数学模型第四版(姜启源)作业对于6.4节蛛网模型讨论下列问题:
第四章 数学规划模型 数学建模(姜启源第四版)ppt课件
12小时
3公斤A1
4公斤A2
获利24元/公斤
获利16元/公斤
8小时 每天 50桶牛奶 时间480小时 至多加工100公斤A1 x1桶牛奶生产A1 x2桶牛奶生产A2
决策变量
目标函数
获利 24×3x1 获利 16×4 x2 每天获利 Max z 72x1 64x2 原料供应
x1 x2 50
基本模型
变量
目标 函数 约束 条件
x5 kg A1加工B1, x6 kg A2加工B2 利润
Max z 24x1 16x2 44x3 32x4 3x5 3x6
x1 x5 x 2 x6 加工能力 50 3 4 附加约束 4( x1 x5 ) 2( x2 x6 )
4公斤A2
获利16元/公斤
每天: 50桶牛奶
时间480小时 至多加工100公斤A1
制订生产计划,使每天获利最大 • 35元可买到1桶牛奶,买吗?若买,每天最多买多少? • 可聘用临时工人,付出的工资最多是每小时几元? • A1的获利增加到 30元/公斤,应否改变生产计划?
基本 1桶 模型 牛奶 或
线性规划模型
A1,A2每公斤的获利是与各自 产量无关的常数
每桶牛奶加工A1,A2的数量, 时 间是与各自产量无关的常数 A1,A2每公斤的获利是与相互 产量无关的常数 每桶牛奶加工A1,A2的数量,时 间是与相互产量无关的常数 加工A1,A2的牛奶桶数是实数
可 加 性
连续性
模型求解
x1 x2 50
20桶牛奶生产A1, 30桶生产A2,利润3360元。
结果解释
Global optimal solution found. Objective value: 3360.000 Total solver iterations: 2 Variable Value Reduced Cost X1 20.00000 0.000000 X2 30.00000 0.000000 Row Slack or Surplus Dual Price 1 3360.000 1.000000 原料无剩余 MILK 0.000000 48.00000 三 TIME 0.000000 2.000000 时间无剩余 种 CPCT 40.00000 0.000000 加工能力剩余40
数学模型 姜启源
r是x的减函数
假设 r(x)rsx (r,s0) r~固有增长率(x很小时)
xm~人口容量(资源、环境能容纳的最大数量)
r(xm) 0
s r xm
r(x) r(1 x ) xm
《数学模型》 姜启源 主编
第一章 建立数学模型
阻滞增长模型(Logistic模型)
dx rx dt
dx/dt
dxr(x)xrx(1 x)
《数学模型》 姜启源 主编
第一章 建立数学模型
从现实对象到数学模型
我们常见的模型
玩具、照片、飞机、火箭模型… … ~ 实物模型
水箱中的舰艇、风洞中的飞机… … ~ 物理模型
地图、电路图、分子结构图… … ~ 符号模型
模型是为了一定目的,对客观事物的一部分 进行简缩、抽象、提炼出来的原型的替代物
模型集中反映了原型中人们需要的那一部分特征
•测试分析 将对象看作“黑箱”,通过对量测数据的 统计分析,找出与数据拟合最好的模型
•二者结合 用机理分析建立模型结构, 用测试分析确定模型参数
机理分析没有统一的方法,主要通过实例研究 (Case Studies)来学习。以下建模主要指机理分析。
《数学模型》 姜启源 主编
第一章 建立数学模型
数学建模的一般步骤
《数学模型》 姜启源 主编
周次
节次
1 五 5-6
2 五 5-6
3 五 5-6 4 五 5-6 5 五 5-6 6 五 5-6
7 五 5-6 8 五 5-6
数学模型
教学进度
教学内容
1.1-1.5数学模型的介绍 1.6数学模型的基本方法步骤、特点
和分类
2.1公平的席位分配(讨论课) 2.2录像机计数器的用途 2.3双层玻璃的功效
数学模型第四版课后答案姜启源版
数学模型第四版课后答案姜启源版The document was finally revised on 2021《数学模型》作业答案第二章(1)(2012年12月21日)1.学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法;(3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较. 解:先考虑N=10的分配方案,,432 ,333 ,235321===p p p ∑==31.1000i i p方法一(按比例分配),35.23111==∑=i ipNp q ,33.33122==∑=i ipNp q 32.43133==∑=i ipNp q分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法)9个席位的分配结果(可用按比例分配)为:4 ,3 ,2321===n n n第10个席位:计算Q 值为,17.92043223521=⨯=Q ,75.92404333322=⨯=Q 2.93315443223=⨯=Q3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n方法三(d ’Hondt 方法)此方法的分配结果为:5 ,3 ,2321===n n n此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍).i i n p 是每席位代表的人数,取,,2,1 =i n 从而得到的ii n p中选较大者,可使对所有的,i iin p 尽量接近. 再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2.试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型.解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本.考虑t 到t t ∆+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得 ⎰⎰+=ntdn wkn r k vdt 0)(2π)22 2n wk k(r n πvt +=∴ .2 22n vk w n v rk t ππ+=∴《数学模型》作业解答第三章1(2008年10月14日)1. 在节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解:设购买单位重量货物的费用为k ,其它假设及符号约定同课本.01 对于不允许缺货模型,每天平均费用为:kr rTc T c T C ++=2)(212221r c Tc dT dC+-= 令0=dTdC, 解得 rc c T 21*2= 由rT Q = , 得212c rc rT Q ==** 与不考虑购货费的结果比较,T、Q的最优结果没有变.02 对于允许缺货模型,每天平均费用为:⎥⎦⎤⎢⎣⎡+-++=kQ Q rT r c r Q c c T Q T C 23221)(221),(2223322221222T kQ rT Q c r c rT Q c T c T C--+--=∂∂Tk rT Q c c rT Qc Q C ++-=∂∂332 令⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00Q C TC, 得到驻点:⎪⎪⎩⎪⎪⎨⎧+-+-+=-+=**323222233232132233221)(22c c krc c c r k c c c c c r c Q c c k c c c rc c T与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期,讨论r k >>和r k ≈的情况. 解:由题意可得贮存量)(t g 的图形如下:贮存费为 ∑⎰=→∆⋅-==∆ni Ti i t TT r k c dt t g c t g c 1022022)()()(limξ 又 )()(00T T r T r k -=- ∴ T k r T =0 , ∴ 贮存费变为 kTT r k r c 2)(2⋅-=于是不允许缺货的情况下,生产销售的总费用(单位时间内)为kTr k r c T c kT T r k r c T c T C 2)(2)()(21221-+=-+=k r k r c Tc dT dC 2)(221-+-=. 0=dT dC令, 得)(221r k r c k c T -=* 易得函数处在*T T C )(取得最小值,即最优周期为: )(221r k r c kc T -=*rc c ,T r k 212≈>>*时当 . 相当于不考虑生产的情况. ∞→≈*,Tr k 时当 . 此时产量与销量相抵消,无法形成贮存量.第三章2(2008年10月16日)3.在节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1)(+=b kb λ, 分母∞→→+λ时是防止中的011b b 而加的.总费用函数()x c b kx b x t c b kx b t c t c x C 3122121211)1()(2)1(2+--++--++=βββββββ最优解为 []k b k c b b b c kbc x ββ)1(2)1()1(223221+++++=5.在考虑最优价格问题时设销售期为T ,由于商品的损耗,成本q 随时间增长,设t q t q β+=0)(,为增长率β.又设单位时间的销售量为)(为价格p bp a x -=.今将销售期分为T t T T t <<<<220和两段,每段的价格固定,记作21,p p .求21,p p 的最优值,使销售期内的总利润最大.如果要求销售期T 内的总售量为0Q ,再求21,p p 的最优值. 解:按分段价格,单位时间内的销售量为⎪⎩⎪⎨⎧<<-<<-=T t T bp a T t bp a x 2,20,21又 t q t q β+=0)(.于是总利润为[][]⎰⎰--+--=22221121)()()()(),(T TT dt bp a t q p dt bp a t q p p p=22)(022)(20222011T Tt t q t p bp a T t t q t p bp a ⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---ββ=)8322)(()822)((20222011T t q T p bp a T T q T p bp a ββ---+--- )(2)822(12011bp a T T T q T p b p -+---=∂∂β )(2)8322(22022bp a TT t q T p b p -+---=∂∂β 0,021=∂∂=∂∂p p 令, 得到最优价格为: ⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡++=)43(21)4(210201T q b a b p T q b a b p ββ在销售期T 内的总销量为⎰⎰+-=-+-=20221210)(2)()(T TT p p bTaT dt bp a dt bp a Q 于是得到如下极值问题:)8322)(()822)((),(m ax 2022201121T t q T p bp a T T q T p bp a p p ββ---+---=t s . 021)(2Q p p bTaT =+-利用拉格朗日乘数法,解得:⎪⎩⎪⎨⎧+-=--=880201TbT Q b a p T bT Q b a p ββ 即为21,p p 的最优值.第三章3(2008年10月21日)6. 某厂每天需要角钢100吨,不允许缺货.目前每30天定购一次,每次定购的费用为2500元.每天每吨角钢的贮存费为元.假设当贮存量降到零时订货立即到达.问是否应改变订货策略改变后能节约多少费用解:已知:每天角钢的需要量r=100(吨);每次订货费1c =2500(元); 每天每吨角钢的贮存费2c =(元).