常用集成电路型号及引脚图

合集下载

555芯片引脚图及引脚描述

555芯片引脚图及引脚描述

555芯片引脚图及引脚描述555的8脚是集成电路工作电压输入端,电压为5~18V,以UCC表示;从分压器上看出,上比较器A1的5脚接在R1和R2之间,所以5脚的电压固定在2UCC/3上;下比较器A2接在R2与R3之间,A2的同相输入端电位被固定在UCC/3上。

1脚为地。

2脚为触发输入端;3脚为输出端,输出的电平状态受触发器控制,而触发器受上比较器6脚和下比较器2脚的控制。

当触发器接受上比较器A1从R脚输入的高电平时,触发器被置于复位状态,3脚输出低电平;2脚和6脚是互补的,2脚只对低电平起作用,高电平对它不起作用,即电压小于1Ucc/3,此时3脚输出高电平。

6脚为阈值端,只对高电平起作用,低电平对它不起作用,即输入电压大于2 Ucc/3,称高触发端,3脚输出低电平,但有一个先决条件,即2脚电位必须大于1Ucc/3时才有效。

3脚在高电位接近电源电压Ucc,输出电流最大可打200mA。

4脚是复位端,当4脚电位小于0.4V时,不管2、6脚状态如何,输出端3脚都输出低电平。

5脚是控制端。

7脚称放电端,与3脚输出同步,输出电平一致,但7脚并不输出电流,所以3脚称为实高(或低)、7脚称为虚高。

555集成电路管脚,工作原理,特点及典型应用电路介绍.1 555集成电路的框图及工作原理555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。

但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。

此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。

由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体,如图1所示。

2. 555芯片管脚介绍555集成电路是8脚封装,双列直插型,如图2(A)所示,按输入输出的排列可看成如图2(B)所示。

常用PCB封装图解

常用PCB封装图解

常用集成电路芯片封装图doc文档可能在WAP端浏览体验不佳。

建议您优先选择TXT,或下载源文件到本机查看。

PCB 元件库命名规则2.1 集成电路(直插)用DIP-引脚数量+尾缀来表示双列直插封装尾缀有N 和W 两种,用来表示器件的体宽N 为体窄的封装,体宽300mil,引脚间距2.54mm W 为体宽的封装, 体宽600mil,引脚间距 2.54mm 如:DIP-16N 表示的是体宽300mil,引脚间距2.54mm 的16 引脚窄体双列直插封装 2.2 集成电路(贴片)用SO-引脚数量+尾缀表示小外形贴片封装尾缀有N、M 和W 三种,用来表示器件的体宽N为体窄的封装,体宽150mil,引脚间距 1.27mm M 为介于N 和W 之间的封装,体宽208mil,引脚间距1.27mm W 为体宽的封装, 体宽300mil,引脚间距 1.27mm 如:SO-16N 表示的是体宽150mil,引脚间距1.27mm 的16 引脚的小外形贴片封装若SO 前面跟M 则表示为微形封装,体宽118mil,引脚间距0.65mm 2.3 电阻 2.3.1 SMD 贴片电阻命名方法为:封装+R 如:1812R 表示封装大小为1812 的电阻封装2.3.2 碳膜电阻命名方法为:R-封装如:R-AXIAL0.6 表示焊盘间距为0.6 英寸的电阻封装 2.3.3 水泥电阻命名方法为:R-型号如:R-SQP5W 表示功率为5W 的水泥电阻封装 2.4 电容 2.4.1 无极性电容和钽电容命名方法为:封装+C 如:6032C 表示封装为6032 的电容封装 2.4.2 SMT 独石电容命名方法为:RAD+引脚间距如:RAD0.2 表示的是引脚间距为200mil 的SMT 独石电容封装 2.4.3 电解电容命名方法为:RB+引脚间距/外径如:RB.2/.4 表示引脚间距为200mil, 外径为400mil 的电解电容封装 2.5 二极管整流器件命名方法按照元件实际封装,其中BAT54 和1N4148 封装为1N4148 2.6 晶体管命名方法按照元件实际封装,其中SOT-23Q 封装的加了Q 以区别集成电路的SOT-23 封装,另外几个场效应管为了调用元件不致出错用元件名作为封装名 2.7 晶振HC-49S,HC-49U 为表贴封装,AT26,AT38 为圆柱封装,数字表规格尺寸如:AT26 表示外径为2mm,长度为8mm 的圆柱封装 2.8 电感、变压器件电感封封装采用TDK 公司封装 2.9 光电器件 2.9.1 贴片发光二极管命名方法为封装+D 来表示如:0805D 表示封装为0805 的发光二极管 2.9.2 直插发光二极管表示为LED-外径如LED-5 表示外径为5mm 的直插发光二极管2.9.3 数码管使用器件自有名称命名 2.10 接插件 2.10.1 SIP+针脚数目+针脚间距来表示单排插针,引脚间距为两种:2mm,2.54mm 如:SIP7-2.54 表示针脚间距为 2.54mm 的7 针脚单排插针 2.10.2 DIP+针脚数目+针脚间距来表示双排插针,引脚间距为两种:2mm,2.54mm 如:DIP10-2.54 表示针脚间距为2.54mm 的10 针脚双排插针 2.10.3 其他接插件均按E3 命名 2.11 其他元器件详见《Protel99se 元件库清单》3 SCH 元件库命名规则3.1 单片机、集成电路、二极管、晶体管、光电器件按照器件自有名称命名 3.2 TTL74 系列和COMS 系列是从网上找的元件库,封装和编码需要在画原理图时重新设定 3.3 电阻 3.3.1 SMD 电阻用阻值命名,后缀加-F 表示1%精度,如果一种阻值有不同的封装,则在名称后面加上封装如:3.3-F-1812 表示的是精度为1%,封装为1812,阻值为 3.3 欧的电阻 3.3.2 碳膜电阻命名方法为:CR+功率-阻值如:CR2W-150 表示的是功率为2W,阻值为150 欧的碳膜电阻 3.3.3 水泥电阻命名方法为:R+型号-阻值如:R-SQP5W-100 表示的是功率为5W,阻值为100 欧的水泥电阻 3.3.4 保险丝命名方法为:FUSE-规格型号,规格型号后面加G 则表示保险管如:FUSE-60V/0.5A 表示的是60V,0.5A 的保险丝 3.4 电容3.4.1 无极性电容用容值来命名,如果一种容值有不同的封装,则在容值后面加上封装。

主流IC比较及应用LM1875、LM3886(LM4780)、LM4766、TDA7293、TDA7294

主流IC比较及应用LM1875、LM3886(LM4780)、LM4766、TDA7293、TDA7294

LM1875、LM3886(LM4780)、LM4766、TDA7293、TDA7294比较及应用摘要:一.6片IC简介本文将为大家介绍现在流行的6款IC音频功率放大器,分别是美国国半公司的LM1875、LM4766、LM3886(LM4780)以及ST意法公司的TDA9293和TDA7294,它们的标称输出功率在30~100W范围内,适用于家用高保真音频功率放大器。

采用这几款IC的功放具有元件少、调试简单的特点,功率、音质与一般的分立元件功放相比毫不逊色,因此一直受到广大DIY发烧友,特别是初学者的喜爱。

JeffRowland 的基于LM3886、TDA7293的功放跻身世界优秀功放之林,更证明了功率IC本身性能之优异。

关键词:音频功率放大器功率IC TDA7294 TDA7293应用LM1875 LM4766 LM3886一、6片IC简介本文将为大家介绍现在流行的6款IC音频大功率放大器,分别是美国国半公司的LM1875、LM4766、LM386(LM4780)以及ST意法公司的TDA7293、TDA7294,它们的标称功率在30~100W范围内,适合于家用高保真音频放大器。

