材料科学基础
材料科学基础总结
材料基础一、名词解释1、塑形变形:2、滑移:晶体一部分相对另一部分沿着特定的晶面和晶向发生的平移滑动。
滑移后再晶体表面留下滑移台阶,且晶体滑移是不均匀的。
3、滑移带:单晶体进行塑性变形后,在光学显微镜下,发现抛光表面有许多线条,称为滑移带。
4、滑移线:组成滑移带的相互平行的小台阶。
5、滑移系:一个滑移面和其上的一个滑移方向组成一个滑移系,表示晶体滑移是可能采取的一个空间方向。
滑移系越多,晶体的塑形越好。
6、单滑移:当只有一组滑移系处于最有利的取向时,分切应力最大,便进行单系滑移。
7、多滑移:至少有两组滑移系的分切应力同时达到临界值,同时或交替进行滑移的过程。
8、交滑移:至少两个滑移面沿着某个共同的滑移方向同时或交替滑移,这种滑移叫交滑移。
(会出现曲折或波纹状滑移带\最易发生交滑移的是体心立方晶体\纯螺旋位错)9、孪生变形:在切应力作用下,晶体的一部分沿一定晶面和一定的晶向相对于另一部分作均匀的切变所产生的变形。
(相邻晶面的相对位移量相等)10、孪晶:孪生后,均匀切变区的取向发生改变,与未切变区构成镜面对称,形成孪晶。
11、晶体的孪晶面和孪生方向:体心,{112}【111】,面心立方{111}【112-】,密排六方{101-2} 【1-011】。
12、软取向,硬取向:分切应力最大时次取向是软取向;当外力与滑移面平行或垂直时,晶体无法滑移,这种取向称为硬取向。
13、几何软化、硬化:在拉伸时,随着晶体的取向的变化,滑移面的法向与外力轴的夹角越来越远离45度时滑移变得困难的这种现象是几个硬化;当夹角越来愈接近45度,使滑移越来越容易进行的现象叫做几何软化。
14、细晶强化:晶体中,用细化晶粒来提高材料强度的方法为细晶强化。
也能改善晶体的塑形和韧性。
15、固熔强化:当合金由单相固熔体构成时,随熔质原子含量的增加,其塑性变形抗力大大提高,表现为强度,硬度的不断增加,塑性、韧性的不断下降,的这种现象称为固熔强化。
《材料科学基础》课件
THANKS
感谢观看
稳定性
材料在化学环境中保持其组成和结构的能力。
腐蚀性
材料与化学物质反应的能力,一些材料容易受到腐蚀。
活性
材料参与化学反应的能力和程度。
耐候性
材料在各种气候条件下的稳定性,如耐紫外线、耐风雨等。
材料的力学性质
弹性模量
描述材料抵抗弹性变形的能力。
硬度
材料表面抵抗被压入或划痕的能力。
韧性
材料吸收能量并抵抗断裂的能力。
材料科学的发展历程
总结词
概述材料科学的发展历程,包括重要的里程碑和代表 性人物。
详细描述
材料科学的发展历程可以追溯到古代,如中国的陶瓷和 青铜器制作,古埃及的石材加工等。然而,材料科学作 为一门独立的学科是在20世纪中期才开始形成的。在 这个时期,一些重要的里程碑包括开发出高温超导材料 、纳米材料和光电子材料等新型材料,这些材料的出现 极大地推动了科技的发展。同时,一些杰出的科学家如 诺贝尔奖得主也在这个领域做出了卓越的贡献。随着科 技的不断进步,材料科学的发展前景将更加广阔。
。
绿色材料与可持续发展
绿色材料
采用环保的生产方式,开发具有环保性能的新型材料,如可降解 塑料、绿色建材等。
节能减排
通过采用新型材料和技术,降低能源消耗和减少污染物排放,实现 节能减排的目标。
可持续发展
推动材料科学的发展,实现经济、社会和环境的协调发展,促进可 持续发展。
非晶体结构与性质
非晶体的结构特征
非晶体中的原子或分子的排列是无序的,不遵循长程有序的晶体 结构。
非晶体的物理和化学性质
非晶体的物理和化学性质与晶体不同,如玻璃态物质具有较好的化 学稳定性和机械强度。
材料科学基础-第1章
晶面指数及晶面间距
现在广泛使用的用来表示晶面指数的密勒指数是由 英国晶体学家ler于1939年提出的。
z
确定晶面指数的具体步骤如下: 1.以各晶轴点阵常数为度量单位,求 出晶面与三晶轴的截距m,n,p; 2.取上述截距的倒数1/m,1/n,1/p; 3. 将以上三数值简为比值相同的三 个最小简单整数,即 1 1 1 h k l (553) : : : : h:k :l x m n p e e e 其中e为m,n,p三数的最小公倍数,h,k,l为简单整数; 4.将所得指数括以圆括号, (hkl)即为密勒指数。
