=-+-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦21123416x ⎡⎤⎛⎫=--+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2112348x ⎛⎫=--+ ⎪⎝⎭2123248x ⎛⎫=-+ ⎪⎝⎭.∵ 21204x ⎛⎫-≥ ⎪⎝⎭,∴ 2123232488x ⎛⎫-+≥ ⎪⎝⎭.即代数式223x x -+的值不小于238.3. (2015春•宜兴市校级月考)若把代数式x 2+2bx+4化为(x ﹣m )2+k 的形式,其中m ,k 为常数,则k ﹣m 的最大值是 . 【答案】;【解析】解:x 2+2bx+4=x 2+2bx+b 2﹣b 2+4 =(x+b )2﹣b 2+4; ∴m=﹣b ,k=﹣b 2+4,则k ﹣m=﹣(b ﹣)2+.∵﹣(b ﹣)2≤0, ∴当b=时,k ﹣m 的最大值是. 故答案为:.【总结升华】此题考查利用完全平方公式配方,注意代数式的恒等变形. 举一反三: 【变式】(1)的最小值是 ;(2)的最大值是 .【答案】(1)222222333152632(3)323()()32()2222x x x x x x x ⎡⎤+-=+-=++--=+-⎢⎥⎣⎦;所以的最小值是152-(2)22222245(4)5(422)5(2)9x x x x x x x -++=--+=--+-+=--+所以的最大值是9.4. 分解因式:42221x x ax a +++-. 【答案与解析】42221x x ax a +++-4222221x x x ax a =+-++-4222212x x x ax a =++--+()()2221x x a =+--()()22(1)(1)x x a x x a =++-+-+.【总结升华】这是配方法在因式分解中的应用,通过添项、配成完全平方式,进而运用平方差公式分解因式.一元二次方程的解法(二)配方法—巩固练习(提高)【巩固练习】一、选择题1. (2016•新疆)一元二次方程x 2﹣6x ﹣5=0配方组可变形为( )A .(x ﹣3)2=14B .(x ﹣3)2=4C .(x +3)2=14D .(x +3)2=4 2.用配方法解下列方程时,配方有错误的是( )A .22990x x --=化为2(1)100x -=B .22740t t --=化为2781416t ⎛⎫-= ⎪⎝⎭C .2890x x ++=化为2(4)25x += D .23420x x --=化为221039x ⎛⎫-= ⎪⎝⎭3.(2015•河北模拟)把一元二次方程x 2﹣6x+4=0化成(x+n )2=m 的形式时,m+n 的值为( )A .8B .6C .3D .2 4.不论x 、y 为何实数,代数式22247x y x y ++-+的值 ( )A .总小于2B .总不小于7C .为任何实数D .不能为负数 5.已知,则的值等于( )A.4B.-2C.4或-2D.-4或2 6.若t 是一元二次方程的根,则判别式和完全平方式的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定二、填空题 7.(1)x 2-43x+ =( )2; (2)x 2+px+ =( )2. 8.(2015•忻州校级模拟)把代数式x 2﹣4x ﹣5化为(x ﹣m )2+k 的形式,其中m ,k 为常数, 则4m+k= .9.已知4x 2-ax+1可变为(2x-b )2的形式,则ab=_______.10.将一元二次方程x 2-2x-4=0用配方法化成(x+a )2=b 的形式为____ ___,•所以方程的根为_________.11.把一元二次方程3x 2-2x-3=0化成3(x+m)2=n 的形式是___ ________;若多项式x 2-ax+2a-3是一个完全平方式,则a=_________. 12.已知.则的值为 .三、解答题13. 用配方法解方程. (1)(2016•安徽)解方程:x 2﹣2x=4. (2)(2015•大连)解方程:x 2﹣6x ﹣4=0.14.分解因式44x +.15.(2015春•龙泉驿区校级月考)当x ,y 取何值时,多项式x 2+4x+4y 2﹣4y+1取得最小值,并求出最小值.【答案与解析】 一、选择题 1.【答案】A .【解析】x 2﹣6x ﹣5=0,x 2﹣6x=5,x 2﹣6x +9=5+9,(x ﹣3)2=14,故选:A . 2.【答案】C ; 【解析】选项C :2890x x ++=配方后应为2(4)7x +=. 3.【答案】D ;【解析】 x 2﹣6x=﹣4,∴ x 2﹣6x+9=﹣4+9,即得(x ﹣3)2=5,∴ n=﹣3,m=5,∴ m+n=5﹣3=2.故选D .4.【答案】D ; 【解析】2222247(1)(2)22x y x y x y ++-+=++-+≥.5.【答案】A ;【解析】原方程化简为:(x 2+y 2)2-2(x 2+y 2)-8=0,解得x 2+y 2=-2或4,-2不符题意舍去.故选A. 6.【答案】A .【解析】由t 是方程的根得at 2+bt+c=0,M=4a 2t 2+4abt+b 2=4a(at 2+bt)+b 2= b 2-4ac=△.故选A.二、填空题7.【答案】(1)49;23x -; (2)24p ;2p x +.【解析】配方:加上一次项系数一半的平方.8.【答案】﹣1;【解析】x 2﹣4x ﹣5=x 2﹣4x+4﹣4﹣5=(x ﹣2)2﹣9, ∴ m=2,k=﹣9,∴ 4m+k=4×2﹣9=﹣1. 故答案为﹣1.9.【答案】4;【解析】4x2-ax+1=(2x-b)2化为4x2-ax+1=4x2-4bx+b2,所以241a bb=-⎧⎨=⎩-解得41ab=⎧⎨=⎩或41ab=-⎧⎨=-⎩所以4ab=.10.【答案】(x-1)2=5;15±.【解析】方程两边都加上1的平方得(x-1)2=5,解得x=15±. 11.【答案】;2或6.【解析】3x2-2x-3=0化成;即2(-)232aa=-,a=2或6.12.【答案】5;【解析】原式三、解答题13.【答案与解析】解:(1)配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.(2015•大连)解方程:x2﹣6x﹣4=0.(2)解:移项得x2﹣6x=4,配方得x2﹣6x+9=4+9,即(x﹣3)2=13,开方得x﹣3=±,∴x1=3+,x2=3﹣.14. 【答案与解析】4222224()22222x x x x+=++-22222(2)(2)(22)(22)x x x x x x=+-=++-+.15. 【答案与解析】解:x2+4x+4y2﹣4y+1=x2+4x+4+4y2﹣4y+1﹣4=(x+2)2+(2y﹣1)2﹣4,又∵(x+2)2+(2y﹣1)2的最小值是0,∴x2+4x+4y2﹣4y+1的最小值为﹣4.∴当x=﹣2,y=时有最小值为﹣4.。
