大一上学期高等数学试题

合集下载

2021年大一高等数学上册试卷及答案(精选版)

2021年大一高等数学上册试卷及答案(精选版)

2021年大一高等数学上册试卷及答案(精选版)一、填空题1、求函数 1133+-=x x y 的微分; 【答案】dx x x 232)1(6+ ;2、设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时,()f x 在0x =处连续. 【答案】4a =3、函数211xy x =+-的水平和垂直渐近线共有_______条.【答案】34、解方程 21xy xdx dy -= ; 【答案】C x y =-+2212 ;5、设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时,()f x 在0x =处连续.【答案】4a =二、解答题(难度:中等)1、求函数21x x y -=的微分;【答案】dx x x 221)1(1-- ;2、求曲线1cos x ty t =⎧⎨=-⎩在2t π=处的切线与法线方程. 【答案】sin 1,122dy dyt t t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即法线:1(),1022y x y x ππ-=--+--=即 3、求不定积分①()()13dx x x ++⎰②()0a > ③x xe dx -⎰【答案】 ①11ln ||23x C x +++②ln |x C + ③()1x e x C --++ 4、求方程y xy y x =+'2 满足初始条件4)21(=y 的特解. 【答案】x e x y 122-= ;5、求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 【答案】12210013(1)()22S x dx x x =+=+=⎰ 112242005210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰。

大一高等数学考卷及答案

大一高等数学考卷及答案

专业课原理概述部分一、选择题(每题1分,共5分)1.若函数f(x)在x=a处可导,则f'(a)等于()A.f(a)B.f(a+h)-f(a)/h(h趋于0)C.lim(f(a+h)-f(a))/h(h趋于0)D.f(a+h)-f(a)2.下列函数中,在x=0处连续但不可导的是()A.y=|x|B.y=x^2C.y=x^3D.y=1/x3.若函数f(x)在区间I上单调递增,则f'(x)在I上()A.必大于0B.必小于0C.可以为0D.不存在4.设函数f(x)在区间(a,b)内可导,且f'(x)>0,则f(x)在(a,b)内()A.单调递增B.单调递减C.有极值点D.无极值点5.设函数f(x)在x=a处连续,且lim(f(x)-f(a))/(x-a)=L,则f(x)在x=a处()A.可导,f'(a)=LB.可导,f'(a)不存在C.不可导D.无法确定二、判断题(每题1分,共5分)1.若函数f(x)在x=a处可导,则f(x)在x=a处一定连续。

()2.若函数f(x)在区间I上单调递增,则f'(x)在I上一定大于0。

()3.若函数f(x)在区间I上有极值点,则f'(x)在I上一定存在零点。

()4.若函数f(x)在区间I上连续,则f(x)在I上一定可积。

()5.若函数f(x)在区间I上可导,则f(x)在I上一定连续。

()三、填空题(每题1分,共5分)1.函数f(x)=x^3-3x在x=1处的导数为______。

2.函数f(x)=e^x在x=0处的导数为______。

3.函数f(x)=lnx在x=1处的导数为______。

4.函数f(x)=sinx在x=π/2处的导数为______。

5.函数f(x)=cosx在x=0处的导数为______。

四、简答题(每题2分,共10分)1.简述导数的定义。

2.简述连续与可导的关系。

3.简述罗尔定理。

4.简述拉格朗日中值定理。

大一上学期高数期末考试试题(五套)详解答案

大一上学期高数期末考试试题(五套)详解答案

2010级高等数学(上)A 解答一、填空题:(每题3分,共18分)(请将正确答案填入下表,否则不给分)1.已知极限01lim 2=⎪⎪⎭⎫⎝⎛--+∞→b ax x x x ,则常数b a ,的值分别是(空1)。

解:0x b a 1x x lim b ax 1x x x 1lim x 2x =⎪⎭⎫ ⎝⎛--+=⎪⎪⎭⎫ ⎝⎛--+∞→∞→ ⇒1-a=0⇒a=1⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫ ⎝⎛-+=∞→∞→x 1x x lim ax 1x x lim b 2x 2x 1x111lim 1x x lim 1x x x x lim x x 22x -=+-=+-=⎪⎪⎭⎫ ⎝⎛+--=∞→∞→∞→ 或:01x b x )b a (x )a 1(lim b ax 1x x lim 2x 2x =⎪⎪⎭⎫⎝⎛+-+--=⎪⎪⎭⎫ ⎝⎛--+∞→∞→ 所以1-a=0,a+b=0⇒a=1,b=-1。

或:⎪⎪⎭⎫⎝⎛++--+-=⎪⎪⎭⎫ ⎝⎛--+∞→∞→1x 1b ax 1x 1x lim b ax 1x x lim 2x 2x 01x 1)b 1(x )a 1(lim 1x 1b ax 1x lim x x =⎪⎭⎫ ⎝⎛+++--=⎪⎭⎫ ⎝⎛++---=∞→∞→ 所以1-a=0,1+b=0⇒a=1,b=-1。

2.函数xx x x x f 323)(23---=的第一类间断点是(空2)。

解:f(x)在x=3,0,-1处无定义,是间断点。

121)3x )(1x (x 3x lim x 3x 2x 3x lim)x (f lim 3x 233x 3x =-+-=---=→→→,x=3是第一类间断点。