13 体心立方点阵
a=b=c,α=β=γ =90°
14 面心立方点阵
a=b=c,α=β=γ =90°
§ 1.5 晶体结构的对称性
一、对称:对称是指物体相同部分作有规律的 重复。对称操作所依据的几何元素,亦即在对 称操作中保持不动的点、线、面等几何元素称 为对称元素。 二、对称性
1.晶体的宏观对称性 2. 晶体的32种点群 3. 晶体的微观对称性 4.230种空间群
晶体结构=空间点阵+基元
注意:上式并不是一个数学关系式,而只是用来表示这三者之间的 关系。
二、晶体的点阵理论
1 、点阵(Lattice):
将晶体中重复出现的最小单元作为结构基元,用一个数 学上的点来代表 , 称为点阵点,整个晶体就被抽象成一组 点,称为点阵。 1 点阵点必须无穷多; 点阵必须具备的三个条件 2 每个点阵点必须处于相同的环境; 3 点阵在平移方向的周期必须相同。
c
b
a
空间点阵及晶胞的不同取法
选取晶胞的原则: 1.要能充分反映整个空间点阵的周期性和对称性; 2.在满足1的基础上,单胞要具有尽可能多的直角; 3.在满足上条件,晶胞应具有最小的体积。
材料科学基础
1.材料是国民经济的基础;广义的材料包括人们的思想意识之外的所有物质;材料、信息、能源是现代技术的三大支柱。
2.材料科学是研究各种材料的结构、制备加工工艺与性能之间关系的学科。
3.材料分类:金属材料、陶瓷材料或无机非金属材料、高分子材料、复合材料。
4.材料科学基础是进行材料科学研究的基础理论,它将各种材料(包括金属、陶瓷、高分子材料)的微观结构和宏观结构规律建立在共同的理论基础上,用于指导材料的研究、生产、应用和发展。
它涵盖了材料科学和材料工程的基础理论。
5.金属键:金属中自由电子与金属正离子之间构成键合称为金属键。
特点:电子共有化,既无饱和性又无方向性,形成低能量密堆结构性质:良好导电、导热性能,延展性好。
6.离子键:正负离子之间由于静电引力相互吸引,是原子结合在一起形成离子键。
特点:以离子而不是以原子为结合单元,要求正负离子相间排列,且无方向性,无饱和性性质:熔点和硬度均较高,良好电绝缘体。
7.共价键:两个或多个电负性相差不大的原子通过共用电子对而形成的化学键。
特点:饱和性配位数较小,方向性(s电子除外)性质:熔点高、质硬脆、导电能力差二;晶体学基础晶体:是指其内部原子(分子或离子)在三维空间做有规则的周期性重复排列的物体。
晶体原子(分子或离子)在空间的具体排列方式称为晶体结构。
晶体结构的基本特征:原子(或分子、离子)在三维空间呈周期性重复排列即即存在长程有性能上两大特点:固定的熔点,各向异性空间点阵:将晶体中原子或原子团抽象为纯几何点,即可得到一个由无数几何点在三维空间排列成规则的阵列—空间点阵特征:每个阵点在空间分布必须具有完全相同的周围环境晶胞:代表性的基本单元(最小平行六面体)选取晶胞的原则1.选取的平行六面体应反映出点阵的最高对称性2.平行六面体的棱和角相等的数目应最多3.当平行六面体的棱边夹角存在直角,直角数目应最多4.在满足上述条件下晶胞应具有最小体积晶格:为了表达空间原子排列的几何规律,把粒子(原子或分子)在空间的平衡位置作为结点,人为地将结点用一系列相互平行的直线连接起来形成的空间格架称为晶格。
材料科学基础完整ppt课件
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
离子% 结 )= [-1 e 合 -1 4(X A 键 X B )( 2 1% 00
另一种混合键表现为两种类型的键独立 纯在例如一些气体分子以共价键结合,而 分子凝聚则依靠范德瓦力。聚合物和许多 有机材料的长链分子内部是共价键结合, 链与链之间则是范德瓦力或氢键结合。石 墨碳的上层为共价键结合,而片层间则为 范德瓦力二次键结合。
.
