2形状记忆高分子
形状记忆聚合物 分类
形状记忆聚合物分类形状记忆聚合物(Shape memory polymer, SMP)是一种具有形状记忆和可复原性能的新型复合聚合物材料。
它由普通的聚合物和形状记忆效应引发剂混合而成,在改变形状后,可以在温度变化的作用下,自动回到原来的形状。
这种材料具有许多优点,如低成本、易于制造、可编程、可调节等,使得它在工业、航空航天、医药、汽车、消费者和运动用品等领域有着广泛的应用前景。
形状记忆聚合物有多种种类,根据结构的不同,可以将它们分为三大类:第一类是自释放式形状记忆聚合物,又称为自释放式SMP,它具有自释放的形状记忆效应,即两态之间的转换不需要外力的帮助,它可以自动完成形状的转换,是目前最常用的形状记忆聚合物。
第二类是可激活形状记忆聚合物,又称为可激活SMP,它需要外力(如温度、光、电磁等)才能触发形状记忆效应,可以较好地控制形状的变化,在某些应用领域有着重要的意义。
第三类是可逆形状记忆聚合物,又称为可逆SMP,它具有可逆的形状记忆效应,即两态之间的转换可以反复多次,可以多次地改变材料的形状,在某些应用中也有重要的意义。
形状记忆聚合物还可以分为非金属性SMP和金属性SMP,前者是典型的高分子材料,它的形状记忆效应是由温度的变化而触发的;后者是一种含有金属离子的复合聚合物,具有良好的耐腐蚀性,它的形状记忆效应是由可激活剂改变晶体结构而触发的。
此外,形状记忆聚合物还可以按照来源进行分类,其中包括生物形状记忆聚合物、人工合成形状记忆聚合物、基于晶体结构的形状记忆聚合物、基于热反应的形状记忆聚合物等。
生物形状记忆聚合物是一种基于生物分子结构的新型复合聚合物材料,它具有良好的可调节性和可复原性,主要用于医疗保健、生物传感器、军事装备等领域。
人工合成形状记忆聚合物是一种以小分子为主要组份,由人工合成方法制备出来的新型聚合物材料,具有良好的力学性能、外部环境耐受性以及可编程性等特点,主要用于航空航天、机器人技术、汽车工业等领域。
有形状记忆功能的高分子材料
有形状记忆功能的高分子材料摘要:本文综述了具有形状记忆功能的高分子材料的发展概况,分析了形状记忆高分子材料的记忆效应原理,并对交联聚烯烃、、聚酯等具有形状记忆功能的高分子材料的特性及应用进行了评价和探讨,特别对聚氨酯(形状记忆PUs)的记忆原理和特征,及其研究现状和应用前景作了重点阐述同时对形状记忆高分子材料的发展前景进行了展望。
关键词:记忆效应;聚氨酯;聚酯聚氨酯;热致形状记忆高分子;形状记忆性;微相分离;玻璃化转变:一.概况:(一)引言汽车外壳上的凹痕,像压扁的乒乓球一样,浸泡在热水中就可以复原;登山服的透气性可以根据环境的温度自动调节;一部机器中的零部件可以按照预定的程序,根据外界的温度变化而有序地自动拆卸;供药系统可以根据患者的体温或血液的酸度自动地调控药剂释放的剂量和速度;断骨外的套管可以在体温的作用下束紧,并能够在创伤愈合后自动降解消失等等,这些看似神奇的设想,通过的一类新型材料———形状记忆材料,都已经逐一地变成了现实。
有人把这类材料称之为“智能材料”,并非过誉之词。
(二)发展日本捷闻、可乐丽、旭化成和三菱重工等公司就开发出聚降冰片烯、反式,聚异戊二烯和聚氨酯等形状记忆树脂。
但是一种材料所具有的某种新功能的发现,对于它是否能够真正在材料目录中占有一席之地以及能否真正为工程技术人员所采用,往往需要经过一段或长或短的时间。
这不仅和材料的生产成本及性能好坏有关,生产工艺的成熟与否也是需要重视的基本因素,有时它们可以成为起决定性作用的因素。
形状记忆聚合物的工作原理有记忆功能的高聚物,规范的术语应当是高分子形状记忆材料,一般分为热塑性和热固性两类。
它们在产生形状记忆效应时的主要机制大致相同。
这类高聚物在外力作用下,可以产生大的弹性形变,并且可以方便地"如降低温度!使这种形变保持下来,但是在外加某种刺激信号"如加热!时,材料又可以恢复到原来的形状。
这种变化过程,称为形状记忆效应。
形状记忆高分子材料研究进展(综述)
形状记忆的高分子材料的研究进展Research Progress of Shape Memory Polymer Material1 综述摘要:形状记忆高分子(SMP)是一类新型的功能高分子材料,是高分子材料研究、开发、应用的一个新的分支点,它同时兼具有塑料和橡胶的特性。
形状记忆高分子材料是一种可以响应外界刺激,并调整自身状态参数,从而回复到预先设定状态的一种智能高分子材料。
本文简单介绍了形状记忆高分子材料的性能、种类和应用。
关键词:形状记忆;高分子材料;聚合物;研究进展1形状记忆高分子材料简介.形状记忆的高分子材料是一种能够感知外部环境如光、热、、电、磁等,并且能够根据外部环境的变化而自发的对自身的参数进行调整还原到预先设定状态的一种智能高分子材料。
形状记忆高分子( Shape Memory Polymer,简称 SMP) 材料具有可恢复形变量大、质轻价廉、易成型加工、电绝缘效果好等优点,从20世纪80年代以来赢得广泛关注和研究,并得到了快速发展,因其独特的性能和特点,使其这些年来在材料领域中扮演着重要的角色。