又现在的订货周期T 0=30(天) 根据不允许缺货的贮存模型:kr rT c T c T C ++=2121)( 得:k T TT C 10092500)(++=925002+-=TdT dC令0=dT dC, 解得:35092500*==T 由实际意义知:当350*=T (即订货周期为350)时,总费用将最小. 又k T C 10035095025003)(*+⨯+⨯==300+100kk T C 100309302500)(0+⨯+==353.33+100k)(0T C -)(*T C =(+100k )-(300+100k )32=53.33.故应改变订货策略.改变后的订货策略(周期)为T *=350,能节约费用约53.33元.《数学模型》作业解答第四章(2008年10月28日)1. 某厂生产甲、乙两种产品,一件甲产品用A 原料1千克, B 原料5千克;一件乙产品用A 原料2千克, B 原料4千克.现有A 原料20千克, B 原料70千克.甲、乙产品每件售价分别为20元和30元.问如何安排生产使收入最大?2.解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S 则此问题的数学模型为: max S=20x+30y. ⎪⎩⎪⎨⎧∈≥≤+≤+Z y x y x y x y x ,,0,7045202这是一个整线性规划问题,现用图解法进行求解 可行域为:由直线1l :x+2y=20, 2l :5x+4y =702l以及x=0,y=0组成的凸四边形区域直线l :20x+30y=c 在可行域内 l平行移动.易知:当l 过1l 与2l 的交点时,S 取最大值.由⎩⎨⎧=+=+7045202y x y x 解得⎩⎨⎧==510y x此时 m ax S =2053010⨯+⨯=350(元)2. 某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表: 已知这两种货物托运所受限制是体积不超过24立方米,重量不超过13百斤.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润. 解:设甲货物、乙货物的托运箱数分别为1x ,2x ,所获利润为z .则问题的数学模型可表示为211020 m ax x x z +=⎪⎩⎪⎨⎧∈≥≤+≤+Z y x x x x x x x st ,,0,13522445212121这是一个整线性规划问题. 用图解法求解. 可行域为:由直线2445:211=+x x l1352:212=+x x l 及0,021==x x 组成直线 c x x l =+211020:在此凸四边形区域内平行移动.易知:当l 过l 1与l 2的交点时,z 取最大值由⎩⎨⎧=+=+135224452121x x x x 解得 ⎩⎨⎧==1421x x90110420max =⨯+⨯=z .3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉.已知每台甲型、乙型微波炉的销售利润分别为3和2个单位.而生产一台甲型、乙型微波炉所耗原料分别为2和3个单位,所需工时分别为4和2个单位.若允许使用原料为100个单位,工时为120个单位,且甲型、乙型微波炉产量分别不低于6台和12台.试建立一个数学模型,确定生产甲型、乙型微波炉的台数,使获利润最大.并求出最大利润.解:设安排生产甲型微波炉x 件,乙型微波炉y 件,相应的利润为S. 则此问题的数学模型为: max S=3x +2y. ⎪⎩⎪⎨⎧∈≥≥≤+≤+Z y x y x y x y x ,,12,612024100322ll1x1l2x这是一个整线性规划问题 用图解法进行求解可行域为:由直线1l :2x+3y=100, 2l :4x+2y =120 及x=6,y=12组成的凸四边形区域.直线l :3x+2y=c 在此凸四边形区域内平行移动. 易知:当l 过1l 与2l 的交点时, S 取最大值.由⎩⎨⎧=+=+1202410032y x y x 解得⎩⎨⎧==2020y x .m ax S =320220⨯+⨯=100.《数学模型》作业解答第五章1(2008年11月12日)1.对于节传染病的SIR 模型,证明: (1)若处最大先增加,在则σσ1)(,10=s t i s ,然后减少并趋于零;)(t s 单调减少至.∞s (2).)()(,10∞s t s t i s 单调减少至单调减少并趋于零,则若σ解:传染病的SIR 模型(14)可写成⎪⎩⎪⎨⎧-=-=i s dtds s i dt diλσμ)1(.)(lim 0.(t) .)( .0,t 存在而单调减少知由∞∞→=∴≥-=s t s s t s dtdsi s dt ds λ.)(∞s t s 单调减少至故(1).s s(t) .s(t) .100≤∴单调减少由若σs;)(,0 .01,10单调增加时当t i dtdis s s ∴-σσ.)(,0 .01,1单调减少时当t i dtdis s ∴-σσ.0)(lim .0)18(t ==∞→∞t i i 即式知又由书上.)( .0,1m i t i dtdis 达到最大值时当∴==σ(2)().0 0.1-s ,1,10 dt dit s s σσσ从而则若()().0.0lim ==∴∞∞→i t i t i t 即单调减少且4.在节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A ab ab b aA E ±=∴=-==-1,22 .0λλλλλ ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而 (1) ()().231000202011y a b y a bx ay akt y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x ey x t x )得由(注意到000020022,1x y y x e y x t ab -+==得. .43ln ,3121bt e t ab =∴=∴(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxray dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.02k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即第五章2(2008年11月14日)6. 模仿节建立的二室模型来建立一室模型(只有中心室),在快速静脉注射、恒速静脉滴注(持续时间为τ度,并画出血药浓度曲线的图形.解: 设给药速率为()(),,0t x t f 中心室药量为()()()()().,,0/t VC t x t f t kx t x k ==+则排除速率为常数(1)快速静脉注射: 设给药量为,0D 则()()().,0,0000t k e VDt C V D C t f -===解得(2)恒速静脉滴注(持续时间为τ): 设滴注速率为()(),00,000==C k t f k ,则解得()()()()⎪⎩⎪⎨⎧-≤≤-=----τττ t e e Vkk t e Vkk t C t k kt kt,10 ,10(3) 口服或肌肉注射: ()(),解得)式节(见134.5010010t k e D k t f -=()()()⎪⎪⎩⎪⎪⎨⎧=≠--=---010101001 ,,01k k te V kD k k e e k k V D k t C kt t k kt3种情况下的血药浓度曲线如下:第五章3(2008年11月18日)8. 在节香烟过滤嘴模型中,(1) 设3.0,/50,08.0,02.0,20,80,80021=======a s mm b mm l mm l mg M νβ求./21Q Q Q 和(2) 若有一支不带过滤嘴的香烟,参数同上,比较全部吸完和只吸到1l 处的情况下,进入人体毒物量的区别.解)(857563.229102.07.050103.01508002.07.0502008.0/01/2毫克≈⎪⎪⎭⎫ ⎝⎛-⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=⨯⨯-⨯---e e e e ba vaw Q v bl a vl β ()10/10==l M w 其中,()()97628571.0502002.008.0212===⨯----ee Q Q vl b β(2) 对于一支不带过滤嘴的香烟,全部吸完的毒物量为⎪⎪⎭⎫⎝⎛-=-vbl a e b a v aw Q '103‘ 只吸到1l 处就扔掉的情况下的毒物量为⎪⎪⎭⎫ ⎝⎛-=--vbl a v blee b a v aw Q 1'21'04 .256531719.1110096.0032.0012.004.0508002.03.0508002.05010002.03.05010002.043111'1'≈--=--=--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⨯⨯⨯⨯⨯⨯--e e e e e e e e e e e e e e e e Q Q v abl v bl v abl v bl v bl a v bl v bl a vbl 44.235,84.29543≈≈ QQ4.在节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a A ab ab b aA E ±=∴=-==-1,22 .0λλλλλ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab tab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay ak t y t x =-=-===时,当 即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x ey x t x )得由(注意到000020022,1x y y x e y x t ab -+==得. .43ln ,3121bt e t ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxray dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.02k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即《数学模型》作业解答第六章(2008年11月20日)1.在节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为h N xrx dt t dx --=)1()( 记h Nxrx x F --=)1()( (1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--h Nxrx . 即()102=+-h rx x Nr )4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=①当4/rN h >,0<∆,(1)无实根,此时无平衡点; ②当4/rN h =,0=∆,(1)有两个相等的实根,平衡点为20N x =. Nrxr N rx N x r x F 2)1()('-=--=,0)(0'=x F 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rNN x rx x F --= ,即0 dtdx .∴0x 不稳定; ③当4/rN h <,0>∆时,得到两个平衡点:2411N rNhN x --=, 2412N rNh N x -+=易知:21N x <, 22Nx > ,0)(1'>x F ,0)(2'<x F ∴平衡点1x 不稳定,平衡点2x 稳定.