∞=---=-→-→x3x 2x 3x lim)x (f lim 231x 1xx=-1是第二类间断点。

∞=---=→→x3x 2x 3x lim)x (f lim 230x 0xx=0是第二类间断点。

3.设函数)(x f 可导,)(1)(2x f x g +=,则)('x g =(空3)。

高数(大一上)期末试题及答案

高数(大一上)期末试题及答案

高数(大一上)期末试题及答案第一学期期末考试试卷(1)课程名称:高等数学(上)考试方式:闭卷完成时限:120分钟班级:学号:姓名:得分:一、填空(每小题3分,满分15分)1.lim (3x^2+5)/ (5x+3x^2) = 02.设 f''(-1) = A,则 lim (f'(-1+h) - f'(-1))/h = A3.曲线 y = 2e^(2t) - t 在 t = 0 处切线方程的斜率为 44.已知 f(x) 连续可导,且 f(x)。

0,f(0) = 1,f(1) = e,f(2) = e,∫f(2x)dx = 1/2ex,则 f'(0) = 1/25.已知 f(x) = (1+x^2)/(1+x),则 f'(0) = 1二、单项选择(每小题3分,满分15分)1.函数 f(x) = x*sinx,则 B 选项为正确答案,即当x → ±∞ 时有极限。

2.已知 f(x) = { e^x。

x < 1.ln x。

x ≥ 1 },则 f(x) 在 x = 1 处的导数不存在,答案为 D。

3.曲线 y = xe^(-x^2) 的拐点是 (1/e。

1/(2e)),答案为 C。

4.下列广义积分中发散的是 A 选项,即∫dx/(x^2+x+1)在区间 (-∞。

+∞) 内发散。

5.若 f(x) 与 g(x) 在 (-∞。

+∞) 内可导,且 f(x) < g(x),则必有 B 选项成立,即 f'(x) < g'(x)。

三、计算题(每小题7分,共56分)1.lim x^2(e^(2x)-e^(-x))/((1-cosx)sinx)lim x^2(e^(2x)-e^(-x))/((1-cosx)/x)*x*cosxlim x(e^(2x)-e^(-x))/(sinx/x)*cosxlim (2e^(2x)+e^(-x))/(cosx/x)应用洛必达法则)2.lim {arcsin(x+1) + arcsin(x-1) - 2arcsin(x)}/xlim {arcsin[(x+1)/√(1+(x+1)^2)] + arcsin[(x-1)/√(1+(x-1)^2)] - 2arcsin(x)/√(1+x^2)}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+x^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+x^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+(x+1)^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+(x-1)^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin[(x-1)/√(1+(x-1)^2)]} π/2 (应用洛必达法则)3.y = y(x) 由 x + y - 3 = 0 确定,即 y = 3 - x,因此 dy/dx = -1.4.f(x) = arctan(2x-9) - arctan(x-3) 的导数为 f'(x) = 1/[(2x-9)^2+1] - 1/[(x-3)^2+1],因此 f'(x)。

(完整版)大一上学期高数期末考试题

(完整版)大一上学期高数期末考试题

高数期末考试一、填空题(本大题有4小题,每小题4分,共16分)1. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.2.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .3. =-+⎰21212211arcsin -dx xx x .二、单项选择题 (本大题有4小题, 每小题4分, 共16分)4. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.5. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.6. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

7.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.8.三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x ye y xy xy y +''+++=cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:1330()xf x dx xe dx ---=+⎰⎰⎰3()xxd e --=-+⎰⎰00232cos (1sin )x xxe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰令3214e π=--12. 解:由(0)0f =,知(0)0g =。

高数(大一上)期末试题及答案

高数(大一上)期末试题及答案

第一学期期末考试试卷(1)课程名称: 高等数学(上) 考试方式: 闭卷 完成时限:120分钟班级: 学号: 姓名: 得分: . 一、填空(每小题3分,满分15分)1、xx x x 2sin 3553lim 2++∞→ 2、设A f =-'')1(,则=--'--'→hh f f h )12()1(lim 0 3、曲线⎩⎨⎧==-t tey e x 2在0=t 处切线方程的斜率为4、已知)(x f 连续可导,且2)2(,)1(,1)0(,0)(e f e f f x f ===>,='⎰10)2()2(dx x f x f5、已知21)(xe xf x+=,则='')0(f 二、单项选择(每小题3分,满分15分)1、函数x x x f sin )(=,则 ( )A 、当∞→x 时为无穷大B 、当∞→x 时有极限C 、在),(+∞-∞内无界D 、在),(+∞-∞内有界2、已知⎩⎨⎧≥<=1,ln 1,)(x x x e x f x ,则)(x f 在1=x 处的导数( )A 、等于0B 、等于1C 、等于eD 、不存在3、曲线xxe y -=的拐点是( )A 、1=xB 、2=xC 、),1(1-eD 、)2,2(2-e 4、下列广义积分中发散的是( )A 、⎰10sin x dxB 、⎰-101xdx C 、⎰+∞+02/31x dx D 、⎰+∞22ln xx dx5、若)(x f 与)(x g 在),(+∞-∞内可导,)()(x g x f <,则必有( ) A 、)()(x g x f -<- B 、)()(x g x f '<'C 、)(lim )(lim 0x g x f xx xx →→< D 、⎰⎰<0000)()(x x dx x g dx x f三、计算题(每小题7分,共56分)答题要求:写出详细计算过程1、求xx e e x x x x sin )cos 1()(lim 220---→2、求)arcsin(lim 2x x x x -++∞→3、设)(x y y =由03=-+xyy x 确定,求0|=x dy 。

大一上学期高等数学测试习题及答案.

大一上学期高等数学测试习题及答案.