部编版五年级上册数学 第5单元 简易方程:3 解方程(2课时)
3解方程第1课时解方程(一)课时目标导航解方程(一)。
(教材第67~68页例1、例2、例3)1.根据等式的性质,使学生初步掌握解方程及检验方程的方法,理解解方程和方程的解的概念。
2.培养学生的分析能力及应用所学知识解决实际问题的能力。
3.帮助学生养成自觉检验的良好习惯。
重点:理解并掌握解方程的方法。
难点:理解形如a±x=b的方程原理,掌握正确的解方程格式及检验方法。
一、情景引入同学们,咱们玩一个猜一猜的游戏好吗?出示一个盒子,让学生猜一猜里面可能有几个球。
(学生思考后会说,可以是任意数。
)教师继续通过多媒体补充条件,并出示教材第67页例1情境图。
问:从图上你知道了哪些信息?引导学生看图回答:盒子里的球和外面的3个球,一共是9个。
并用等式表示:x+3=9(教师板书)二、学习新课1.方程的解和解方程及形如x±a=b的方程。
(1)出示教材第67页第一个天平图,让学生观察并说一说。
长方体盒子代表未知的x个球,每个小正方体代表一个球,则天平左边是(x+3)个球,右边是9个球,天平平衡,列式:x+3=9。
观察:把左边拿掉3个球,要使天平仍然保持平衡要怎么办?(右边也要拿掉3个球。
)追问:怎样用算式表示?学生交流,汇报:x+3-3=9-3x=6质疑:为什么两边都要减3呢?你是根据什么来求的?(根据等式的性质:等式的两边减去同一个数,左右两边仍然相等。
)(2)方程的解和解方程。
教师总结:刚才我们计算出的x=6,这就是使方程左右两边相等的未知数的值,叫做方程的解。
也就是说,x=6是方程x+3=9的解。
求方程解的过程叫做解方程。
提问:方程的解和解方程有什么区别?学生自主看课本学习,可能会初步知道,求出的x的值是方程的解;求解的过程就是解方程。
引导学生小结:“方程的解”中“解”的意思,是指能使方程左右两边相等的未知数的值,它是一个数值;而“解方程”中“解”的意思,是指求4的解的过程,是一个计算过程。
2122 一元二次方程的解法(二)公式法(解析版)
21.2.2一元二次方程的解法(二)公式法夯实双基,稳中求进公式法解一元二次方程知识点管理 归类探究 1 1.一元二次方程的求根公式一元二次方程()200ax bx c a ++=≠,当240b ac =->时,242b b ac x a-±-=.2.一元二次方程根的判别式一元二次方程根的判别式:24b ac =-.①当240b ac =->时,原方程有两个不等的实数根242b b acx a-±-=;②当240b ac =-=时,原方程有两个相等的实数根; ③240b ac =-<当时,原方程没有实数根. 3.用公式法解一元二次方程的步骤用公式法解关于x 的一元二次方程()200ax bx c a ++=≠的步骤:①变形:把一元二次方程化为一般形式; ②确定a 、b 、c 的值(要注意符号); ③求△:求出24b ac -的值;④定根:240b ac -≥若,则利用公式242b b acx a-±-=求出原方程的解;若240b ac -<,则原方程无实根.题型一:一元二次方程的求根公式【例题1】(2021·全国九年级)关于x 的一元二次方程220(0,40)ax bx c a b ac ++=≠->的根是( )A B C D 【答案】D【详解】当20,40a b ac ≠->时,一元二次方程20ax bx c ++=的求根公式为x .故选D.变式训练【变式1-1】(2020·福建省福州延安中学九年级月考)x =是下列哪个一元二次方程的根( )A .23210x x +-=B .22410x x +-=C .2x 2x 30--+=D .23210x x --= 【答案】D【分析】根据一元二次方程的求根公式解答即可.【详解】解:对于一元二次方程()200ax bx c a ++=≠,方程的根为:2b x a-=.因为x =3a =,2b =-,1c =-,所以对应的一元二次方程是:23210x x --=.故选:D .【变式1-2】(2019·全国八年级课时练习)解下列方程,最适合用公式法求解的是( ) A .2(26)10x =+- B .2(14)x =+ C .2121x = D .2350x x =--【答案】D【分析】解一元二次方程的方法有:直接开平方法,公式法,配方法,因式分解法,根据每种方法的特点逐个判断即可.【详解】解:A 、用因式分解法好,故本选项错误; B 、用直接开平方法好,故本选项错误;C 、变形后用直接开平方法好,故本选项错误;D 、用公式法好,故本选项正确.故选D .【变式1-3】(2019·全国九年级课时练习)用公式法解方程3x 2+4=12x ,下列代入公式正确的是( )A .x 1、2B .x 1、2C .x 1、2D .x 1、2【答案】D【详解】∵3x 2+4=12x , ∵3x 2-12x+4=0, ∵a=3,b=-12,c=4,∵x =,故选D.题型二:公式法解一元二次方程【例题2】(2021·黑龙江齐齐哈尔市·九年级二模)解方程:()86x x +=-.【答案】14x =-24x =-【分析】将方程化为一般式,再利用公式法进行求解即可. 【详解】解:原方程可化为:2860x x ++=, ∵1,8,6a b c ===, ∵2841640∆=-⨯⨯=,∵4x ==-,∵14x =-24x =-【点睛】本题考查一元二次方程的解法,熟练掌握公式法解一元二次方程是解题的关键. 变式训练【变式2-1】(2021·黑龙江齐齐哈尔市·九年级其他模拟)解方程:2x 2=3x -1 【答案】x 1=1,x 2=12【分析】将二次方程整理为二次方程的一般式,根据二次方程根的判别式可知该方程有两个不相等的实数根,代入求根公式计算即可.【详解】解:原式整理为:2x 2-3x +1=0 ∵∵=b 2-4ac =10>, ∵方程有两个不相等的实数根,∵x =, 故1314x +=或2314x -=得x 1=1;x 2=12. 