(2)最大持续产量的数学模型为⎩⎨⎧=0)(..max x F t s h 即 )1(max Nxrx h -=,易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定.这是与节的产量模型不同之处.要获得最大持续产量,应使渔场鱼量2N x >,且尽量接近2N,但不能等于2N. 2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:()xNrx t x ln'=.其中r 和N 的意义与Logistic 模型相同. 设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x .解:()t x 变化规律的数学模型为()Ex xNrx dt t dx -=ln 记 Ex xNrx x F -=ln)( ① 令()0=x F ,得0ln =-Ex xNrx ∴r ENe x -=0,01=x .∴平衡点为1,0x x . 又 ()E r xNr x F --=ln',()()∞=<-=1'0',0x F r x F . ∴ 平衡点o x 是稳定的,而平衡点1x 不稳定.Ex()x fxN rx ln e rN②最大持续产量的数学模型为:⎪⎩⎪⎨⎧≠=-=.0,0ln ..max x Ex x N rx t s Ex h 由前面的结果可得 rE ENeh -=r Er Ee r EN Ne dE dh ---=,令.0=dEdh得最大产量的捕捞强度r E m =.从而得到最大持续产量e rN h m /=,此时渔场鱼量水平eNx =*0. 3.设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规律为:)1()(Nxrx dt t dx -= 其中r 为固有增长率,`N 为环境容许的最大鱼量. 而单位时间捕捞量为常数h . 10.求渔场鱼量的平衡点,并讨论其稳定性;20.试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m Q ,求此时渔场鱼量水平*0x .解:10.)(t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h N x rx x f --=)1()(,令 0)1(=--h N x rx ,即 02=+-h rx x Nr----(1))4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=① 当0 ∆时,(1)无实根,此时无平衡点; ② 当0=∆时,(1)有两个相等的实根,平衡点为20N x =. Nrxr N rx N x r x f 2)1()('-=--= ,0)(0'=x f 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rN N x rx x f --= ,即0 dt dx∴0x 不稳定;③ 当0 ∆时,得到两个平衡点:2411rNhN N x --=, 2412rNh N N x -+=易知 21N x, 22Nx ∴0)('1 x f , 0)('2 x f ∴平衡点1x 不稳定 ,平衡点2x 稳定.20.最大持续产量的数学模型为: ⎩⎨⎧=0)(..max x f t s h即 )1(max Nx rx h -=, 易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定.要获得最大持续产量,应使渔场鱼量2N x ,且尽量接近2N ,但不能等于2N.《数学模型》第七章作业(2008年12月4日)1.对于节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与节的结果进行比较.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.《数学模型》作业解答第七章(2008年12月4日)2.对于节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与节的结果进行比较. (2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和1-k y 确定.试分析稳定平衡的条件是否还会放宽.解:(1)由题设条件可得需求函数、供应函数分别为:⎪⎩⎪⎨⎧=+=+++)()2(111k k k k k y h x x x f y 在),(000y x P 点附近用直线来近似曲线h f ,,得到⎪⎩⎪⎨⎧>-=->-+-=-+++)2( 0, )()1( 0),2(0010101 ββααy y x x x x x y y k k k k k 由(2)得 )3( )(0102 y y x x k k -=-++β (1)代入(3)得 )2(0102x x x x x kk k -+-=-++αβ 0012222 x x x x x k k k αβαβαβ+=++∴++对应齐次方程的特征方程为 02 2=++αβαβλλ 特征根为48)(22,1αβαβαβλ-±-=当8≥αβ时,则有特征根在单位圆外,设8<αβ,则 248)()4(2222,1αβαβαβαβλ=+-+= 2 12,1<⇔<∴αβλ即平衡稳定的条件为2 <αβ与207P 的结果一致.(2)此时需求函数、供应函数在),(000y x P 处附近的直线近似表达式分别为:⎪⎩⎪⎨⎧>-+=->-+-=--+++)5( 0 , )2()4( 0),2(01010101ββααy y y x x x x x y y k k k k k k 由(5)得,)( ) y y y β(y )x (x k k k 62010203 -+-=-+++ 将(4)代入(6),得⎥⎦⎤⎢⎣⎡-+--+-=-++++)2()2()(20101203x x x x x x x x k k k k k ααβ001234424 x x x x x x k k k k αβαβαβαβ+=+++∴+++对应齐次方程的特征方程为(7) 024 23 =+++αβαβλαβλλ代数方程(7)无正实根,且42 ,αβαβ---, αβ不是(7)的根.设(7)的三个非零根分别为321,,λλλ,则⎪⎪⎪⎩⎪⎪⎪⎨⎧-==++-=++424321133221321αβλλλαβλλλλλλαβλλλ 对(7)作变换:,12αβμλ-= 则,03=++q p μμ其中 )6128(41 ),122(412233322αββαβαβααβ+-=-=q p 用卡丹公式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+--+++-=+--+++-=+--+++-=33233223332233223323321)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2p q q w p q q w p q q w p q q w p q q p q qμμμ 其中,231i w +-=求出321,,μμμ,从而得到321,,λλλ,于是得到所有特征根1<λ的条件. 2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件. 解:已知商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x . 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)(00 ααx x y y k k --=- ----------------------(1)0,)2(0101 ββy y y x x k k k -+=--+ --------------------(2) 从上述两式中消去k y 可得,2,1,)1(22012=+=++++k x x x x k k k αβαβαβ, -----------(3)上述(3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程.为了寻求0P 点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ 8时,显然有448)(22αβαβαβαβλ----= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+. 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)2(0101 ααx x x y y kk k -+-=-++ --------------------(1) 0,)(001 ββy y x x k k -=-+ --- ----------------(2)由(2)得 )(0102y y x x k k -=-++β --------------------(3) (1)代入(3),可得)2(0102x x x x x kk k -+-=-++αβ ∴ ,2,1,2220012=+=++++k x x x x x k k k αβαβαβ, --------------(4) 上述(4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程.为了寻求0P 点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ≥8时,显然有448)(22αβαβαβαβλ-≤---= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.《数学模型》作业解答第八章(2008年12月9日)1.证明节层次分析模型中定义的n 阶一致阵A 有下列性质: (1) A 的秩为1,唯一非零特征根为n ; (2) A 的任一列向量都是对应于n 的特征向量. 证明: (1)由一致阵的定义知:A 满足ik jk ij a a a =⋅,n k j i ,,2,1,, =于是对于任意两列j i ,,有ij jkika a a =,()n k ,,2,1 =.即i 列与j 列对应分量成比例.从而对A 作初等行变换可得:∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−→−00000011211 n b b b A 初等行变换B 这里0≠B .()1=∴B 秩,从而秩()1=A再根据初等行变换与初等矩阵的关系知:存在一个可逆阵P ,使B PA =,于是∆⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==--0000001121111 n c c c BP PAP C易知C 的特征根为0,,0,11 c (只有一个非零特征根).又A ~C ,A ∴与C 有相同的特征根,从而A 的非零特征根为11c ,又 对于任意矩阵有()n a a a A Tr nn n =+++=+++==+++111221121 λλλ.故A 的唯一非零特征根为n .(2)对于A 的任一列向量()Tnk k k a a a ,,,21 ,()n k ,,2,1 =有()()T nk k k nk k k n j nkn j k n j k n j jk nj n j jk j n j jk j Tnk k k a a a n na na na a a a a a a a a a a a a A ,,,,,,2121112111121121 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=∑∑∑∑∑∑======A ∴的任一列向量()Tnk k k a a a ,,,21 都是对应于n 的特征向量.7. 右下图是5位网球选手循环赛的结果,作为竞赛图,它是双向连通的吗?找出几条完全路径,用适当方法排出5位选手的名次. 解:这个5阶竞赛图是一个5阶有向Hamilton 图.