采用这几款IC的功放具有元件少,高度简单的特点,功率、音质与一般分立元件功放相比毫不逊色,因此一直受到DIY发烧友,特别是初学者的喜爱。

JeffRowland的基于LM3886、TDA7293的功放跻身世界优秀功放之林,更证明了功率IC本身性能之优异。

虽然JeffRowland证明了功率IC可以好声,而且这些IC家喻户晓,使用者众多,但“IC音质不如分立元件”的观念却依然根深蒂固的扎根于广大DIY发烧友的头脑里。

很多人对这些芯片的认识来自未能发挥芯片的制作,造成对这些芯片的误解。

本文将从产品数据手册入手,多角度,深入地挖掘产品数据手册中包含的丰富信息,揭开数据背后隐藏的秘密,以求给大家一个全面的认识。

1、LM1875LM1875是美国国家半导体公司20世纪90年代初推出的一款音频功放IC,如图1所示。

74ls147引脚图管脚图和功能真值表

74ls147引脚图管脚图和功能真值表

74ls147引脚图管脚图和功能真值表优先编码器是当多个输入端同时有信号时,电路只对其中优先级别最高的输入信号进行编码。

常用的集成优先编码器IC有10线-4线、8线-3线两种。

10线-4线优先编码器常见的型号为54/74147、54/74LS147,8线-3线优先编码器常见的型号为54/74148、54/74LS148。

下面我们以TTL中规模集成电路74LS147为例介绍8421→BCD码优先编码器的功能。

10线-4线8421 BCD码优先编码器74LS147的真值表见表3.5。

74LS147的引脚图如图3.5所示,其中第9脚NC为空。

74LS147优先编码器有9个输入端和4个输出端。

某个输入端为0,代表输入某一个十进制数。

当9个输入端全为1时,代表输入的是十进制数0。

4个输出端反映输入十进制数的BCD 码编码输出。

74LS147优先编码器的输入端和输出端都是低电平有效,即当某一个输入端低电平0时,4个输出端就以低电平0的输出其对应的8421 BCD编码。

当9个输入全为1时,4个输入出也全为1,代表输入十进制数0的8421 BCD编码输出。

表3.5 74LS147的真值表数字电路CD4511的原理(引脚及功能)CD4511是一个用于驱动共阴极 LED (数码管)显示器的 BCD 码—七段码译码器,特点:具有BCD转换、消隐和锁存控制、七段译码及驱动功能的CMOS电路能提供较大的拉电流。

可直接驱动LED显示器。

CD4511 是一片 CMOS BCD—锁存/7 段译码/驱动器,引脚排列如图 2 所示。

其中a b c d 为 BCD 码输入,a为最低位。

LT为灯测试端,加高电平时,显示器正常显示,加低电平时,显示器一直显示数码“8”,各笔段都被点亮,以检查显示器是否有故障。

BI为消隐功能端,低电平时使所有笔段均消隐,正常显示时, B1端应加高电平。

另外 CD4511有拒绝伪码的特点,当输入数据越过十进制数9(1001)时,显示字形也自行消隐。

74ls147引脚图管脚图和功能真值表

74ls147引脚图管脚图和功能真值表

74ls147引脚图管脚图和功能真值表优先编码器是当多个输入端同时有信号时,电路只对其中优先级别最高的输入信号进行编码。

常用的集成优先编码器IC有10线-4线、8线-3线两种。

10线-4线优先编码器常见的型号为54/74147、54/74LS147,8线-3线优先编码器常见的型号为54/74148、54/74LS148。

下面我们以TTL中规模集成电路74LS147为例介绍8421→BCD码优先编码器的功能。

10线-4线8421 BCD码优先编码器74LS147的真值表见表3.5。

74LS147的引脚图如图3.5所示,其中第9脚NC为空。

74LS147优先编码器有9个输入端和4个输出端。

某个输入端为0,代表输入某一个十进制数。

当9个输入端全为1时,代表输入的是十进制数0。

4个输出端反映输入十进制数的BCD 码编码输出。

74LS147优先编码器的输入端和输出端都是低电平有效,即当某一个输入端低电平0时,4个输出端就以低电平0的输出其对应的8421 BCD编码。

当9个输入全为1时,4个输入出也全为1,代表输入十进制数0的8421 BCD编码输出。

表3.5 74LS147的真值表数字电路CD4511的原理(引脚及功能)CD4511是一个用于驱动共阴极 LED (数码管)显示器的 BCD 码—七段码译码器,特点:具有BCD转换、消隐和锁存控制、七段译码及驱动功能的CMOS电路能提供较大的拉电流。

可直接驱动LED显示器。

CD4511 是一片 CMOS BCD—锁存/7 段译码/驱动器,引脚排列如图 2 所示。

其中a b c d 为 BCD 码输入,a为最低位。

LT为灯测试端,加高电平时,显示器正常显示,加低电平时,显示器一直显示数码“8”,各笔段都被点亮,以检查显示器是否有故障。

BI为消隐功能端,低电平时使所有笔段均消隐,正常显示时, B1端应加高电平。

另外 CD4511有拒绝伪码的特点,当输入数据越过十进制数9(1001)时,显示字形也自行消隐。

74LS系列主要芯片引脚及参数

74LS系列主要芯片引脚及参数

<74LS00引脚图>74l s00 是常用的2输入四与非门集成电路,他的作用很简单顾名思义就是实现一个与非门。

Vcc 4B 4A 4Y 3B 3A 3Y┌┴—┴—┴—┴—┴—┴—┴┐__ │14 13 12 11 10 9 8│Y = AB )│ 2输入四正与非门 74LS00│ 1 2 3 4 5 6 7│└┬—┬—┬—┬—┬—┬—┬┘1A 1B 1Y 2A 2B 2Y GND74LS00真值表:A=1 B=1 Y=0A=0 B=1 Y=1A=1 B=0 Y=1A=0 B=0 Y=174HC138基本功能74LS138 为3 线-8 线译码器,共有54/74S138和54/74LS138 两种线路结构型式,其74LS138工作原理如下:当一个选通端(G1)为高电平,另两个选通端(/(G2A)和/(G2B))为低电平时,可将地址端(A、B、C)的二进制编码在一个对应的输出端以低电平译出。

74LS138的作用:利用G1、/(G2A)和/(G2B)可级联扩展成24 线译码器;若外接一个反相器还可级联扩展成32 线译码器。

若将选通端中的一个作为数据输入端时,74LS138还可作数据分配器用与非门组成的3线-8线译码器74LS138图74ls138译码器内部电路3线-8线译码器74LS138的功能表备注:这里的输入端的三个A0~1有的原理图中也用A B C表示(如74H138.pdf中所示,试用于普中科技的HC-6800 V2.2单片机开发板)。

<74ls138功能表>74LS138逻辑图无论从逻辑图还是功能表我们都可以看到74LS138的八个输出管脚,任何时刻要么全为高电平1—芯片处于不工作状态,要么只有一个为低电平0,其余7个输出管脚全为高电平1。

如果出现两个输出管脚在同一个时间为0的情况,说明该芯片已经损坏。

当附加控制门的输出为高电平(S=1)时,可由逻辑图写出74ls138逻辑图由上式可以看出,在同一个时间又是这三个变量的全部最小项的译码输出,所以也把这种译码器叫做最小项译码器。