大一上学期高等数学测试及答案一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)(本大题有4小题, 每小题4分, 共16分1. 函数的全体连续点的集合是()(A (-,+ (B (-,1 (1,+(C (-,0 (0, + (D (-,0 (0,1 (1,+2. 设,则常数a,b的值所组成的数组(a,b)为()(A)(1,0)(B)(0,1)(C)(1,1)(D)(1,-1)3. 设在[0,1]上二阶可导且,则()(A) (B(C (D)4. 则()(A) M < N < P (B) P < N < M(C) P < M < N (D) N < M < P二填空题(本大题有4小题,每小题4分,共16分)1. 设()2. 设则()3. 直线方程,与xoy平面,yoz平面都平行,那么的值各为()4. ()三解答题(本大题有3小题,每小题8分,共24分)1. 计算2. 设试讨论的可导性,并在可导处求出3. 设函数连续,在x0时二阶可导,且其导函数的图形如图所示,给出的极大值点、极小值点以及曲线的拐点。

x四解答题(本大题有4小题,每小题9分,共36分)1. 求不定积分2. 计算定积分3. 已知直线,求过直线l1且平行于直线l2的平面方程。

4. 过原点的抛物线及y=0,x=1所围成的平面图形绕x轴一周的体积为,确定抛物线方程中的a,并求该抛物线绕y轴一周所成的旋转体体积。

五、综合题(本大题有2小题,每小题4分,共8分)1. 设,其中在区间[1,2]上二阶可导且有,试证明存在()使得。

2.(1)求的最大值点;(2)证明:解答:一、单项选择题 B D B C.二、填空题(本大题有4小题,每小题4分,共16分)5. .6. .7. .8. .三、解答题(本大题有3小题,每小题8分,共24分)9. (8分计算极限.解:10. (8分设,试讨论的可导性,并在可导处求出.解:当;当故f (x在x=0处不可导。

大一第一学期期末高等数学(上)试题及答案

大一第一学期期末高等数学(上)试题及答案

第一学期期末高等数学试卷一、解答下列各题(本大题共16小题,总计80分)1、(本小题5分)求极限 lim x x x x x x →-+-+-23321216291242、(本小题5分) .d )1(22x x x ⎰+求3、(本小题5分) 求极限limarctan arcsinx x x →∞⋅14、(本小题5分)⎰-.d 1x x x 求5、(本小题5分) .求dt t dx d x ⎰+2021 6、(本小题5分)⎰⋅.d csc cot 46x x x 求7、(本小题5分) .求⎰ππ2121cos 1dx x x8、(本小题5分) 设确定了函数求.x e t y e ty y x dy dx t t ==⎧⎨⎪⎩⎪=cos sin (),229、(本小题5分) .求dx x x ⎰+301 10、(本小题5分)求函数 的单调区间y x x =+-42211、(本小题5分) .求⎰π+202sin 8sin dx x x 12、(本小题5分).,求设 dx t t e t x kt )sin 4cos 3()(ωω+=-13、(本小题5分) 设函数由方程所确定求.y y x y y x dy dx =+=()ln ,226 14、(本小题5分)求函数的极值y e e x x =+-215、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--12131101101111222216、(本小题5分) .d cos sin 12cos x x x x ⎰+求二、解答下列各题(本大题共2小题,总计14分)1、(本小题7分),,512沿一边可用原来的石条围平方米的矩形的晒谷场某农场需建一个面积为.,,才能使材料最省多少时问晒谷场的长和宽各为另三边需砌新石条围沿2、(本小题7分) .8232体积轴旋转所得的旋转体的所围成的平面图形绕和求由曲线ox x y x y ==三、解答下列各题 ( 本 大 题6分 )设证明有且仅有三个实根f x x x x x f x ()()()(),().=---'=1230一学期期末高数考试(答案)一、解答下列各题(本大题共16小题,总计77分)1、(本小题3分)解原式:lim =--+→x x x x 22231261812 =-→lim x x x 261218 =22、(本小题3分) ⎰+x x x d )1(22 ⎰++=222)1()1d(21x x =-++12112x c .3、(本小题3分) 因为arctan x <π2而limarcsin x x →∞=10故limarctan arcsin x x x →∞⋅=10 4、(本小题3分) ⎰-x x x d 1 x x x d 111⎰----= ⎰⎰-+-=x x x 1d d =---+x x c ln .1 5、(本小题3分)原式=+214x x6、(本小题4分) ⎰⋅x x x d csc cot 46⎰+-=)d(cot )cot 1(cot 26x x x=--+171979cot cot .x x c7、(本小题4分) 原式=-⎰cos ()1112x d x ππ=-sin 112x ππ=-1 8、(本小题4分) 解: dy dx e t t e t t t t t =+-22222(sin cos )(cos sin ) =+-e t t t t t t (sin cos )(cos sin )2222 9、(本小题4分)令 1+=x u 原式=-⎰24122()u u du=-2535312()u u =11615 10、(本小题5分) ),(+∞-∞函数定义域 01)1(222='=-=-='y x x x y ,当 (][)+∞<'>∞->'<,1011,01函数的单调减区间为,当函数单调增区间为, 当y x y x 11、(本小题5分)原式=--⎰d x x cos cos 9202π=-+-163302ln cos cos x x π=162ln12、(本小题6分) dx x t dt ='()[]dt t k t k e kt ωωωωsin )34(cos )34(+--=- 13、(本小题6分) 2265yy y y x '+'='=+y yx y 315214、(本小题6分) 定义域,且连续(),-∞+∞ '=--y e e x x 2122()驻点:x =1212ln 由于''=+>-y e e x x 20 22)21ln 21(,,=y 故函数有极小值 15、(本小题8分) 原式=++++++++--→∞lim ()()()()()()x x x x x x x 1121311011011112222 =⨯⨯⨯⨯=101121610117216、(本小题10分) dx x x dx x x x ⎰⎰+=+2sin 2112cos cos sin 12cos :解⎰++=x x d 2sin 211)12sin 21(=++ln sin 1122x c 二、解答下列各题(本大题共2小题,总计13分)1、(本小题5分)设晒谷场宽为则长为米新砌石条围沿的总长为 x xL x x x ,,()51225120=+> '=-=L x x 2512162 唯一驻点 ''=>=L x x 10240163 即为极小值点 故晒谷场宽为米长为米时可使新砌石条围沿所用材料最省165121632,,= 2、(本小题8分)解 :,,.x x x x x x 232311288204====V x x dx x x dx x =-⎡⎣⎢⎤⎦⎥=-⎰⎰ππ()()()223204460428464=⋅-⋅π()1415164175704x x π=-π=35512)7151(44三、解答下列各题( 本 大 题10分 ) 证明在连续可导从而在连续可导:()(,),,[,];,.f x -∞+∞03又f f f f ()()()()01230====则分别在上对应用罗尔定理得至少存在[,],[,],[,](),011223f x ξξξξξξ1231230112230∈∈∈'='='=(,),(,),(,)()()()使f f f 即至少有三个实根'=f x (),0,,,0)(它至多有三个实根是三次方程又='x f由上述有且仅有三个实根'f x ()高等数学(上)试题及答案一、 填空题(每小题3分,本题共15分)1、.______)31(lim 20=+→x x x 。