5
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
八.材料科学研究的内容:材料结构的基础知识、
晶体结构、晶体缺陷、材料的相结构及相图、材
料的凝固、材料中的原子扩散、热处理、工程材
料概论等主要内容。 .
子,因此,它们都是良好的电绝缘体。但当
.
16
处在
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
高温熔融状态时,正负离子在外电场作用 下可以自由运动,即呈现离子导电性。
2.共价键
(1)通过共用电子对形成稳定结构
.
13
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
三.结论
1.原子核周围的电子按照四个量子数的规定 从低能到高能依次排列在不同的量子状态 下,同一原子中电子的四个量子数不可能 完全相同。
材料科学基础
材料科学基础
材料科学基础是材料理论、实验、应用的交叉学科。
它集成了多学科的实验手段和理论计
算技术,利用理论计算、数理物理和实验技术,研究材料的性能和制备、表征,分析和优
化材料结构和功能性能,以满足材料领域的需求。
基础的材料科学主要包括材料多尺度结构的研究、材料微观机制的研究、材料表面与界面
性质的研究以及材料抗损性表征及改进等。
材料多尺度结构研究是通过研究材料的原子、
分子、晶体等多种尺度结构,探索材料性能及其关联机制。
材料微观机制研究是通过对材
料微细结构、代表性性质进行研究,从原子、分子、晶体分解的角度探究材料行为及影响
其行为的机制;材料表面与界面性质的研究是指利用实验与分子模拟方法,研究材料的表
面和界面结构、化学组分特性及其性能等;材料抗损性表征与改进研究是针对特定工况作
用环境下材料应力损伤、耐磨性能等进行研究,目的是区分材料质变以及失效机制,提出
与改善结构、材料条件等有关的优化技术。
此外,材料科学的基础还涉及其他学科,如物理化学、机械工程、计算机科学、化学工程、材料物理学、有机合成和金属学等,以便从新的视角,综合研究材料的结构、性质、加工
技术、性能表征等。
总之,材料科学基础是一门宽泛而全面的学科,能够涵盖实验、理论计算技术、物理化学
等诸多分支,来研究材料的性能及功能。
未来,随着材料应用的不断发展,材料科学基础
也将在科学研究中发挥重要作用,为材料发展提供重要保障。
材料科学基础知识
材料科学基础知识材料科学是一门研究材料结构、性能和制备的学科,涉及广泛的领域,包括金属、陶瓷、塑料、纤维、半导体等材料的研究与应用。
本文将介绍一些材料科学的基础知识,包括材料分类、晶体结构和材料性能等内容。
一、材料分类根据组成和结构特征,材料可以分为金属材料、无机非金属材料和有机高分子材料三大类。
金属材料主要由金属元素构成,具有优秀的导电、导热和强度等性能;无机非金属材料包括陶瓷、玻璃、水泥等,其特点是高硬度、高耐热性和电绝缘性;有机高分子材料由含有大量碳元素的高分子化合物构成,如塑料、橡胶和纤维等,具有良好的可塑性和可拉伸性。
二、晶体结构晶体是材料学中一种有序排列的结构形态,具有规则的周期性。
晶体结构由原子、离子或分子按照一定的几何规则排列而成。
根据晶格的不同,晶体可分为立方晶系、四方晶系、单斜晶系、正交晶系、斜方晶系、菱方晶系和三斜晶系等。
其中,立方晶系是晶体结构中最简单的一种,其晶格具有等边、等角的特点。
三、材料性能材料的性能决定了其在实际应用中的表现。
常见的材料性能包括力学性能、热学性能、电学性能和磁学性能等。
力学性能体现了材料的强度、韧性和硬度等特点,如抗拉强度、屈服强度和冲击韧性;热学性能包括导热性、热膨胀系数和导电性等,这些性能对材料的热稳定性和导热导电能力有重要影响;电学性能和磁学性能则与材料的导电性和导磁性相关。
