eviews实验报告

合集下载

EViews计量经济学实验报告-简单线性回归模型分析

EViews计量经济学实验报告-简单线性回归模型分析

时间地点实验题目简单线性回归模型分析一、实验目的与要求:目的:影响财政收入的因素可能有很多,比如国内生产总值,经济增长,零售物价指数,居民收入,消费等。

为研究国内生产总值对财政收入是否有影响,二者有何关系。

要求:为研究国内生产总值变动与财政收入关系,需要做具体分析。

二、实验内容根据1978-1997年中国国内生产总值X和财政收入Y数据,运用EV软件,做简单线性回归分析,包括模型设定,估计参数,模型检验,模型应用,得出回归结果。

三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)简单线性回归分析,包括模型设定,估计参数,模型检验,模型应用。

(一)模型设定为研究中国国内生产总值对财政收入是否有影响,根据1978-1997年中国国内生产总值X 和财政收入Y,如图1:1978-1997年中国国内生产总值和财政收入(单位:亿元)根据以上数据,作财政收入Y 和国内生产总值X 的散点图,如图2:从散点图可以看出,财政收入Y 和国内生产总值X 大体呈现为线性关系,所以建立的计量经济模型为以下线性模型:01i i i Y X u ββ=++(二)估计参数1、双击“Eviews ”,进入主页。

输入数据:点击主菜单中的File/Open /EV Workfile —Excel —GDP.xls;2、在EV 主页界面点击“Quick ”菜单,点击“Estimate Equation ”,出现“Equation Specification ”对话框,选择OLS 估计,输入“y c x ”,点击“OK ”。

即出现回归结果图3:图3. 回归结果Dependent Variable: Y Method: Least Squares Date: 10/10/10 Time: 02:02 Sample: 1978 1997 Included observations: 20Variable Coefficient Std. Error t-Statistic Prob. C 857.8375 67.12578 12.77955 0.0000 X0.1000360.00217246.049100.0000R-squared 0.991583 Mean dependent var 3081.158 Adjusted R-squared 0.991115 S.D. dependent var 2212.591 S.E. of regression 208.5553 Akaike info criterion 13.61293 Sum squared resid 782915.7 Schwarz criterion 13.71250 Log likelihood -134.1293 F-statistic 2120.520 Durbin-Watson stat0.864032 Prob(F-statistic)0.000000参数估计结果为:i Y = 857.8375 + 0.100036i X(67.12578) (0.002172)t =(12.77955) (46.04910)2r =0.991583 F=2120.520 S.E.=208.5553 DW=0.8640323、在“Equation ”框中,点击“Resids ”,出现回归结果的图形(图4):剩余值(Residual )、实际值(Actual )、拟合值(Fitted ).(三)模型检验1、 经济意义检验回归模型为:Y = 857.8375 + 0.100036*X (其中Y 为财政收入,i X 为国内生产总值;)所估计的参数2ˆ =0.100036,说明国内生产总值每增加1亿元,财政收入平均增加0.100036亿元。

《计量经济学》eviews实验报告一元线性回归模型详解

《计量经济学》eviews实验报告一元线性回归模型详解

计量经济学》实验报告一元线性回归模型-、实验内容(一)eviews基本操作(二)1、利用EViews软件进行如下操作:(1)EViews软件的启动(2)数据的输入、编辑(3)图形分析与描述统计分析(4)数据文件的存贮、调用2、查找2000-2014年涉及主要数据建立中国消费函数模型中国国民收入与居民消费水平:表1年份X(GDP)Y(社会消费品总量)200099776.339105.72001110270.443055.42002121002.048135.92003136564.652516.32004160714.459501.02005185895.868352.62006217656.679145.22007268019.493571.62008316751.7114830.12009345629.2132678.42010408903.0156998.42011484123.5183918.62012534123.0210307.02013588018.8242842.82014635910.0271896.1数据来源:二、实验目的1.掌握eviews的基本操作。

2.掌握一元线性回归模型的基本理论,一元线性回归模型的建立、估计、检验及预测的方法,以及相应的EViews软件操作方法。

三、实验步骤(简要写明实验步骤)1、数据的输入、编辑2、图形分析与描述统计分析3、数据文件的存贮、调用4、一元线性回归的过程点击view中的Graph-scatter-中的第三个获得在上方输入Isycx回车得到下图DependsntVariable:Y Method:LeastSquares□ate:03;27/16Time:20:18 Sample:20002014 Includedobservations:15VariableCoefficientStd.Errort-StatisticProb.C-3J73.7023i820.535-2.1917610.0472X0416716 0.0107S838.73S44 a.ooao R-squared0.991410 Meandependentwar119790.2 AdjustedR.-squared 0.990750 S.D.dependentrar 7692177 S.E.ofregression 7J98.292 Akaike infocriterion20.77945 Sumsquaredresid 7;12E^-08 Scliwarz 匚「爬伽20.37386 Loglikelihood -1&3.3459Hannan-Quinncriter. 20.77845 F-statistic 1I3&0-435 Durbin-Watsonstat0.477498Prob(F-statistic)a.oooooo在上图中view 处点击view-中的actual ,Fitted ,Residual 中的第一 个得到回归残差打开Resid 中的view-descriptivestatistics 得到残差直方图/icw Proc Qtjject PrintN^me FreezeEstimateForecastStatsResids凹Group:UNIIILtD Worktile:UN III LtLJ::Unti1DependentVariablesMethod;LeastSquares□ate:03?27/16Time:20:27Sample(adjusted):20002014Includedobservations:15afteradjustmentsVariable Coefficient Std.Errort-Statistic ProtJ.C-3373.7023^20.535-2.191761 0.0472X0.4167160.01075S38.735440.0000R-squared0.991410 Meandependeniwar1-19790.3 AdjustedR-squa.red0990750S.D.dependentvar 76921.77 SE.ofregre.ssion 7J98.292 Akaike infacriterion20.77945 Sumsquaredresid 7.12&-0S Schwarzcriterion 20.S73S6 Laglikelihood -153.84&9Hannan-Quinncrite匚20.77545 F-statistic1I3&0.435Durbin-Watsonstat 0.477498 ProbCF-statistic) a.ooaooo在回归方程中有Forecast,残差立为yfse,点击ok后自动得到下图roreestYFM J訓YForea空巾取且:20002015 AdjustedSErmpfe:2000231i mskJddd obaerratire:15Roof kter squa red Error理l%2Mean/^oLteError畐惯啟iJean Afe.PereersErro r5.451SSQThenhe鼻BI附GKWCE口.他腐4Prop&niwi□ooooooVactaree Propor^tori0.001^24G M『倚■底Props^lori09®475在上方空白处输入lsycs…之后点击proc中的forcase根据公式Y。