其一个有向Hamilton 圈为332541→→→→→.所以此竞赛图是双向连通的.32154→→→→13542→→→→42135→→→→ →→→41325→ 等都是完全路径.此竞赛图的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0011110100000010110001010A令()Te 1,1,1,1,1=,各级得分向量为()()T Ae S 3,2,1,2,21==, ()()()TAS S 5,4,2,3,412==, ()()()T AS S 9,7,4,6,723== , ()()()TAS S 17,13,7,11,1334== 由此得名次为5,1(4),2,3 (选手1和4名次相同).注:给5位网球选手排名次也可由计算A 的最大特征根λ和对应特征向量S 得到:8393.1=λ,()T S 2769.0,2137.0,1162.0,1794.0,2137.0=数学模型作业(12月16日)解答1.基于省时、收入、岸间商业、当地商业、建筑就业等五项因素,拟用层次分析法在建桥梁、修隧道、设渡轮这三个方案中选一个,画出目标为“越海方案的最优经济效益”的层次结构图.解:目标层准则层方案层2.简述层次分析法的基本步骤. 问对于一个即将毕业的大学生选择工作岗位的决策问题要分成哪3个层次具体内容分别是什么答:层次分析法的基本步骤为:(1).建立层次结构模型;(2).构造成对比较阵;(3).计算权向量并做一致性检验;(4).计算组合权向量并做组合一致性检验. 对于一个即将毕业的大学生选择工作岗位的决策问题,用层次分析法一般可分解为目标层、准则层和方案层这3个层次. 目标层是选择工作岗位,方案层是工作岗位1、工作岗位2、工作岗位3等,准则层一般为贡献、收入、发展、声誉、关系、位置等.3.用层次分析法时,一般可将决策问题分解成哪3个层次?试给出一致性指标的定义以及n 阶正负反阵A 为一致阵的充要条件.答:用层次分析法时,一般可将决策问题分解为目标层、准则层和方案层这3个层次; 一致性指标的定义为:1--=n nCI λ.n 阶正互反阵A 是一致阵的充要条件为:A 的最大特征根λ=n .第九章(2008年12月18日)1.在1.9节传送带效率模型中,设工人数n 固定不变.若想提高传送带效率D,一种简单的方法是增加一个周期内通过工作台的钩子数m ,比如增加一倍,其它条件不变.另一种方法是在原来放置一只钩子的地方放置两只钩子,其它条件不变,于是每个工人在任何时刻可以同时触到两只钩子,只要其中一只是空的,他就可以挂上产品,这种办法用的钩子数量与第一种办法一样.试推导这种情况下传送带效率的公式,从数量关系上说明这种办法比第一种办法好. 解:两种情况的钩子数均为m 2.第一种办法是m 2个位置,单钩放置m 2个钩子;第二种办法是m 个位置,成对放置m 2个钩子.① 由1.9节的传送带效率公式,第一种办法的效率公式为⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=n m n m D 21112 当mn 2较小,1 n 时,有 ()m n m n n m n m D 41181211122--=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+--≈ E D -=1 , m n E 4≈② 下面推导第二种办法的传送带效率公式:对于m 个位置,每个位置放置的两只钩子称为一个钩对,考虑一个周期内通过的m 个钩对.任一只钩对被一名工人接触到的概率是m1; 任一只钩对不被一名工人接触到的概率是m11-; 记m q m p 11,1-==.由工人生产的独立性及事件的互不相容性.得,任一钩对为空的概率为n q ,其空钩的数为m 2;任一钩对上只挂上1件产品的概率为1-n npq ,其空钩数为m .所以一个周期内通过的m 2个钩子中,空钩的平均数为()1122--+=⋅+⋅n n n n npq q m npq m q m于是带走产品的平均数是 ()122-+-n n npq q m m ,未带走产品的平均数是 ()()122-+--n n npq q m m n )∴此时传送带效率公式为()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--=+-=--1111112222'n n n n m m n m n m n npq q m m D ③ 近似效率公式:由于 ()()()321621121111m n n n m n n m n m n----+-≈⎪⎭⎫ ⎝⎛- ()()2112211111m n n m n m n --+--≈⎪⎭⎫ ⎝⎛-- ∴ ()()26211'm n n D ---≈ 当1 n 时,并令'1'D E -=,则 226'm n E ≈ ④ 两种办法的比较:由上知:mn E 4≈,226'm n E ≈ ∴ mn E E 32/'=,当n m 时,132 m n , ∴ E E '. 所以第二种办法比第一种办法好.《数学模型》作业解答第九章(2008年12月23日)一报童每天从邮局订购一种报纸,沿街叫卖.已知每100份报纸报童全部卖出可获利7元.如果当天卖不掉,第二天削价可以全部卖出,但报童每100份报纸要赔4元.报童每天售出的报纸数r 是一随机变量,其概率分布如下表:试问报童每天订购多少份报纸最佳(订购量必须是100的倍数)解:设每天订购n 百份纸,则收益函数为⎩⎨⎧≤--+=n r n n r r n r r f 7))(4(7)(收益的期望值为G(n) = ∑=-n r r P n r 0)()411(+∑∞+=1)(7n r r P n现分别求出 n =5,4,3,2,1,0时的收益期望值.G(0)=0;G(1)=4-×+7×+7×(+++)=;G(2)= (05.08⨯-25.0141.03⨯+⨯+))1.015.035.0(14++⨯+8.11=;G(3)=(05.012⨯-35.02125.0101.01⨯+⨯+⨯-))1.015.0(21+⨯+4.14= G(4)=(05.016⨯-15.02835.01725.061.05⨯+⨯+⨯+⨯-)1.028⨯+15.13= G(5)=05.020⨯-1.03515.02435.01325.021.09⨯+⨯+⨯+⨯+⨯- 25.10= 当报童每天订300份时,收益的期望值最大.数模复习资料第一章1. 原型与模型原型就是实际对象.模型就是原型的替代物.所谓模型, 按北京师范大学刘来福教授的观点:模型就是人们为一定的目的对原型进行的一个抽象.如航空模型、城市交通模型等.模型⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧数学模型如地图、电路图符号模型如某一操作思维模型抽象模型如某一试验装置物理模型如玩具、照片等直观模型形象模型 2. 数学模型 对某一实际问题应用数学语言和方法,通过抽象、简化、假设等对这一实际问题近似刻划所得的数学结构,称为此实际问题的一个数学模型. 例如力学中着名的牛顿第二定律使用公式22dt x d m F =来描述受力物体的运动规律就是一个成功的数学模型.或又如描述人口()t N随时间t 自由增长过程的微分方程()()t rN dtt dN =. 3. 数学建模所谓数学建模是指根据需要针对实际问题组建数学模型的过程.更具体地说,数学建模是指对于现实世界的某一特定系统或特定问题,为了一个特定的目的,运用数学的语言和方法,通过抽象和简化,建立一个近似描述这个系统或问题的数学结构(数学模型),运用适当的数学工具以及计算机技术来解模型,最后将其结果接受实际的检验,并反复修改和完善.数学建模过程流程图为:4.数学建模的步骤依次为:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用5.数学模型的分类数学模型可以按照不同的方式分类,常见的有:a. 按模型的应用领域分类 数学模型 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧再生资源利用模型水资源模型城镇规划模型生态模型环境模型(污染模型)交通模型人口模型b. 按建模的数学方法分类数学模型 ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧规划论模型概率模型组合数学模型图论模型微分方程模型几何模型初等数学模型c. 按建模目的来分类 数学模型 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧控制模型决策模型优化模型预报模型分析模型描述模型 d.层次分析法的基本步骤:1.建立层次结构模型2.构造成对比较阵3.计算权向量并作一致性检验4.计算组合权向量并作组合一致性检验阶正互反正A 是一致阵的充要条件为A 的最大特征值为nf.正互反阵最大特征根和特征向量的实用算法:幂法、和法、根法4.在“椅子摆放问题”的假设条件中,将四脚的连线呈正方形改为呈长方形,其余条件不变.试构造模型并求解.解:设椅子四脚连线呈长方形ABCD. AB 与CD 的对称轴为x 轴,用中心点的转角θ表示椅子的位置.将相邻两脚A 、B 与地面距离之和记为)(θf ;C 、D 与地面距离之和记为)(θg .并旋转0180.于是,设,0)0(,0)0(=g f 就得到()()0,0=ππf g .数学模型:设()()θθg f 、是[]π2,0上θ的非负连续函数.若[]πθ2,0∈∀,有()()0=θθg f ,且()()()()0,0,00,00==ππf g f g ,则[]πθ2,00∈∃,使()()000==θθg f .。
第四版运筹学部分课后习题解答
运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题a)12121212min z=23466 ..424,0x xx xs t x xx x++≥⎧⎪+≥⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为最优解,即该问题有无穷多最优解,这时的最优值为min 3z=23032⨯+⨯=P47 1.3 用图解法和单纯形法求解线性规划问题a)12121212max z=10x5x349 ..528,0x xs t x xx x++≤⎧⎪+≤⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点,即112122134935282xx xx x x=⎧+=⎧⎪⇒⎨⎨+==⎩⎪⎩,即最优解为*31,2Tx⎛⎫= ⎪⎝⎭这时的最优值为max335z=101522⨯+⨯=单纯形法: 原问题化成标准型为121231241234max z=10x 5x 349..528,,,0x x x s t x x x x x x x +++=⎧⎪++=⎨⎪≥⎩ j c →105B CB Xb 1x2x3x4x0 3x 9 3 4 1 0 04x8[5] 2 0 1 j j C Z -105 0 0 0 3x 21/5 0 [14/5] 1 -3/5 101x8/51 2/5 0 1/5 j j C Z -1 0 -2 5 2x 3/2 0 1 5/14 -3/14 101x11 0 -1/72/7j j C Z --5/14 -25/14所以有*max 33351,,1015222Tx z ⎛⎫==⨯+⨯= ⎪⎝⎭P78 2.4 已知线性规划问题:1234124122341231234max24382669,,,0z x x x x x x x x x x x x x x x x x x x =+++++≤⎧⎪+≤⎪⎪++≤⎨⎪++≤⎪≥⎪⎩求: (1) 写出其对偶问题;(2)已知原问题最优解为)0,4,2,2(*=X ,试根据对偶理论,直接求出对偶问题的最优解。
姜启源编数学模型第四版
一般模型 x(t) ~甲方兵力,y(t) ~乙方兵力
模型 假设
• 每方战斗减员率取决于双方的兵力和战斗力. • 每方非战斗减员率与本方兵力成正比. • 甲乙双方的增援率为u(t), v(t).