四、材料制备材料的制备过程对于最终材料的性能和结构有重要影响。
常见的材料制备方法包括熔融法、沉积法、固相反应法和溶液法等。
熔融法是指将材料加热至熔点后进行冷却的过程,常用于金属材料的制备;沉积法则是通过气相或溶液中的化学反应沉积材料薄膜;固相反应法是指两个或多个固体物质在一定条件下发生化学反应生成新的化合物;溶液法是将材料溶解于溶剂中,通过溶液的蒸发或化学反应生成新材料。
总结材料科学是一门涉及广泛的学科,研究的内容包括材料分类、晶体结构、材料性能和材料制备等方面。
了解这些基础知识对于深入学习和应用材料科学具有重要意义。
材料科学基础课程教学大纲
材料科学基础课程教学大纲
一、课程背景与目标
材料科学基础课程是材料科学与工程专业的一门基础性课程,旨在培养学生对材料科学基本理论和基本知识的理解和掌握,为其后续的专业学习和科研工作打下坚实的基础。
本课程通过系统地讲授材料结构、性能与应用等方面的基础知识,旨在培养学生的科学思维、分析问题和解决问题的能力。
二、教学内容
1. 材料科学基础
1.1 材料科学的发展历程
1.2 材料科学的研究方法与手段
1.3 材料科学的基本概念和专业术语
2. 材料结构与性能
2.1 材料的晶体结构与非晶体结构
2.2 材料的晶体缺陷与非晶缺陷
2.3 材料的晶体结构与性能关系
2.4 材料的物理性质与化学性质
2.5 材料的机械性能与材料强度
3. 材料制备与加工
3.1 金属材料的制备与加工
3.2 陶瓷材料的制备与加工
3.3 高分子材料的制备与加工
3.4 复合材料的制备与加工
3.5 材料制备与加工中的工艺控制与监测
4. 材料性能测试与分析
4.1 材料性能测试的基本原理与方法4.2 材料力学性能测试与分析
4.3 材料热学性能测试与分析
4.4 材料电学性能测试与分析。
800材料科学基础参考书目
800材料科学基础参考书目(最新版)目录1.材料科学基础概述2.800 材料科学基础参考书目分析3.适用人群与学习建议正文【材料科学基础概述】材料科学基础是一门研究材料结构、性能、制备和应用等方面的学科,旨在为材料工程和技术提供理论基础。
材料科学基础涉及的主要内容包括:材料结构与性能、材料制备与加工、材料分析与测试、材料设计与计算等。
学习材料科学基础有助于更好地理解材料的微观结构与宏观性能之间的关系,从而为相关领域的研究和应用提供支持。
【800 材料科学基础参考书目分析】针对 800 材料科学基础参考书目,可以从以下几个方面进行分析:1.教材类:教材类书籍通常系统地介绍材料科学基础的理论知识,适合初学者和本科生学习。
例如,《材料科学基础》、《材料科学概论》等。
2.专著类:专著类书籍通常针对某一特定领域或主题进行深入研究,适合研究生和科研人员阅读。
例如,《现代材料科学基础》、《先进材料科学与工程》等。
3.实验教材类:实验教材类书籍重点介绍材料科学基础实验方法和技巧,有助于提高学生的实验操作能力。
例如,《材料科学实验教程》、《材料科学基础实验》等。
4.参考书类:参考书类书籍通常提供丰富的数据和案例,有助于读者查阅相关知识和解决实际问题。
例如,《材料科学基础数据手册》、《材料科学与工程手册》等。
【适用人群与学习建议】1.适用人群:800 材料科学基础参考书目适用于材料科学与工程、冶金工程、机械工程、航空航天等专业的本科生、研究生和科研人员。
2.学习建议:(1) 根据个人需求和兴趣选择合适的书籍进行系统学习。
(2) 结合实际案例和工程应用,加深对材料科学基础理论知识的理解。
(3) 动手进行实验操作,培养实际解决问题的能力。