78L05引脚图及电路原理图详解

78L05引脚图及电路原理图详解

78L05引脚图及电路原理图详解7805引脚图7805是常⽤的三端稳压器,⼀般使⽤的是TO-220封装,能提供DC 5V的输出电压,应⽤范围⼴,内含过流和过载保护电路。

带散热⽚时能持续提供1A的电流,如果使⽤外围器件,它还能提供不通的电压和电流。

7805是常⽤的三端稳压器件,顾名思义05就是输出电压为5v,还可以微调,7805输出波纹很⼩。

(1) 集成三端稳压器根据稳定电压的正、负极性分为78×××,79×××系列。

附图给出了正、负稳压的典型电路。

〈正、负稳压7805电路〉(2) 三端稳压器的型号规格和管脚分布。

例如:78M05三端稳压器可输出+5 V、0.5 A的稳定电压;7912三端稳压器可输出 12V、1A的稳定电压。

(3) 外形及管脚分布,如附图1-25所⽰。

由7805,7905,7812组成的特殊的线性稳压电源如图所⽰为⼀种特殊的电源电路。

该电路虽然简单,但可以从两个相同的次级绕组中产⽣出三组直流电压:+5V、-5V和+12V。

其特点是:D2、D3跨接在E2、E3这两组交流电源之间,起着全波整流的作⽤。

7805可调稳压电源电路图7800系列三端稳压集成电路⼴泛⽤于各种电⼦电器电路中⽤作电源稳压,它的输出电压是固定的,但如果对外围电路稍作改动就可以是⼀个不错的连续可调稳压电源,⽤作实验检修之⽤完全可⾏。

制作之前需了解:7800系列三端稳压器按输出电流区分有三种系列,分别是78L00系列最⼤输出电流0.1A;78M00系列最⼤输出电流0.5A;7800系列最⼤输出电流1.5A。

三端稳压器输⼊输出压差要⼤于2V。

7805-7818的最⾼输⼊电压不能超过35V,7820-7824最⾼输⼊电压不能超过40V。

7805制作的5V-12V连续可调稳压电源这⾥选⽤7805制作了⼀个5V~12V连续可调的直流稳压电源实例。

图中R1、R2的取值决定了输出电压的可调范围,按照图⽰取值可在5~12V稳压范围内实现输出电压连续可调。

常用集成电路外部引脚图

常用集成电路外部引脚图

附录B 常用集成电路外部引脚图(1) 74LS00四2输入正“与非”门74LS00 皿VCC484A4Y383A3Y[1] LU12J LU 111IZJ1A1B 1Y2A2B 2YCWD(3) 74LS04六反相器74LS04 gLU I2J LU LU L1J 回 LU1A 1Y 2A 2Y 3A SY GND(2) 74LS02四2输入正“或非”门74LS02 Y “.BVcc 4Y 48 4A SY 3B 3A(4) 74LS08四2输入正“与”门74LS08 Y ,ASV<X 4B 4A 4Y 38 5A 3Y而冋耳冋冋回ITd 自3 4 ©⑼31A IB 1Y 2A 28 2Y GhO(5) 74LS10三3输入正“与非”门74LS10 Y-A8C(6) 74LS14六反相施密特触发器Y = AVO : 6A 6Y 5A 5Y 4A 4Y质」 申?护卩 山山山山山山Ld1A l¥ 2A 2Y M 3Y GKD(7) 74LS20双4输入正“与非"门74LS20 Y =ABCOVbc 2D X NC 28 2A 2Y1.1A IB NC 1C 10 IV GHD(8) 74LS32 四 2^A^nY = A + Bva 4B 4A 4Y 3B M 3T(9) 74LS47 BCD到七段译码器/驱动器 (有效低、0C门、15V)74LS47Vcc f g a b c d e冋冋向冋/LLJ'・~ -*15枪入tA tAji LU ill i< 1^1 Ld iejB C LT BI RBO RW D A GHC(10) 74LS48 BCD到七段码译码/驱动器(有上拉电阻)I.T REO/R】IR1 D A GXDY = AB + CDE + FGH + IJ(13) 74LS74双D型触发器(带预置和清除、正沿触发)Vco XLR 20 2OK 2PR 20 2Q而回丽0回目国74LS74丄[£J向21㈢空也1CLR 10 1CK 1PR 1O 1O GKO(15) 74LS86四2输入异或门74LS86 Y=A«$6=AS=ABVcc 4B 4A 4Y 38 3A 3Y[iT fol 12] (Til Ro] [¥] [Tl(14) 74LS76双JK触发器(带预置和清除、负沿触发)IK IQ 1Q GNO 2K 2Q 2Q 2J74LS76Ji >: <:■n [:. <:■E L II1J3L L L£J⑥山直1CK 1PR 1CLR 1J Vcc 2CK 2PR 2CLR(16) 74LS125四总线缓冲门Y = A(带三态输出、C高时输出关断,即禁止)74LS125 zVcc 4C 4A <r X 3A 3Y 而冋冋而同回国m^n^rHTWKPT1C 1A 1Y 2C 2A 2Y GN0(11) 74LS51 2-3输入“与或非"门(12) 74LS54与或非门2丫• :2A・26)■ :2C・2D)74LS511Y- 1A- 16 - 1C' ♦r1D- im(17) 74LS138 3线-8线译码器 (多路转换器)驱 YO Y1 Y2 Y3 Y4 Y$ Yfl 応屁而冋叼而応冋74LS1383发・8纯话哥寥,$0转萩耳L L LL12JU J 1JL 6J I 11S JABC O2A G2B G1 Y7 GNOVoc eO GS 32 1 0 AO丽:[ii] 冋卑厄 M 冋叵]74LS148 8ft-3^ A 进创优先廉垮比4567 El A2 A1 ONC(19) 74LS151 8选1数据选择器 (多路转换器)497 A U C[?& 同而而壬]而同可(20) 74LS153 4选1数据选择器(多路转换器)ra a A 2C32C2 XI 2(» 2Y冋冋冋冋冈冋而[7]74LS151 LU LU 2J Li ±l 1 IzJ ±J3 210 Y W S GHD74LS153UlLdUJLiJlAJLLlLJLiJTc B ICS IC2 IC) ICO IT CKD(21) 74LSI60同步4位计数器(十进制,直接清除)(22) 74LS161同步4位计数器(二进制,直接清除)74LS160E 步凶使计fts ・i (柚斤陰》I1J l±] UJ L 4' HJ l± L1J l£CLR CLK AB C 0 EP CND(23) 74LS194 4位双向通用移位寄存器(24) CD4060B 二进制计数器和振荡器(分频器,14级进位)CLR $R A 8 C 0 SI GNDQ】2 Q13 QM Q6Q7 Q4 VSS(18) 74LS148 8线-3线八进制编码器VCC CO QA 06 QC QD ET 1031 CU A B C D »? ©©(25) NE555多谐振荡器(26) "741运算放大器(27) ADC0804八位模/数转换器(28) DAC0832八位数/模转换器吃CLKI DM DB1 D© 063 DM D65 DB6 C67ADC0804LdLjLJLiJLJLdLJLBJLdkJ誌药55 cum T5TTI um U1&- MKD Ur©f/2 DO©(29)七段显示数码管(示意图)DP G COM F EHill£... 、a af JA B COMC D岡冋冋回冋网冋冋网冋VCC (IE WW2 OTR M 05 «07 Uttll I<»t2网冋冋冋冋网冋冋冋冋MC0832L2JS 丽I 临D D3 D2 01 BO Uref Rfb MMD附录C常用门逻辑符号对照表。