【点睛】本题主要考查一元二次方程的解法,可以根据根的判别式判断根的情况,熟知公式法解一元二次方程的方法是解题关键.【变式2-2】(2021·黑龙江齐齐哈尔市·九年级三模)解方程:()2121x x +=- 【答案】方程没有实数根【分析】首先去括号合并同类项,化为一般式,根据0<可知,方程没有实数根. 【详解】解:去括号化简得:2+20x ,224041280b ac =-=-⨯⨯=-<,∵方程没有实数根.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键. 【变式2-3】(2020·永善县墨翰中学九年级月考)解方程.2820x x --= 【详解】(1)∵1a =,8b =-,2c =- ∵2(8)4(2)720∆=--⨯-=> ∵方程有两个不相等的实数根.∵4x ===±∵14x =+24x =-判别式与方程的根的关系题型三:判别式求根的个数【例题3】(2021·江苏苏州市·苏州草桥中学九年级一模)定义运算:21m n mn mn =-+☆.例如:232323217=⨯-⨯+=☆,则方程40x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根【答案】B【分析】根据新定义运算法则以及即可求出答案. 【详解】解:由题意可知:4∵x =4x 2-4x +1=0, ∵∵=16-4×4×1=0, ∵有两个相等的实数根, 故选:B .【点睛】本题考查根的判别式,解题的关键是正确理解新定义运算法则,本题属于基础题型. 变式训练【变式3-1】(2021·河南二模)关于x 的一元二次方程()2220x p x p -++=的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .有两个实数根D .无实数根【答案】C2 1.一元二次方程根的判别式(1)∵>0∵方程有两个不相等的实数根; (2)∵=0∵方程有两个相等的实数根; (3)∵<0∵方程没有实数根.2. 根据一元二次方程方程根的情况可以确定△的取值范围.3. 通过配方法对△进行变形可以得到含参方程的解的情况特别说明:(1)一元二次方程根的情况与判别式∵的关系是可以双向互相推导的.(2)考查一元二次方程根的情况的时候,注意讨论参数的取值,要注意题目中是否是关于未知数的一元二次方程,因此一定不要忘记讨论二次项系数为0时的情况.【分析】先计算根的判别式得到∵=[﹣(p+2)]2﹣4×2p=(p﹣2)2,再利用非负数的性质得到∵≥0,然后可判断方程根的情况.【详解】解:∵=[﹣(p+2)]2﹣4×2p=(p﹣2)2,∵(p﹣2)2≥0,即∵≥0,∵方程有两个实数根.故选:C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与∵=b2﹣4ac有如下关系:当∵>0时,方程有两个不相等的实数根;当∵=0时,方程有两个相等的实数根;当∵<0时,方程无实数根.x x-=-的根的情况,正确的是()【变式3-2】(2021·河南九年级二模)关于x的方程()53A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【答案】A【分析】根据一元二次方程根的判别式,即可得到方程根的情况.x x-=-,即x2-5x+3=0【详解】解:∵()53∵Δ=(-5)2−4×1×3=25-12=13>0,∵原方程有两个不相等的实数根;故选择:A【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练掌握根的判别式.【变式3-3】(2021·河南焦作市·九年级二模)已知关于x的一元二次方程2-+=,其中b,c在x bx c20数轴上的对应点如图所示,则这个方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根【答案】A【分析】由数轴可知:0b >,0c <,然后计算根的判别式的值即可得出答案. 【详解】由数轴可知:0b >,0c <; ∵280b c ∆=->; ∵有两个不相等的实数根 故选:A【点睛】本题主要考查的是一元二次方程的根的判别式,熟练掌握一元二次方程的根的判别式的方法、某点在数轴上的位置确定其正负是解题的关键,属于基础知识题. 题型四:根据根的个数求参数的取值范围【例题4】(2021·南京二模)若一元二次方程20x x a -+=有实数根,则a 的取值范围是____________. 【答案】14a ≤【分析】根据判别式大于等于0即可求解. 【详解】解:一元二次方程20x x a -+=有实数根 ∵2(1)40a ∆=--≥,解得14a ≤ 故答案为14a ≤. 【点睛】此题考查了一元二次方程的根与系数的关系,熟练掌握相关基础知识是解题的关键. 变式训练【变式4-1】(2021·山东济南市·八年级期末)若关于x 的一元二次方程220x x k -+=有两个实数根,则k 的取值范围是________. 【答案】1k ≤【分析】根据一元二次方程判别式的性质,列一元一次不等式并求解,即可得到答案. 【详解】∵关于x 的一元二次方程220x x k -+=有两个实数根 ∵()2240k ∆=--≥ ∵1k ≤故答案为:1k ≤.【点睛】本题考查了一元二次方程、一元一次不等式的知识;解题的关键是熟练掌握一元二次方程判别式的性质,从而完成求解.【变式4-2】(2021·济南期末)关于x 的一元二次方程2210-+=ax x 有实数根,则a 的取值范围是( ) A .1a ≤ B .1a < C .1a ≤且0a ≠ D .1a <且0a ≠【答案】C【分析】根据一元二次方程根的判别式可得440a -≥,然后求解即可. 【详解】解:∵关于x 的一元二次方程2210-+=ax x 有实数根, ∵24440b ac a ∆=-=-≥,且0a ≠, 解得:1a ≤且0a ≠; 故选C .【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键. 【变式4-3】(2020·四川巴中市·中考真题)关于x 的一元二次方程x 2+(2a ﹣3)x +a 2+1=0有两个实数根,则a 的最大整数解是( ) A .1 B .1- C .2- D .0【答案】D【分析】根据一元二次方程根的情况,用一元二次方程的判别式代入对应系数得到不等式计算即可. 