(4) 注重学术交流和分享,及时了解材料科学基础领域的最新动态和研究成果。
材料科学基础知识点
材料科学基础知识点
1. 结晶学:研究晶体的形成、结构和性质。
包括晶体生长、晶体结构分析、晶体缺陷等。
2. 材料力学:研究材料的力学性质,包括材料的强度、韧性、塑性、蠕变等。
3. 材料热学:研究材料的热传导、热膨胀、热稳定性等热学性质。
4. 材料电学:研究材料的电导率、介电性质、磁性等电学性质。
5. 材料化学:研究材料的化学成分、结构和化学反应。
包括材料的合成方法、表面改性、材料的腐蚀与防护等。
6. 材料物理学:研究材料的物理性质,包括光学性质、磁性、声学性质等。
7. 材料加工:研究材料的加工方法、工艺和性能改善。
包括材料的铸造、焊接、锻造、热处理等。
8. 材料性能测试:研究材料的各种性能指标的检测和测试方法。
9. 材料选择:根据工程要求和材料性能,选择最合适的材料。
10. 材料应用:研究材料在各种实际应用中的性能和适用范围,包括材料的耐久性、可靠性等。
材料科学基础-第1章
复合材料和纳米材料
1 复合材料
由两种或更多种不同材料组成,具有综合性 能优于单一材料。
2 纳米材料
具有纳米级尺寸的材料,具有特殊的电学、 磁学和光学性质造和航空航天等领域。
聚合物材料
用于塑料制品、纤维和包装材料等领域。
陶瓷材料
用于电子、玻璃和医疗器械等领域。
材料的晶体结构、晶格缺陷和晶界等对性能的影响。
2
特定结构的特定性能
不同结构的材料具有不同的力学、电学和热学性能。
3
性能优化
通过调整材料的结构来优化其性能,例如热处理和合金化。
基础金属和非金属材料
基础金属材料
如铁、铜、铝等,具有良好的导电性和导热性,广 泛用于电子和建筑领域。
非金属材料
如玻璃、塑料和陶瓷等,具有良好的绝缘性和耐腐 蚀性,在化工和医疗领域有重要应用。
复合材料
用于航空航天、运动器材和建筑领域。
材料科学的发展和未来趋势
1
新材料的发展
石墨烯、有机发光二极管等新材料的研究和应用。
2
可持续发展
可再生能源、环保材料和循环利用的发展。
3
智能材料的兴起
具有传感、响应和自修复功能的智能材料的研究。
总结和回顾
材料科学是一个广泛的领域,涵盖了各种材料和应用领域。掌握材料特征、结构与性能的关系对于材料科学的 发展至关重要。
材料科学基础-第1章
材料科学研究材料的特征、性能和应用。它是现代工程学的基础,涉及多个 领域,包括金属、聚合物、陶瓷、复合材料和纳米材料等。
材料的特征和分类
1 材料的特征
2 材料的分类
材料的密度、强度、导电性和导热性等特性。
金属、陶瓷、聚合物和复合材料等不同类型 的材料。
材料科学基础
10、晶体固液界面分为光滑界面和粗糙界面,按照长大速度由慢到快其长大方式依次为(二维晶核长大)(晶体缺陷长大)和(垂直长大)
11、马氏体是碳在(a-Fe)中的过饱和固溶体,淬火钢中马氏体的金相形态有两种,它们是(板条马氏体)和(针状马氏体)。
27、(13),主要是发生(多边形化)。
28、(15)动态回复与动态再结晶是指在变形过程中(软化与形变硬化)同时进行
三判断
1、 层错是由于晶体点阵中局部存在多余的半原子面的结果。
2、 位错属于晶体缺陷,又属于线缺陷。√
3、 通常晶体中原子的扩散激活能愈高,其扩散系数愈大,扩散速度愉快。
18、根据相律,三元系最大平衡相数为(4),此时自由度(0),在相图上表现为(水平面)。
19、扩散第一定律只适合于(稳态)条件,第一定律所表达的基本含义是:在( )的条件下,制药浓度梯度存在就会有扩散发生,而且扩散通量与浓度梯度成(正比)变化。扩散流动方向是由(高)浓度向(低)浓度。