大一第一学期期末高等数学(上)试题及答案

大一第一学期期末高等数学(上)试题及答案

(本小题5分)第一学期期末高等数学试卷、解答下列各题(本小题5分)x 3 12x 162x 3(本小题5分)求 x 2 2 dx. (1 x )(本小题5分)(本小题5分) 求-^dx. 1 x(本小题5分)求— 1 t 2 dt .dx 0(本小题5分)求 cot 6 x esc 4 xdx.(本小题5分)求-1 1 , 求 1 p cos dx. x x(本小题5分)设X e2t cost确定了函数y y e si nt(本小题5分)求'x 1 xdx .0 ■(本小题1、2、3、4、5、6、7、8、9、10、 11、 12、13、求函数 y 4 2xx 2的单调区间丫(本小题5分) sin x dx.求2 2 0 8 sin 2 x (本小题5分) 设 x(t) e kt(3cos t 4sin t),求 dx .设函数y y (x )由方程y 2 in y 2 x 6所确定,求史 dx (本大题共16小题, 总计80分)求极限 limx 2 9x 212x求极限 limarctan xx.1 arcsin xy(x),求乎dx14、 (本小题5分)求函数y 2e x e x 的极值15、 (本小题5分)2 2 2 2求极限 lim & “ (2x“ (3xD d°x Dx(10x 1)(11x 1)16、 (本小题5分)cos2x .求dx.1 sin xcosx二、解答下列各题(本大题共2小题,总计14分) 1、(本小题7分)某农场需建一个面积为512平方米的矩形的晒谷场,一边可用原来的石条围 另三边需砌新石条围沿,问晒谷场的长和宽各为多少时,才能使材料最省.(本大题6分)设f (x ) x (x 1)( x 2)( x 3),证明f (x ) 0有且仅有三个实根一学期期末高数考试(答案)、解答下列各题(本大题共16小题,总计77分) 1、(本小题3分)23x 212 26x 18x 122、(本小题3分)x 2\ 2x )1 d(1 x 2) 2(1 x 2)2c.3、(本小题3分) 因为 arctanx而 limarcsin — 02 x x2、(本小题7分)2求由曲线y -和y2三、解答下列各题所围成的平面图形绕 0X 轴旋转所得的旋转体的 体积.解:原式 limx 2lim 歿 x 212x18(19、 116 151故 limarcta n x arcs in o x x求—1 t2 dt .dx 0 '原式 2x 1 x 4cot 6 x(1 1 .7cot x 7(本小题4分) 2求1 工-x2cot x)d(cot x)1. 9cot x c.91cos^d(^) x x2(本小题4分)求 x 1 xdx.令 J 1 x ui u4、 5、(本小题3分)x .dx1 x1 x 1dx 1 x . dx dx1 xx ln 1 x(本小题3分)c.6、(本小题4分)cot 5 6 x csc 4 xd x8、1 (本小题4分) x e 2^st确定了函数y y e si nty(x),求 dy dx解:dy dxe 2t (2sin tt22e (cost 2tsin t ) e t (2 sint cost)22~(cost 2t sin t )cost)7、cos 1dx. x原式1 si n — x2u2)du 原式 2 (u41 \32(—)5 39、116 15解: dxx (t)dt13、(本小题6分)设函数y y (x )由方程y 2 ln y 2 x 6所确定,求鱼dx2yy 空 6x 5 y3yx 57厂14、(本小题6分)求函数y 2e x ex , 2x1、y 2e (e y1 1驻点:x -| n —2 2由于 y 2e x e x 0故函数有极小值,,1n "2)2 210、(本小题5分) 求函数 y 4 2x x 2的单调区间解: 函数定义域(11、 12、 设 y 当x当x 当xX)2 2x 2(1 1, y 01, y0函数单调增区间为,11, y 0函数的单调减区间为1,(本小题5分)sin x ,2— dx.8 sin x2d cosx 09 cos 2 x原式1, 3 cosx ln ---------- 6 3 cosx丄In 26(本小题x (t )6分)e kt (3cos t 4sin t),求dx .e kt (43k)cos t (4k 3 )sin t dtx的极值解.定义域),且连续V x264d(*si n2x 1) 1 丄 si n2x2 1In 1 -si n2x c2、解答下列各题(本大题共2小题,总计13分) 1、(本小题5分)某农场需建一个面积为512平方米的矩形的晒谷场,一边可用原来的石条围 沿, 另三边需砌新石条围沿,问晒谷场的长和宽各为多少时,才能使材料最省•512设晒谷场宽为x,则长为 ----- 米,新砌石条围沿的总长为512xL 2x —— x (x 0)L c 51222x唯— •驻点 x 16 L1024 小3x即 x 16为极小值点 故晒谷场宽为16米,长为51232米时,可使新砌石条围沿16所用材料最省2、(本小题8分)15、(本小题 求极限 原式 2 2 2(x 1)(2x 1) (3x 1)2(10x 1)(10x 1)(11x 1)1 2 1 2 1 2 (1 -)2 (2 -)2 (3 -)2(10 丄)2x x x x1 1(10 -)(11 -)x x 10 11 216 10 11lim x lim x 16、(本小题7 210分) cos2x dx 1 sin xcosx cos2x 1 l sin2xdx2求由曲线y -和y2,8x 22x 3 x 10, x 1 4-)2x 32 (rdx 4x 40(匚6x)dx4J 1 5 (——x 4 5 1 1 7. -------x ) 64 7 04 1 1 512 44(—— )—5 7 35二、解答下列各题(本大题10分)设f (x) x(x 1)( x2)(x 3),证明f (x) 0有且仅有三个实根证明:f (x)在(,)连续,可导,从而在[0,3];连续,可导.又 f(0)f(1)f(2)f(3)则分别在[0,1],[1,2],[2,3]上对f(x)应用罗尔定理得,至少存在1(0,1), 2 (1,2), 3(2,3)使f ( !) f ( 2) f ( 3)即f (x) 0至少有三个实根,又f (x) 0,是三次方程,它至多有三个实根 由上述f (x)有且仅有三个实根高等数学(上)试题及答案D 、不存在2、下列变量中,是无穷小量的为(、填空题(每小题 3分,本题共 15分)1、2、时,f (x)x e 2x在x 0处连续.3、dx ln x ,则巴dyx/x+14、 曲线yx 在点(0, 1 )处的切线方程是y=x+15、 若 f (x)dxsin2x C ,C 为常数,则 f (x)2cos2x —。