近40年来,科研工作者们相继开发出了多种形状记忆高分子材料,如聚乙烯、聚异戊二烯、聚酯、共聚酯、聚酰胺、共聚酰胺、聚氨酯等,它们被广泛应用于航空航天、生物医用、智能纺织、信息载体、自我修复等多个材料领域。
显示出了形状记忆高分子材料广泛的应用前景的地位。
2.形状记忆高分子材料的分类及应用根据响应方式的不同可以将形状记忆高分子分材料大致分为热致型、光致型、化学感应型、电致型等类型。
其中,热致感应型和光致感应型应用最为广泛。
2.1热致感应型热致SMP是一种通过施加电场或红外光照射等刺激促使其在室温以上变形,并能在室温固定形变且可长期存放,当再次升温至某一固定温度时,材料能够恢复到初始形状。
热致型SMP被广泛用于医疗卫生、体育运动、建筑、包装、汽车及科学实验等领域,如医用器械、泡沫塑料、坐垫、光信息记录介质及报警器等。
形状记忆功能高分子材料的研究现状和进展
形状记忆功能高分子材料的研究现状和进展Value Engineering0引言随着社会的进步和科学技术的发展,一般的材料难以满足日益复杂的环境,因此需要具有自修复功能的智能材料———形状记忆材料。
20世纪50年代以来,各国相继研究出在外加刺激的条件(如光、电、热、化学、机械等)经过形变可以回复到原始形状的具有形状记忆功能的材料,它可分为三大类,形状记忆合金、形状记忆陶瓷和形状记忆聚合物材料。
高分子产业的迅速发展,推动了功能高分子材料得到了蓬勃发展。
形状记忆聚合物材料的独特性,广泛应用于很多领域并发展潜力巨大,人们开始广泛关注[1]。
1功能高分子材料研究概况功能高分子材料是20世纪60年代的新兴学科,是渗透到电子、生物、能源等领域后开发涌现出的新材料。
由于它的内容丰富、品种繁多、发展迅速,成为新技术革命不可或缺的关键材料,对社会的生活将产生巨大影响。
1.1功能高分子材料的介绍功能高分子材料是指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料,通常也可简称为功能高分子,也可称为精细高分子或特种高分子[2]。
1.2功能高分子材料分类可分为两类:第一类:以原高分子材料为基础上进行改性或其他方法,使其成为具有人们所需要的且各项性能更好的高分子材料;第二类:是具有新型特殊功能的高分子材料[3]。
1.3形状记忆功能高分子材料自19世纪80年代发现热致形状记忆高分子材料[4],人们开始广泛关注作为功能材料的一个分支———形状记忆功能高分子材料。
和其它功能材料相比的特点:首先,原料充足,形变量大,质量轻,易包装和运输,价格便宜,仅是金属形状记忆合金的1%;第二,制作工艺方简便;形状记忆回复温度范围宽,而且容易加工,易制成结构复杂的异型品,能耗低;第三,耐候性,介电性能和保温效果良好。
形状记忆高分子材料
形状记忆高分子材料引言形状记忆高分子材料(SMP)作为一类智能材料,因其可以在适当的刺激条件(如温度、光、电磁或溶剂等)下,响应环境变化,而相应发生形状转变的能力,为解决科学技术难题带来了一种新的方法。
1950年,第一次报道了具有形状记忆效应的交联聚乙稀聚合物,并在文中描述了具体的表征方法。
这类形状记忆高分子材料与其它形状记忆材料如形状记忆合金和陶瓷相比,具有变形量大、赋形容易、响应温度易于调整,质量轻、价格低、以及易加工成型等优点。
而且易于设计成具有良好的生物相容性、可生物降解性的生物材料,比如手术缝合线、支架、心脏瓣膜、组织工程、药物释放、矫形术及光学治疗等。
1.形状记忆高分子材料的分类SMPs根据刺激响应的不同可分为热致型,电磁致型,光致型,化学型以及水致型,其中热致型是研究最广也是研究最成熟的一种高分子材料。
热致型SMPs 由固定相和可逆相两部分组成,其中固定相通常是由化学交联或物理交联点构成,其可以决定初始形变;可逆相通常由结晶结构构成,可随温度变化而进行可逆的软硬化转变。
1.1 热致型SMP热致型SMP是指材料在初始条件下开始受热,当加热温度达到相转变温度时,同时给材料施加外应力,然后再外力不变的情况下,将温度迅速下降至室温,材料会保持暂时形状,即使在撤去外应力后材料依旧可保持这种状态,直到再次在无应力条件下加热,温度再次达到相转变温度时,材料才会自发地恢复到初始形状。
以聚氨酯为例其可以通过改变嵌段共聚物的成分和比例,来改变聚氨酯材料物理化学性质、生物相容性、组织相容性,以及可生物降解性质。
形状记忆聚氨酯由软段和硬段组成,其中硬段主要由二异氰酸酯和扩链剂组成,因此刚度比较大,抑制了材料变形过程中大分子链的塑性滑移;软段主要由聚酯多元醇或聚醚多元醇等线性分子组成,因此能够进行较大的形变.一般情况下,在温度增加到软段的转变温度之上时形状记忆聚氨酯材料处于高弹态,而且软段微观布朗运动的加剧,致使材料容易变形,此时因为硬段还处于玻璃态,所以阻止了分子链滑移的同时产生了一个内部的回弹力;当温度从冷却的温度增加到软段的转变温度以上时,硬段储存的应力释放,进而导致了材料能够回复到初始形变。
具有形状记忆功能的高分子材料研究
具有形状记忆功能的高分子材料研究随着科技的不断进步,人们对材料的需求也越来越高。
而其中一种备受关注的材料就是具有形状记忆功能的高分子材料。