Eviews实验报告3

Eviews实验报告3

居民消费物价指数、消费者信心指数的相关数据,利用EVIEWS软件,将这几个指标数据进行相关分析。

特别在这里说明的是,因为同时参与了学校的本科生科研赞助---关于CCI (消费者信心指数)的一个项目,因此本人接下来的几个实验都将以CCI及相关影响指标为数据目标,研究CCI与其他因素间的关系。

本实验,则首先进行相关指标的稳定性检验。

【实验过程】(实验步骤、记录、数据、分析)本实验首先将通过多种方法对我国CCI序列进行平稳性分析:首先导入数据到eviews中,建立序列取名为CCI:然后我们首先通过折线图来直接观察其走势,如下图:从下图我们容易看到:CCI曲线基本是围绕100的轴线上下波动的,但是相比于白噪声序列,其波动幅度明显较大。

可以看到08年11月以前,其波动一直是在轴线以下,而在08年11月以后,数据都明显高于100。

联系当时的实事背景,我们不难解释这一点:2008年11月,正是国家公布四万亿投资的时候,而这之前,由于全球金融危机以及股市大跌的影响,我国居民的消费者信心指数都是较低的;国家的四万亿政策犹如一剂强心剂,立刻使得CCI有了直线的上升,一下子提高了消费者的信心。

为了判别序列是否稳定,我们绘制CCI序列的自相关图,如下:由每个Q统计量的伴随概率可以知道:都是拒绝原假设的,即存在某个K,使得滞后K期的自相关系数显著非零,即拒绝原数列是白噪声序列。

随后对其进行ADF检验:我们首先对序列本身进行单位根检验,分别采用带常数项,线性趋势,和无等三种情况进行检验。

可以从下图看到检验结果对应的p值均显著大于0.05,因此接受原假设,存在单位跟,即CCI序列本身是不平稳的.带常数项线性趋势无因此,考虑对其一阶差分进行单位根检验:可以看到,其一阶差分的单位根检验结果对应的p值显著小于0.01,拒绝存在单位根的原假设,因此我们可以得出结论:CCI的一阶差分序列是平稳的.然后我们通过PP检验来检验序列的平稳性:我们分别采用带常数项,线性趋势,和无等三种情况进行检验。

Eviews实验报告

Eviews实验报告

Eviews实验报告
本次实验使用Eviews对数据进行了分析和建模,主要分为以下几个部分:
一、数据预处理
1. 数据清洗:对数据进行了初步的检查和清洗,处理了数据中的缺失值和异常值;
2. 数据变换:对原始数据进行了对数化处理,使其符合正态分布。

二、数据分析
1. 描述性统计:通过统计均值、标准差、相关系数等指标,对数据进行了分析和描述;
2. 单因素分析:使用单因素方差分析对不同自变量与因变量之间的关系进行了检验。

三、建模分析
1. 模型选择:根据变量相关性和变量显著性等因素,最终选择了一组自变量,建立了多元线性回归模型;
2. 模型检验:对建立的模型进行了残差分析,验证了模型的可靠性和稳定性;
3. 预测分析:利用建立的模型对新数据进行了预测,并进行了模型预测精度的评估。

四、实验结论
通过Eviews的分析和建模,得出了以下结论:
1. 数据清洗和变换可以提高数据分析的准确性和可靠性;
2. 描述性统计和单因素分析可以为建模提供有用的参考和决策依据;
3. 多元线性回归模型可以较好地解释自变量与因变量之间的关系,并可进行预测和决策分析。

综上所述,本次实验通过Eviews软件对数据进行了分析和建模,得出了有关数据的一些重要结论,为后续数据分析和决策提供了基础和支持。

Eviews软件实验报告

Eviews软件实验报告

┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊分析国内生产总值与最终消费的关系一、研究的目的要求由于消费是所有经济行为有效实现的最终环节,唯有消费需求的不断上升才有经济增长的持久拉动力有经济增长的持久拉动力..而居民的消费水平在很大程度上又受整体经济状况的影响影响..国内生产总值是用于衡量一国总收入的一种整体经济指标,经济扩张时期经济扩张时期,,居民收入稳定居民收入稳定,GDP ,GDP 也高也高,,居民用于消费的支出较多居民用于消费的支出较多,,消费水平较高消费水平较高;;反之反之,,经济收缩时,收入下降收入下降,GDP ,GDP 也低也低,,用于消费的支出较少用于消费的支出较少,,消费水平随之下降消费水平随之下降..改革开放以来改革开放以来,,我国的GDP 不断增长的同时不断增长的同时,,人民的物质生活也在不断提高人民的物质生活也在不断提高..研究国内生产总值与最终消费的数量关系,对于探寻最终消费增长的规律性,预测最终消费的发展趋势有重大意义。