x(t) f (x, y) x u(t), 0
tm~传染病高潮到来时刻
tm
1
ln
1 i0
1
t i 1 ?
(日接触率) tm
病人可以治愈!
第6页/共76页
模型3
传染病无免疫性——病人治愈成 为健康人,健康人可再次被感染. SIS 模型
增加假设 3)病人每天治愈的比例为 ~日治愈率
建模 N[i(t t) i(t)] Ns(t)i(t)t Ni(t)t
di
dt
i(1 i)
i
i[i (1 1 )]
i(0) i0
/
~ 日接触率 1/ ~感染期
~ 一个感染期内每个病人的
有效接触人数,称为接触数.
第7页/共76页
模型3
di/dt
di i[i (1 1 )]
dt
接触数 (感染期内每个
病人的有效接触人数)
i
i
>1
i0
>1
1
1-1/
接触率
N[i(t t) i(t)] [s(t)]Ni(t)t
di si
dt
s(t) i(t) 1
di
i(1 i)
dt
i(0) i0
第5页/共76页
模型2
i
di
i(1 i)
dt
i(0) i0
Logistic 模型
1
i(t)
数学模型课后答案姜启源
数学模型课后答案姜启源【篇一:姜启源《数模》习题选解】方案模型构成:以阈值0,1分别标记“不在”和“在”,记第k次渡河前此岸的人阈值为xk,猫阈值为yk,鸡阈值为zk,米阈值为wk,将四维向量sk=(xk,yk,zk,wk)定义为状态,xk,yk,zk,wk=0,1。
安全渡河条件下的状态集合为允许状态集合,记作s。
以穷举法得到s:s={(1,1,1,1),(1,1,1,0),(1,1,0,1),(1,0,1,1),(1,0,1,0),(0,1,0,1),(0,0,1,0),( 0,1,0,0),(0,0,0,1),(0,0,0,0)} 记第k次渡船上四个对象(人、猫、鸡、米)的阈值分别为ak,bk,ck,dk,并将四维向量ek=(ak,bk,ck,dk)定义为决策。
允许决策集合记作e={(a,b,c,d)|0≤b+c+d≤1,a=1,b,c,d=0,1}因为k为奇数时,船从此岸驶向彼岸,k为偶数时船由彼岸驶向此岸,所以,状态sk随决策ek变化的规律是sk+1=sk+(-1)kek该式称状态转移律,该问题就转换成多步决策模型:求决策∈?? ??=1,2,?,?? ,使状态∈??按照转移律,由初始状态s1=(1,1,1,1)经有限步n到达状态sn+1=(0,0,0,0)。
模型求解:本解答试尝用图解法,由于无法利用平面来表达四维坐标系,所以采取其投影即三维空间的方法来构建模型。
把人的阈值xk抽离出来,分别标记0系坐标系(即当xk=0时,(yk,zk,wk)的空间坐标),和1系坐标系,可允许状态点如下标示(红色点):由于a=1是恒成立的,所以,决策是0系坐标系和1系坐标系的点集间的连接,而非任意坐标系内部的连接。
如图1所示,两正方体中心重合,且对应顶点的连线通过中心,称为二合正方体(四维空间不具有包性,即a/b两正方体并没有包含的关系)。
二合正方体的一个顶点为(a,b),称为共顶点,即二合正方体共有8个共顶点。
(完整版)数学模型(第四版)课后详细答案
数学模型作业六道题作业一1.P56.8一垂钓俱乐部鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。
假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):先用机理分析建立模型,再用数据确定参数。
解:要求鱼的体重,我们利用质量计算公式:M=ρV。
我们假定鱼池中是同一种鱼,于是可以近似地考虑其密度是相同的。
至于鱼的体积问题,由于是同一种类,可以假定这种鱼在体型上是一致的。
我们假设鱼的体积和鱼身长的立方成正比。
即:V=k 1L 3,因此,模型为:……………………………模型一33111M V k l K L ρρ===利用Eviews 软件,用最小二乘法估计模型中的参数K 1,如下图1所示:图1从图1结果可以得到参数K 1=0.014591,所以模型为:31M 0.014591 L =上述模型存在缺陷,因为它把肥鱼和瘦鱼同等看待。
因此,有必要改进模型。
如果只假定鱼的横截面是相似的,假设横截面积与鱼身最大周长的平方成正比,即:V=k 2d 2L ,因此,模型为:身长/cm 36.831.843.836.832.145.135.932.1质量/g 76548211627374821389652454胸围/cm24.821.327.924.821.631.822.921.6t h i ng sin………………………………模型二22222M V k d K d L L ρρ===利用Eviews 软件,用最小二乘法估计模型中的参数K 2,如下图2所示:图2从图2可以得到参数K 2=0. 032248,所以模型为:22M 0.032248d L=将实际数据与模型结果比较如表1所示:表1实际数据M 76548211627374821389652454模型一M 1727.165469.2141226.061727.165482.6291338.502675.108482.619模型二M 2729.877465.2481099.465729.877482.9601470.719607.106483.9602.P131.2 一家出版社准备在某市建立两个销售代理点,向7个区的大学生售书,每个区的大学生数量(单位:千人)已经表示在图上。
数学模型(第四版)课后详细答案
数学模型作业六道题 作业一1.P56.8一垂钓俱乐部鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。
假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 解:要求鱼的体重,我们利用质量计算公式:M=ρV 。
我们假定鱼池中是同一种鱼,于是可以近似地考虑其密度是相同的。
至于鱼的体积问题,由于是同一种类,可以假定这种鱼在体型上是一致的。
我们假设鱼的体积和鱼身长的立方成正比。
即:V=k 1L 3,因此,模型为:33111M V k l K L ρρ===……………………………模型一 利用Eviews 软件,用最小二乘法估计模型中的参数K 1,如下图1所示:图1从图1结果可以得到参数K 1=0.014591,所以模型为:31M 0.014591 L =上述模型存在缺陷,因为它把肥鱼和瘦鱼同等看待。
因此,有必要改进模型。
如果只假定鱼的横截面是相似的,假设横截面积与鱼身最大周长的平方成正比,即:V=k 2d 2L ,因此,模型为:身长/cm36.8 31.8 43.8 36.8 32.1 45.1 35.9 32.1 质量/g765 482 1162 737 482 1389 652 454 胸围/cm24.8 21.3 27.9 24.8 21.6 31.8 22.9 21.622222M V k d K d L L ρρ===………………………………模型二利用Eviews 软件,用最小二乘法估计模型中的参数K 2,如下图2所示:图2从图2可以得到参数K 2=0. 032248,所以模型为:22M 0.032248d L=将实际数据与模型结果比较如表1所示:表1实际数据M765 482 1162 737 482 1389 652 454模型一M 1 727.165 469.214 1226.061 727.165 482.629 1338.502 675.108 482.619 模型二M 2 729.877 465.248 1099.465 729.877 482.960 1470.719 607.106 483.9602.P131.2 一家出版社准备在某市建立两个销售代理点,向7个区的大学生售书,每个区的大学生数量(单位:千人)已经表示在图上。
数学模型第四版课后规范标准答案姜启源版
.
再由初始条件,得
又由
其解为
(1)
即乙方取胜时的剩余兵力数为
又令
注意到 .
(2) 若甲方在战斗开始后有后备部队以不变的速率 增援.则
相轨线为
此相轨线比书图11中的轨线上移了 乙方取胜的条件为
《数学模型》作业解答
第六章(2008年11月20日)
1.在6.1节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic规律,而单位时间捕捞量为常数h.