20、固溶体合金结晶过程中遵循形核和核长大规律,但它不同于纯金属的是形核时还额外需要(成分)起伏,它也是在(变温)过程中进行的,同时在结晶过程中海始终伴随着(异质原子/溶质原子)的扩散。
4、 简述固溶体合金与纯金属在结晶过程中的区别。
解答:纯金属在结晶时其界面是粗糙的,在正温度梯度下进行长大。由于晶体长大时通过固相模壁散热,固液界面是等温的,若取得动态过冷度界面就向前移动。如果界面局部有小的凸起伸向过热的液相中,小凸起将被熔化,界面一直保持平直,晶体以平面状长大。
固溶体结晶时会出现成分过冷,在固液界面前出现成分过冷区,此时界面如有任一小的凸起将它伸入成分过冷区而获得过冷就能继续生长下去。界面不能保持平直稳定,会出现树枝晶。
第六章材料科学基础
§6.1.1 普弹性
图 弹性变形与塑性变形
普弹性:应力与应变间符合线性关系,即满足虎克定律;
加上或去除应力时应变都能瞬时达到平衡
弹性的实质是原子作用势 的不对称性。
可以用双原子模型来解释。
图 双原子模型
弹性变形的主要特点是: (1)可逆性 去掉外力,变
s k s cos cos
τk称为临界分切应力,与金属 的晶体结构、纯度、加工状 态、试验温度与加载速度有 关,而与外力的大小、方向 及作用方式无关。
图 镁单晶屈服应力与晶体取向的关系
k取决于金属的本性,不受,的影响; 或=90时,s ;
k=scoscos s的取值 ,=45时,s最小,晶体易滑移;
形就消失。 (2)线性 应力和应变间满
足直线关系。 (3)弹性变形量小 一般说
来,金属材料和陶瓷材料 的弹性变形很小,高聚物 材料的弹性变形可以比较 大。
E G
G E
2(1 )
弹性模量是材料结合强度的标志之一。主要的影响因素有: (1)结构 弹性模量与原子序数呈周期性变化趋势。 (2)温度的影响 T升高,热振动加剧,晶格势能发生变
螺位错的双交滑移:交滑移后的螺位错再转回到原滑移面的过程。
9. 滑移的表面痕迹 单滑移:
单一方向的滑移带; 多滑移:
相互交叉的滑移带; 交滑移:
波纹状的滑移带。
滑移的位错机制
① 位错的运动是晶体的滑移 滑移是位错在切应力作用下沿着滑移面逐步移动形成的。
② 位错的增殖——弗兰克-瑞德位错源 ③ 位错的交割与塞积
图 工业纯铜中的滑移线
滑移:在切应力作用下,晶体的一部分相 对于另一部分沿着一定的晶面(滑移面) 和晶向(滑移方向)产生相对位移,且不 破坏晶体内部原子排列规律性的塑变方式。
材料科学基础
固溶体:合金的晶体结构保持溶剂组元的晶体结构。
正常价化合物:由周期表中相距较远,电化学性质相差较大的两种元素形成。
电子化合物:具有一定的电子浓度值,且结构相同或密切相关的相。
传统无机材料:以SiO2及其硅酸盐化合物为主要成分制成的材料,因此亦称硅酸盐材料,主要有陶瓷、玻璃、水泥和耐火材料。
玻璃:由熔体过冷所制得的非晶态材料。
水泥:加入适量水后可成塑性浆体,既能在空气中硬化又能在水中硬化,并能够将砂、石等材料牢固地胶结在一起的细粉状水硬性材料。
耐火材料:耐火度不低于1580℃的专门为高温技术服务的无机非金属材料。
晶体:离子原子或分子按一定的空间结构排列所组成的固体,其质点在空间的分布具有周期性和对称性,因而晶体具有规则的外形。
晶胞:从晶体结构中取出来的反映晶体周期性和对称性的重复单元。
晶向指数:用[uvw]表示。
球体最紧密堆积:有等径球和不等径球两种;等径球最紧密堆积有六方最紧密堆积和面心立方最紧密堆积两种。
空间利用率:晶胞中原子体积与晶胞体积的比值。
位移性转变:仅仅是结构畸变,转变前后结构差异小,转变时并不打开任何键或改变最邻近的配位数,只是原子的位置发生少许位移,使次级配位有所改变。
重建性转变:不能简单地通过原子位移来实现,转变前后结构差异大,必须破坏原子间的键,形成一个具有新键的结构。