势有重大意义。

二、模型设定为了分析国内生产总值对消费的推动作用,选择中国国民最终消费为被解释变量(用Y 表示),选择中国国内生产总值为解释变量(用X 表示)。

搜集到以下数据。

数据。

中国国民收入与最终消费(单位:亿元)中国国民收入与最终消费(单位:亿元)年份年份 国内国内生产总值(亿元)元) 最终消费 年份年份国内生产国内生产总值(亿元)最终消费最终消费X Y X Y1978 3624.1 2239.1 1995 58478.1 36748.2 1979 4038.2 2633.7 1996 67884.6 43919.5 1980 4517.8 3007.9 1997 74462.6 48140.6 1981 4862.4 3361.5 1998 78345.2 51588.2 1982 5294.7 3714.8 1999 82067.5 55636.9 1983 5934.5 4126.4 2000 89468.1 61516 1984 7171 4846.3 2001 97314.8 66878.3 1985 8964.4 5986.3 2002 104790.6 71691.2 1986 1986 10202.2 10202.2 6821.8 2003 135822.8 77449.5 1987 1987 11962.5 11962.5 7804.62004 159878.3 87032.9 1988 1988 14928.3 14928.3 9839.52005 183217.4 97822.7┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊1989 1989 16909.2 16909.2 16909.2 11164.2 11164.2 2006 211923.5110595.31990 1990 18547.9 18547.9 18547.9 12090.5 12090.52007 249529.9 128444.6 1991 1991 21617.8 21617.8 21617.8 14091.9 14091.9 2008 316228.8 149000 1992 1992 26638.1 26638.1 26638.1 17203.3 17203.3 2009343464.7 176060.31993 1993 34634.4 34634.4 34634.4 21899.9 21899.9 2010 397983 148447.7 1994 1994 46759.4 46759.4 46759.4 29242.2 29242.2 29242.2为了分析居民最终消费(为了分析居民最终消费(Y Y )和国内生产总值()和国内生产总值(X X )的关系,根据上表做如下散点图:点图:从散点图可以看出最终消费和国内生产总值大体呈现为线性关系,为分析中国居民最终消费水平随国民总收入变动的数量规律性,可建立如下简单回归模型:型:三、估计参数利用EViews 做简单线性回归分析的结果如下图所示:做简单线性回归分析的结果如下图所示:┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊装┊ ┊ ┊ ┊ ┊订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊可用规范的形式将参数估计和检验的结果写为可用规范的形式将参数估计和检验的结果写为ttXY454948.007.17662ˆ+=(2377.4702377.470))(0.017318)t= (3.222798) (26.27036) 33317.1690957012.02===nFR。

eviews实验报告一元线形回归模型

eviews实验报告一元线形回归模型

【实验编号】 1【实验名称】一元线形回归模型【实验目的】掌握一元线性回归分析的步骤【实验内容】一、实验数据表1 1978年-2009年中国税收与国内生产总值统计表单位:亿元年份税收GDP 年份税收GDP1978 519.28 3645.2 1994 5126.88 48197.91979 537.82 4062.6 1995 6038.04 60793.71980 571.7 4545.6 1996 6909.82 71176.61981 629.89 4891.6 1997 8234.04 78973.01982 700.02 5323.4 1998 9262.80 84402.31983 775.59 5962.7 1999 10682.58 89677.11984 947.35 7208.1 2000 12581.51 99214.61985 2040.79 9016.0 2001 15301.38 109655.21986 2090.73 10275.2 2002 17636.45 120332.71987 2140.36 12058.6 2003 20017.31 135822.81988 2390.47 15042.8 2004 24165.68 159878.31989 2727.4 16992.3 2005 28778.54 184937.41990 2821.86 18667.8 2006 34804.35 216314.41991 2990.17 21781.5 2007 45621.97 265810.31992 3296.91 26923.5 2008 54223.79 314045.41993 4255.30 35333.9 2009 59521.59 340506.9 资料来源:《中国统计年鉴2010》二、实验过程1、建立工作文件(1)点击桌面Eviews5.0图标,运行Eviews软件。

EViews计量经济学实验报告

EViews计量经济学实验报告

EViews 计量经济学实验报告实验一 EViews软件的基本操作小组成员: 【实验目的】了解EViews软件的基本操作对象,掌握软件的基本操作。

【实验内容】数据的输入、编辑与序列生成;实验内容以表1-1所列出的消费支出和可支配收入的统计资料为例进行操作。

表1-1 中国内地各地区城镇居民家庭人均全年可支配收入与人均全年消费性支出单位:元地区消费支出Y 可分配收入 X 地区消费支出 Y 可支配收入 X北京 19977.52 14825.41 湖北 9802.65 7397.32天津 14283.09 10548.05 湖南 10504.67 8169.30河北 10304.56 7343.49 广东 16015.58 12432.22山西 10027.70 7170.94 广西 9898.75 6791.95 内蒙古 10357.99 7666.61 海南 9395.13 7126.78辽宁 10369.61 7987.49 重庆 11569.74 9398.69吉林 9775.07 7352.64 四川 9350.11 7524.81 黑龙江 9182.31 6655.43 贵州 9116.61 6848.39上海 20667.91 14761.75 云南 10069.89 7379.81江苏 14084.26 9628.59 西藏 8941.08 6192.57浙江 18265.10 13348.51 陕西 9267.70 7553.28安徽 9771.05 7294.73 甘肃 8920.59 6974.21福建 13753.28 9807.71 青海 9000.35 6530.11江西 9551.12 6645.54 宁夏 9177.26 7205.57山东 12192.24 8468.40 新疆 8871.27 6730.01河南 9810.26 6685.18资料来源:《中国统计年鉴》(2007)【实验步骤】一、创建工作文件启动EViews软件之后,进入EViews主窗口(如图1-1所示)。

eviews实验报告总结(范本)

eviews实验报告总结(范本)

eviews实验报告‎总结eviews实‎验报告总结‎篇一:‎Evies‎实验报告实验报告‎一、实验数据:‎1994至2‎01X年天津市城镇居‎民人均全年可支配收入‎数据 1994至20‎1X年天津市城镇居民‎人均全年消费性支出数‎据 1994至201‎X年天津市居民消费价‎格总指数二、‎实验内容:对‎搜集的数据进行回归,‎研究天津市城镇居民人‎均消费和人均可支配收‎入的关系。