【详解】解:∵关于x 的一元二次方程22(23)10x a x a +-++=有两个实数根,∵()22(23)410a a ∆=--+≥,解得512a ≤, 则a 的最大整数值是0.故选:D .【点睛】本题主要考查一元二次方程根的判别式,解题的关键是能够熟练地掌握和运用一元二次方程根的判别式.题型五:根的判别式综合应用【例题5】(2020·全国九年级课时练习)已知关于x 的一元二次方程mx 2﹣(4m +2)x +(3m +6)=0. (1)试讨论该方程的根的情况并说明理由;(2)无论m 为何值,该方程都有一个固定的实数根,试求出这个根.【答案】(1)关于x 的一元二次方程mx 2﹣(4m +2)x +(3m +6)=0有实数根;(2)无论m 为何值,该方程都有一个固定的实数根,这个根为3【分析】(1)求出判别式的值即可判断.(2)由无论m 为何值,该方程都有一个固定的实数根,又m (x 2-4x+3)-2x+6=0,推出x 2-4x+3=0,且-2x+6=0即可解决问题.【详解】解:(1)对于关于x 的一元二次方程mx 2﹣(4m+2)x+(3m+6)=0,∵∵=[﹣(4m+2)]2﹣4m (3m+6)=16m 2+16m+4﹣12m 2﹣24m =4m 2﹣8m+4=4(m ﹣1)2≥0, ∵关于x 的一元二次方程mx 2﹣(4m+2)x+(3m+6)=0有实数根. (2)∵无论m 为何值,该方程都有一个固定的实数根, 又∵m (x 2﹣4x+3)﹣2x+6=0, ∵x 2﹣4x+3=0,且﹣2x+6=0 解得x =3,∵无论m 为何值,该方程都有一个固定的实数根,这个根为3【点睛】本题考查根的判别式,一元二次方程的定义等知识,解题的关键是熟练掌握基本知识. 变式训练【变式5-1】(2020·全国九年级课时练习)已知关于x 的一元二次方程2(1)20x k x k +-+-=. (1)求证:方程总有两个实数根;(2)任意写出一个k 值代入方程,并求出此时方程的解. 【答案】(1)详见解析;(2)120,1x x ==-【分析】(1)先求出∵的值,再根据∵的意义即可得到结论; (2)任意取一个k 值代入,然后根据一元二次方程的解法解答即可. 【详解】解:(1)2(1)4(k 2)k ∆=---269k k =-+ ()230k =-≥∵0∆≥,∵方程总有两个实数根. (2)当2k =∵20x x +=解得120,1x x ==-【点睛】本题主要考查了一元二次方程根的判别式,正确理解公式是解答本题的关键. 【变式5-2】(2016·甘肃白银市·中考真题)已知关于x 的方程x 2+mx+m -2=0. (1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根. 【答案】(1)12;(2)证明见解析. 【详解】试题分析:一元二次方程ax 2+bx+c=0(a≠0)的根的判别式∵=b 2﹣4ac :当∵>0,方程有两个不相等的实数根;当∵=0,方程有两个相等的实数根;当∵<0,方程没有实数根. (1)直接把x=1代入方程x 2+mx+m ﹣2=0求出m 的值;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可. 解:(1)根据题意,将x=1代入方程x 2+mx+m ﹣2=0, 得:1+m+m ﹣2=0, 解得:m=12; (2)∵∵=m 2﹣4×1×(m ﹣2)=m 2﹣4m+8=(m ﹣2)2+4>0,∵不论m 取何实数,该方程都有两个不相等的实数根.【变式5-3】(2015·四川南充市·中考真题)已知关于x 的一元二次方程(x ﹣1)(x ﹣4)=p 2,p 为实数. (1)求证:方程有两个不相等的实数根;(2)p 为何值时,方程有整数解.(直接写出三个,不需说明理由) 【答案】(1)见解析;(2)P=0、2、-2. 【详解】解:(1)原方程可化为x 2﹣5x+4﹣p 2=0, ∵∵=(﹣5)2﹣4×(4﹣p 2)=4p 2+9>0,∵不论p 为任何实数,方程总有两个不相等的实数根;(2)原方程可化为x 2﹣5x+4﹣p 2=0,∵ ∵方程有整数解,为整数即可,∵p 可取0,2,﹣2时,方程有整数解.【点睛】本题考查了一元二次方程的根的情况,判别式∵的符号,把求未知系数的范围的问题转化为解不等式的问题是解题的关键.【真题1】(2011·广东深圳市·中考真题)如果关于x 的方程2x 2x m 0-+=(m 为常数)有两个相等实数根,那么m =______.【答案】1【详解】本题需先根据已知条件列出关于m 的等式,即可求出m 的值.解答:解:∵x 的方程x 2-2x+m=0(m 为常数)有两个相等实数根∵∵=b 2-4ac=(-2)2-4×1?m=04-4m=0m=1故答案为1【真题2】(2021·山东泰安市·中考真题)已知关于x 的一元二次方程标()22120kx k x k --+-=有两个不相等的实数根,则实数k 的取值范围是( )A .14k >- B .14k < C .14k >-且0k ≠ D .14k <0k ≠ 【答案】C【分析】由一元二次方程定义得出二次项系数k ≠0;由方程有两个不相等的实数根,得出“∵>0”,解这两个不等式即可得到k 的取值范围.【详解】解:由题可得:()()2021420k k k k ≠⎧⎪⎨⎡⎤---->⎪⎣⎦⎩, 解得:14k >-且0k ≠; 故选:C .【点睛】本题考查了一元二次方程的定义和根的判别式,涉及到了解不等式等内容,解决本题的关键是能读懂题意并牢记一元二次方程的概念和根的判别式的内容,能正确求出不等式(组)的解集等,本题对学生的计算能力有一定的要求.链接中考【真题3】(2021·辽宁营口市·中考真题)已知关于x 的一元二次方程2210x x m +-+=有两个实数根,则实数m 的取值范围是_________.【答案】2m ≤【分析】利用一元二次方程根的判别式即可求解.【详解】解:∵一元二次方程2210x x m +-+=有两个实数根,∵()4410m ∆=--+≥,解得2m ≤,故答案为:2m ≤.【点睛】本题考查一元二次方程根的情况,掌握一元二次方程根的判别式是解题的关键.【真题3】(2021·四川雅安市·中考真题)若直角三角形的两边长分别是方程27120x x -+=的两根,则该直角三角形的面积是( )A .6B .12C .12或2D .6或2 【答案】D【分析】根据题意,先将方程27120x x -+=的两根求出,然后对两根分别作为直角三角形的直角边和斜边进行分情况讨论,最终求得该直角三角形的面积即可.