常用集成电路型号及引脚图

常用集成电路型号及引脚图

常用集成电路型号及引脚图
电路名称及符号 引脚图 注释
六反向器
TTL 74LS04 CMOS MC14069 A:输入 Y:输出
四两输入与非门
TTL 74LS00 CMOS MC14069 7401(OC) A、B:输入 Y:输出
双四输入与非门 TTL 74LS20 CMOS MC14012 NC 为空脚
A、B、C、D 输入 Y 输出
双进位保留全加器
74LS183
NC 为空脚
四两输入异或门 74LS86 A、B:输入 Y 输出
与门输入主­从
单 J­K 触发器
74H72
上升沿触发
二—五—十进制
异步计数器
74LS290
双 D 型触发器
74LS74
上升沿触发
错误!文档中没有指定样式的文字。

221
556
双 JK 触发器 74LS112
负沿触发
四总线缓冲器 74125(三态低有效) 74126(三态高有效)
555
四线—十线译码器 74LS42
十线—四线优先 编码器 74LS147
双四选一数据 选择器 74LS153
同步可逆十进制 计数器 74LS192
CP+=1 CP­ =↑减法 CP+=↓CP­ =1 加法
ADC 0809。

7812和7912

7812和7912

W7812为三端固定正12V输入的集成稳压器,7812引脚图如下图所示.7812主要参数有:输出直流电压 U0=+12V,输出电流 L:0.1A,M:0.5A,电压调整率 10mV/V,输出电阻 R0=0.15Ω,输入电压UI的范围15~17V 。

因为一般UI 要比 U大3~5V ,才能保证集成稳压器工作在线性区。

图1 三端稳压器7812引脚图及外形图图2 是用三端式稳压器W7812构成的单电源电压输出串联型稳压电源的实验电路图。

其中整流部分采用了由四个二极管组成的桥式整流器成品(也叫整流堆,型号为2W06),当然也可以自已用四个速流二极管(如,IN4001)组成。

滤波电容C1、C2一般选取几百~几千微法。

当稳压器距离整流滤波电路比较远时,在输入端必须接入电容器C3(数值为0.33μF ),以抵消线路的电感效应,防止产生自激振荡。

输出端电容C4(0.1μF)用以滤除输出端的高频信号,改善电路的暂态响应。

由7812构成的串联型稳压电源负12V,1A三端稳压器LM7912中文资料(引脚图,电气特性参数,应用电路)LM7912引脚图及外形图:图1 LM7912外形引脚排列图管脚图LM7912内部电路图:图2 79XX内部电路图LM7912电气特性参数:Electrical Characteristics 电气特性(MC7912)三端稳压集成电路极限参数:图3 输出电压图4 负载调节率曲线图图5 电压差曲线图图6 静态电流曲线图图7 短路电流曲线图LM7912应用电路:图8 LM7912典型应用电路图9 与78XX系列三端稳压构成的正负对称输出电压应用电路图12正负12V稳压电源_电路图7812/7912正负12V稳压电源_电路图7812和7912三端稳压器是电子设备中常用的线性稳压集成电路,最大输出电流1.5A (需加散热器)。

下面是用这两种稳压IC制作的正负稳压电源典型电路,供大家参考。

初学者特别应注意7812正电源稳压IC与7912负电源稳压IC的引脚功能是不一样的,有关详细说明见:三端稳压器7912引脚功能,电路接法7812/7912正负12V稳压电源从电路中可以看到,7812/7912的输入输出端都接有电容,而且是一大一小,大容量电容是低频滤波作用,小容量电容是高频滤波用。

74HC165、75HC595芯片引脚及原理框图 - 电子技术

74HC165、75HC595芯片引脚及原理框图 - 电子技术

74HC165、75HC595芯片引脚及原理框图 -电子技术图 74HC165、75HC595芯片引脚及原理框图有了图引脚资料,也许还须再加上时序波形图,再加上内部功能电路图,才能有分析工作原理的条件。

也许仍然不够,还须深究对信号的处理细节。

移位寄存器芯片属于中规模集成电路,其电路结构较为复杂,这么一通搞下来,费时费力。

有简单的办法吗?可由应用电路的构成,倒推芯片所完成的功能。

也许换一个路子走,更有效率。

先看图,弄明白IC芯片在电路中起到的作用。

其中用于处理显示的相关电路部分:①5组反相器(BU5)为通讯信号传输芯片,其中9、8脚传输的为显示同步时钟(串行脉冲);1、2、3、4脚两组反相器传输的显示数据(串行脉冲),以上是数码管显示所需的两路输入信号。

②BU1、BU3用于串行脉冲的再处理,将串行输入转换为8路并行输出(专门处理数码管显示信息)。

配合后续电路分析,BU1输出信号经三极管BQ1~BQ8放大,用于数码管的8段显示驱动;BU3输出信号再经BU2进行功率放大,用于6位(7只发光二极管也算作一位,再加上5位数码显示)数码管驱动。

据此,本电路是根据由MCU主板来(主板MCU发送)的串行脉冲,被动显示的,若显示88888或-----,或无显示,仅有两个可能:①MCU主板未有串行脉冲(显示数据)送至面板,此故障概率较大;②BU5、BU1、BU2、BU3等电路异常,此故障概率较小。

先不管芯片好坏,测量BU5相关输入、输出引脚的串行脉冲信号,此处推荐采用示波器测量较为准确,若有一路是存在的,则说明主板MCU已经工作(该两路脉冲是主板MCU已经正常工作的标志)。

若两路俱无,则故障检修方向已经明确指向排线端子及主板MCU基本工作条件电路。

若脉冲正常,而显示异常,检修方向即指向面板电路。

例如针对74HC595芯片,①只要测知输入11脚串行脉冲(显示时钟)和输入14脚串行脉冲(显示数据)正常,②则其余8个“段驱动”信号输出脚,至少有数个脚应有脉冲电压(如2.5V左右)输出。

555时基集成电路引脚图及主要参数

555时基集成电路引脚图及主要参数

555时基集成电路引脚图及主要参数555时基集成电路是数字集成电路,是由21个晶体三极管、4个晶体二极管和16个电阻组成的定时器,有分压器、比较器、触发器和放电器等功能的电路。

它具有成本低、易使用、适应面广、驱动电流大和一定的负载能力。

在电子制作中只需经过简单调试,就可以做成多种实用的各种小电路,远远优于三极管电路。

555时基电路国内外的型号很多,如国外产品有:NE555、LM555、A555和CA555等;国内型号有5GI555、SL555和FX555等。

它们的内部结构和管脚序号都相同,因此,可以直接互相代换。

但要注意,并不是所有的带555数字的集成块都是时基集成电路,如MMV555、AD555和AHD555等都不是时基集成电路。

常见的555时基集成电路为塑料双列直插式封装(见图5-36),正面印有555字样,左下角为脚①,管脚号按逆时针方向排列。

(图5-36)555时基集成电路各引脚功能描述:脚①是公共地端为负极;脚②为低触发端TR,低于1/3电源电压以下时即导通;脚③是输出端V,电流可达2000mA;脚④是强制复位端MR,不用可与电源正极相连或悬空;脚⑤是用来调节比较器的基准电压,简称控制端VC,不用时可悬空,或通过0.01μF电容器接地;脚⑥为高触发端TH,也称阈值端,高于2/3电源电压发上时即截止;脚⑦是放电端DIS;⑧是电源正极VC。