三‎、实验步骤:‎1、百度进入“中华人‎民共和国国家统计局”‎中的“统计数据”,找‎到相关数据并输入Ex‎c el,统计结果如下‎表1:表1‎1994年--20‎1X年天津市城镇居民‎消费支出与人均可支配‎收入数据2、‎先定义不变价格(19‎94=1)的人均消费‎性支出(Yt)和人均‎可支配收入(Xt)‎令:Yt=c‎n sum/price‎Xt=ine/pr‎i ce 得出Yt与X‎t的散点图,如图‎1.很明显,Yt和‎X t服从线性相关。

‎图1 Yt和Xt散点‎图3、应用统‎计软件EVies完成‎线性回归解:‎根据经济理论和对实‎际情况的分析也都可以‎知道,城镇居民人均全‎年耐用消费品支出Yt‎依赖于人均全年可支配‎收入Xt的变化,因此‎设定回归模型为 Yt‎=β0+β?Xt﹢μ‎t(1)打开‎E Vies软件,首先‎建立工作文件, Fi‎l e rkfile ‎,然后通过bject‎建立 Y、X系列,并‎得到相应数据。

‎(2)在工作文件窗‎口输入命令:‎l s y c x,按‎E nter键,回归结‎果如表2 :‎表2 回归结果根‎据输出结果,得到如下‎回归方程:‎Y t=977.‎908+0.670X‎t s=(17‎2.3797) (0‎.0122) t=(‎5.673) ‎(54.95‎0) R2=0.99‎5385 Adjus‎t ed R2=0.9‎95055 F-st‎a tistic=30‎19.551 ‎残差平方和Sum s‎q uared res‎i d =125410‎8回归标准差S.E‎.f regress‎i n=299.‎2978(3‎)根据回归方程进行统‎计检验:‎拟合优度检验由上表‎2中的数分别为0.‎995385和0.9‎95055,计算结果‎表明,估计的样本回归‎方程较好地拟合了样本‎观测值。

Eviews虚拟变量实验报告

Eviews虚拟变量实验报告

实验四虚拟变量【实验目的】掌握虚拟变量的基本原理,对虚拟变量的设定和模型的估计与检验,以及相关的Eviews操作方法。

【实验内容】试根据1998年我国城镇居民人均收入与彩电每百户拥有量的统计资料建立我国城镇居民彩电需求函数。

收入等级彩电拥有量Y(台/百户)人均收入X(元/年) iD困难户83.64 2198.88 0最低收入户87.01 2476.75 0低收入户96.75 3303.17 0中等偏下户100.9 4107.26 1中等收入户105.89 5118.99 1中等偏上户109.64 6370.59 1高收入户115.13 7877.69 1最高收入户122.54 10962.16 1【实验步骤】1、相关图分析根据表中数据建立人均收入X与彩电拥有量Y的相关图(SCAT X Y)。

从相关图可以看出,前3个样本点(即低收入家庭)与后5个样本点(中、高收入)的拥有量存在较大差异,因此,为了反映“收入层次”这一定性因素的影响,设置虚拟变量如下:⎩⎨⎧=低收入家庭中、高收入家庭1D2、构造虚拟变量构造虚拟变量 1D (DATA D1),并生成新变量序列:GENR XD=X*D13、估计虚拟变量模型LS Y C X D1 XD得到估计结果:我国城镇居民彩电需求函数的估计结果为:XD D X Y 009.0873.31012.0611.571-++=∧(16.25) (9.03) (8.32) (-6.59)366,066.1..,9937.02===F e s R再由t 检验值判断虚拟变量的引入方式,并写出各类家庭的需求函数。

虚拟变量的回归系数的t 检验都是显著的,且模型的拟合优度很高,说明我国城镇居民低收入家庭与中高收入家庭对彩电的消费需求,在截距和斜率上都存在着明显差异,所以以加法和乘法方式引入虚拟变量是合理的。

低收入家庭与中高收入家庭各自的需求函数为:低收入家庭:∧.57+=611XY012.0中高收入家庭:∧611.87331.57(+++-==012.0484)XX.Y003.0(.0009)89由此可见我国城镇居民家庭现阶段彩电消费需求的特点:对于人均年收入在3300元以下的低收入家庭,需求量随着收入水平的提高而快速上升,人均年收入每增加1000元,百户拥有量将平均增加12台;对于人均年收入在4100元以上的中高收入家庭,虽然需求量随着收入水平的提高也在增加,但增速趋缓,人均年收入每增加1000元,百户拥有量只增加3台。

Eviews实验报告4

Eviews实验报告4

【实验目的及要求】● 深刻理解平稳性的要求和arima 建模的思想。

● 学会如何通过观察自相关系数和偏相关系数,确定并建立模型。

● 学会如何利用模型进行预测。

● 熟练掌握EVIEWS 的结果,看懂eviews 的输出结果。

【实验原理】ARIMA(p, q )过程的平稳域和可逆域对于非平稳序列的时变均值函数,最简单的处理方法就是考虑均值函数可以由一个时间的确定性函数来描述,这时,可以用回归模型来描述。

假如均值函数服从于线性趋势我们可以利用确定性的线性趋势模型如果均值函数服从二次函数则我们可以用假如均值函数服从k 次多项式我们可以使用下列模型建模()22012,~0,t t t X t t WN αααεεσ=+++()201,~0,k t k t t X t t WN αααεεσ=++++【实验方案设计】4.2数据和指标的选取我们的模型估计选取了我国1990年1月到2008年12月的CPI月度数据附表(1))作为研究的对象。

度量通货膨胀的指标通常有CPI(消费者价格指生产者物价指数(PPI)、批发物价指数(wholesale price index)、GDP平减指数(deflator)等。

消费者物价指数(CPI)(consumer price index)是用来度量一期内居民所支付消费商品和劳务价格变化程度的相对数指标,它是反映通货水平的重要指标。