形状记忆是指材料能够根据外界刺激或者内部条件,自主改变自身形状,并在刺激消失后回复到最初的形态。
这种材料的研究在医疗、智能材料和工程领域有着广泛的应用前景。
形状记忆功能的高分子材料的研究始于二十世纪五十年代,当时的科研工作者开始对具有嵌段结构的聚合物进行研究。
随后,研究人员发现,在这些聚合物中,具有相干结构的片段能够形成物理交联点,从而赋予材料形状记忆功能。
这种交联点可以通过加热或者其他方式来打破,使材料恢复到初始形状。
这项研究成果引起了广泛关注,并在此后的几十年里得到了持续的探索和发展。
目前,研究人员主要专注于两种形状记忆高分子材料:热致形状记忆材料和光致形状记忆材料。
热致形状记忆材料是最常见的一种,其材料中添加了热塑性嵌段,能够在一定温度范围内发生熔融和再结晶。
这些嵌段之间形成的序列结构使材料具有记忆形状的能力。
当材料被加热到临界温度时,分子链之间的交联点会被打破,材料变得软化,可以任意塑性变形。
当材料冷却后,分子链之间的交联点再次形成,材料恢复到原始状态。
而光致形状记忆材料是一种相对较新的研究领域。
这类材料的形状变化是通过光敏染料的光热效应实现的。
光敏染料可以在特定波长的光照下吸收光能并将其转化为热能。
当材料暴露在特定光照下时,光敏染料吸收的光能会导致局部温度升高,从而改变材料的形状。
而当材料不再受到光照时,温度也会回落,材料恢复到原始形态。
形状记忆高分子材料的应用潜力巨大。
在医疗领域,这种材料可以用于智能药物释放系统。
例如,一种植入体可以被设计成在特定温度下打开,释放药物,并在其他条件下关闭,从而实现精确的药物控释。
这种智能药物释放系统可以减少药物滥用和副作用,提高临床治疗的效果。
在智能材料领域,形状记忆高分子材料可以应用于可穿戴设备和机器人。
这种材料可以通过外界刺激实现形状变化,使得可穿戴设备和机器人能够更加贴合用户的需求和动作。
高分子材料的形状记忆性能研究
高分子材料的形状记忆性能研究形状记忆材料是一类具有特殊性能的材料,在受到外界刺激时能够回复其原有形状。
这一特性在许多领域都有潜在应用,例如医疗、电子、航空航天等。
而高分子材料是一类常见的形状记忆材料,其研究一直备受关注。
本文将探讨高分子材料的形状记忆性能,以及相关研究进展和应用前景。
1. 形状记忆材料的原理形状记忆材料具有两个基本状态:一是其正常状态,也称为高温状态,该状态下材料保持着其所具有的原始形状;二是其特殊状态,也称为低温状态,该状态下材料会发生一定程度的形状变化。
形状记忆材料的形状记忆性能主要依赖于两种基本原理:热致形状记忆效应和应力驱动形状记忆效应。
2. 高分子材料的形状记忆性能高分子材料是一类具有长链结构的聚合物材料,其形状记忆性能主要通过调控其结构和组成来实现。
高分子材料的形状记忆性能可以通过改变温度、应力或其他外界刺激来实现形状的转变和恢复。
具体而言,高分子材料的形状记忆性能可以通过以下几个方面来评价和研究:转变温度、形状记忆率、形状恢复速度和循环稳定性。
3. 影响高分子材料形状记忆性能的因素在研究高分子材料的形状记忆性能时,有许多因素会对其性能产生影响。
其中,材料的结构和组成是最为重要的因素之一。
高分子材料的结构可以通过控制聚合物的交联度、分子量以及交联点的类型和密度来实现对形状记忆性能的调控。
此外,材料的加工方法、处理过程、外界刺激等也会对形状记忆性能产生影响,因此需要对这些因素进行精确控制和研究。
4. 高分子材料形状记忆性能的研究进展高分子材料的形状记忆性能一直备受研究者的关注。
近年来,许多新型材料和制备方法被提出和应用于高分子材料的形状记忆性能研究中。
例如,利用纳米颗粒增强材料的形状记忆性能,通过界面改性增加材料的形状恢复速度等。
这些研究为高分子材料的形状记忆性能提供了新的途径和思路。
5. 高分子材料形状记忆性能的应用前景高分子材料的形状记忆性能在众多领域具有广阔的应用前景。
形状记忆型高分子原理和制备方法总结
形状记忆型⾼分⼦原理和制备⽅法总结1、形状记忆⾼分⼦定义形状记忆⾼分⼦(Shape Memory Polymer)SMP材料是指具有初始形状的制品,在⼀定的条件下改变其初始形状并固定后,通过外界条件(如热、光、电、化学感应)等的刺激,⼜可恢复其初始形状的⾼分⼦材料。
2、记忆的过程SMP记忆过程主要描述如下的循环过程:2.1引发形状记忆效应的外部环境因素:物理因素:热能,光能,电能和声能等。
化学因素:酸碱度,螯合反应和相转变反应等。
2.2 状记忆⾼分⼦分类故根据记忆响应机理,形状记忆⾼分⼦可以分为以下⼏类:1)热致感应型SMP2)光致感应型SMP3)电致感应型SMP4)化学感应型SMP3、⾼分⼦的形状记忆过程和原理3.1形状记忆聚合物的相结构3.2产⽣记忆效应的内在原因需要从结构上进⾏分析。
由于柔性⾼分⼦材料的长链结构,分⼦链的长度与直径相差⼗分悬殊,柔软⽽易于互相缠结,⽽且每个分⼦链的长短不⼀,要形成规整的完全晶体结构是很困难的。
这些结构特点就决定了⼤多数⾼聚物的宏观结构均是结晶和⽆定形两种状态的共存体系。
如PE,PVC等。