【详解】解方程27120x x -+=得13x =,24x =当3和4分别为直角三角形的直角边时,面积为134=62⨯⨯;当4为斜边,3=13=22;则该直角三角形的面积是6或2, 故选:D . 【点睛】本题主要考查了解一元二次方程及直角三角形直角边斜边的确定、直角三角形的面积求解,熟练掌握解一元二次方程及勾股定理是解决本题的关键.【真题5】(2021·山东菏泽市·中考真题)关于x 的方程()()2212110k x k x -+++=有实数根,则k 的取值范围是( )A .14k >且1k ≠B .14k ≥且1k ≠C .14k >D .14k ≥ 【答案】D【分析】根据方程有实数根,利用根的判别式来求k 的取值范围即可.【详解】解:当方程为一元二次方程时,∵关于x 的方程()()2212110k x k x -+++=有实数根,∵()()22121410k k ∆=+-⨯⨯≥-,且 1k ≠, 解得,14k ≥且1k ≠, 当方程为一元一次方程时,k =1,方程有实根 综上,14k ≥故选:D .【点睛】本题考查了一元二次方程方程的根的判别式,注意一元二次方程方程中0a ≠,熟悉一元二次方程方程的根的判别式的相关性质是解题的关键.【拓展1】(2021·东莞外国语学校九年级一模)已知:关于x 的方程2x (k 2)x 2k 0-++=,(1)求证:无论k 取任何实数值,方程总有实数根;(2)若等腰三角形ABC 的一边长a=1,两个边长b ,c 恰好是这个方程的两个根,求∵ABC 的周长.【答案】(1)证明见解析;(2)∵ABC 的周长为5.【分析】(1)根据一元二次方程根与判别式的关系即可得答案;(2)分a 为底边和a 为腰两种情况,当a 为底边时,b=c ,可得方程的判别式∵=0,可求出k 值,解方程可求出b 、c 的值;当a 为一腰时,则方程有一根为1,代入可求出k 值,解方程可求出b 、c 的值,根据三角形的三边关系判断是否构成三角形,进而可求出周长.【详解】(1)∵判别式∵=[-(k+2)]²-4×2k=k²-4k+4=(k -2)²≥0,∵无论k 取任何实数值,方程总有实数根.满分冲刺(2)当a=1为底边时,则b=c,∵∵=(k-2)²=0,解得:k=2,∵方程为x2-4x+4=0,解得:x1=x2=2,即b=c=2,∵1、2、2可以构成三角形,∵∵ABC的周长为:1+2+2=5.当a=1为一腰时,则方程有一个根为1,∵1-(k+2)+2k=0,解得:k=1,∵方程为x2-3x+2=0,解得:x1=1,x2=2,∵1+1=2,∵1、1、2不能构成三角形,综上所述:∵ABC的周长为5.【点睛】本题考查一元二次方程根的判别式及三角形的三边关系.一元二次方程根的情况与判别式∵的关系:当∵>0时,方程有两个不相等的实数根;当∵=0时,方程有两个相等的实数根;当∵<0,方程没有实数根;三角形任意两边之和大于第三边,任意两边之差小于第三边;熟练掌握根与判别式的关系是解题关键.。
解一元一次方程(二)
3.3 解一元一次方程(二)——去括号与去分母第1课时 利用去括号解一元一次方程01 教学目标1.经历从实际问题中抽象出一元一次方程,且用去括号法则化简、求解方程的过程.2.会解含有括号的一元一次方程.02 预习反馈阅读教材P93~94“问题1及例1”,完成下列内容.1.要去括号,就要根据去括号法则及乘法分配律,特别是当括号前是“-”号时,去括号时,各项都要变号,若括号前有数字,则要乘遍括号内所有项,不能漏乘并注意符号.2.补全下列解方程的过程:(1)2(x -2)=-(x +3);解:去括号,得2x -4=-x -3.移项,得2x +x =-3+4.合并同类项,得3x =1.系数化为1,得x =13.(2)2(x -4)+2x =7-(x -1).解:去括号,得2x -8+2x =7-x +1.移项,得2x +2x +x =7+1+8.合并同类项,得5x =16.系数化为1,得x =165.03 例题讲解例 (教材P94例1变式)解方程:(1)4x +2(x -2)=12-(x +4);(2)6(12x -4)+2x =7-(13x -1);(3)3(x -2)+1=x -(2x -1).解:(1)x =127. (2)x =6. (3)x =32.【点拨】【跟踪训练】 解下列方程:(1)3(x -4)=12;解:去括号,得3x -12=12.移项,得3x =12+12.合并同类项,得3x =24.系数化为1,得x =8.(2)2(3x -2)-5x =0;解:去括号,得6x -4-5x =0.移项,得6x -5x =4.合并同类项,得x =4.(3)5-(2x -1)=x ;解:去括号,得5-2x +1=x.移项,得-2x -x =-5-1.合并同类项,得-3x =-6.系数化为1,得x =2.(4)12(x -2)=3-12(x -2).解:去括号,得12x -1=3-12x +1.移项,得12x +12x =3+1+1.合并同类项,得x =5.04 巩固训练1.将方程3(x -1)=6去括号,正确的是(D)A .3x -1=6B .x -3=6C .3x +3=6D .3x -3=62.方程2(x -1)=x +2的解是(D)A .x =1B .x =2C .x =3D .x =43.解方程:3(3x +5)=2(2x -1).解:去括号,得9x +15=4x -2.移项,得9x -4x =-2-15.合并同类项,得5x =-17.系数化为1,得x =-175.4.解下列方程:(1)2-(1-x)=-2; (2)4(2-x)-4(x+1)=60.解:(1)x=-3. (2)x=-7.05课堂小结用去括号解一元一次方程的步骤:(1)去括号;(2)移项;(3)合并同类项;(4)系数化为1.第2课时利用去括号解一元一次方程的实际问题01教学目标经历解决在水中航行的问题的过程,会列含括号的一元一次方程解决实际问题.02预习反馈阅读教材P94“例2”,完成下列内容.学校团委组织65名团员为学校建花坛搬砖,初一的同学每人搬6块,其他年级的同学每人搬8块,总共搬了400块,问初一的同学有多少人参加了搬砖?解:设初一的同学有x人参加了搬砖.根据题意,得6x+8(65-x)=400.去括号,得6x+520-8x=400.移项,得6x-8x=400-520.