CPI指数作为生活成本指数,不仅能够及时和明确地反映子商品和服务价格的变化,而且是定期公布,广为人知,易于获取和明了,被公众理解。

选取CPI作为通货膨胀的指标有利于合理引导公众和市场对经预期,有利于政府综合运用价格和其他经济手段,实现宏观经济调控目标。

为了研究这些问题,笔者搜集了1985-2007年的年度中国消费者物价指数的相关数据,利用EVIEWS软件,将这几个指标数据进行了相关分析。

对于ARIMA(p q)模型,可以利用其样本的自相关函数和样本的偏自相关函数的截尾性判定模型的阶数,若平稳时间序列的偏相而自相关函数是截尾的则可断定此序列适合MA 模型; 若平稳时间序列的偏相关函数和自相关函数均是拖尾的则此序列适合模型。

eviews计量经济学实验报告

eviews计量经济学实验报告

eviews计量经济学实验报告EViews计量经济学实验报告引言计量经济学是经济学领域中的一个重要分支,它运用数学、统计学和计量学的方法来分析经济现象。

EViews是一个常用的计量经济学软件,它提供了丰富的数据分析和模型建立工具,被广泛应用于学术研究和实际经济分析中。

本实验报告将利用EViews软件进行计量经济学实验,以探讨经济现象并得出相关结论。

实验目的本实验旨在利用EViews软件对某一经济现象进行实证分析,通过建立相应的计量经济模型,对经济现象进行量化分析,并得出相关结论。

实验步骤1. 数据收集:首先,我们需要收集与所研究经济现象相关的数据,包括时间序列数据和横截面数据等。

这些数据可以来自于官方统计机构、学术研究机构或者自行收集整理。

2. 数据预处理:接下来,我们需要对收集到的数据进行预处理,包括数据清洗、缺失值处理、异常值处理等,以确保数据的质量和完整性。

3. 模型建立:在数据预处理完成后,我们可以利用EViews软件建立计量经济模型,包括回归分析、时间序列分析、面板数据分析等,以探讨经济现象的内在规律和影响因素。

4. 模型估计:建立模型后,我们需要对模型进行参数估计,得到模型的具体参数估计值,并进行显著性检验和模型拟合度检验,以验证模型的可靠性和有效性。

5. 结果分析:最后,我们将对模型估计结果进行分析,得出与经济现象相关的结论,并对实证分析结果进行解释和讨论。

实验结论通过以上实验步骤,我们得出了关于某一经济现象的实证分析结果,并得出了相关的结论。

这些结论对于理解经济现象的内在规律和制定经济政策具有重要的参考价值。

总结EViews计量经济学实验报告通过利用EViews软件进行实证分析,对经济现象进行了深入探讨,并得出了相关结论。

这些结论对于经济学研究和实际经济分析具有重要的理论和实践意义,为我们深入理解经济现象和推动经济发展提供了重要的参考依据。

EViews软件的应用为我们提供了一个强大的工具,帮助我们更好地理解和分析经济现象,为经济学领域的研究和实践提供了重要的支持和帮助。

Eviews多重共线性实验报告(1)

Eviews多重共线性实验报告(1)

Eviews多重共线性实验报告(1)Eviews多重共线性实验报告1. 实验背景多重共线性是指在回归分析中,自变量之间存在高度相关,导致回归系数的不稳定性和误差方差的增大。

在实践中,多重共线性是经济预测分析的重要问题,如何诊断和处理多重共线性是经济学研究中的重要课题。

2. 实验目的通过Eviews软件进行多重共线性诊断,掌握运用Eviews软件解决多重共线性问题的技巧,提高经济预测和分析的准确度和可靠性。

3. 实验流程(1)收集所需要进行回归分析的数据。

(2)在Eviews中建立回归模型,运行回归分析。

(3)通过Eviews的诊断功能,检验回归模型中自变量之间的线性相关。

(4)运用Eviews的多重共线性处理方法,解决自变量之间的多重共线性问题。

4. 实验结果(1)通过Eviews的诊断功能,我们可以得到多重共线性诊断报告,其中显示了变量之间的相关系数矩阵、方差膨胀因子(VIF)、条件指数(CI)、特征值(eigenvalue)、特征向量(eigenvector)等诊断指标。