555时基集成电路的主要参数为(以NE555为例):电源电压4.5~16V。

输出驱动电流为200毫安。

作定时器使用时,定时精度为1%。

作振荡使用时,输出的脉冲的最高频率可达500千赫。

使用时,驱动电流若大于上述电流时,在脚③输出端加装扩展电流的电路,如加一三极管放大。

TDA2030功放电路图电压±6

TDA2030功放电路图电压±6

TDA2030功放电路图电压±6时间:2015-4-15日 9:14TDA2030引脚图与应用电路参数TDA2030是最常用到的音频功率放大电路,模拟电路的课本的一般都有介绍,这里我给大家介绍一下各种TDA2030参数TDA2030管脚功能:1脚是正相输入端2脚是反向输入端3脚是负电源输入端4脚是功率输出端5脚是正电源输入端。

<TDA2030引脚图>TDA2030特点:1.开机冲击极小。

2.外接元件非常少。

3.TDA2030输出功率大,Po=18W(RL=4Ω)。

4.采用超小型封装(TO-220),可提高组装密度。

5.TDA2030A能在最低±6V最高±22V的电压下工作在±19V、8Ω阻抗时能够输出16W的有效功率,THD≤0.1%。

6.内含各种保护电路,因此工作安全可靠。

主要保护电路有:短路保护、热保护、地线偶然开路、电源极性反接(Vsmax=12V)以及负载泄放电压反冲等。

功放中的前置放大器,一般都采用双电源供电,即对称的正负电源供电。

业余制作时,又会碰到手头无双电源,这就给制作带来困难。

本文介绍利用TDA2030将单电源转换双电源给前置放大器NE5532供电,电路如附图所示。

用TDA2030做双电源供电电路TDA2030 (IC1)是一种高效的运算放大器。

利用它的互补输出,就可将单极性电源转换成所需出的双极性电源。

在图中,阴值相等的Rl、 R2形成一个分压器,分压器的中点接到IC1运算放大器的同相输入端,且IC1接成电压跟随器,使O’端和0端电位相等。

O’端又是虚地点,它与输入电源的接地端完全隔离。

C2、C3分别为正、负电源的滤波电容。

正电源从C2的“+”端输出,加到IC2 NE5532的⑧脚,负电源从C3的“一”端输出,加到IC2 NE5532的④脚.O’端为IC2的接地端。

由于NE5532在以往的文章中介绍较多,这里不再赘述。

在电路图中均标明了元件数值,只要按图制作,一般无需调试均可正常工作。

LM1875、LM3886(LM4780)、LM4766、TDA7293、TDA7294比较及应用

LM1875、LM3886(LM4780)、LM4766、TDA7293、TDA7294比较及应用

LM1875、LM3886(LM4780)、LM4766、TDA7293、TDA7294比较及应用摘要:一.6片IC简介本文将为大家介绍现在流行的6款IC音频功率放大器,分别是美国国半公司的LM1875、LM4766、LM3886(LM4780)以及ST意法公司的TDA9293和TDA7294,它们的标称输出功率在30~100W 范围内,适用于家用高保真音频功率放大器。

采用这几款IC的功放具有元件少、调试简单的特点,功率、音质与一般的分立元件功放相比毫不逊色,因此一直受到广大DIY发烧友,特别是初学者的喜爱。

JeffRowland的基于LM3886、TDA7293的功放跻身世界优秀功放之林,更证明了功率IC本身性能之优异。

关键词:音频功率放大器功率IC TDA7294 TDA7293应用LM1875 LM4766 LM3886一、6片IC简介本文将为大家介绍现在流行的6款IC音频大功率放大器,分别是美国国半公司的LM1875、LM4766、LM386(LM4780)以及ST意法公司的TDA7293、TDA7294,它们的标称功率在30~100W范围内,适合于家用高保真音频放大器。

采用这几款IC的功放具有元件少,高度简单的特点,功率、音质与一般分立元件功放相比毫不逊色,因此一直受到DIY发烧友,特别是初学者的喜爱。

JeffRowland的基于LM3886、TDA7293的功放跻身世界优秀功放之林,更证明了功率IC本身性能之优异。

虽然JeffRowland证明了功率IC可以好声,而且这些IC家喻户晓,使用者众多,但“IC音质不如分立元件”的观念却依然根深蒂固的扎根于广大DIY发烧友的头脑里。

很多人对这些芯片的认识来自未能发挥芯片的制作,造成对这些芯片的误解。

本文将从产品数据手册入手,多角度,深入地挖掘产品数据手册中包含的丰富信息,揭开数据背后隐藏的秘密,以求给大家一个全面的认识。

1、LM1875LM1875是美国国家半导体公司20世纪90年代初推出的一款音频功放IC,如图1所示。

常用集成电路管脚和功能表

常用集成电路管脚和功能表

74LS190的外引线图
74LS190的逻辑符号
31
主菜单 开 始 回 退 前 进 最 后 返 退 回2020作/6/1?5 业 出
74LS190功能表
32
2020/6/15
集成二进制同步可逆计数器74LS191
74LS191的外引线图
33
74LS191的逻辑符号
2020/6/15
74LS191功能 FA>BFA<BFA = B
100 010 100 010 100 010 100 010 100 010 001 001
2020/6/15
集成JK触发器74LS112
集成JK触发器74LS112 (a) 外引脚图 (b) 逻辑符号
15
2020/6/15
34
2020/6/15
双时钟集成十进制同步可逆计数器74LS192
74LS192的外引线图
35
74LS192的逻辑符号
2020/6/15
74LS192功能表
36
2020/6/15
双时钟4位二进制同步可逆计数器74LS193
74LS193的外引线图
37
74LS193的逻辑符号
2020/6/15
74LS193功能表
74LS112的功能表
16
2020/6/15
集成双D触发器74LS74
1. 双D触发器74LS74外引脚图和逻辑符号
图4-27 双D触发器74LS74
(a) 外引脚图 (b)逻辑符号
17
2020/6/15
双D触发器74LS74的功能表
18
2020/6/15
集成数码锁存器74LS373
8D型锁存器74LS373