S取最大值.
由 解得
此时 =20 =350(元)
2.某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:
货物
体积
(立方米/箱)
重量
(百斤/箱)
利润
(百元/箱)
甲
5
2
20
乙
4
5
10
已知这两种货物托运所受限制是体积不超过24立方米,重量不超过13百斤.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.
A
B
C
3 2 2
3 3 3
4 5 5
4 4 3
5 5 5
6 6 7
总计
10 10 10
15 15 15
2.试用微积分方法,建立录像带记数器读数n与转过时间的数学模型.
解:设录像带记数器读数为n时,录像带转过时间为t.其模型的假设见课本.
考虑 到 时间内录像带缠绕在右轮盘上的长度,可得 两边积分,得
《数学模型》作业解答
故应改变订货策略.改变后的订货策略(周期)为T = ,能节约费用约53.33元.
《数学模型》作业解答
第四章(2008年10月28日)
数学模型第四版(姜启源)作业对于6.4节蛛网模型讨论下列问题:
对于6.4节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第k+1时段的价格1+k y 由第k+1和第k 时段的数量1+k x 和k x 决定。
如果设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与6.4的结果进行比较。
(2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和1-k y 决定,试分析稳定平衡的条件是否还会放宽。
解:(1)设1+k y 由1+k x 和k x 的平均值决定,即价格函数表示为:)2(11k k k x x f y +=++ 则 0),2(0101>-+-=-++ααx x x y y k k k 0),(001>-=-+ββy y x x k k消去y, 得到 012)1(22x x x x k k k +=++++αβαβαβ ,k=1,2,….该方程的特征方程为022=++αβαβλλ与6.4节中 )2(11-++=k k k y y g x 时的特征方程一样, 所以0<αβ<2, 即为0p 点的稳定条件。
(2)设 )2(11k k k x x f y +=++ )2(11-++=k k k y y g x , 则有 0),2(0101>-+-=-++ααx x x y y k k k 0),2(0101>-+=--+ββy y y x x k k k 消去y,得到 0123)1(424x x x x x k k k k +=++++++αβαβαβαβ该方程的特征方程为02423=+++αβαβλαβλλ 令λ=x ,αβ=a , 即求解三次方程0a 2ax ax 4x 23=+++ 的根在matlab 中输入以下代码求解方程的根x :syms x asolve(4*x^3+a*x^2+2*a*x+a==0,x) 解得 1x = (36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(1/3)/12 - a/12 + (a*(a - 24))/(12*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a -27))^(1/2))^(1/3));2x = -(2*a*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a -27))^(1/2))^(1/3) - 3^(1/2)*a*24*i - 3^(1/2)*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(2/3)*i - 24*a + 3^(1/2)*a^2*i +(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(2/3) + a^2)/(24*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(1/3)); 3x =-(2*a*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a -27))^(1/2))^(1/3) + 3^(1/2)*a*24*i + 3^(1/2)*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(2/3)*i - 24*a - 3^(1/2)*a^2*i + (36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(2/3) + a^2)/(24*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(1/3)); 其中1x 为实根,2x 与3x 为一对共轭虚根。
数学模型姜启源答案
数学模型姜启源答案【篇一:姜启源课后习题】xt>第1章建立数学模型1.1 在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?(稳定的椅子问题见姜启源《数学模型》第6页)1.2 在商人们安全过河问题中,若商人和随从各四人,怎样才能安全过河呢?一般地,有n名商人带n名随从过河,船每次能渡k人过河,试讨论商人们能安全过河时,n与k应满足什么关系。
(商人们安全过河问题见姜启源《数学模型》第7页)1.3 人、狗、鸡、米均要过河,船需要人划,另外至多还能载一物,而当人不在时,狗要吃鸡,鸡要吃米。
问人、狗、鸡、米怎样过河?1.4 有3对夫妻过河,船至多载两人,条件是任一女子不能在其丈夫不在的情况下与其他的男子在一起。
问怎样过河?1.5 如果银行存款年利率为5.5%,问如果要求到2010年本利积累为100000元,那么在1990年应在银行存入多少元?而到2000年的本利积累为多少元?1.6 某城市的logistic模型为dn11dt?25n?25?106n2,如果不考虑该市的流动人口的影响以及非正常死亡。
设该市1990年人口总数为8000000人,试求该市在未来的人口总数。
当t??时发生什么情况。
1.7 假设人口增长服从这样规律:时刻t的人口为x(t),最大允许人口为xm,t到t??t时间内人口数量与xm?x(t)成正比。
试建立模型并求解,作出解的图形并与指数增长模型和阻滞增长模型的结果进行比较。
1.8 一昼夜有多少时刻互换长短针后仍表示一个时间?如何求出这些时间?1.9 你在十层楼上欲乘电梯下楼,如果你想知道需要等待的时间,请问你需要有哪些信息?如果你不愿久等,则需要爬上或爬下几个楼层?1.10 居民的用水来自一个由远处水库供水的水塔,水库的水来自降雨和流入的河流。
水库的水可以通过河床的渗透和水面的蒸发流失。
如果要你建立一个数学模型来预测任何时刻水塔的水位,你需要哪些信息?第2章初等模型2.1 学校共1000名学生,235人住在a宿舍,333人住在b宿舍,432人住在c宿舍。
笔记-数学模型(第四版) 姜启源等编
dx kx 当 t 0 得微分方程: dt x(0) x0
解微分方程
dx kdt x 1 x dx kdt ln( x) kt c1 x ce kt , c x0 x x0 e kt
dm dm 由死亡率的定义可得: dr ( r , t ), (r , t )dr m m
解得
( r ,t ) dr m( ) ln(m) | (r , t )dr , e m( )
t 时刻年龄为 的人的存活时间之和为: h( ) 所以时刻 t 年龄为 的人的期望寿命为:
P174 习题 4 1.设 x(t ), y (t ) 分别为 t 时刻甲乙双方的兵力,满足下列微分方程
x ay , (1) y bx, (2) x ( 0) x 0 , y ( 0) y 0 a 4, x 0 y 0 则当乙方取胜时,乙方的剩余兵力是多少?战斗时间 b 是多少? (2) 若甲方在战斗开始后,有后备兵力以不变的速率 r 增援,试重新建立模 型, 讨论如何判断双方的胜负
0
( r , t ) dr
0
d
解:
设 t 时刻年龄为 的人的数目随时间变化的规律为: m m( r ), r 0
dm dm 由死亡率的定义可得: dr ( r , t ), (r , t )dr m m
解得
( r ,t ) dr m( ) ln(m) | (r , t )dr , e 0 0 m(0)
2.试推导 logistic 人口增长模型.即设时刻 t 的人口为 x(t ) ,单位时间内人口的 增量与 x(1
数学模型第四版姜启源
盟军(英)
盟军(美一) 强化
盟军 缺口 (预备队)
原地 待命
德军 撤退 进攻
东进 盟 军 (美三 )
双方应该如何决策 ?
模型假设
? 博弈参与者为两方(盟军和德军)
? 盟军有3种使用其预备队的行动:强化缺口,原地 待命,东进;德军有 2种行动:向西进攻或向东撤退 .
? 博弈双方完全理性 ,目的都是使战斗中己方获得
(p*, q*): 混合(策略)纳什均衡(Mixed NE) 最优值均为 2/5
模型评述
?? 0 M ??1
0 ?? 0?
?占优(dominate) :盟军的行动 2占优于1
??? 1 1?? (前面的非常数和博弈 M' 类似)
?混合策略似乎不太可行 ! 但概率可作为参考. ----现实:盟军让预备队原地待命(行动 2),而德军
O
x
vb=vs 1 vs
单一价格战略效率为
1x
? ? ? ? x 0 (vb ? vs )dvsdvb ? 3x(1 ? x) ? 3 / 4
? ?1 0
vb 0
(vb
?
vs )dvs dvb
x=0.5
效率最大 (3/4)
线性价格战略
卖方报价 ps(vs) = as+csvs; 买方报价 pb(vb) =ab+cbvb.