通过观察相关系数矩阵和VIF,我们可以发现是否存在高度相关的自变量。

当VIF大于10时,就表明存在多重共线性。

(2)如果诊断报告中存在多重共线性问题,我们可以通过Eviews中的多重共线性处理方法解决。

其中包括删除相关系数较高的变量、采用主成分回归法、采用岭回归等方法,具体方法应根据实际情况来选择。

5. 实验结论通过Eviews的多重共线性诊断和处理,我们可以更加准确地进行回归分析,避免了多重共线性所带来的偏误和不稳定性。

在实际应用中,我们应根据具体情况选择适当的处理方法,以得到更加可靠的预测结果。

eviews实验报告

eviews实验报告

eviews实验报告EViews实验报告引言:EViews是一款经济学和金融学领域常用的计量经济学软件,它提供了丰富的数据分析和模型建立功能。

本实验报告将通过一个实例来展示EViews在经济分析中的应用。

实验目的:本实验旨在通过EViews软件对某国家的经济数据进行分析,以探索其经济发展的趋势和特点,并构建合适的经济模型,以期对未来的经济走势进行预测。

实验步骤:1. 数据收集与导入首先,我们需要收集某国家的经济数据,如GDP、通货膨胀率、失业率等。

这些数据可以从官方统计机构或相关研究机构获取。

然后,我们将这些数据导入EViews软件中,以便进行后续的数据分析和建模。

2. 数据预处理与可视化在进行数据分析之前,我们需要对数据进行预处理,包括处理缺失值、异常值和数据平滑等。

EViews提供了丰富的数据处理工具,如插值法、平滑算法等,可以帮助我们更好地处理数据。

同时,我们还可以利用EViews的可视化功能,绘制出各个经济指标的趋势图和相关性分析图,以便更好地理解数据。

3. 统计分析与模型建立在对数据进行预处理和可视化之后,我们可以进行统计分析,探索各个经济指标之间的关系。

EViews提供了多种统计方法,如相关性分析、回归分析等,可以帮助我们发现变量之间的关联性。

基于统计分析的结果,我们可以构建合适的经济模型,如VAR模型、ARIMA模型等,以期对未来的经济走势进行预测。

4. 模型评估与优化构建经济模型后,我们需要对模型进行评估和优化,以提高其预测准确性。

EViews提供了多种模型评估指标,如均方根误差(RMSE)、平均绝对误差(MAE)等,可以帮助我们评估模型的拟合效果。

如果模型的预测效果不理想,我们可以通过调整模型参数或选择不同的模型结构来优化模型。

5. 经济预测与政策建议在模型评估和优化之后,我们可以利用经济模型对未来的经济走势进行预测。

基于预测结果,我们可以提出相应的经济政策建议,以帮助决策者制定合理的经济政策。

eviews 实验报告

eviews 实验报告

eviews 实验报告Eviews实验报告引言:Eviews是一款功能强大的经济学和金融学数据分析软件,广泛应用于学术研究和商业决策。

本实验报告将介绍我对Eviews软件的使用和实验结果,以及我对其优缺点的评估。

一、数据导入和处理在开始实验之前,我首先需要将所需数据导入到Eviews中。

Eviews支持多种数据格式的导入,包括Excel、CSV和数据库等。

我选择了导入一个包含宏观经济指标的Excel文件。

通过简单的几步操作,我成功将数据导入到Eviews中,并对数据进行了初步的处理和清洗。

二、描述性统计分析在导入和处理完数据后,我进行了描述性统计分析。

Eviews提供了丰富的统计功能,包括均值、标准差、最大值、最小值等。

我通过对数据进行统计分析,得到了各个宏观经济指标的基本特征。

这些统计结果对于我后续的模型建立和分析提供了重要的参考。

三、时间序列分析除了描述性统计分析,我还进行了时间序列分析。

Eviews拥有强大的时间序列分析功能,可以进行趋势分析、季节性分析、周期性分析等。

我通过绘制时间序列图和自相关图,对数据的趋势和周期性进行了分析。

这些分析结果对于我理解数据的演变规律和预测未来走势非常有帮助。

四、回归分析回归分析是经济学和金融学中常用的一种分析方法,可以用来研究变量之间的关系。

在Eviews中,进行回归分析非常方便。

我选择了一个宏观经济指标作为因变量,选取了几个其他指标作为自变量,进行了回归分析。

通过分析回归结果和统计显著性,我得出了一些有意义的结论,并对未来的变量走势进行了预测。

五、模型评估和验证在进行回归分析之后,我对建立的模型进行了评估和验证。

Eviews提供了多种模型评估方法,包括残差分析、模型稳定性检验等。

我通过对模型的残差进行分析,检验了模型的拟合度和稳定性。

根据评估结果,我对模型进行了修正和优化,以提高模型的准确性和可靠性。

六、结论和展望通过本次实验,我对Eviews软件有了更深入的了解,并掌握了一些基本的数据分析和建模技巧。

Eviews实验报告

Eviews实验报告

Eviews实验报告一1启动程序双击桌面上EViews快捷图标,打开EViews2新建一个workfire点击EViews主窗口顶部命令菜单file\new\Workfile (如图1.1.2),弹出Workfile Create对话框(图1.1.3)。

在右边frequency下拉菜单中可选数据类型,Annual为默认的数据类型。

Workfile中有两个默认的对象,名称分别为c 、resid,分别为参数估计值向量和残差序列。

在没做回归估计之前,向量c的每个元素的值都为0,残差序列的每个值为NA,表示还没有赋值。

以后每做一次回归估计,c和resid就会被重新赋值(被分别赋予最新回归估计的参数估计值向量和残差序列)。

3录入数据点击EViews主窗口顶部菜单命令Object\new Object或者Workfile上面的菜单命令Object ,弹出New Object对话框,在Type of Object中选择Group类型,然后在右边文本框中为新建的group对象(Object)命名,比如为g1,然后点击OK,弹出一个表格形式的Group对话框,同时在Workfile中出现了新建的这个group对象g1。

在g1对话框的obs栏可输入多个序列对象名并在表格中录入这些序列的数据在group对象(g1)表格中录入数据表格右端的滑块拖到顶端,这时看到表格左侧出现两个obs。

建立序列对象Y:点击g1表格中第一列顶部的灰色条(第一个obs右侧),该列全部变蓝,输入变量名Y,回车,点OK即可。

如此便建立了序列Y(这时可在Workfile中发现多了一个序列Y),不过此时还没有给序列对象Y赋值(即录入数据),序列Y中每个年度的值现在都为NA。

在g1数据表格中Y所在列录入序列Y的各年观测值。

仿上可在g1第二列建立序列X(人均可支配收入),并录入各年人均可支配收入X。

这样便在g1中定义了两个序列对象(Y、X)并录入了数据双击Workfile中序列对象Y,点击序列对象Y的数据表上菜单命令edit +\-,将编辑状态切换为“可编辑”,然后在其单元格中录入数据。

Eviews异方差性实验报告

Eviews异方差性实验报告

实验一异方差性【实验目的】掌握异方差性问题出现的来源、后果、检验及修正的原理,以及相关的Eviews操作方法。

【实验内容】以《计量经济学学习指南与练习》补充习题4-16为数据,练习检查和克服模型的异方差的操作方法。

【4-16】表4-1给出了美国18个行业1988年研究开发(R&D)费用支出丫与销售收入X 的数据。

请用帕克(Park)检验、戈里瑟(Gleiser)检验、G-Q检验与怀特(White)检验来检验丫关于X的回归模型是否存在异方差性?若存在异方差性,请尝试消除它。

【实验步骤】一■检查模型是否存在异方差性1、图形分析检验(1)散点相关图分析做出销售收入X与研究开发费用丫的散点相关图(SCAT X 丫)。

观察相关图可以看出,随着销售收入的增加,研究开发费用的平均水平不断提高,但离散程度也逐步扩大。

这说明变量之间可能存在递增的异方差性。

0 50,000 100,000 150,000 200.000 250,000(2)残差图分析首先对数据按照解释变量X 由小至大进行排序(SORT X ),然后建立一元线 性回归方程(LS 丫 C X )。