常用集成块IC引脚功能

常用集成块IC引脚功能

常用集成块IC引脚功能#标题#:立体声放音电路TA8105F立体声放音电路TA8105F各脚功能:1前置地,2前置放大器A正相输入,3前置放大器A反相输入,4前置放大器A负反馈,5前置放大器A输出,6反相LED显示,7M/N(金属磁带/普通磁带)转换,8功放A输入,9辐射抑制,10功放A输出,11功放地,12纹波抑制,13电源电压Vcc,14正相/反相转换,15功放B输出,16辐射抑制,17功放B输入,18外接电容,19正相LED显示,20前置放大器B输出,21前置放大器B负反馈,22前置放大器B反相输入,23前置放大器B正相输入,24基准电压.可用其同样封装结构的改进型TA8115N来直接代换.#标题#:驱动电路BA5209驱动电路BA5209各脚功能:1地,2反向驱动电压输出,3旁路,4伺服控制电压,5正向指令输入,6反向指令输入,7电源电压Vcc,8电压,9旁路,10正向驱动电压输出.可用极常用的驱动电路BA6209来直接代换.#标题#:CMOS型D/A转换器VCD用集成电路KDA0316集成电路KDA0316各脚功能:1左声道模拟音频信号输出,2基准高电压A+5V,3基准高电压B,4+5V电压,5字符时钟2输入,6左,右声道分离时钟输入,7字符时钟1输入,8音频串行数据输入,9位时钟输入,10+5V电压输入,11测试电路输出,12测试端1,13测试端2,14选择输出,15地,16低电平参考电压0V,17地,18空,19空,20右声道模拟音频信号输出.可用相同封装结构的LC7881或者CXD1161来直接代换.#标题#:带自动录音电平控制(ALC)的双均衡放大器BA3308集成电路BA3308各脚功能:1负反馈,2输入A,3输出A,4地,5自动电平控制,6电源Vcc,7输出B,8输入B,9负反馈B.可用KA22241来直接代换.#标题#:彩电中放集成电路MC1352P集成电路MC1352P各脚功能:1图像中频输入,2图像中频输入,3地,4地,5键控脉冲输入,6中放AGC输入,7图像中频输出,8图像中频输出,9高放AGC电压输出,10中放AGC调节,11电源Vcc,12高放AGC电压输出,13高放AGC延迟调节,14中放AGC滤波.可用LA1352,M5183来直接代换.#标题#:行,场扫描集成电路KA2133集成电路KA2133各脚功能:1场同步脉冲输入,2外接场振荡电容,3场振荡放电,4场电源电压,5外接升压电容负极,6场反馈,7外接升压电容正极,8场输出,9行激励输出,10行稳压器,11场脉宽消隐调节,12行振荡输入,13AFC输出,14AFC输入,15同步分离输入,16场同步脉冲输出.可用UPC1379来直接代换.#标题#:彩电电源厚膜集成电路STK7310集成电路STK7310各脚功能:1误差检测输入,2误差检测管基极,3反馈信号输入,4误差检测电压输入,5放大管偏置,6激励级输入,7激励级退耦,8保护输入,9限流输入,10电源调整管基极,11电源调整管发射极,12电源调整管集电极.可用IX0308CE/STK7308来直接代换.#标题#:稳速集成电路LA4512集成电路LA4512各脚功能:1电源电压Vcc,2地,3输出,4电压调节.可用LA5511/LA5512/5G5511来直接代换.#标题#:七重达林顿阵列驱动集成电路ULN2003A集成电路ULN2003A各脚功能:1~7脚分别是1~7路输入,16~10分别是1~7路输出,8接地,9接电源正极.可用MC1413P/UPA2003C/TD62003AP直接代换.#标题#:低压直流电机驱动集成电路KIA6901P集成电路KIA6901P各脚功能:1空,2空,3电源,4外接直流电机,5地,6基准电压端,7空,8电机速度调整.可用LA5521D/KA2402直接代换.#标题#:FM立体声解码集成电路AN7421集成电路AN7421各脚功能:1FM立体声复合信号输入,2外接低通滤波器1,3Vcc,4压控振荡器,5接地,6外接立体声指示灯,7接低通滤波器2,8L声道输出,9R声道输出.可用TA7342P/KA2264/D7342P直接代换.#标题#:双电压比较器集成电路HA17393集成电路HA17393各脚功能:1输出1,2反相输入1,3同相输入1,4地,5同相输入2,6反相输入2,7输出2,8电源电压Vcc.可用相同封装的LM393N/LM393P/AN1393/UPC393C等直接代换.#标题#:音频功率放大器集成电路TBA820集成电路TBA820是音频功率放大器,有14脚的TBA820L和8脚的TBA820M,常常将TBA820L称为TBA820.TBA820L的引脚功能是:1自举,2旁路,3空,4补偿1,5负反馈,6空,7输入,8接衬底地,9空,10功放地,11空,12输出,13补偿2,14Vcc,TBA820L可用CD820/D820/ECG1113等直接代换.TBA820M的引脚功能是:1补偿,2负反馈,3输入,4接地,5输出,6电源Vcc,7自举,8滤波.TBA820M可用CD820M/D820M/KA2201直接代换.#标题#:带ALC功能的双前置录放集成电路C1313HA集成电路C1313HA(UPC1313HA)各脚功能:1负反馈1,2输入1,3输出1,4ALC,5接地,6Vcc,7输出2,8输入2,9负反馈2.可用D1313HA直接代换.#标题#:音频功率放大器集成电路TA7209集成电路TA7209各脚功能:1旁路,2频率补偿,3自举,4旁路,5负反馈,6旁路,7功放输入,8空,9空,10地,11空,12功放输出,13空,14电源电压Vcc.可用D7209P/TA7209AP/ECG1222直接代换.#标题#:音频功率放大器集成电路KA386集成电路KA386各脚功能:1增益设定,2反馈输入,3正相输入,4地,5输出,6Vcc,7接旁路电容,8增益设定.可用相同封装的LM386/NJM386直接代换.#标题#:电机稳速集成电路KA2407集成电路KA2407各脚功能:1电源电压Vcc,2控制,3地,4稳压输出.可用UPC1470来直接代换.#标题#:彩电中放集成电路IX0062CE集成电路IX0062CE各脚功能:1噪声检波,2视频输出,3图像缓冲放大输入,4空,5外接去耦电容,6图像中放信号输入,7图像中放信号输入,8外接去耦电容,9外接电容,10高放AGC放大输入,11高放AGC放大输入,12高放AGC输出,13地,14外接4.5MHZ陷波器,15外接4.5MHZ陷波器,16外接图像载频线圈,17外接图像载频线圈,18AFT图像中频输入,19电源Vcc,20图像输出,21外接阻容元件,22AGC检波输出.可用HA11238直接代换.#标题#:SHARP夏普C-1837D型彩色电视机电原理图主要集成块:IX0388CE、IX0365CEZZ、IX0308CEZZ、IX0304CEZZ、IX0238CEZZ #标题#:彩电伴音集成电路M5144P集成电路M5144P各脚功能:1伴音中频输入,2伴音中频输入,3地,4空脚,5电源,6音量控制,7去加重,8检波信号输出,9调频检波变压器,10调频检波变压器,11空脚,12伴音输出,13音质调节,14伴音信号输入.#标题#:彩电图像中频信号处理集成电路M5186P集成电路M5186P各脚功能:1图像中放输入,2图像中放输入,3地,4高频AGC(反向),5高频AGC(正向),6AFT转换信号输入,7AFT输出,8AFT线圈,9图像检波线圈,10图像检波线圈,11AFT线圈,12伴音中频检波器滤波电路,13伴音中频检波器输出,14图像放大器输出,15图像检波器输入,16电源,17图像中放输出,18图像中放输出,19中频AGC控制电压,20中频AGC放大器输入,21AGC滤波电路,22高频AGC控制电压.#标题#:彩电PAL制式彩色电视信号处理和解调集成电路M5194P集成电路M5194P各脚功能:1地,2色饱和度控制,3色同步选通脉冲输入,4APC 滤波电路,5APC滤波电路,6晶体振荡器,7晶体振荡器,8双稳电路激励脉冲输入,9色度副载波输出,10R-Y色副载波输入,11B-Y色副载波输入,12G-Y输出,13R-Y输出,14B-Y输出,15电源,16R-Y色信号输入,17B-Y色信号输入,18色信号输出,19色滤波电路,20ACC滤波电路,21旁路电路,22彩色信号输入.#标题#:彩电图像信号处理和同步分离集成电路M5195P集成电路M5195P各脚功能:1图像信号输入,2同频滤波电路,3同步保持,4同步转换,5同步输出,6电源,7地,8图像信号输出,9消隐输入,10直流箝位调整,11亮度调节,12黑电平调节,13对比度调节,14信号提升电路2,15画质调节,16信号提升电路1.