⾼聚物未经交联时,⼀旦加热温度超过其结晶熔点,就表现为暂时的流动性质,观察不出记忆特性;⾼聚物经交联后,原来的线性结构变成三维⽹状结构,加热到其熔点以上是,不再熔化,⽽是在很宽的温度范围内表现出弹性体的性质,如下图所⽰。
3.3 形状记忆过程4、热致感应型形状记忆⾼分⼦定义:在室温以上⼀定温度变形并能在室温固定形变且长期存放,当再升温⾄某⼀特定响应温度时,能很快恢复初始形状的聚合物。
这类SMP⼀般都是由防⽌树脂流动并记忆起始态的固定相与随温度变化的能可逆地固化和软化的可逆相组成。
固定相:聚合物交联结构或部分结晶结构,在⼯作温度范围内保持稳定,⽤以保持成型制品形状即记忆起始态。
可逆相:能够随温度变化在结晶与结晶熔融态(Tm)或玻璃态与橡胶态间可逆转变(Tg),相应结构发⽣软化、硬化可逆变化—保证成型制品可以改变形状。
高分子材料的形状记忆性能研究与应用
高分子材料的形状记忆性能研究与应用1. 引言高分子材料是一类具有特殊性能和应用前景的材料,其中形状记忆性能是引人注目的特征之一。
形状记忆性是指材料通过外部触发,能够从一种初始形状迅速回复到具有预设形状的能力。
与传统的材料相比,高分子材料的形状记忆性能具有许多优势,如材料的轻量化、可重复使用性等。
因此,研究与应用高分子材料的形状记忆性能具有重要的科学和实际意义。
2. 形状记忆原理高分子材料的形状记忆性能是基于其特殊的分子结构和热力学性质实现的。
一般来说,高分子材料通过控制温度、电场、光照等外部刺激,使其分子结构发生变化,从而实现形状记忆性能。
其中,形状记忆效应的实现主要依赖于高分子材料中的交联度、分子链的切断和重连接以及聚合物链的运动等过程。
3. 形状记忆性能研究在高分子材料的形状记忆性能研究中,主要包括材料的形状记忆效应机制、形状记忆行为的表征与分析方法以及形状记忆性能的调控与优化等方面。
通过对不同类型高分子材料的形状记忆性能进行研究,可以深入了解其作用机制,并为材料的合成和应用提供理论指导和实验基础。
4. 形状记忆性能应用高分子材料的形状记忆性能在许多领域具有广泛的应用前景。
例如,在医学领域,可以利用高分子材料的形状记忆性能制备可移植的组织工程支架;在航空航天领域,可以利用形状记忆材料设计制造高效的飞机构件;在智能材料和机器人领域,可以利用形状记忆材料制造可编程、可自主移动的智能器件;在电子领域,可以利用形状记忆材料制造灵活的电子器件等。
这些应用将大大推动传统材料科学的发展,并在生活和工业生产中发挥重要作用。
5. 发展与挑战虽然形状记忆高分子材料具有许多优点和潜在应用,但是其研究与应用仍然面临一些挑战。
例如,在形状记忆材料的合成和制备过程中,需要考虑材料的可调控性和可持续性等问题;在形状记忆性能的调控和优化过程中,需要考虑材料的力学性能和稳定性等问题。
此外,形状记忆高分子材料的商业化应用还需要克服生产成本、制备工艺和市场需求等方面的限制。
高分子材料的形状记忆性能研究
高分子材料的形状记忆性能研究近年来,高分子材料的形状记忆性能一直受到广泛关注。
形状记忆性能是指在受到外界刺激后,高分子材料能够自动恢复到其原始形状的能力。
这种记忆能力使得高分子材料在许多领域都有着广泛的应用前景,如人工智能、生物医学工程和可穿戴设备等。
形状记忆性能的研究主要涉及到两个方面:首先是高分子材料的记忆效应。
高分子材料的形状记忆机制是由其特殊的结构决定的。
大多数高分子材料都是由线性或交联聚合物链组成的,当受到外界温度、光线或电场等刺激时,高分子材料的分子链会经历某种结构转变,从而改变材料的形状。
当外界刺激消失时,高分子材料又会自动恢复到原来的形状。
这种形状记忆效应是由于高分子材料的内部结构发生了可逆性改变。
第二个方面是高分子材料的形状记忆机理。
形状记忆机理主要包括两种类型:一种是热致形状记忆,另一种是光致形状记忆。
热致形状记忆是指高分子材料在恢复原状时,利用外界的温度变化来驱动分子链的结构恢复。
光致形状记忆则是通过外界的光线刺激实现形状的恢复。
这两种形状记忆机理有着不同的优缺点和应用范围,研究人员正在不断深入探索它们的机制,并提出更加高效的方法。
形状记忆性能的研究还面临一些挑战。
首先是高分子材料的制备。
高分子材料的形状记忆性能需要通过合成合适的聚合物来实现。
为了达到理想的形状记忆性能,研究人员需要精确控制聚合物的结构和分子链的排列方式。
其次是形状记忆性能的稳定性问题。
由于高分子材料的形状记忆性能是由分子链结构的可逆变化决定的,因此在长时间使用或多次形状转变后,高分子材料的形状记忆性能可能会出现衰退或丢失的情况。
针对这个问题,研究人员正在尝试将形状记忆性能与其他物理性能相结合,以提高材料的稳定性。
高分子材料的形状记忆性能研究不仅局限于实验室的理论探索,还涉及到许多实际应用。
例如,在可穿戴设备中,形状记忆材料能够根据人体的形态变化,自动调整设备的形状,提供更好的舒适度和适配性。
在生物医学工程领域,形状记忆材料可用于制作人工血管、智能药物释放系统等,以实现更加精确和有效的治疗。
形状记忆高分子材料
• 可逆相 能够随温度变化在结晶与结晶熔融态(Tm)
或玻璃态与橡胶态间可逆转变(Tg),相应结构 发生软化、硬化可逆变化—保证成型制品可以改 变形状。