Dependentvariable: Y Method: Least Squares Date: 12/06/11 Time : 23:08 Sample: 1 17Included obseivations: 17VariableCo EfficientStd. Errort-StallStic Prob C 187.5068 1106.681 0.169432 0.8677 X0.031993 0.0111112 8793580.0115 R-squared0.355966 Mean dependent var 2676.188 Adjusted R-squared 0.313031 S.D. dependent var3438.207 S.E. of regression 2849711 Aka ike Info criterion 13.85795 Sum squared resid 1 22E+O0 Schwarz criterion 18.95698 Log likelihood -158.2926 Hannan-Quinn criter. 18.86770 F-statistic8.290703 Durbin-Watson stat2.738533Prob(F-statistic)0.011464因此,模型估计式为:丫 =187.507 0.032* X ------- (*)2 (0.17)(2.88)R 2=0.31s.e.=2850F=0.011建立残差关于X 的散点图,可以发现随着X 增加,残差呈现明显的扩大 趋势,表明存在递增的异方差。

eviews实验

eviews实验

试验报告一内容:
1、以一个长度超过100个单位的时间序列为例,画出频数图,并以表格方式列出其均值、
中位数、最大最小值、标准差、偏度、峰度、JB统计量;完成均值检验、验证分布函数是否为正态分布、指数分布,画出相应的QQ图。

2、以两个同等长度的序列为例,画出交叉相关系数图。

3、以某一时间序列为例,对其进行季节性调整、趋势分解,抽取长期趋势、循环序列、季
节要素、不规则要素四个序列。

画出四个序列的图形。

计算长期趋势序列与原序列的平均值、方差、中位数、最大最小值、标准差。

4、以第二小题中的两个变量为例(如果变量不显著,则另寻找合适的多元回归模型),检
验模型是否存在遗漏变量,遗漏变量可以以解释变量的对数形式或者指数形式为例。

频数图
均值、中位数、最大最小值、标准差、偏度、峰度、JB统计量
均值检验
QQ图
更接近正态分布交叉相关系数图
原序列
长期趋势
循环序列
季节要素
不规则要素
遗漏变量
P>0.05,遗漏变量不显著。

Eviews实验报告2

Eviews实验报告2

(Error Correction Model)Srba 和Yeo 于模型。

它常常作为协整回归模型的补充模型出现。

两步法建立误差修正模型
p t B Y -++
【实验过程】(实验步骤、记录、数据、分析)
首先导入1982-2010年的年度中国城镇居民月人均生活费支出(y)和可支配收入序列(x)数据:
绘制中国城镇居民月人均生活费支出(y)和可支配收入序列(x)的折线图:可以看到两者呈现公共的上升趋势。