#标题#:彩电PAL制式彩色同步解码电路TBA520集成电路TBA520各脚功能:1识别信号输入,2R-Y参考信号输入,3PAL开关输出,4R-Y输出,5G-Y输出,6电源,7B-Y输出,8B-Y参考信号输入,9B-Y彩色信号输入,10测试点,11G-Y直流电平调节,12R-Y直流电平调节,13R-Y彩色信号输入,14行脉冲输入(正),15行脉冲输入(负),16地.#标题#:彩电彩色矩阵预放大集成电路TBA530集成电路TBA530各脚功能:1B信号输出负载电阻,2-(B-Y)信号输入,3-(G-Y)信号输入,4-(R-Y)信号输入,5亮度信号输入,6地,7电流馈入点,8电源,9R通道反馈,10R信号输出,11R信号输出负载电阻,12G通道反馈,13G信号输出,14G信号输出负载电阻,15B通道反馈,16B信号输出.#标题#:彩电色处理集成电路TBA540集成电路TBA540各脚功能:1振荡器反馈输入,2频率控制反馈,3电源,4参考副载波输出,5色同步脉冲输入,6参考副载波输入,7消色器输出,8PAL双稳电路脉冲输入,9ACC输出,10ACC电平调节,11ACC增益调节,12ACC电平调节,13振荡器相位控制环的直流控制端点,14振荡器相位控制环的直流控制端点,15振荡器反馈,16地#标题#:彩电亮度色度处理及控制集成电路TBA560C集成电路TBA560C各脚功能:1平衡彩色信号输入,2直流对比度控制,3亮度信号输入,4黑电平箝位电容器,5亮度信号输出,6亮度控制,7色同步脉冲输出,8回扫消隐输入,9色信号输出,10色同步脉冲选通和箝位脉冲输入,11电源,12色通道直流反馈,13彩色饱和度控制,14ACC输入,15平衡彩色信号输入,16地#标题#:彩电中频放大集成电路TBA970集成电路TBA970各脚功能:1视频信号输出,2电源,3视频信号输入,4三极管集电极,5三极管基极,6三极管发射极,7对比度控制,8电子束电流反馈输入,9电子束电流控制,10行同步脉冲输入1,11行同步脉冲输入2,12亮度控制,13黑电平记忆,14去耦,15黑电平反馈输入,16地#标题#:彩电彩色解调集成电路TBA990集成电路TBA990各脚功能:1识别信号输入,2R-Y副载波参考信号输入,37.8KHz信号输出,4R-Y信号输出,5G-Y信号输出,6电源,7B-Y信号输出,8B-Y 副载波参考信号输入,9B-Y直流电平调节,10B-Y色信号输入,11G-Y直流电平调节,12R-Y直流电平调节,13R-Y色信号输入,14行脉冲输入(双稳电路同步),15空脚,16地#标题#:彩电色处理集成电路TDA2522集成电路TDA2522各脚功能:1B-Y输出,2G-Y输出,3R-Y输出,4地,5B-Y彩色输入,6R-Y彩色输入,7振荡器环路滤波器,8振荡器环路滤波器,9振荡器反馈,10振荡器反馈,11电源,12ACC输出,13ACC电容,14ACC电容,15色同步选通和消隐脉冲,16消色器延迟电容#标题#:彩电亮度及色度处理集成电路TDA2560集成电路TDA2560各脚功能:1彩色信号输入端1,2彩色信号输入端2,3ACC输入,4彩色饱和度控制,5地,6色信号/色同步脉冲输出,7色同步选通和消隐脉冲,8电源,9回扫消隐,10亮度信号输出(-同步),11亮度控制,12黑电平箝位,13亮度通道增益控制,14亮度信号输入,15亮度信号输出(+同步),16直流对比度控制.#标题#:彩电行振荡集成电路TDA2590集成电路TDA2590各脚功能:1电源,2行扫触发电路,3行报触发电路,4脉冲宽度转换,5相位比较1,6行回扫,7色同步脉冲/消隐,8场同步脉冲,9视频信号输入,10噪声分离电路,11VCR(录相?)开关,12时间常数转换,13相位比较2,14振荡器,15振荡器,16地#标题#:双运算放大器集成电路OP249集成电路OP249各脚功能:1输出1,2负输入1,3正输入1,4地,5正输入2,6负输入2,7输出2,8电源.可用OP215,TL072,AD712直接代换#标题#:音频功率放大集成电路ECG1380集成电路ECG1380各脚功能:1输入,2负反馈,3地,4输出,5电源Vcc.可用TDA2030直接代换#标题#:VCD聚焦伺服电路TA002可用MN662743直接代换#标题#:音频数字处理与D/A轮换集成电路ES3887可用ES3207直接代换#标题#:1W的单声道功放集成电路D2283B集成电路D2283B各脚功能:1去耦,2地,3地,4输出,5电源电压,6地,7地,8输入.可用ULN2283B直接代换#标题#:收录机前置放大集成电路BA3406AL集成电路BA3406AL各脚功能:1输出L-1,2输出L-2,3负反馈L,4金属带L,5输入L,6静噪L,7电源电压,8静音控制,9地,10金属带控制,11输入R,12静噪R,13负反馈R,14金属带R,15输出R-1,16输出R-2.#标题#:三位二/十进制编码计数器集成电路MC14553B可用CD4553B,D4553直接代换#标题#:电话机中振铃集成电路TA31001P集成电路TA31001P各脚功能:1电源电压,2振铃触发输入,3外接超低频振荡电容,4外接超低频振荡电阻,5地,6外接音频振荡电阻,7外接音频振荡电容,8振铃信号输出.可用CSC8204或CSC31001直接代换#标题#:双运算放大器集成电路MCN34082集成电路MCN34082各脚功能:1运放A输出,2运放A反相输入,3运放A同相输入,4接电源负极,5运放B同相输入,6运放B反相输入,7运放B输出,8接电源正极.可用TL072,AD712,LT1057直接代换#标题#:电子频道选台集成电路CN5010可用AN5050或UPC1360直接代换#标题#:新三端+5V稳压器MIC29150集成电路MIC29150各脚功能:1输入,2地,3输出#标题#:音频功放电路DBL1069集成电路DBL1069可用TA8210H直接代换#标题#:调频/调幅中频放大集成电路CIA7078集成电路CIA7078各脚功能:1调幅本振回路,2调频中放输入,3前级地,4第一级调频中放输出,5第二级调频中放输入,6电源VCC1,7调频中放输出,8外接调频旁路电容,9后级地,10外接调幅旁路电容,11调幅中放输出,12电源VCC2,13调频AGC输入,14调幅中放输入,15调幅变频输出,16调幅变频输入.可用UPC1018直接代换.#标题#:五段图示均衡放大器D7796集成电路D7796各脚功能:1,3,5,7,9分别是1~5个谐振电路的基极输入端,2,4,6,8,10分别是1~5五个谐振电路的负反馈端,11缓冲放大器输入端,12缓冲放大器负反馈端,13缓冲放大器输出,14电源电压,15偏置电压,16接地.可用LA3600,M5226,TA7796直接代换.#标题#:双路电压比较集成电路BA10393集成电路BA10393各脚功能:1输出1,2反相输入1,3正相输入1,4单电源供电时为接地端,双电源供电时为负电源电压端,5正向输入2,6反向输入2,7输出2,8正电源电压端.可用相同封装的LM393,NJM2903(1)直接代换.#标题#:三路单刀双掷双向模拟电子开关HD14053BP集成电路HD14053BP可直接用HD4053,MC14053B,CD4053B,C4053B,BU4053B,HEF4053B代换.#标题#:音频振铃集成电路ML4003集成电路ML4003各脚功能:1接电源正极VCC,2振铃触发,3外接超低频振荡电容,4外接超低频振荡电阻,5接地,6外接音频振荡电阻,7外接音频振荡电容,8振铃信号输出.可用CIC8204,CS8204,CSC8204,CD8204,MC8204,TA31001P直接代换.#标题#:双电压比较集成电路NJM2903S集成电路NJM2903S各脚功能:1VCC,2输出1,3反相输入1,4正相输入1,5地,6正向输入2,7反向输入2,8输出2,9VCC.可用相同封装的LM2903S,LA6393S直接代换.#标题#:放音双前置放大电路BA3304集成电路BA3304各脚功能:1L(左声道)输入,2空,3电源VCC,4偏置,5地,6空,7空,8R(右声道)输入,9R负反馈,10R输出,11空,12空,13空,14空,15L输出,16L负反馈#标题#:音响功放集成电路TDA2615音响功放集成电路TDA2615各脚功能:1输入A,2控制,3地,4输出A,5接电源正极,6输出B,7接电源负极,8地,9输入B.可用TDA2616直接代换.#标题#:伴音集成电路LA1363伴音集成电路LA1363各脚功能:1中频输入,2中频输入,3地,4地,5电源VCC,6音量控制,7去加重,8鉴频输出,9外接鉴频调谐回路,10外接鉴频调谐回路,11空,12音频输出,13音量控制,14激励放大输入.可用LA1365或AH1124直接代换.#标题#:彩电亮度控制及信号处理集成电路AN380彩电亮度控制及信号处理集成电路AN380可用UPC1380直接代换.。