萤石:Ca+位于立方晶胞的顶点及面心位置,形成面心立方堆积,F—填充在八个小立方体的体心。
尖晶石:如果A离子占据四面体空隙,B离子占据八面体空隙,则称为正尖晶石。
反之,如果半数的B离子占据四面体空隙,A离子和另外半数的B离子占据八面体空隙,则称为反尖晶石。
岛状结构:[SiO4]四面体以孤岛状存在,它们之间通过其他正离子的配位多面体来连接。
高分子:其分子主链上的原子都直接以共价键连接,且链上的成键原子都共享成键电子的化合物。
高分子材料:组成高分子的不同尺度的结构单元在空间的相对排列,包含高分子的链结构和聚集态结构。
825材料科学基础
825材料科学基础材料科学基础。
材料科学是一门研究材料性能、结构和制备工艺的学科,它涉及到物质的组成、性质、结构和性能等方面。
材料科学基础是学习和研究材料科学的重要基础,它包括了材料的基本性质、结构与性能的关系、材料的制备及加工工艺等内容。
本文将从这些方面对材料科学基础进行介绍。
首先,材料的基本性质是指材料的物理性质、化学性质、力学性质等。
物理性质包括密度、热导率、电导率等,化学性质包括化学稳定性、腐蚀性等,力学性质包括强度、韧性、硬度等。
这些基本性质直接影响着材料的应用范围和性能表现,因此对这些性质的了解是材料科学的基础。
其次,材料的结构与性能的关系是材料科学的核心内容之一。
材料的结构包括晶体结构、晶粒结构、晶界结构等,而这些结构又直接影响着材料的性能。
例如,晶体的排列方式决定了材料的硬度,晶粒的尺寸和形状决定了材料的强度和韧性,晶界的性质决定了材料的导电性和热导率等。
因此,通过研究材料的结构与性能的关系,可以指导材料的设计与制备,提高材料的性能。
另外,材料的制备及加工工艺也是材料科学基础中的重要内容。
材料的制备包括了材料的合成、提纯、成型等过程,而加工工艺则包括了材料的切削加工、热处理、表面处理等。
这些工艺对材料的结构和性能都有着重要的影响,因此掌握好材料的制备及加工工艺是材料科学研究和工程应用中的关键。
综上所述,材料科学基础是材料科学研究和工程应用的重要基础,它涉及了材料的基本性质、结构与性能的关系、制备及加工工艺等内容。
通过对这些内容的了解和研究,可以指导材料的设计与制备,提高材料的性能,推动材料科学的发展。
因此,对材料科学基础的学习和研究具有重要的意义,也是材料科学领域的必修课程之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.阅读二元相图,已知部分相区确定相邻相区,确定双相区和三相区的冷却转变类型和反应式,分析合金冷却时的相变过程及对应的冷却曲线。
2.根据相图(含匀晶、共晶、包晶、共析、包析综合)分析相和组织转变过程,用杠杆定律定律计算平衡转变时相组成和组织组成物的相对含。
3.快速冷却对不同类型转变将会带来那些影响。
三、材料的相结构
名词概念
固溶体与化合物 电子浓度
内容要求
1.固溶体有哪些类型,影响固溶体溶解度的因素。
2.材料中的化合物有哪些类型,及其它们的主要形成条件。
四、相图
名词概念
合金 组元 相、组织、组织组成物 固溶体与化合物 匀晶、共晶、包晶、共析转变 杠杆定律 枝晶偏析 铁素体、奥氏体、渗碳体、珠光体、莱氏体 碳钢与白口铸铁 成分三角形 连接线 连接三角形 等温截面图 垂直截面图
4.利用位错的基本理论说明滑移方式塑性变形的若干现象。
5.回复和再结晶时发生了哪些变化,它们给材料的组织、性能哪些影响。
6.再结晶和凝固结晶有哪些相同和不同的地方,为什么再结晶过程不是相变。
7.影响再结晶后晶粒尺寸的因素及其控制。
七、固体中的扩散
名词概念