热致感应型SMP
物理交联结构 固定相
热致感应型
化学交联结构
SMP的相结构 可逆相
结晶态
(物理交联结构) 玻璃态等
产生结晶与结晶可逆变化 的部分结晶相
发生玻璃态和橡胶态可逆 转变的相结构
高分子的形状记忆过程和原理
产生记忆效应的内在原因: 由于柔性高分子材料的长链结构,分子链的长度与直径 相差十分悬殊,柔软而易于互相缠结,而且每个分子链 的长短不一,要形成规整的完全晶体结构是很困难的。 这些结构特点就决定了大多数高聚物的宏观结构均是结 晶和无定形两种状态的共存体系。高聚物未经交联时, 一旦加热温度超过其结晶熔点,就表现为暂时的流动性 质,观察不出记忆特性;高 聚物经交联后,原来的线性 结构变成三维网状结构,加 热到其熔点以上时,不再熔 化,而是在很宽的温度范围 内表现出弹性体的性质。
高分子的形状记忆过程和原理
在玻璃化温度Tg以下的 A段为玻璃态,在这个 状态,分子链的运动是 冻结的,表现不出记忆 效应,当升高到玻璃化 温度以上时,运动单元 得以解冻,开始运动, 受力时,链段很快伸展 开来,外力去除后,又 可恢复原状,即高弹形 变,由链段运动所产生 的高弹形变 是高分子材 料具有记忆效应的先决 条件。
பைடு நூலகம்
热固性SMP形状记忆示意图
形状记忆效果
由形状记忆原理可知,可逆相对SMP的形变特 性影响较大,固定相对形状恢复特性影响较大。 其中可逆相分子链的柔韧性增大,SMP的形变量 就相应提高,形变应力下降。
形状记忆型高分子原理和制备方法总结
形状记忆型高分子原理和制备方法总结形状记忆型高分子材料是一种可以在外界刺激下发生可逆性形状变化的材料。
其原理是利用高分子材料的柔性链段可以在外界刺激下发生可逆性变形,从而实现形状记忆效应。
本文将对形状记忆型高分子材料的原理和制备方法进行详细总结。
形状记忆效应的原理主要基于高分子链段的弹性特性。
高分子材料的链段通常由刚性段和柔性段组成。
刚性段之间的连接点可以通过外界刺激由不稳定的高能态转变为稳定的低能态,从而导致高分子链段的形态变化。
形状记忆型高分子材料是在其中一种外界刺激下能够发生可逆性形状变化的高分子材料。
形状记忆效应的刺激方式可以分为热刺激和光刺激两种。
最常见的是热刺激方式,即通过加热来实现高分子链段的形变。
形状记忆材料通常会在两个不同的温度下存在两种稳定的形态,即低温形态和高温形态。
在低温下,高分子链段处于较为刚性的状态,如果给予一些外界力,高分子链段就会发生可逆性形变。
当将材料加热到高温时,高分子链段变得足够柔软,通过外界力的作用,高分子链段可以回复到最初的形状。
制备形状记忆型高分子材料的方法有很多种,以下列举了几种常见的方法。
1. 反应缩聚法(polymer-analogue method):通过反应缩聚法可以制备出具有形状记忆效应的高分子材料。
具体方法是在反应缩聚体系中引入刚性链段和柔性链段,通过控制反应的条件和体系成分,可以得到具有形状记忆效应的高分子材料。
2. 共聚物法(copolymerization method):共聚物法制备形状记忆型高分子材料是一种常见的方法。
通过共聚物法可以在高分子链段中引入刚性链段和柔性链段,从而实现形状记忆效应。
此外,还可以通过在共聚物结构中引入交联点来增强材料的形状记忆性能。
3. 在线法(online method):在线法是一种将刚性链段和柔性链段分别引入高分子体系中的方法。
通过将刚性链段与柔性链段交融在一起,可以制备具有形状记忆效应的高分子材料。
形状记忆型高分子原理和制备方法总结
1、形状记忆高分子定义形状记忆高分子(Shape Memory Polymer)SMP材料是指具有初始形状的制品,在一定的条件下改变其初始形状并固定后,通过外界条件(如热、光、电、化学感应)等的刺激,又可恢复其初始形状的高分子材料。
2、记忆的过程SMP记忆过程主要描述如下的循环过程:2.1引发形状记忆效应的外部环境因素:物理因素:热能,光能,电能和声能等。
化学因素:酸碱度,螯合反应和相转变反应等。
2.2 状记忆高分子分类故根据记忆响应机理,形状记忆高分子可以分为以下几类:1)热致感应型SMP2)光致感应型SMP3)电致感应型SMP4)化学感应型SMP3、高分子的形状记忆过程和原理3.1形状记忆聚合物的相结构3.2产生记忆效应的内在原因需要从结构上进行分析。
由于柔性高分子材料的长链结构,分子链的长度与直径相差十分悬殊,柔软而易于互相缠结,而且每个分子链的长短不一,要形成规整的完全晶体结构是很困难的。
这些结构特点就决定了大多数高聚物的宏观结构均是结晶和无定形两种状态的共存体系。
如PE,PVC等。
高聚物未经交联时,一旦加热温度超过其结晶熔点,就表现为暂时的流动性质,观察不出记忆特性;高聚物经交联后,原来的线性结构变成三维网状结构,加热到其熔点以上是,不再熔化,而是在很宽的温度范围内表现出弹性体的性质,如下图所示。
3.3 形状记忆过程4、热致感应型形状记忆高分子定义:在室温以上一定温度变形并能在室温固定形变且长期存放,当再升温至某一特定响应温度时,能很快恢复初始形状的聚合物。