多个决策主体
博弈模型 合作博弈
决策主体的决策 行为发生直接相 互作用 (相互影响 )
博弈模型 (Game Theory)
非合作博弈
静态、动态 信息完全、不完全
军事、政治、经济、企业管理和社会科学中应用广泛
11.1 进攻与撤退的抉择
背 ? 1944年6月初,盟军在诺曼底登陆成功 . 景 ? 到8月初的形势:
(完整word版)蛛网模型详解
蛛网模型详解蛛网模型分析了商品的产量和价格波动的三种情况。
第一种情况:供给曲线斜率的绝对值大于需求曲线斜率的绝对值。
当市场由于受到干扰偏离原有的均衡状态以后,实际价格和实际产量会围绕均衡水平上下波动,但波动的幅度越来越小,最后会回复到原来的均衡点。
假定,在第一期由于某种外在原因的干扰,如恶劣的气候条件,实际产量由均衡水平Qe减少为Q1。
根据需求曲线,消费者愿意支付P1的价格购买全部的产量Q1,于是,实际价格上升为P1。
根据第一期的较高的价格水平P1,按照供给曲线,生产者将第二期的产量增加为Q2。
在第二期,生产者为了出售全部的产量Q2,接受消费者所愿意支付的价格P2,于是,实际价格下降为P2。
根据第二期的较低的价格水平P2,生产者将第三期的产量减少为Q3。
在第三期,消费者愿意支付P3的价格购买全部的产量Q3,于是,实际价格又上升为P3。
根据第三期的较高的价格水平P3,生产者又将第四期的产量增加为Q4。
如此循环下去,实际产量和实际价格的波动的幅度越来越小,最后恢复到均衡点E所代表的水平。
由此可见,均衡点E所代表的均衡状态是稳定的。
也就是说,由于外在的原因,当价格和产量偏离均衡数值(Pe和Qe)后,经济制度中存在着自发的因素,能使价格和产量自动地恢复均衡状态。
产量和价格变化的途径形成了一个蜘蛛网似的图形,这就是蛛网模型名称的由来。
只有当供给曲线斜率的绝对值大于需求曲线斜率的绝对值时,即供给曲线比需求曲线较为陡峭时,才能得到蛛网稳定的结果,相应的蛛网被称为“收敛型蛛网”。
在这里,我们看到,除第一期受到外在原因干扰外,其它各期都不会再受新的外在原因干扰,从而前一期的价格能够唯一决定下一期的产量。
按照动态的逻辑顺序,我们还看到,生产者错误地根据上一期的价格决定供给量,消费者被动地消费生产者提供的全部生产量,而价格则由盲目生产出来的数量所决定。
供求曲线各自只画了一条,但是,经济学在前面已经指出,供给的变动,不仅是指供给量沿着既定供给曲线的变动,还包括供给曲线的变动。
蛛网模型
蛛网模型在农产品数量与农产品价格之间关系的应用摘要:在自由贸易市场上,一个时期以来当某种消费品的上市量远大于需求,由于销售量不畅销导致价格下降,生产者转业。
过一段时间,这种农产品的数量就会下降,生产者看到有利可图又重抄旧业,这样下一个时期会重现供大于求,价格下降的局面,在没有外界干预的情况,这种现象将如此循环下去。
在完全自由竞争的市场经济中上述现象通常是不可避免的。
因为商品的价格是由消费者的需求关系决定的,商品数量愈多价格愈低,而下一时期商品的数量由生产者的供应关系决定,商品价格低的时候生产的数量必然振荡,在现实世界里这样的振荡会出现不同的形式,有的振幅渐小愈趋向平稳,有的则振幅愈来愈大,如果没有外界如政府的干预,将导致经济崩溃。
本文先用图形方法建立所谓“蛛网模型”,对上述现象进行分许,给出市场经济趋于稳定的条件,再用差分方程建立模型,对结果进行解释,并讨论当市场经济不稳定时政府可以采取什么样的干预措施。
关键词:农产品数量价格蛛网模型应用一、蛛网模型介绍蛛网模型(Cobweb model)——运用弹性原理解释某些生产周期较长的商品在失去均衡时发生的不同波动情况的一种动态分析理论。
蛛网理论(cobweb theorem),又称蛛网模型,是利用弹性理论来考察价格波动对下一个周期产量影响的动态分析,它是用于市场均衡状态分析的一种理论模型。
蛛网理论是20世纪30年代出现的一种关于动态均衡分析方法。
在新古典经济学中,蛛网模型引进时间变化的因素,通过对属于不同时期的需求量、供给量和价格之间的相互作用的考察,用动态分析的方法论述生产周期较长的商品的产量和价格在偏离均衡状态以后的实际波动过程及其结果。
蛛网模型考察的是生产周期较长的商品,而且生产规模一旦确定不能中途改变,市场价格的变动只能影响下一周期的产量,而本期的产量则取决于前期的价格。
因此,蛛网模型的基本假设是商品本期的产量决定于前期的价格。
由于决定本期供给量的前期价格与决定本期需求量(销售量)的本期价格有可能不一致,会导致产量和价格偏离均衡状态,出现产量和价格的波动。
蜘蛛网模型
数学建模网络挑战赛承诺书我们仔细阅读了第五届“认证杯”数学中国数学建模网络挑战赛的竞赛规则。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们允许数学中国网站()公布论文,以供网友之间学习交流,数学中国网站以非商业目的的论文交流不需要提前取得我们的同意。
我们的参赛队号为:1144参赛队员(签名) :队员1:刘阳队员2:吴平队员3:王臣杰参赛队教练员(签名):邓昌瑞参赛队伍组别:专科组数学建模网络挑战赛编号专用页参赛队伍的参赛队号:(请各个参赛队提前填写好):1144竞赛统一编号(由竞赛组委会送至评委团前编号):竞赛评阅编号(由竞赛评委团评阅前进行编号):2012年第五届“认证杯”数学中国数学建模网络挑战赛题目探讨蜘蛛网结构的合理性关键词捕食期望能量守恒整形规划蛛网结构摘要自然界中绝大部分蜘蛛依靠织网捕食为生,但同一种类织网捕食的蜘蛛往往由于某种原因,其所织网的结构有所差异。
而蜘蛛网织成怎样的结构才最合理呢,对于这个问题,我们分别运用捕食期望、边界讨论、整型规划、阻尼运动等方法建立了数学模型,顺利地解决了该问题。
首先,蜘蛛停留在网的中心,由于蜘蛛网上每个点出现猎物的概率是相等的,运用函数方程求解出蜘蛛网上每个点的捕食期望,进而得出整个蛛网的捕食期望。
结构不同的蜘蛛网其捕食期望值也不同。
期望值越大,这种结构的蜘蛛网捕食能力越强。
把蜘蛛网的周长作为一个定值,可以衍生出的蜘蛛网结构有三角形,正四边形,正五边形,以此类推,当蜘蛛网半径趋于无穷大时,把此时的结构看作圆形来处理。
数学模型(第四版)课后详细答案
数学模型作业六道题 作业一1. P56.8 —垂钓俱乐部鼓励垂钓者将钓上的鱼放生,打算按照放生的鱼的重量 给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计 鱼的重量的方法。
假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):先用机理分析建立模型,再用数据确定参数 解:要求鱼的体重,我们利用质量计算公式: M=p V 。
我们假定鱼池中是同一种 鱼,于是可以近似地考虑其密度是相同的。
至于鱼的体积问题,由于是同一种 类,可以假定这种鱼在体型上是一致的。
我们假设鱼的体积和鱼身长的立方成 正比。
即:V=k i L 3,因此,模型为:利用Eviews 软件,用最小二乘法估计模型中的参数 K i ,如下图1所示:□ Equition: UNKTLED Workfile; 123::31\*1 諭][Pror][口bject] [Print][Mame|[Frea«]旦tinatdForecast]甌:Dependent Variable: Y Method: I east SquaresDate-05/11/13 Trne;16;16Samplv; 1 8Included ob5e[v<itcins;8Coefficient Std Errort-StatisticProb.X0.014591 0.0C0232 62.9T 072 O.QOOOR-squanedAd listed R-squared S-E. of rearession Sum squared residLog IlkfilihODd DurtJin-Wats^n stat0.988135 0.988135 37r 22294 9698.B32 -39.75279 2.076976Mean dependert var S.D. dependentvar Akaike info criteionSchwarz criterion Hannan-Quinn triter765.3750 341.7258 10.18820 101S313 10.12122图1从图1结果可以得到参数K=0.014591,所以模型为:上述模型存在缺陷,因为它把肥鱼和瘦鱼同等看待。
2021-11第4版姜启源数学模型复习总结(1)
2021-11第4版姜启源数学模型复习总结(1) 第四版姜启源数学模型复习总结第1章:了解模型的概念与分类,熟练掌握数学模型的定义,数学模型的重要应用,建模的重要例子-指数模型,Logist模型。
建模的一般方法及其在建模中的应用。
建模的一般步骤(每步的主要内容与问题)。
建模的全过程(框图)4个环节的含义。
模型的特点(技艺性)。
模型分类(表现特征),建模中的能力培养。
数学建模实例的建模思想及其步骤§1 数学模型的概念:模型:模型是为了一定目的,对客观事物的一部分信息进行简缩、抽象、提炼出来的原型的替代物。
模型的分类:具体模型(或物质模型,实的),包括直观模型,物理模型。
抽象模型(或理想模型,虚的),包括思维模型,符号模型,数学模型。
数学模型:对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构。
1-1-1 模型是为了特定的目的,将原型的()而得到的原型替代物。
1-1-2数学模型可以描述为:对于一个现实对象,()。
1-1-3 关于数学模型的如下论述中正确的是() A。
数学模型是以现实世界的特定问题为研究对象。
B。
数学模型只是对实际问题的近似表示,其中包含一些简化假设。
C。
数学模型表示是某一特定问题的内在规律的数学表示,是以方程和函数关系表示的数学结构。
D。
数学模型是现实问题的真实的描述,不能做任何假设和简化。
1-1-4 关于数学建模的如下论述中正确的是() A。
数学模型和数学建模是完全相同的概念。
B。
数学建模是一个全过程,包括表述、求解、解释和验证四个环节。
C。
数学建模全过程涉及两个世界是现实世界和虚拟世界,涉及的“双向翻译”是同声翻译和文献翻译。
D.数学建模过程是一个从理论-实践-再理论-再实践不断改进的过程。