扩散与扩散系数 间隙扩散与代位扩散 上坡扩散与反应扩散 柯肯达尔效应
五、材料的凝固
名词概念
凝固与结晶 形核与长大 形核率与长大速度 溶质分配系数 成分过冷
内容要求
1.结晶的一般过程是怎样的,均匀形核和非均匀形核的主要差别,为什么晶核需要一定的临界尺寸。
2.金属型材料结晶过程中晶体的长大方式与温度分布的关系。
3.控制晶粒尺寸和凝固体组织的方法,及其用凝固理论的解释。
4.什么是成分过冷,它的形成原因、影响因素以及对固溶体凝固组织的影响。
考查的详细要点见第二部分。知识面要全面兼顾,重点在于基础。
三、评价目标
对《材料科学基础》的基本理论掌握,应用基本理论分析常见的工程现象的能力。分析问题要求文字语言通顺,层次清楚;回答问题要求要点明确,即提出论点,指明方向,简要说明理由;计算题要有明确原理,原始数据来源,准确的结果,合理的计量单位。
四、考试形式与试卷结构
第二部分 考查要点
一、材料的晶体结构
名词概念
晶体与非晶体 晶格与晶胞 晶向指数与晶面指数 体心立方 面心立方 密排六方
内容要求
1.晶胞中晶向指数与晶面指数表示方法,即指数与图形对应关系。
2.金属中常见三种典型晶型的原子位置、单胞中原子数、致密度、配位数、密排面与密排方向。
3.立方晶系中方向指数的夹角和晶面间距。
内容要求
1.菲克第二定律的误差函数解的形式,及其在工程中的应用计算。
2.影响扩散系数的因素有那些,对其原因和方向能进行基本说明。
3.利用热力学原理解释上坡扩散与反应扩散。
八、固态相变
名词概念
固态相变 扩散型相变 马氏体型相变
内容要求
1.固态相变有哪些类型,与凝固过程相比有那些特点。
2.什么是扩散型相变? 什么是马氏体型相变? 各自发生的条件和转变特点
六、材料的塑性变形与回复再结晶
名词概念
塑性变形 屈服 滑移、滑移系、滑移面、滑移方向 孪生 加工硬化 变形织构 回复、再结晶 再结晶温度 热加工
内容要求
1.金属塑性变形的基本过程与方式。
2.面心立方和体心立方晶系的滑移系及外力作用下的首开滑移系。
3.塑性变形后的组织、性能的变化。什么是加工硬化,产生原因及工程意义。
考试时间180分钟,采用闭卷笔试。
题形为问答方式的分析和论述题,含通用的计算内容。按题目内容分小题按要点记分。
五、参考书目
侧重公有的基础理论,不限书目。可以为任何90年后出版的材料专业的教科书。
例如 西安交大石德柯等编《材料科学基础》,清华潘金生等编《材料科学基础》,哈工大李超编《金属学原理》,中南矿冶曹明盛编《物理冶金基础》等等。
4.记住Fe-Fe3C平衡相图及相关点的成分和温度,分析相和组织转变过程,计算平衡转变时相组成和组织组成物的相对含量。认识或绘制室温组织示意图。
5.三元系的成分表示方法,即成分点和成分值的对应。
2.三相平衡区和四相平衡区空间结构特点和截面图中的形状及区的相邻关系。降温过程发生的转变类型。
3.看懂较简单的基本三元相图的平面图。
二、晶体缺陷
名词概念
单晶体与多晶体 晶粒与晶界 点缺陷 线缺陷 面缺陷 空位 位错 柏氏矢量 刃型位错和螺型位错 滑移与攀移
内容要求
1.定性说明晶体平衡时为什么存在一定的空位浓度。
2.简单立方晶系中刃型位错和螺型位错原子模型,及其对应的柏氏矢量。
3.位错滑移运动的条件及其结果。
4.晶体中的界面形式、界面能及其对晶粒形貌的影响。
第一部分 考试说明
一、考试性质
《材料科学基础》是材料学科的专业基础课,着重研究材料的成分、加工方法与材料的组织、性能之间的关系以及其变化规律,它是如何发挥材料潜力使用好现有材料和研究开发新材料的理论基础,也是学习材料学科专业课的先行课程,所以设立为材料学科专业硕士研究生的入学专业基础考试课程。
二、考试的学科范围