合并同类项,得-2x=-120.系数化为1,得x=60.答:初一的同学有60人参加了搬砖.03例题讲解例(教材P94例2变式)一艘船从甲码头到乙码头顺流而行,用了2 h;从乙码头返回甲码头逆流而行,用了2.5 h.已知水流的速度是3 km/h,求甲、乙两码头之间的距离.解:设船在静水中的速度为x km/h,则,顺流速度为(x+3)km/h,逆流速度为(x-3)km/h,依题意,得2(x+3)=2.5(x-3),解得x=27,2(x+3)=60.答:甲、乙两码头之间的距离为60 km.【点拨】解决水中航行问题的关键:(1)弄清以下数量关系:①路程=速度×时间.②顺流行驶速度=静水中的速度+水的速度,即v顺=v静+v水;逆流行驶速度=静水中的速度-水的流速,即v逆=v静-v水.③v顺-v水=v逆+v水.(2)确定建立方程的根据:①求速度时,根据往返的路程相等列方程.②求两码头间的距离时,既可设间接未知数,也可设直接未知数,若是前者,则根据往返路程相等列方程;若是后者,则根据“表示静水中速度的两个不同的式子相等”列方程.【跟踪训练】丽水市为打造“浙江绿谷”品牌,决定在省城举办农副产品展销活动.某外贸公司推出品牌产品“山山牌”香菇、“奇尔”惠明茶共10吨前往参展,用6辆汽车装运,每辆汽车规定满载,且只能装运一种产品.因包装限制,每辆汽车满载时能装香菇1.5吨或茶叶2吨.问装运香菇、茶叶的汽车各需多少辆?解:设装运香菇的汽车需x辆.根据题意,得1.5x+2(6-x)=10.解得x=4.所以6-x =2.答:装运香菇、茶叶的汽车分别需要4辆和2辆.04 巩固训练1.一艘船从甲码头到乙码头顺流而行,用了2 h ;从乙码头返回甲码头逆流而行,用了2.5 h .已知船在静水中的平均速度为27 km/h ,求水流的速度.解:设水流的速度为x km/h.根据题意,得2(27+x)=2.5(27-x)解得x =3.答:水流的速度为3 km/h.2.甲粮仓存粮1 000吨,乙粮仓存粮798吨,现要从两个粮仓中共运走212吨粮食,使两仓库剩余的粮食数量相等,那么应从这两个粮仓各运出多少吨? 解:设从甲粮仓运出x 吨,则从乙粮仓运出(212-x)吨.由题意,得1000-x =798-(212-x).解得x =207.212-207=5(吨).答:从甲仓库运出207吨,从乙仓库运出5吨.3.杭州新西湖建成后,某班40名同学去划船游湖,一共租了8条小船,其中有可坐4人的小船和可坐6人的小船,40名同学刚好坐满8条小船,问这两种小船各租了几条?解:设可坐4人的小船租了x 条.根据题意,得4x +6(8-x)=40.解得x =4,所以8-x =4.答:可坐4人的小船租了4条,可坐6人的小船租了4条.05 课堂小结通过这节课,你在用一元一次方程解决实际问题方面又有哪些收获?第3课时 利用去分母解一元一次方程01 教学目标1.经历利用等式的性质2,将方程中系数都化为整数并求解的过程,会解含有分母的一元一次方程.2.经历用一元一次方程解决实际问题的过程,会列含分母的一元一次方程解决实际问题.02 预习反馈阅读教材P95~97“问题2及例3”,完成下列内容.1.解一元一次方程的一般步骤包括:去分母、去括号、移项、合并同类项、系数化为1等.通过这些步骤可以使以x 为未知数的方程逐步向着x =a 的形式转化,这个过程主要依据等式的基本性质和运算律等.2.解方程:3x +x -12=x +14-2x -13.解:两边都乘12,去分母,得12×3x +6(x -1)=3(x +1)-4(2x -1). 去括号,得36x +6x -6=3x +3-8x +4.移项,得36x +6x -3x +8x =3+4+6.合并同类项,得47x =13.系数化为1,得x =1347.3.碧空万里,一群大雁在飞翔,迎面又飞来一只小灰雁,它对群雁说:“你们好,百只雁!你们百雁齐飞,好气派!可怜我是孤雁独飞.”群雁中一只领头的老雁说:“不对!小朋友,我们远远不足100只.将我们这一群加倍,再加上半群,又加上四分之一群,最后还得请你也凑上,那才一共是100只呢”.请问这群大雁有多少只?解:设这群大雁有x 只.由题意,得2x +12x +14x +1=100.解得x =36.答:这群大雁有36只.03 例题讲解例1 (教材P97例3变式)解方程: (1)5x -14=3x +12-2-x 3; (2)2x +13-x +26=1;(3)3x -2x -12=2-x -25. 解:(1)x =-17.(2)x =2.(3)x =1922.【点拨】 解含分母的一元一次方程的注意点:(1)去分母时,如果分子是一个多项式,要将分子作为一个整体加上括号;(2)去分母时,整数项不要漏乘各分母的最小公倍数;(3)去括号时容易出现漏乘现象和符号错误.【跟踪训练1】 解下列方程: (1)2x -13=x +24;解:去分母,得8x -4=3x +6.移项,得8x -3x =4+6.合并同类项,得5x =10.系数化为1,得x =2. (2)2x -12=x +24-1;解:去分母,得4x -2=x +2-4.移项,得4x -x =2+2-4.合并同类项,得3x =0.系数化为1,得x =0.(3)x -32-4x +15=1;解:去分母,得5(x -3)-2(4x +1)=10.去括号,得5x -15-8x -2=10.移项,得5x -8x =15+2+10.合并同类项,得-3x =27.系数化为1,得x =-9.(4)2x +13=1-x -15.解:去分母,得5(2x +1)=15-3(x -1).去括号,得10x +5=15-3x +3.移项,得10x +3x =-5+15+3.合并同类项,得13x =13.系数化为1,得x =1.例2 (教材补充例题)书正和子轩两人登一座山,书正每分钟登高10米,并且先出发30分钟,子轩每分钟登高15米,两人同时登上山顶.这座山有多高?解:设这座山高x 米,依题意,有x -10×3010=x 15,解得x =900. 答:这座山高900米.【跟踪训练2】 某船从A 地顺流而下到达B 地,然后逆流返回,到达A 、B 两地之间的C 地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A 、C 两地之间的距离为10千米,求A 、B 两地之间的距离.解:设A 、B 两地之间的距离为x 千米,则B 、C 两地之间的距离为(x -10)千米,由题意,得x 8+2+x -108-2=7,解得x =32.5. 