大一高数 期末考试题及答案

大一高数 期末考试题及答案

f ( x ) cos
x dx
0 .
证明:在 0, 内至少存在两个不同的点1 ,2 ,使 f (1 ) f (2 ) 0.(提
x
F ( x ) f ( x )dx
示:设
0

解答
一、单项选择题(本大题有 4 小题, 每小题 4 分, 共 16 分) 1、D 2、A 3、C 4、C
二、填空题(本大题有 4 小题,每小题 4 分,共 16 分)
M (x0 , y0 ) 处切线斜率数值上等于此曲线与 x 轴、 y 轴、直线 x x0 所围成
面积的 2 倍与该点纵坐标之和,求此曲线方程.
五、解答题(本大题 10 分)
15. 过坐标原点作曲线 y ln x 的切线,该切线与曲线 y ln x 及 x 轴围成
平面图形 D.
(1) 求 D 的面积 A;(2) 求 D 绕直线 x = e 旋转一周所得旋转体的体积
大一上学期 高数期末试题
一、单项选择题 (本大题有 4 小题, 每小题 4 分, 共 16 分)
1. 设 f ( x ) cos x ( x sin x ), 则在 x 0处有 (
) .
(A) f (0) 2 (B) f (0) 1 (C) f (0) 0 (D) f ( x) 不可导.
证:构造辅助函数:
0
,0 x 。其满足在[0, ] 上连续,在 (0, )
上可导。 F ( x) f ( x) ,且 F (0) F ( ) 0
0
f ( x)cos xdx
cos
xdF ( x)
F ( x)cos
x | 0
sin
x F ( x)dx
由题设,有 0
0
0

《大一高等数学》试卷(十份)

《大一高等数学》试卷(十份)