§2 建模的重要意义(1)数学以空前的广度和深度向一切领域渗透在一般工程技术领域数学建模仍然大有用武之地;在高新技术领域数学建模几乎是必不可少的工具了; 数学进入一些新领域,为数学建模开辟了许多处女地. 数学建模的具体应用:分析与设计,预测与决策,优化与控制,规划与管理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于6.4节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第k+1时段的价格1+k y 由第k+1和第k 时段的数量1+k x 和k x 决定。
如果设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与6.4的结果进行比较。
(2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和1-k y 决定,试分析稳定平衡的条件是否还会放宽。
解:(1)设1+k y 由1+k x 和k x 的平均值决定,即价格函数表示为:)2(11k k k x x f y +=++ 则 0),2(0101>-+-=-++ααx x x y y k k k 0),(001>-=-+ββy y x x k k消去y, 得到 012)1(22x x x x k k k +=++++αβαβαβ ,k=1,2,….该方程的特征方程为022=++αβαβλλ与6.4节中 )2(11-++=k k k y y g x 时的特征方程一样, 所以0<αβ<2, 即为0p 点的稳定条件。
(2)设 )2(11k k k x x f y +=++ )2(11-++=k k k y y g x , 则有 0),2(0101>-+-=-++ααx x x y y k k k 0),2(0101>-+=--+ββy y y x x k k k 消去y,得到 0123)1(424x x x x x k k k k +=++++++αβαβαβαβ该方程的特征方程为02423=+++αβαβλαβλλ 令λ=x ,αβ=a , 即求解三次方程0a 2ax ax 4x 23=+++ 的根在matlab 中输入以下代码求解方程的根x :syms x asolve(4*x^3+a*x^2+2*a*x+a==0,x) 解得 1x = (36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(1/3)/12 - a/12 + (a*(a - 24))/(12*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a -27))^(1/2))^(1/3));2x = -(2*a*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a -27))^(1/2))^(1/3) - 3^(1/2)*a*24*i - 3^(1/2)*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(2/3)*i - 24*a + 3^(1/2)*a^2*i +(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(2/3) +a^2)/(24*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(1/3)); 3x =-(2*a*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a -27))^(1/2))^(1/3) + 3^(1/2)*a*24*i + 3^(1/2)*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(2/3)*i - 24*a - 3^(1/2)*a^2*i + (36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(2/3) +a^2)/(24*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(1/3)); 其中1x 为实根,2x 与3x 为一对共轭虚根。
①x 为虚根时:易知|3,2x |2=2x *2x =3x *3x ,在matlab 中输入代码:f=x2*conj(x2) %求特征根模长的平方 可得|3,2x |2=f=(a/12 - (3^(1/2)*((- a^2/144 + a/6)/(((a/6 - a^2/144)^3 + (a^3/1728 - a^2/48 + a/8)^2)^(1/2) - a/8 + a^2/48 - a^3/1728)^(1/3) + (((- a^2/144 + a/6)^3 + (a^3/1728 - a^2/48 + a/8)^2)^(1/2) - a/8 + a^2/48 - a^3/1728)^(1/3))*i)/2 - (- a^2/144 + a/6)/(2*(((a/6 - a^2/144)^3 + (a^3/1728 - a^2/48 + a/8)^2)^(1/2) - a/8 + a^2/48 - a^3/1728)^(1/3)) + (((- a^2/144 + a/6)^3 + (a^3/1728 - a^2/48 + a/8)^2)^(1/2) - a/8 + a^2/48 - a^3/1728)^(1/3)/2)*(conj((((- a^2/144 + a/6)^3 + (a^3/1728 - a^2/48 + a/8)^2)^(1/2) - a/8 + a^2/48 - a^3/1728)^(1/3))/2 + conj(a)/12 - (conj(a)/6 - conj(a)^2/144)/(2*conj((((- a^2/144 + a/6)^3 + (a^3/1728 - a^2/48 + a/8)^2)^(1/2) - a/8 + a^2/48 - a^3/1728)^(1/3))) + (3^(1/2)*(conj((((- a^2/144 + a/6)^3 + (a^3/1728 - a^2/48 + a/8)^2)^(1/2) - a/8 + a^2/48 - a^3/1728)^(1/3)) + (conj(a)/6 - conj(a)^2/144)/conj((((- a^2/144 + a/6)^3 + (a^3/1728 - a^2/48 + a/8)^2)^(1/2) - a/8 + a^2/48 -a^3/1728)^(1/3)))*i)/2);是关于a 的函数建立fun.m 文件:function f=fun(a)f=(a/12 - (3^(1/2)*((- a^2/144 + a/6)/(((a/6 - a^2/144)^3 + (a^3/1728 - a^2/48 + a/8)^2)^(1/2) - a/8 + a^2/48 - a^3/1728)^(1/3) + (((- a^2/144 + a/6)^3 + (a^3/1728 - a^2/48 + a/8)^2)^(1/2) - a/8 + a^2/48 -a^3/1728)^(1/3))*i)/2 - (- a^2/144 + a/6)/(2*(((a/6 - a^2/144)^3 + (a^3/1728 - a^2/48 + a/8)^2)^(1/2) - a/8 + a^2/48 - a^3/1728)^(1/3)) +(((- a^2/144 + a/6)^3 + (a^3/1728 - a^2/48 + a/8)^2)^(1/2) - a/8 + a^2/48 - a^3/1728)^(1/3)/2)*(conj((((- a^2/144 + a/6)^3 + (a^3/1728 - a^2/48 + a/8)^2)^(1/2) - a/8 + a^2/48 - a^3/1728)^(1/3))/2 + conj(a)/12 - (conj(a)/6 - conj(a)^2/144)/(2*conj((((- a^2/144 + a/6)^3 + (a^3/1728 - a^2/48 + a/8)^2)^(1/2) - a/8 + a^2/48 - a^3/1728)^(1/3))) + (3^(1/2)*(conj((((- a^2/144 + a/6)^3 + (a^3/1728 - a^2/48 + a/8)^2)^(1/2) - a/8 + a^2/48 - a^3/1728)^(1/3)) + (conj(a)/6 - conj(a)^2/144)/conj((((- a^2/144 + a/6)^3 + (a^3/1728 - a^2/48 + a/8)^2)^(1/2) - a/8 + a^2/48 -a^3/1728)^(1/3)))*i)/2)x的将a从0开始到20赋值,间隔0.1,求出每个a对应的虚根3,2模长的平方z的值,最后画出z关于a的图像:a=0;k=1;while k<=200a=a+0.1;b(k)=a; %将每个a存入矩阵bz(k)=fun(a);k=k+1;endplot(b,z)图像:x|2是关于a=αβ的增函从图像中可以看出虚特征根模长的平方|3,2x|2<1;数,且当0<a=αβ<2时,|3,2②当x为实根时:由①知0<a=αβ<2,下求实特征根x关于a的值及图像:1因为x= (36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a -127))^(1/2))^(1/3)/12 - a/12 + (a*(a - 24))/(12*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(1/3));建立fun1.m文件:function f=fun1(a)f=(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(1/3)/12 - a/12 + (a*(a - 24))/(12*(36*a^2 - 216*a - a^3 + 24*3^(1/2)*(-a^2*(a - 27))^(1/2))^(1/3))画出实特征根x关于a的图像:1cleara=0;k=1;while k<=20 %因为a<2a=a+0.1;b(k)=a; %将每个a存入矩阵bz(k)=fun1(a);k=k+1;endplot(b,z)图像:从图中可以看出而当0<a=αβ<2时,-1<x<1.1综上①②,使方程3个特征根均在单位圆内的条件为:αβ<2p点稳定的条件,条件未放宽也未缩减。