答:A 、B 两地之间的距离为32.5千米.04 巩固训练1.解方程3x -72-1+x 3=1,去分母后的方程为(D)A .3(3x -7)-2+2x =6B .3x -7-(1+x)=1C .3(3x -7)-2(1-x)=1D .3(3x -7)-2(1+x)=62.如果式子1-2x 3的值等于5,那么x 的值是(B)A .-5B .-7C .3D .53.解下列方程:(1)y -12=y +25; (2)2x -23-2x -36=1.解:(1)y =3. (2)x =72.4.一块金银合金重770克,金放在水中质量减轻119,银放在水中质量减轻110,这块合金放在水中质量一共减轻50克,这块合金中金、银各多少?解:设合金中含金x克,则含银(770-x)克.根据题意,得119x+110×(770-x)=50.解得x=570.所以770-x=770-570=200.答:这块合金中含金570克,含银200克.05课堂小结1.去分母解一元一次方程时要注意什么?2.去分母解一元一次方程时,在方程两边同时乘各分母最小公倍数的目的是什么?。
代入法解二元一次方程组(二)专题训练
目录代入法解二元一次方程组(二)专题训练 (2)(一)导入新课 (3)(二)讲解新知 (3)(三)课堂练习 (4)(四)小结作业 (4)解二元一次方程组(专题练习二) (23)代入法解二元一次方程组(二)专题训练真题示例:《代入法解二元一次方程组》【考题回顾】1.题目:代入法解二元一次方程组2.内容:3.基本要求:(1)试讲时间10分钟以内;(2)讲解要目的明确、条理清楚、重点突出;【考题解析】【教案设计】(一)导入新课创设两名同学去文具店买文具的情境,引导学生列出方程组,点明这是前面所学的二元一次方程组,这节课学习如何解二一次方程组。
引入课题。
(或者复习导入:回顾一元一次方程及其求解方法。
)(二)讲解新知请学生同桌两人为一组,尝试解方程组:,教师巡视并提示:学过解什么样的方程?可否将二元一次方程组转化为会求解的方程?请学生上黑板板演计算过程,结合板书教师讲解,由②知x=13-4y③,将③代入①,则:2(13-4y)+3y=16,化简求得:y=2。
将y=2代入③中,求得:x=5。
所以原方程组的解是。
教师肯定学生作答,并请学生尝试用x表示y进行求解,比较求得的结果是否一样。
请学生比较两次求解过程,思考上面解方程组的基本思路是什么,主要步骤又有哪些。
预设学生能够回答出。
上题是将二元一次方程组转化为一元一次方程来进行求解。
师生共同总结步骤:(1)将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,(2)把得到的式子代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,并求解;(3)把求得的解代入方程,求得另一个未知数的解。
教师总结:这种解方程组的方法称为代入消元法。
简称代入法。
(三)课堂练习练习:用代入法解下列方程组:(1)(2)(四)小结作业小结:重点回顾代入法解二元一次方程组的基本思路及步骤。
作业:思考练习题中的两个方程组是否有其他的求解方法。
【板书设计】【答辩解析】1.二元一次方程组有哪些解法?答:初中所学解二元一次方程组主要有以下两种解法:①代入消元法:将方程组中的一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入到另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程的解。
解方程(一)[2]
解方程(一)随堂快乐园一、快乐填一填1、叫做方程的解;解方程。
2、用方程表示下面的数量关系。
(1)χ与3.5的和是14.5。
(2)χ除0.4的商是0.2。
(3)比χ的5倍多4的数是27。
(4)χ是0.25的4倍。
3、一个数除以8,商a余b,这个数是。
二.解方程χ+45=104 8.4÷χ=7 χ÷0.6=0.939-χ=26 3.2÷χ=0.4 5χ=7.5三.快乐选一选1.0.8χ=0.96的解是()A、χ=0.18B、χ= 1.8C、χ= 0.082、0.97-χ=0.28的解是()A、χ=1.25B、χ=0.79C、χ=0.693、一个平行四边形的面积是S平方米,底是a米,高是()米。
A、asB、a÷sC、s÷a4、7χ-3是()A、方程B、等式C、不是方程,也不是等式二、快乐小裁判1、S=a2是正方形的面积公式,不是方程()2、方程一定是等式,等式不一定是方程()3、5是5÷χ=5的解()4、χ= 0 不是方程()5、3 5>9是方程()能力创新园在括号里填上适当的数,使每个方程的解都是χ=12.5(1)()+χ=27 (2)()+χ=16.4(3)()-χ=9 (4)χ-()=3.125智慧比拼园学校买了同样数量的杨树苗和柳树苗,杨树苗每棵14.5元,柳树苗每棵16元,一共用了457.5元。
每种树苗各多少棵?解方程(二)随堂快乐园一.快乐填一填1.用方程表示下列数量关系(1)χ的一半是5.4,。
(2)a的1.5倍与b的和是8.8。
(3)每千克苹果χ元,买15千克共花30元。
二.快乐解方程χ÷0.42=1.2 8χ=39.5-7.5 2χ-97=34.236-χ=19.6 88÷2χ=44 χ-0.64χ=20三.快乐小裁判1、χ=a不是方程()2、方程的解就是解方程()3、15÷χ中的可以是任意自然数()4、b2>2b ()四.列出方程并求解1. 23.5减去一个数的9倍,差是1,求这个数?2. χ的4倍与18的差是36,求这个数?五.快乐选一选1.下列式子是方程的是()A、100+20=120B、100+χ=120C、100+χ<202、a2=2a时, a=()A、2B、3C、0D、0或23、小红有a元钱,买铅笔用去b元,还剩()元A、a-bB、a+bC、ab4、a2表示()A、2个a 相乘B、2个a相加C、不好确定能力创新乐园解方程1. 0.5(χ-0.2 )+5.5=10.52. 5.6χ+(5-0.8χ)×2=18智慧比拼乐园某班有学生60人,其中考试得优的24人,数学得优28人,两门都是得优的是8人。
列方程解应用题(二) (2)
第十一讲
某人星期天外出徒步旅 游,到达目的地后沿原路返回, 来回共用了10小时,已知去 时每小时走9千米,回来时每 小时走6千米。这个人来回共 行了多少千米?