《高等数学》试卷(一)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =12.函数()()20ln 10x f x x a x ≠=+⎨⎪=⎩在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ).(A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x ⎛⎫'⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭ (B )1f C x ⎛⎫--+ ⎪⎝⎭ (C )1f C x ⎛⎫+ ⎪⎝⎭ (D )1f C x⎛⎫-+⎪⎝⎭8.xxdx e e-+⎰的结果是( ).(A )arctan xe C + (B )arctan xe C -+ (C )x xe eC --+ (D )ln()x xe eC -++9.下列定积分为零的是( ).(A )424arctan 1x dx xππ-+⎰(B )44arcsin x x dx ππ-⎰(C )112x xe edx --+⎰(D )()121sin xx x dx -+⎰10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x xa x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21x y x =-的垂直渐近线有条.4.()21ln dx x x =+⎰.5.()422sin cos x x x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限 ①21limxx x x →∞+⎛⎫ ⎪⎝⎭②()2sin 1limxx x x x e→--2.求方程()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰②()0a >⎰③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高等数学》试卷(一)参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2- 2.3- 3. 2 4.arctan ln x c + 5.2三.计算题 1①2e ②162.11xy x y '=+-3. ①11ln ||23x C x +++ ②ln ||x C +③()1xex C--++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分)1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x =(B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x fx →=( ).(A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且0)(0>'x f , 则曲线()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ).(A) 12,ln 2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2x y x e -=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12x x e ,则()f x =( ).(A) ()121x x e - (B) 12x x e - (C) ()121x x e + (D) 12x xe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫'⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分) 1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x .3.函数211x y x =+-的水平和垂直渐近线共有_______条.4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x-+=+⎰___________.三.计算题(每小题5分,共30分) 1.求下列极限:①()1lim 12x x x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1y y xe =-所确定的隐函数的导数x y '.3.求下列不定积分:①3tan sec x xdx ⎰②)0a>⎰③2xx e dx ⎰四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yxey y '=-3.①3sec 3x c + ②)lnx c + ③()222xx x e c -++四.应用题:1.略 2.13S =《高等数学》试卷3(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21MM ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x yx y 的定义域是( ).A.(){}21,22≤+≤y x y xB.(){}21,22<+<y x y xC.(){}21,22≤+<y x y x D (){}21,22<+≤y x y x4.两个向量a与b 垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1-6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz =( ).A.22 B.22-C.2D.2-7.若p 级数∑∞=11n pn收敛,则( ).A.p 1<B.1≤pC.1>pD.1≥p8.幂级数∑∞=1n nnx的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x-11 B.x-22 C.x-12 D.x-2110.微分方程0ln =-'y y y x 的通解为( ). A.x ce y = B.x e y = C.x cxe y = D.cxe y = 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z 2_____________________________.4.x+21的麦克劳林级数是___________________________.5.微分方程044=+'+''y y y 的通解为_________________________________.三.计算题(5分⨯6)1.设v e z u sin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin,其中22224:ππ≤+≤yx D .4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程x e y y 23=-'在00==x y 条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫ ⎝⎛31,1,求此曲线方程 .试卷3参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()nn n nx ∑∞=+-0121.5.()x e x C C y 221-+= . 三.计算题 1.()()[]y x y x y exz xy+++=∂∂cos sin ,()()[]y x y x x eyz xy+++=∂∂cos sin .2.12,12+=∂∂+-=∂∂z yy z z x xz . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R .5.x x e e y 23-=. 四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷4(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21MM ( ).A.12B.13C.14D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6πB.4πC.3πD.2π3.函数()22arcsin y x z +=的定义域为( ).A.(){}10,22≤+≤y x y xB.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.216.设223y xy x z ++=,则()=∂∂2,1xz ( ).A.6B.7C.8D.97.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r 8.幂级数()n n x n ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1-9.级数∑∞=14sin n nna 是( ).A.条件收敛B.绝对收敛C.发散D.不能确定 10.微分方程0ln =-'y y y x 的通解为( ). A.cxe y = B.x ce y = C.x e y = D.xcxe y = 二.填空题(4分⨯5) 1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y tx 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________. 3.曲面2242yx z -=在点()4,1,2处的切平面方程为_____________________________________. 4.211x+的麦克劳林级数是______________________.5.微分方程03=-ydx xdy 在11==x y 条件下的特解为______________________________.三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.5.求微分方程023=+'+''y y y 的通解. 四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =(提示:g dtx d -=22.当0=t 时,有0x x =,0v dtdx =)试卷4参考答案一.选择题 CBABA CCDBA. 二.填空题 1.211212+=-=-z y x .2.()xdy ydx e xy +.3.488=--z y x .4.()∑∞=-021n n nx .5.x y =. 三.计算题1.k j i238+-.2.()()()yy xy y y y x yz y y y y x xz 3333223cossincos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ . 3.22,zxy xz yz zxy yz x z +-=∂∂+-=∂∂.4.⎪⎭⎫ ⎝⎛-3223323πa . 5.xxeC e C y --+=221.四.应用题1.316.2. 00221x t v gtx ++-=.《高数》试卷5(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x xa x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()x y f e =, 则____________.y '=5. 221lim_________________.25x x x x →∞+=+-6. 321421sin 1x x dx x x -+-⎰=______________.7.2_______________________.x td e dt dx-=⎰8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2.; 233lim 9x x x →-- 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分) 1. 2x y x =+, 求(0)y '. 2. cos xy e=, 求dy .3. 设x y xy e +=, 求d y d x.四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120xe dx ⎰五、(8分)求曲线1cos x ty t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程xy y ex '+=满足初始条件()10y =的特解.《高数》试卷5参考答案一.1.(3,3)- 2.4a= 3.2x = 4.()x xe f e '5.126.07.22xxe- 8.二阶二.1.原式=0lim1x x x →=2.311lim36x x →=+3.原式=112221lim[(1)]2xx ex--→∞+=三.1.221,(0)(2)2y y x ''==+2.c o s sin xdy xedx =-3.两边对x 求写:(1)x y y xy e y +''+=+'x yx yeyxy y y x ex xy++--⇒==--四.1.原式=ln 2cos x x C -+2.原式=2221ln(1)()ln(1)[ln(1)]222x xx d x x d x +=+-+⎰⎰=222111ln(1)ln(1)(1)221221x xxx dx x x dxxx+-=+--+++⎰⎰=221ln(1)[ln(1)]222xxx x x C +--+++3.原式=12212111(2)(1)222xxe d x ee ==-⎰五.2sin ,1.,,122t dy dy t t x y dxdxπππ======且当时切线:1,1022y x x y ππ-=--+-=即法线:1(),1022y x x y ππ-=--+--=即六.1231014(1)()33Sx dx x x =+=+=⎰22211221(1)11()22V x dy y dy y y ππππ==-=-=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy eC x C x -++=⇒=-±=+八.11()dxdxxx x y e e edx C -⎰⎰=+⎰1[(1)]xx e C x=-+由10,0x yC ==⇒=1xx y ex-∴=《高等数学》试卷6(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( d )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( c ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( c ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( a )A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,225、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、zy zR x --, B 、zy zR x ---, C 、zy zR x ,--D 、zy zR x ,-6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π) A 、R 2A B 、2R 2A C 、3R 2A D 、A R 2217、级数∑∞=-1)1(n nnnx的收敛半径为( )A 、2B 、21 C 、1 D 、38、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n xnB 、∑∞=-1)1(n n)!2(2n xnC 、∑∞=-0)1(n n)!2(2n xnD 、∑∞=-0)1(n n)!12(12--n xn9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分)1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。

大一上高等数学(I )试题及答案

大一上高等数学(I )试题及答案

高等数学(I )一.填空题(每小题5分,共30分)1. 已知0)(2sin lim 30=+>-x x xf x x , 则20)(2lim xx f x +>-= 。