这类SMP一般都是由防止树脂流动并记忆起始态的固定相与随温度变化的能可逆地固化和软化的可逆相组成。
固定相:聚合物交联结构或部分结晶结构,在工作温度范围内保持稳定,用以保持成型制品形状即记忆起始态。
可逆相:能够随温度变化在结晶与结晶熔融态(Tm)或玻璃态与橡胶态间可逆转变(Tg),相应结构发生软化、硬化可逆变化—保证成型制品可以改变形状。
生物医用形状记忆高分子材料
生物医用形状记忆高分子材料摘要:形状记忆聚合物作为一种智能材料,已经在生物医用领域显示出了巨大的应用前景。
基于形状记忆聚合物材料的原理,组成和结构可以设计兼具生物降解性、生物相容性等多种功能的新型智能材料。
本文综述了三种典型的生物降解性形状记忆聚合物材料(聚乳酸、聚己内酯、聚氨酯)的发展,从结构上对三种形状记忆聚合物进行了分类讨论,详细分析了不同种类聚合物形状记忆的机理、形状变化的固定率和回复率、回复速率等,并介绍了一些形状记忆聚合物材料在生物医学中的应用。
最后对医用形状记忆聚合物未来发展进行了展望:双程形状记忆聚合物及体温转变形状记忆材料将会受到研究者的重点关注。
关键词:生物医用;形状记忆聚合物;聚乳酸;聚己内酯;聚氨酯形状记忆聚合物(shape memory polymers)是一类具有刺激-响应的新型智能高分子材料,其能感知外界环境变化,并对外界刺激做出响应,从而自发调节自身状态参数恢复到预先设计的状态[1]。
兼具生物相容性和生物降解性的SMPs已经在微创外科手术[2,3]、血管支架[4,5]、骨组织的固定[6,7]、可控药物缓释[8,9]、血栓移除[10]中得到了应用。
本文详细讨论了聚乳酸基、聚己内酯基和聚氨酯基三种最常见的生物降解形状记忆聚合物的研究状况。
1 聚乳酸基形状记忆聚合物聚乳酸类材料是一种典型的生物医用材料,具有良好的生物相容性和生物降解性,小分子降解产物能通过体内代谢排出体外[11]。
按照形状记忆聚乳酸的分子结构可将其分为聚乳酸共聚物,聚乳酸共混物和聚乳酸基复合材料三类。
1.1 聚乳酸共聚物纯的聚乳酸材料脆而硬,亲水性差,强度高但其韧性较差,极大地限制了其在生物医学领域中的应用[12]。
在聚乳酸基体中引入第二单体形成聚乳酸基共聚物,能显著地改善其性能。
通过调节PLA与其他单体的比例,可以得到韧性好、降解速率可调,力学性能优异的共聚形状记忆聚乳酸材料[13,14]。
聚己内酯(PCL)[15-17]和聚乙醇酸(PGA)[18]是聚乳酸基形状记忆聚合物常用共聚单元,此外对二氧环酮[19,20],乙交酯[19]与PLA的共聚物也能表现出形状记忆性能。
形状记忆高分子材料
形状记忆高分子材料20世纪60年代初,英国科学家A.Charlesby在其所著的《原子辐射与聚合物》中,首次报道了经辐射交联后的聚乙烯具有记忆效应。
当时这种发现并没有引起人们的足够的重视。
随后美国国家航空航天局(NASA)考虑其在航空航天领域的潜在应用价值,对不同牌号的聚乙烯辐射交联后的记忆特性又进行了研究,证实了辐射交联聚乙烯的形状记忆性能。
70年代末到80年代初,美国Raychem,RDI(Radiation Dynamics Inc.)公司进一步将交联聚烯烃类形状记忆聚合物商品化,广泛应用于电线电缆,管道的接续与防护,至今F系列战斗机,Boeing飞机上的电线接续与线挽仍在广泛使用这类记忆材料。
此外,国内长春应化所,西北核技术研究所等单位80年代后期以来也有研究和生产。
因此,形状记忆材料以其独特的性能引起了人们极大的兴趣。
所谓形状记忆高分子材料,是指具有初始形状的高分子物体经形变并固定之后,经过加热等外部条件刺激手段的处理又可使其恢复初始形状的高分子材料。
外部条件除热能外,还可是光能、电能等物理因素及酸碱度、相转变反应和螯合反应等化学因素。
通过这些外加刺激,触发材料作出响应,从而改变材料的技术参数,诸如形状、位置、应变、硬度、频率、摩擦和动态或静态特征等。
由于形状记忆材料具有优异的性能,诸如形状记忆效应、高回复形变、良好的抗震性和适应性,以及易以线、颗粒或纤维的形式与其他材料结合形成复合材料等,使其发展越来越受到重视。
形状记忆高分子或形状记忆聚合物(SMP,ShapeMemoryPolymer)作为一种功能性高分子材料,是高分子材料研究、开发、应用的一个新分支,并且由于形状记忆高分子与纺织材料具有相容性,在纺织、服装以及医疗护理产品中具有潜在应用优势。
1 形状记忆高分子材料种类、结构和性能1.1 形状记忆高分子材料种类形状记忆高分子材料根据其形状回复原理可分为:热感应SMP,电致感应型SMP,光致感应型SMP,化学感应型SMP等,热致型SMP:在室温以上变形,并能在室温固定形变且可长期存放,当温度再升至某一特定响应温度时,制件能很快回复初始形状的聚合物。
形状记忆高分子材料的发展及应用概况
形状记忆高分子材料的发展及应用概况一、本文概述形状记忆高分子材料(Shape Memory Polymers, SMPs)是一类具有独特形状记忆效应的智能材料,能够在受到外界刺激(如温度、光照、电场、磁场等)时,恢复其原始形状。