3、甲乙两人共同步行,如果同时同地同向而行, 经过8分钟,甲比乙多行40米,如果同时同地背向而行, 5分钟后相距175米。问:两人每分钟各行多少米?
王叔叔看一本小说,未 看页数是已看页数是4倍, 如果再看50页,未看页数 就是已看页数的2倍。这本 书共有多少页?
ቤተ መጻሕፍቲ ባይዱ
1、一辆汽车从甲地到乙地,未行的路程 是已行路程的4倍,如果再行100千米,未行的
小芳课外书的本数是小 强的3倍。现在小芳借给小 强10本书,小强书的本数 就等于小芳的3倍。小芳、 小强现在各有课外书多少本?
1、红红和兰兰都收集邮票,红红收集的邮票是兰 兰的4倍,红红给了兰兰18张,兰兰现在的邮票数就是 红红的4倍。红红和兰兰现在各有邮票多少张?
2、工地上有两堆沙子,甲堆的质量是乙堆的5倍, 从甲堆运80吨到乙堆,这时乙堆沙子的质量就是甲堆的 5倍。现在工地上两堆沙子的质量分别是多少吨?
路程就是已行路程的2倍。甲乙两地之间的公路长多 少千米? 2、修一条公路,未修的长度就是已修的2倍,如 果再修2000米,已修的长度就是未修的2倍。这条公 路长多少米?
3、修一条公路,未修的长度就是已修的3倍,
如果再修300米,未修的就是已修的2倍。这条 公路长多少米?
2023年人教版数学五年级上册解方程教案与反思(优选3篇)
人教版数学五年级上册解方程教案与反思(优选3篇)〖人教版数学五年级上册解方程教案与反思第【1】篇〗【教学内容】:《义务教育课程标准实验教科书数学》五年级上册第58、59页例1、例2。
【教材分析】:本节课是学生在掌握了等式的性质及方程的意义的基础上正式学习解方程的初始课。
主要讨论x+a=b,ax=b的方程的解法。
这部分知识的学习是学生进一步学习稍复杂的方程和应用方程解决实际问题的重要基础,是本单元的重点内容之一。
对于本课中较简单的方程,教材要求,直接利用等式的性质,只要通过一次变形,即在方程两边同时加上或减去、乘上或除以一个数(0除外)就能求出方程的解。
【教学目标】:1、能根据等式的性质解较简单的方程。
2、通过探究较简单的方程的解法,培养利用已有知识解决问题的意识和能力。
3、培养规范书写和自觉检查的习惯。
【教学准备】:挂图、天平、小球、小黑板等。
【教学课时】:1课时。
【教学过程】:(一)、复习旧知,导入新课1、什么叫方程的解?什么叫解方程?方程的解:使方程左右两边相等的未知数的值,叫做方程的`解;解方程:求方程的解的过程叫做解方程;揭示课题:这节课我们就来学习解最简单的方程——简易方程。
板书:解简易方程。
(学生齐读课题)(二)、提出问题,探究新知1、提出问题,教学例1 师:请看挂图,请你说出图上的意思。
(盒子里有x个小球,盒子外有3个球,合起来一共是9个小球。
)师:能不能用我们新学的方程解决这个问题学生列出方程:X+3=9(引导学生根据加法的意义列出方程。
)师:同学们根据加法的意义的到方程X+3=9,(板书:X+3=9)那么X是多少?(异口同声说6)- 1X+3=9 解: X+3-3=9-3 X=6 提问书写解方程的过程要注意什么?教师示范书写格式,①、先写方程X+3=9。
②、接下来写“解:”。
③、方程的左右两边同时减去3。
④方程的左边只剩下未知数X。
方程的右边9-3是6。
得到方程的解是X=6。
在这里需要强调一点,解方程时每一步得到的都是一个等式,不能连等。
人教版七年级数学上课件《解一元一次方程(二)——去括号与去分母》2
小练习:
1、2(X+8) 2x+16
注意符号
2、-3(3X+4) -9x-12 3、-(7y-5) -7y+5
注意符号
某工厂加强节能措施,去年下半年与上半
年相比,月平均用电量减少2000度,全年 用电15万度,这个工厂去年上半年每月平 均用电多少度?
分析:若设上半年每月平均用电x度,
则下半年每月平均用电(x-2000)度 上半年共用电 6x 度, 下半年共用电 6(x-2000) 度
去括号变形错,有一项 没变号,改正如下:
去括号,得3-0.4x-2=0.2x
移项,得 0.4x 0.2x 3 2
移项,得 -0.4x-0.2x=-3+2
合并同类项,得 0.2x 5
两边同除以-0.2得 x 25
合并同类项,得 -0.6x=-1
∴
x5 3
英国伦敦博物馆保存着一部极其珍贵的文物 纸莎草文书.这是古代埃及人用象形文字写在一种 特殊的草上的著作,至今已有三千七百多年.书中记 载了许多与方程有关的数学问题.其中有如下一道 著名的求未知数的问题:
骤是什么?它们分别运用了那些知识点?
(1)去括号 (去括号法则)
(2)移项
(等式性质1)
(3)合并同类项(合并同类项法则)
(4)系数化成1 (等式性质2)
练习1 解下列方程:
(1)4x + 3(2x – 3)=12 - (x +4)
(2)6(
1 2
x– 4)+ 2 x =7 -(
1 3
x
– 1)
如果关于m的方程2m+b=m-1的解是-4, 则b的值是( A )
⑵括号前是“-”号x,=把13括50号0 和它前面的“-” 号去答掉:这,个括工号厂里去各年项上都半改年变每符月号平均用电13500度.