2. 曲线x y ln =上曲率最大的点为__________________。

3. 极限]cos 1[cos lim x x x -+∞>-的结果是_________。

4. 极限 20arcsin lim ln(1)x x x x x →-+=_____________。

5. 曲线)0()1ln(>+=x xe x y 的斜渐近线为( )。

6. 当1→x 时,已知1-x x 和k x a )1(-是等价无穷小,则a =_____,.___=k二、计算题(每小题5分,共20分) 1. x x x x e sin 1023lim ⎪⎪⎭⎫ ⎝⎛+->-2.dx e x x 32⎰ 3.dx x ⎰+cos 2114. 22(tan 1)x e x dx +⎰三.(6分)已知曲线)(x y y =的参数方程⎩⎨⎧++==)41ln(2arctan 2t t y t x ,求22dx y d dx dy ,。

四.(8分)设xx x f )1ln()(ln +=,求⎰dx x f )(五.(10分)设)(x f 31+=x ,把)(x f 展开成带Peano 型余项的n 阶麦克劳林公式,并求).0()50(f六(12分).已知)(x f 是周期为5的连续函数,它在0=x 的某邻域内满足关系式)sin 1(x f +-)(8)sin 1(3x x x f α+=-,其中)(x α是当0→x 时比x 高阶的无穷小,且)(x f 在1=x 处可导,求曲线)(x f y =在点))6(,6(f 处的切线方程。

七.(14分)设函数)(x f 在],[b a 上具有连续导函数)(x f ',且0)()(==b f a f , 证明:2)(4)(a b M dx x f b a -≤⎰,其中|)(|],[x f Max M b a x '=∈。

大一(第一学期)高数期末考试题及答案(完整版).doc

大一(第一学期)高数期末考试题及答案(完整版).doc

大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x y e y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:1033()x f x dx xe dx ---=+⎰⎰⎰03()x xd e --=-+⎰⎰0232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。

大一高数试题和答案及解析

大一高数试题和答案及解析

大一高数试题及答案一、填空题(每小题1分,共10分)________ 11.函数y=arcsin√1-x2+────── 的定义域为_________√1-x2_______________。

2.函数y=x+ex上点(0,1)处的切线方程是______________。

f(Xo+2h)-f(Xo-3h)3.设f(X)在Xo可导且f'(Xo)=A,则lim───────────────h→o h= _____________。

4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。

x5.∫─────dx=_____________。

1-x416.limXsin───=___________。

x→∞ X7.设f(x,y)=sin(xy),则fx(x,y)=____________。

_______R √R2-x28.累次积分∫ dx∫ f(X2+Y2)dy化为极坐标下的累次积分为____________。

0 0d3y3d2y9.微分方程─── +──(─── )2的阶数为____________。

dx3xdx2∞ ∞10.设级数∑ an发散,则级数∑ an _______________。

n=1 n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=── ,g(x)=1-x,则f[g(x)]=()x111①1-── ②1+── ③ ──── ④xxx1-x12.x→0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X=Xo连续,则f( X )在X=Xo可导②若f( X )在 X=Xo不可导,则f( X )在X=Xo不连续③若f( X )在 X=Xo不可微,则f( X )在X=Xo极限不存在④若f( X )在 X=Xo不连续,则f( X )在X=Xo不可导4.若在区间(a,b)内恒有f'(x)〈0,f"(x)〉0,则在(a,b)内曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'(x) =G'(x),则()① F(X)+G(X) 为常数② F(X)-G(X) 为常数③ F(X)-G(X) =0dd④ ──∫F(x)dx=──∫G(x)dxdxdx16.∫ │x│dx=()-1① 0② 1③ 2④ 37.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg── ,则f(tx,ty)=()y①tf(x,y)②t2f(x,y)1③t3f(x,y)④ ──f(x,y)t2an+1∞9.设an≥0,且lim───── =p,则级数∑an()n→∞ a n=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散10.方程y'+3xy=6x2y是()①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是()①y=ex②y=x3+1③y=x3cosx④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f'(ζ)(b-a)②f(b)-f(a)=f'(ζ)(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X)在 X=Xo 的左右导数存在且相等是f(X)在 X=Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11 x16.lim─── ∫ 3tgt2dt=()x→0 x3 01① 0② 1③ ── ④ ∞3xy17.limxysin───── =()x→0 x2+y2y→0① 0② 1③ ∞ ④ sin118.对微分方程y"=f(y,y'),降阶的方法是()① 设y'=p,则y"=p'dp② 设y'=p,则y"=───dydp③设y'=p,则y"=p───dy1dp④ 设y'=p,则y"=── ───pdy∞ ∞19.设幂级数∑ anxn在xo(xo≠0)收敛,则∑ anxn在│x│〈│xo│()n=o n=o①绝对收敛②条件收敛③发散④收敛性与an有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ=()D x1 1 sinx① ∫ dx∫ ───── dy0 x x__1 √y sinx② ∫ dy∫ ─────dx0 y x__1 √x sinx③ ∫ dx∫ ─────dy0 x x__1 √x sinx④ ∫ dy∫ ─────dx0 x x三、计算题(每小题5分,共45分)___________/x-11.设y=/────── 求y' 。

大一上学期(第一学期)高数期末考试题(有答案)

大一上学期(第一学期)高数期末考试题(有答案)

大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f 。

(A )(0)2f '= (B)(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα。

(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小。

3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( )。

(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A)22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(l i m 。