自上世纪90年代开始,随着材料科学和工程技术的不断进步,形状记忆高分子材料得到了快速发展,并在航空航天、生物医疗、汽车制造、智能传感器等领域展现出广阔的应用前景。
本文旨在全面概述形状记忆高分子材料的发展历程、基本原理、性能特点以及当前的应用概况,以期为相关领域的科研工作者和工程师提供参考和启示。
在发展历程方面,本文将介绍形状记忆高分子材料的起源、发展阶段和当前的研究热点。
在基本原理方面,将重点阐述形状记忆高分子材料的形状记忆效应产生的机制,包括交联网络结构、可逆物理/化学交联、热膨胀系数等。
在性能特点方面,将总结形状记忆高分子材料的优点和局限性,如形状恢复速度快、可重复性好、加工性能好等,以及其在高温、高湿等恶劣环境下的稳定性问题。
在应用概况方面,将详细介绍形状记忆高分子材料在航空航天、生物医疗、汽车制造、智能传感器等领域的具体应用案例,并分析其未来的发展趋势和市场前景。
通过本文的综述,读者可以全面了解形状记忆高分子材料的最新研究进展和应用现状,为相关领域的科研和产业发展提供有益的参考。
二、形状记忆高分子材料的分类形状记忆高分子材料(Shape Memory Polymers, SMPs)是一类具有独特“记忆”形状功能的智能材料。
它们能够在外部刺激(如温度、光照、电场、磁场或pH值变化等)的作用下,从临时形状恢复到其原始形状。
根据恢复机制的不同,形状记忆高分子材料可以分为以下几类:热致型形状记忆高分子材料:这类材料利用热响应来触发形状记忆效应。
它们通常包含两个或多个具有不同玻璃化转变温度(Tg)的组分,通过加热到特定温度,材料能够从一个临时形状恢复到原始形状。
这类材料在航空航天、医疗器械和智能织物等领域具有广泛的应用前景。
材料科学中的新型高分子材料
材料科学中的新型高分子材料材料科学是一个涉及多个学科领域的交叉学科,其中一个重要的分支就是高分子材料学。
高分子材料的应用范围广泛,从塑料制品、纤维材料到电子器件、医用材料等各个领域都有涉及。
随着科技的不断发展,越来越多的新型高分子材料得到开发和应用,其中一些具有独特的性质和潜在的应用前景。
本文将介绍一些新型高分子材料的特性和应用。
一、聚甲烯酸甲酯(PMMA)聚甲烯酸甲酯,通常简称为PMMA,是一种透明的有机玻璃。
它的硬度、抗紫外线性能、耐化学性能等方面都比较优异,因此被广泛应用于各类高档玻璃制品、光学材料以及医学领域。
PMMA具有优异的光学性质,可透过90%以上的自然光,并且它的密度比玻璃低,同时它的成型加工性能也比较好,数量上比起玻璃容易实现从线性生产到批量定制的转变。
在医学领域,PMMA被用于眼镜的制作及人工晶体的制造。
二、形状记忆高分子材料(SMP)形状记忆高分子材料是一类可以自动激活形状记忆现象的材料,其外形成型后可以在受到各种外力,如温度、电场或磁场的刺激后,自动保存预定的形状,一般可根据需求进行特定的大小、形状、花色等方面的控制,通过预设的特定温度(如身体温度)或电磁场获得理想的形状。
这类材料广泛应用于机械、电子、医学领域,特别是在制造拆装和可折叠器械、智能开关、致动器以及人工器官等方面有着广阔的应用前景。
三、荧光高分子材料(FP)荧光高分子材料是一种可以发出强烈荧光信号的材料,通常用于标记分子和生物分子的位置。
近年来,FP被广泛应用于生物学研究、医学诊断以及光电子器件等领域。
例如,在神经科学领域,生物学家可以用FP标记深度脑区的神经元,以便了解不同神经元之间的联系和功能机制,阐明神经系统的工作原理。
四、纳米材料纳米材料是一种具有非常小尺寸的高分子材料,它的尺寸与其各种性能表现之间的关系与宏普通材料不同。
纳米材料具有相对更高的热稳定性、热导率和抗拉伸性能等,同时也能够兼具化学样品吸附和催化性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚降冰片烯(polynorbornene)
1974年,法国诺索洛公司(法国煤化学公司 CdF Chimie)
? 分子量高达300万,Tg 为35度 ? 固定相:为超高分子链的缠绕交联, ? 可逆相:玻璃态转变结构。 四大特点: 1)热塑性树脂,可成型加工,但分子量太高,加工较为
困难。 2)Tg接近人体温度,室温下为硬质,适于制作人体织物,
不仅形变量大(可达 400%),且形状恢复速度快, 常温保存时,形状的自然恢复极少,重复形变时, 恢复率有所下降,至少可使用 200次以上。另外, 耐酸碱性好,着色性优良。
聚氨酯(Polyurethane)
? 1988年日本三菱重工业公司 可逆相:软段的聚酯部分 固定相:硬段聚集成的微区起物理交联点作用 优点: 1)加工性好。 2)形变回复量大; 3)在-30-70 oC之间自由选择形状回复温度; 4)树脂材料透明,可任意着色。 5)相对密度 1.1-1.2,较SMA低。 6)成本低,
固定变形态
子材料,当外部条件发
生变化时,它可相应地
改变开关并将其固定
(变形态);如果外界
环境以特定的方式和规 律再次发生变化,它们
恢复至起始态
便可逆的恢复至起始态。
例1:
Figure 1. shape memory effect of flowers (opening)