芯片引脚图及引脚描述

芯片引脚图及引脚描述

芯片引脚图及引脚描述文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]555芯片引脚图及引脚描述555的8脚是集成电路工作电压输入端,电压为5~18V,以UCC表示;从分压器上看出,上比较器A1的5脚接在R1和R2之间,所以5脚的电压固定在2UCC/3上;下比较器A2接在R2与R3之间,A2的同相输入端电位被固定在UCC/3上。

1脚为地。

2脚为触发输入端;3脚为输出端,输出的电平状态受触发器控制,而触发器受上比较器6脚和下比较器2脚的控制。

当触发器接受上比较器A1从R脚输入的高电平时,触发器被置于复位状态,3脚输出低电平;2脚和6脚是互补的,2脚只对低电平起作用,高电平对它不起作用,即电压小于1Ucc/3,此时3脚输出高电平。

6脚为阈值端,只对高电平起作用,低电平对它不起作用,即输入电压大于2 Ucc/3,称高触发端,3脚输出低电平,但有一个先决条件,即2脚电位必须大于1Ucc/3时才有效。

3脚在高电位接近电源电压Ucc,输出电流最大可打200mA。

4脚是复位端,当4脚电位小于时,不管2、6脚状态如何,输出端3脚都输出低电平。

5脚是控制端。

7脚称放电端,与3脚输出同步,输出电平一致,但7脚并不输出电流,所以3脚称为实高(或低)、7脚称为虚高。

555集成电路管脚,工作原理,特点及典型应用电路介绍.1 555集成电路的框图及工作原理555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。

但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。

此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。

由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体,如图1所示。

74ls147引脚图管脚图和功能真值表

74ls147引脚图管脚图和功能真值表

74ls147引脚图管脚图和功能真值表优先编码器是当多个输入端同时有信号时,电路只对其中优先级别最高的输入信号进行编码。

常用的集成优先编码器IC有10线-4线、8线-3线两种。

10线-4线优先编码器常见的型号为54/74147、54/74LS147,8线-3线优先编码器常见的型号为54/74148、54/74LS148。

下面我们以TTL中规模集成电路74LS147为例介绍8421→BCD码优先编码器的功能。

10线-4线8421 BCD码优先编码器74LS147的真值表见表3.5。

74LS147的引脚图如图3.5所示,其中第9脚NC为空。

74LS147优先编码器有9个输入端和4个输出端。

某个输入端为0,代表输入某一个十进制数。

当9个输入端全为1时,代表输入的是十进制数0。

4个输出端反映输入十进制数的BCD码编码输出。

74LS147优先编码器的输入端和输出端都是低电平有效,即当某一个输入端低电平0时,4个输出端就以低电平0的输出其对应的8421 BCD编码。

当9个输入全为1时,4个输入出也全为1,代表输入十进制数0的8421 BCD编码输出。

表3.5 74LS147的真值表数字电路CD4511的原理(引脚及功能)CD4511是一个用于驱动共阴极 LED (数码管)显示器的 BCD 码—七段码译码器,特点:具有BCD转换、消隐和锁存控制、七段译码及驱动功能的CMOS电路能提供较大的拉电流。

可直接驱动LED显示器。

CD4511 是一片 CMOS BCD—锁存/7 段译码/驱动器,引脚排列如图 2 所示。

其中a b c d 为 BCD 码输入,a为最低位。

LT为灯测试端,加高电平时,显示器正常显示,加低电平时,显示器一直显示数码“8”,各笔段都被点亮,以检查显示器是否有故障。

BI为消隐功能端,低电平时使所有笔段均消隐,正常显示时, B1端应加高电平。

另外 CD4511有拒绝伪码的特点,当输入数据越过十进制数9(1001)时,显示字形也自行消隐。

常用集成电路引脚排列图

常用集成电路引脚排列图
74LS138
A0 A1 A2 S2 S3 S1
1
2
3
4
56
Y7 GND
78
74LS151 8 选 1 数据选择器
16 15 14 13 12 11 10 9 VCC 2S 2A0 2A1 2Y0 2Y1 2Y2 2Y3
1S 1A0 1A1 1Y0 1Y1 1Y2 1Y3 GND 12345678
74LS153 双 4 选 1 数据选择器
VCC 1RD 2RD 2CP 2K 2J 2SD 2Q 74 LS 112
1CP 1K 1J 1SD 1Q 1Q 2Q GND
74LS138 3­8 线译码器
74LS139 双 2­4 线译码器
74LS148 8­3 线编码器
16 15 14 13 12 11 10 9
VCC Y0 Y1 Y2 Y3 Y4 Y5 Y6
14 13 12 11 10 9 8
VCC 2CP 2 CR 2 Q 0 2 Q1 2Q2 2 Q3
1C P 1 CR 1Q 0 1Q 1 1 Q 2 1 Q 3 地
1234
56
7
14 13 12 11 10 9 8
VDD
≥1
≥1
≥1
≥1
GND
1234567
CC4011 74LS02 四 2 输入与非门 CC4012 双 4 输入与非门 CC4013 双 D 触发器
12 3 45 6 78
A B C D E F GND 1234567
74LS74 双 D 触发器
14
13 12
11
10
9
8
VCC 2RD 2D 2CP 2S D 2Q 2Q
74 LS 74
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用集成电路型号及引脚图
电路名称及符号 引脚图 注释
六反向器
TTL 74LS04 CMOS MC14069 A:输入 Y:输出
四两输入与非门
TTL 74LS00 CMOS MC14069 7401(OC) A、B:输入 Y:输出
双四输入与非门 TTL 74LS20 CMOS MC14012 NC 为空脚
A、B、C、D 输入 Y 输出
双进位保留全加器
74LS183
NC 为空脚
四两输入异或门 74LS86 A、B:输入 Y 输出
与门输入主­从
单 J­K 触发器
74H72
上升沿触发
二—五—十进制
异步计数器
74LS290
双 D 型触发器
74LS74
上升沿触发
错误!文档中没有指定样式的文字。

221
556
双 JK 触发器 74LS112
负沿触发
四总线缓冲器 74125(三态低有效) 74126(三态高有效)
555
四线—十线译码器 74LS42
十线—四线优先 编码器 74LS147
双四选一数据 选择器 74LS153
同步可逆十进制 计数器 74LS192
CP+=1 CP­ =↑减法 CP+=↓CP­ =1 加法
ADC 0809。

相关文档
最新文档