6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则。

7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ 。

8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 / 16
A.a=0 b=1 C.a=1 b=0
B.a=0 b=0 D.a=0 b=1
3、已知函数 f(x) 在 x0 的导数为 a, 则
A.-a
B.a
等于 ( )
C. D.2a 4、设 A.x +c
c
C. +c
D.- +c
5、若 a=3i +5j -2 k, b=2i +j +4k, 且 λa+2b 与 Z 轴垂直,那么 λ
高等数学(上)模拟试卷一
一、 填空题(每空 3 分,共 42 分) 1、函数 y 4 x lg( x 1) 的定义域是;
f ( x)
2、设函数
2x ax
x0
x 0 在点 x 0 连续,则 a ;
3、曲线 y x4 5 在( - 1,- 4)处的切线方程是;
4、已知 f ( x) dx x3 C ,则 f ( x) ;
高等数学 ( 一 ) 模拟试卷 ( 一) 一、选择题:本大题共 5 个小题,每小题 4 分,共 20 分。在每 小题给出的四个选项中,只有一项是符合题目要求的,把所选 项前的字母填在题后的括号内。 1 、设 f( -1)= ,则 f(x) 为( ) A. B. C.- D.
2、设 f(x)=
在点 x=0 连续,则 ( )
x3 dx
1、 x 1
2
2、 x tan xdx
1
3、
e x dx
0
1x dx
4、 1 5 4x
四、求解下列各题(共 18 分):
x ln x y ln y (x y ) lnx y
1、求证:当 x 0, y 0, x y 时,
2 (本题 8
分)
2、求由 y x, y x , 所围成的图形的面积,并求该图形绕 x 轴旋转 一周所形成的旋转体的体积。 (本题 10 分)
8、曲线 y xex 的拐点是;
3
9、 0 x 2dx =;
10、设 a i j 2k, b 2i 2 j k ,且 a b ,则 =;
x2
lim(
ax b) 0
11、 x x 1
,则 a , b ;
3
12、
lim
x1
x1
x
=;
13、设 f ( x) 可微,则 d (2 f ( x) ) =。
二、计算下列各题(每题 5 分,共 20 分)
2 / 16
lim( 1
1)
1、 x 1 ln x x 1
2、 y arcsin 1 3x ,求 y' ;
3、设函数 y y(x) 由方程 exy x y 所确定,求 dy x 0 ;
x sin t
dy
4、已知 y cost t sin t ,求 dx 。
三、求解下列各题(每题 5 分,共 20 分)
=__________.
10、
=_________________.
11、已知空间两点 P1(1 ,-2 ,-3) ,P2(4 ,1,-9) ,那么平行于
直线段 P1P2,且过点 (0 ,-5 ,1) 的直线方程是 ______________.
4 / 16
12、设 u=f(x 2-y 2,e xy) 可微,则 =_____________.
为( )
A.4
B.3
C.2
D.1
二、填空题:本大题共 10 个小题, 10 个空,每空 4 分,共 40 分。把答案填在题中横线上。
6、求
=_____________.
7、若 y= ,则 y(n) =___________.
8、若 x=atcost,y=atsint, 则
9、
=___________.
x0
2、设函数
a 2x
x 0 在点 x 0 连续,则 a ;
3、曲线 y x3 4 在 ( 1, 5) 处的切线方程是;
4、已知 f ( x) dx x2 C ,则 f ( x) ;
lim(1
1
)
x 3
5、 x
x =;
6、函数 f ( x) x3 x2 1的极大点是;
7、设 f ( x) x( x 1)(x 2)…… ( x 1000) ,则 f ' (0) ;
x2
lim(
ax b) 0
11、 x x 1
,则 a , b ;
3
12、
lim
x1
x1
x
=;
13、设 f ( x) 可微,则 d (e f ( x) ) =。
二、 计算下列各题(每题 5 分,共 20 分)
lim( 1
1)
1、 x 0 ln( x 1) x
2、 y arccos 1 2x ,求 y ; 3、设函数 y y(x) 由方程 exy x y 所确定,求 dy x 0 ;
13、将积分
改变积分次序, 则 I=_____________.
14、幂级数
的收敛半径 R=_____________.
15、方程 y"-2y'+y=3xe x 的特解可设为 y* =____________.
三、计算题与证明题:本大题共 60 分。
10 个小题,每小题 6 分,共
16、求
.
17、求 18、设函数 f(x) 有连续的导淑,且 f(0)=f'(0)=1.
lim(1
1
)
x 2
5、 x
x =;
6、函数 f ( x) x3 x2 1的极大点是;
7、设 f ( x) x( x 1)(x 2)…… ( x 2006) ,则 f (1) ;
8、曲线 y xex 的拐点是;
2
9、 0 x 1dx =;
10、设 a i 3 j 2k , b i j k ,且 a b ,则 =;
0 时,
x
2 (本题 8 分)
2、求由 y ex, y e, x 0所围成的图形的面积, 并求该图形绕 x轴旋 转一周所形成的旋转体的体积。 (本题 10 分)
高等数学(上)模拟试卷二
一、填空题(每空 3 分,共 42 分)
1、函数 y 4 x2 lg( x 1) 的定义域是;
sin x
f (x)
x
求 19、 设 y=f(x) 是由方程 sin(x+y 2)=xy ,确定的隐函数,求 . 20、求
21、求
.
22、设
,求
2、计算
,其中 D 为圆域 x2+y2≤4.
4、将函数 f(x)= 展开成在 x=2 处的幂级数 .
25、证明
.
四、综合题:本大题共 3 个小题,每小题 10 分,共 30 分。
x cost
dy
4、已知 y sin t t cost ,求 dx 。
三、 求解下列各题(每题 5 分,共 20 分)
1 / 16
1、 2、
x4
x2
dx 1
x sec2 xdx
4x 2 dx
3、 0 2x 1
4、
0
3a
a2
1
x2
dx
四、 求解下列各题(共
18 分):
x2
1、求证:当 x
ln(1 x)
相关文档
最新文档