Responsive to temperature
但温度不便于任意调整。 3)充油处理后变成 JIS硬度为15的低硬度橡胶,具有较好
的耐湿气性和滑动性。 4)未经硫化的试样强度高,具有减震性能。
苯乙烯-丁二烯共聚物 (Styrene-butadiene copolymer)
? 1988年 日本旭化成工业公司推出 ,商品名:阿斯 玛
? 固定相:聚苯乙烯 ? 可逆相:聚丁二烯结晶区域 ? 特点:
化学感应触角阵列
双响应材料在温度、pH值控制下
2.3 形状记忆高分子类别与应用
2.3.1形状记忆高分子的种类 2.3.1.1 反式聚异戊二烯(Trans-polyisoprene TPI)
1988年,日本可乐丽公司开发。是TPI树脂,填 料及交联剂等原料经科学配方,用双辊混练机 或密练机,以及挤出机等混练制成。 a) 形状记忆回复温度由TPI熔点所决定。 b) 优点: 形变量大,加工成型容易,形状回复可调整, 耐溶剂性好,耐酸碱,高度的绝缘性,极了的 耐寒性及耐臭氧性等。
第二章 形状记忆高分子
本章主要内容
2.1 形状记忆高分子简介 2.2 SMP的特性及其基本原理 2.3 形状记忆高分子类别与应用 2.4 形状记忆高分子发展趋势
2.1形状记忆高分子简介
2.1.1形状记忆高分概念:
shape memory polymer,
SMP: 是一类新型的功能高分 记忆起始态
在贮存状态下冻结应力不会释放。
热致SMP
两相结构:
1. 固定相: 防止树脂流动并记忆超始态。 物理交联结构-热塑性SMP 化学交联结构-热固性SMP
2. 可逆相:随温度变化能可逆地固化和软化。 物理交联结构:结晶态,玻璃态
热致感应型 SMP的形状记忆原理
melting state or solution state
T > T mH
ห้องสมุดไป่ตู้
T<T mS
T mH >T > T mS
Shape B
T mH >T > T mS
T<T mS
Trigger
T mH >T > T mS
T<T mS
T mH : Melting point of hard segment T mS : Melting point of soft segment
Hard domain
Crystal region of soft domain
Non-crystal region of soft domain ITC. HKPolyU
1. 表征参数 形状固定率 形状恢复率 形状恢复温度 形状恢复力 形状恢复速度 -
2. 形状记忆的方向性
单向记忆
双向记忆
全方位记忆
形变
临时变形长度:L+L'
T<Tg or T<Tm 固定长度:L+L'
T>Tg or T>Tm
恢复长度:L
Tg Tm
Tf 温度
2.2 SMP的特性及其基本原理
形状记忆聚合物制备条件: 1)聚合物本身应有结晶和无定形的两相结构,
且两相结构的比例适当; 2)在玻璃化温度或熔点以上的较宽温度范围内
呈现高弹态,并具有一定强度, 以利于变形; 3)在较宽的环境温度条件下具有玻璃态,保证
平衡离子等,
2.1.3 SMP与SMA性能比较
性能 变形量 恢复力 力学强度 材料刚性 导电性 通电加热 高频感应加热 熔点 导热性 价格
形状记忆合金 小 大 高 高 好 可以 可以 高 高 高
形状记忆高分子 大 小 低 低 坏 不可以 不可以 低 低 低
SMPs的结构:两相结构
微相分离结构,包含至少两相-硬度相与软段相
形状记忆效果
>90-100% >90-100% 30-70 9.21-29.4MPa
T=200
T=30
T=100
T=30
T= -20
光致SMPs
变形
原始长度:L UV>260nm
固定 恢复
临时变形长度:L+L' 去除外力
固定长度:L+L'
UV<260nm 恢复长度:L
光致形状记忆效果
? 1. 形变量低 <2% (高分子凝胶可达到200%) ? 2. 存在光致热效应。
Second shape: closed flower
Original shape: open flower
Manufactured by external force
2.1.2 SMP种类
SMPs
热致SMP
电致SMP
光致SMP
化学感应性 SMP
温度变化
电流产生热量 温度变化
光致变色基团
周围介质性质变化 pH值,
硬段相
软段相
形状记忆机理
Deform
Above Ttrans
Ttrans
cool
heat
Recover
cool
Fix Below Ttrans
Ttrans
: switch unit/segment : Netpoint /domain
形状记忆过程
变形 固定 恢复
原始长度:L T>Tg or T>Tm
中科院兰州化学物理研 究所先进润滑与防护材 料研发中心在形状记忆 聚合物研究方面 (含偶氮苯聚氨酯的形 状记忆)
化学感应型 SMP
L
化学物质
L+ L” 10%-300% 形变量
化学感应方式: pH值变化, (聚合物电解质) 平衡离子置换,(羧酸阴离子的平衡离子置换) 螯合反应, PVA与Cu2+ 相转变 蛋白质在各种盐类物质下 氧化还原反应