对X与Y分别取对数:
然后对xt与yt序列进行平稳性检验:
容易发现:XT与YT序列均不是平稳的,但是其一阶差分都是平稳的,因此猜测他们具有协整关系。

对YT和XT序列进行回归后发现:
可以看到对应的两个参数的系数的p值都显著小于0.001。

生成一列序列=残差,对该序列进行ADF检验后可以发现p值小于0.05,因此认为不存在单位根,序列是平稳的。

因此,尽管国城镇居民月人均生活费支出(y )和可支配收入序列(x )都是非平稳的,但是由于它们之间具有协整关系,因此可以建立动态回归模型准确预测其长期互动关系。

模型拟合的预测值DCPIF 的折线图和与dcpi 的对比图如下:
可以看到,最后的拟合效果非常好。

从而我们得到最后的拟合方程为:
t t t x y ε++=)ln(*934.0328.0)ln(
即: t
t x t e y ε++=)ln(*934.0328.0
因此,城镇居民收入没增加一个百分点,其消费支出也增加0.934各百分点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图一 4、对GDP、EX作图分析 点击“view/ Multiple Graphs/line”,得到EX与GDP的曲线图。
图二 点击“view/ Multiple Graphs/XY line”得到下图。
图三 Xy line图中,横坐标表示表示EX出口额,纵坐标表示GDP生产总 值,从图中曲线的形状分析,EX与GDP的线性关系较强,有继续分析 的意义。 5、描述性统计 (1)、打开对象“EX”,点击“view/Descriptive statistics/Histogram and stats”,可得到EX的描述性统计量。 EX的描述性统计。 均值(mean)为1134213。 中位数(median)为429843。 最大值(maximum)为4673393、最小值(minimum)为2368,可 知EX序列数据跨度大。 标准差(std.dev)为1463811,说明Y序列数据离散程度大。
9、最终确定模型 综上所述,最终确定的模型为 LnEX = -7.756501 + 1.438620 LnGDP +0.574091AR(1) 该模型不仅与样本的拟合程度高,而且不存在自相关问题,具有对 显示经济现象进行解释与预测的意义。 经济分析:InGDP的系数为正,说明经济发展水平的提高的确可以 增加出口额,而这与现实经济现象也是一致的。 统计分析:R2 =0.995071,说明模型很好地拟合了样本,所有参数 的Prob(t-statistic) <0.05,说明显著性检验通过,D.W.= 1.898759, du <1.898759<4-du,说明模型不存在自相关问题。
图四 (2)、打开对象“GDP”,点击“view/Descriptive statistics/Histogram and stats”,可得到GDP的描述性统计量。
图五 从图五中得知以下统计量。 均值(mean)为2957652。 中位数(median)为1827980。
最大值(maximum)为9884212、最小值(minimum)为257276, 可知GDP序列数据跨度大。
结论:模型LnEX = -13.58382 + 1.825093LnGDP存在正序列相关 问题。
8、自相关问题的解决 使用Cochrane-Orcutt二阶段迭代法
(1)点击“quick/estimate equation”, 选择最小二乘法,在跳出 的窗口中输入“LOG(EX) C LOG(GDP) AR(1)”,显示结果如下。
T检验:设原假设H0:β=0,备择假设H1:β≠0,从图六中可以得 到Prob(t-statistic)=0.0000<0.05,拒绝原假设,说明在总体中GDP对 EX的影响是显著的。
F检验:设原假设H0:β=0,备择假设H1:β≠0,从图六中可以得 到Prob(F-statistic)=0.0000<0.05,说明总体的线性关系也是显著的。
五、不足之处 1、对eviews软件的使用并不得心应手 2、分析地不够专业,特别是经济分析 3、数据比较陈旧,使得模型不能很好的解释现在的经济现象
2011.8.15 H09800202 经济学09(2)班 高佳玲
偏度(skewness)为1.301566,说明Y序列分布有长的右拖尾。峰 度(kurtosis)为3.385321,可知Y序列分布的凸起情况大于 正态分布; Jarque-Bera检验:H0:EX样本服从正态分布,H1:EX样本不服从 正态分布,P=0.055837> 0.05,接受原假设,Y序列数据服从正态分布。
试验名称:萧山经济增长对外贸出口影响的eviews 试验报告
一、试验目的: 使用eviews3.1软件建立一元线性回归模型,估计模型参数,进行 模型分析,过程中熟悉eviews3.1软件相有关操作、牢记相关原理,并 且利用模型解决实际问题。
二、试验解决问题 这里我选取了经济开放的杭州市萧山区,用GDP表示经济发展水 平,分析1989年至2008年萧山生产总值与出口额,判断二者间是否存在 显著的联系。
三、试验步骤与分析 1、确立模型 为了分析1988年至2008年萧山生产总值与出口额之间的关系,拟设 萧山出口额为被解释变量EX,萧山年生产总值为解释变量Y,出口额为 解释变量EX,由此建立一元线性回归模型。 • LnEX=α+βLnGDP+ μ 2、数据搜集 源数据中出口额以美元为单位,这里将出口额按照当年平均汇 率转换为以人民币为单位,与生产总值单位保持一致。
1992年
400525
38944
2002年
3355683
1066963
1993年
592406
66384
2003年
4123511
1460675
1994年
895622
140356
2004年
5015121
2082004
1995年
1102805
161709
2005年
5893262
2688115
1996年
1330618
189559
2006年
6986637
3264579
1997年
1549796
264950
2007年
8501547
4171015
1998年
1730803
341373 2008年
9884212
4673393
数据来源:萧山统计局
3.建立工作文件,录入数据 (1) 打开eviews 3.1软件,点击“File/new/workfile”,选定数
图六 图六中得出的LnGDP的系数β的估计值为1.825093,常数项α的估 计值为-13.58382,代入可以得到如下一元线性回归模型。
LnEX = -13.58382 + 1.825093LnGDP (-10.54696) (20.41258) R2 =0.958590 ADR=0.956289 括号内是T统计值。
(2)点击“quick/estimate equation”, 选择最小二乘法,在跳 出的窗口中输入“LOG(EX) C LOG(GDP) AR(1) AR(2)”,显示结果如 下。
估计出来的模型如下
LnEX = -9.938304 + 1.581804 LnGDP +0.651521 AR(1) - 0.233520AR(2) (-9.807518) (23.21918) (3.094754) (-1.746924)
标准差(std.dev)为2886654,说明GDP序列数据离散程度大。偏 度(skewness)为1.101958,说明GDP序列分布有长的右拖 尾。 峰度(kurtosis)为3.092726,可知GDP序列分布的凸起情况略大于 正态分布。 Jarque-Bera检验:H0:GDP样本服从正态分布,H1:GDP样本不 服从正态分布。P=0.131673>0.05,接受原假设,GDP序列数据服从正态 分布。 6、估计模型参数 点击“quick/estimate equation”,选择最小二乘法,在跳出的 窗口中输入“LOG(EX) C LOG(GDP)”,让EX的对数对常数项和GDP的对 数进行回归。结果如下。
结论:T检验、F检验通过。 (3)、计量经济学检验
这里我选用的数据属于时间序列数据,这种数据容易产生序列相关 问题,在这里我用杜宾法检验。
杜宾法中,对μt = ρμt-1 + εt,原假设为ρ= 0,备择假设为
ρ≠0,检验仪器为
从最小二乘估计得出的表中可以看到D.W.=0.500897,通过查表得 知在5%的显著性水平且n=20、k=2的情况下dL=1.20,du=1.41, 0<D.W. <dL,所以该模型存在正自相关问题。
估计出来的模型如下 LnEX = -7.756501 + 1.438620 LnGDP +0.574091AR(1)
(-4.268444)(11.97726) (6.626776) R2 =0.995071 ADR=0.994455 D.W.=1.690313 括号中为T统计值 分析:常数项的 T检验中,Prob(t-statistic)=0.0006<0.05, LOG(GDP)和AR(1)的T检验中,Prob(t-statistic)=0.0000<0.05,说明 这些参数都是显著的。 D.W.= 1.690313 。通过查表得知在5%的显著性水平且n=20、k=3的 情况下dL=1.10,du=1.54 。du <1.690313<4-du . 结论:该模型很好的拟合了样本,参数显著性检验通过,且解决了 原来的自相关问题。
7、所得模型的检验 (1)、经济意义检验。
在该模型中,LnGDP前的参数估计量为正,意味着GDP越大即经济发 展水平越高,出口额就越大,符合原有理论以及现实经济行为。经济意 义检验通过。 (2)、统计检验 ①拟合优度检验。从图六可以得到可决系数R2为0.958590,ADR为 0.956289,说明样本点与回归直线拟合的很好。 ②变量的显著性检验(使用T检验、F检验)。
但是AR(2)的T检验中,Prob(t-statistic)=0.1025>0.05,这个参数
并不显著。
D.W.= 1.898759。通过查表得知在5%的显著性水平且n=20、k=3的
情况下dL=1.10,du=1.54 。du <1.898759<4-du .
结论:新添加的AR(2)显著性检验并未通过,但是解决了原来的自 相关问题。
R2 =0.995758 ADR=0.994849 D.W.=1.898759
括号中为T统计值
分析:常数项与LOG(GDP)的
T检验中,Prob(t-
statistic)=0.0000<0.05,
AR(1)的T检验中,Prob(t-
相关文档
最新文档